
HAL Id: hal-03190617
https://hal.science/hal-03190617v2

Submitted on 8 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Linked Open Code
Ahmed El Amine Djebri, Antonia Ettorre, Johann Mortara

To cite this version:
Ahmed El Amine Djebri, Antonia Ettorre, Johann Mortara. Towards a Linked Open Code. ESWC
2021 - 18th Extended Semantic Web Conference, Jun 2021, Heraklion / Virtual, Greece. �10.1007/978-
3-030-77385-4_29�. �hal-03190617v2�

https://hal.science/hal-03190617v2
https://hal.archives-ouvertes.fr

Towards a Linked Open Code

Ahmed El Amine Djebri1, Antonia Ettorre1, and Johann Mortara2

1 Université Côte d’Azur, Inria, CNRS, I3S, France
2 Université Côte d’Azur, CNRS, I3S, France

{ahmed-elamine.djebri,antonia.ettorre,johann.mortara}@univ-cotedazur.fr

Abstract. In the last two decades, the Linked Open Data paradigm
has been experiencing exponential growth. Regularly, new datasets and
ontologies are made publicly available, and novel projects are initiated
to stimulate their continuous development and reuse, pushing more and
more actors to adhere to the Semantic Web principles. The guidelines
provided by the Semantic Web community allow to (i) homogeneously
represent, (ii) uniquely identify, and (iii) uniformly reference any piece
of information. However, the same standards do not allow defining and
referencing the methods to exploit it: functions, procedures, algorithms,
and code in general, are left out of this interconnected world. In this
paper, we present our vision for a Web with Linked Open Code in which
functions could be accessed and used as Linked Data, allowing logic har-
nessing the latter to be semantically described and FAIR-ly accessible.
Hereafter, we describe the challenges presented by the implementation of
our vision. We propose first insights on how to concretize it, and we pro-
vide a non-exhaustive list of communities that could benefit from such
an ideal.

Keywords: Semantic Web · Ontologies · Feature Identification · Linked
Data · Linked Open Code

1 Introduction

The Web is growing stronger semantically. More ready-to-consume data, ser-
vices, and AI-based systems relying on Semantic Web are regularly published.
We witness the emergence of the Semantic Web in different unrelated fields such
as AI, IoT, networking, medicine, or biology. Within each, papers are being
published, wikis are being created, and code is made available. All these dif-
ferent fields share their data through a unique structure, reaching the vision of
Tim Berners-Lee who mentioned: ”Semantic Web promotes this synergy: even
agents that were not expressly designed to work together can transfer data among
themselves when the data come with semantics.” [1].

While Semantic Web offers ways to store metadata to reuse them seman-
tically, code is not used on the Semantic Web to its full potential. Hence, the
problem we seek to tackle is: how to take advantage of code as a pre-existing,
structured, and functional type of data in Semantic Web?

2 Ahmed El Amine Djebri, Antonia Ettorre, and Johann Mortara

Code for data manipulation is actually either (i) not needed for simple op-
erations as existing standards offer sufficient functionalities (e.g. functions in
SPARQL [2]) or (ii) used at a higher level in the Semantic Web stack, where
users download and build code from open repositories provided to them by the
data provider. However, these two approaches exhibit some limitations: in (i),
the capacities of SPARQL functions are limited and in (ii), despite the availabil-
ity of the code on the Web, the possibility to have a link between the semantics
of data and the semantics of code is not fully harnessed. We believe that code
should be treated as a special type of data. The use of functions or methods on
Semantic Web is usually studied for limited use-cases, such as schema validation
(i.e. sh:JSFunction representing JavaScript functions to be used in SHACL
engines). We think that the link between code and Semantic Web remains su-
perficial. Functions are not semantically shared as and with data.

We argue that functions, as parts of code, are easily referenceable and can
be identified by a defined set of metadata. However, defining their semantics is
challenging as functions can be seen from different levels of granularity. Finally,
although source code can already be browsed and referenced online at multiple
levels of granularity by platforms such as Software Heritage [3] or GitHub’s
permalinks, they do not provide any description of the functionality implemented
by the code, thus limiting the code reusability.

2 Code on Semantic Web

Data published on the Semantic Web are often followed by instructions on how
to access, read, manipulate, and query them. Ontologies are documented in
scientific literature and wikis, offering insights on their semantics, and tools for
data manipulation are being provided. An increasing number of developers give
open access to public source code repositories hosted on data providers such
as GitHub. Academics can publish code directly alongside their paper 3 for
frameworks they developed, encouraged by new policies from editors to foster
reproduction and reuse of research results 4.

In contrast with Linked Data, code files are often seen as single documents on
the Web as the transition between the document-based view and the data-based
one has not affected them on a fine-grained level. Hence, the link between data
and the code artifacts directly involved with it remains limited. We believe that
since both resources (data and code artifacts related to them) are available on
the Web, an effort should be made to provide code in the same format as and
alongside data.

2.1 Adapting Code to Semantic Web

According to the Web Service Modeling Ontology Primer (WSMO) [4], a func-
tion is not only a syntactical entity but also has defined semantics that allows

3 https://blog.arxiv.org/2020/10/08/new-arxivlabs-feature-provides-instant-access-to-code/
4 https://www.acm.org/publications/policies/artifact-review-and-badging-current

https://blog.arxiv.org/2020/10/08/new-arxivlabs-feature-provides-instant-access-to-code/
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Towards a Linked Open Code 3

evaluating the function if concrete input values for the parameters are given.
However, the structure of functions defined in most programming languages is
more complex than in the definition provided by the WSMO as their computa-
tion may rely on data other than the values specified as its parameters such as
(i) results of other functions defined in the same project or an external library,
or (ii) attributes of an object for object-oriented methods. These values are
provided to the functions by their execution environment, as the Java Virtual
Machine (JVM) for Java-based systems.

For a function to be compliant with our case, it should (i) depend on the stan-
dard libraries of a language-version, either directly or transitively through other
referenceable functions, and (ii) not rely on out-of-scope variables. Property (i)
applies recursively to any function call inside the function itself. If a code is to be
written in an inline mode, any other function call within the same function must
be replaced by a set of instructions depending only on the standard libraries of a
defined language-version. Achieving (ii) requires binding out-of-scope variables
to their values.

Many challenges arise from this new definition, starting with the fact that
the existing code repositories do not provide a ”function-based” view. As a con-
sequence, we should figure out how to turn those into referenceable, reusable
resources. The following challenges, presented in fig. 1, are to be addressed.

Referencing functions Function structure and signature in code make it easily
recognizable. The signatures usually contain information such as the function’s
name and its typed arguments (cf. fig. 2). Such information can be represented
as linked data while attributing a unique identifier for function definitions.

The idea is to allow Linked Data providers to publish, following the Semantic
Web principles, the code of functions, and their metadata. Furthermore, one
may include an additional level of granularity to existing IRIs referencing code
entities (repositories, folders, files, fragment), helping to reference functions and
keep track of their provenance. For example, a code file archived on Software
Heritage with the IRI swh:codeFile helps addressing the function fn using
the IRI swh:codeFile fn 1 (instead of referencing fragments of code with no
defined semantics).

Fig. 1. Challenges to achieve a first working prototype of Linked Open Code

4 Ahmed El Amine Djebri, Antonia Ettorre, and Johann Mortara

Fig. 2. Comparison of metadata provided function signature in Python and C++

An ontology for functions A crucial step to bring functions to the Semantic
Web is the definition of an ontology to represent them. Such ontology must
describe four aspects:

1. Versioning: the version of the function, programming language, provenance.

2. Relational: relations between functions (inclusion, dependencies, etc.).

3. Technical: code, arguments, typing, etc.

4. Licensing: although all open source licenses imply free-use and sharing of
code 5, some may impose restrictions on the reuse (e.g. crediting the original
author), hence this information needs to be provided to the user.

Annotating functions semantically During this step, the defined functions
are mapped each with their signature and feature metadata. An Abstract Syntax
Tree (AST) analysis is applied on each to identify the components constituting
the signature of the function (name, parameters, ...) that will then be used as
values for the properties defined in the ontology. As a result, the user will be able
to query the knowledge base to retrieve the function matching the given con-
straints. In parallel, a feature identification process is executed to identify the
functionalities implemented by each function and annotate them accordingly.
The whole process is depicted as in fig. 3. Multiple techniques for the identifica-
tion of features have already been proposed [5] and need to be adapted to our
context.

Linking functions After having identified the features provided by the func-
tions, we can use this information to semantically link functions fulfilling sim-
ilar goals. Indeed, two functions being annotated with the same feature can
be considered as different implementations for the same functionality as per-
ceived by the user. Therefore, we can link them with standard predicates such
as owl:sameAs, skos:exactMatch, skos:closeMatch or custom predicates of-
fered by other existing ontologies. Alongside semantics, the dependency must be
taken into account to link related functions together. Based on this criterion,
functions relying on the results provided by other functions (including the func-
tion itself in the case of recursive calls) will be semantically connected.

5 https://opensource.org/licenses

https://opensource.org/licenses

Towards a Linked Open Code 5

Codebase

Extraction of
functions

Functions
source code

Analysis of the
functions signatures

Signature
properties for
each function

Feature
identification

List of features
implemented by

each function

Annotated functions
relying on the

ontology

int sum(a,b):
 return a+b

void sortArray(l):
 …

name: sum
parameters: [int, int]
return type: int
name: sortArray
parameters: [list]
return type: void

name: sum
features: sum_integers

name: sortArray
features: parse_array,
sort_array

int sum(a,b):
 return a+b

void sortArray(l):
 …

sum_integers

parse_array

sort_array

Fig. 3. Overview of the process for semantic annotation of functions

Ranking functions The same functionality can be implemented in different
ways and using different programming languages. To provide the most efficient
implementation, there is a need to rank functions according to several parame-
ters. One example can be the feedback of the community, as a repository where
usage statistics for functions are being kept for ranking purposes, alongside other
information such as the number of times a function was starred, forked, or up-
voted by users. It is also possible to signal issues related to security flaws. Per-
formance evaluation can also be used as a ranking criterion. A Semantic Web
Engine like Corese 6, coded in Java, would use functionality implemented in
Java. However, the same functionality, implemented in Python, can deliver bet-
ter performance for the same tool if used with a Python wrapper. This aspect
is meant to link code with experience. We can imagine users sharing their exe-
cution log, which may contain elements about hardware specification, operating
system, language version, etc.

Negotiating functions Users may take advantage of the implemented content
negotiation to get suitable function definitions for their use-cases. This is done
by using HTTP headers, or non-HTTP methods like Query String Arguments
(QSA). Users negotiate functions that suit their current environment to access
and manipulate Linked Data. For instance, a user working with Corese may
send a request to the function catalog, asking for the Java implementation of
functions alongside their query for data. Negotiation can rely on the previous
step, by proposing the best function to the users according to their specifications.

The realization of this vision would be a framework through which the user
would use SPARQL to query a catalog of functions (section 2.1) for the im-
plementations of needed functionalities meeting architectural and user-defined
requirements. The fetched code artifacts can then be composed to build a tai-
lored software system. However, the automatic composition of software artifacts

6 https://github.com/Wimmics/corese

https://github.com/Wimmics/corese

6 Ahmed El Amine Djebri, Antonia Ettorre, and Johann Mortara

is a whole challenge in itself [6] and is out of the scope of this vision. Concretizing
the vision raises other challenges (e.g. scalability) that will need to be addressed
when designing the actual solution.

2.2 First approaches towards Linked Open Code

The scientific community started taking promising steps to tackle the aforemen-
tioned points and make code semantically and uniformly accessible on the Web.

Initial works such as [7,8,9] focused on remote execution, through SPARQL
queries, of code explicitly written for the Semantic Web. While [7] and [8] deal
with SPARQL functions, [9] defines a new scripting language, LDScript, but
its expressiveness is limited when compared to conventional programming lan-
guages. However, none of these approaches enables users to discover, download,
and locally execute the best implementation of a given functionality in a required
programming language.

More recent works aim to make code written in any language uniformly ac-
cessible through semantic queries. Ontologies are defined to describe code either
for a specific language, like the R ontology [10]; a specific paradigm, such as
object-oriented languages with CodeOntology [11]; or independently of the used
technology as done by [12]. While [10] does not discuss the link between func-
tions and data and lacks a way to capture the semantics of the functions, [11]
and [12] have been extended respectively in [13] and [14,15,16,17] to tackle these
limitations.

The work presented in [13] relies on CodeOntology for the implementation of
a query answering system. The user’s queries are translated into SPARQL queries
and evaluated against a repository containing the RDF definitions of functions.
Those functions are discovered and annotated using CodeOntology to describe
their structure and DBpedia for semantics. Though this approach is similar
to our vision for what concerns the discovery and semantic annotations of the
functions, it differs as it remotely executes functions to answer the user’s query
while our goal is to find and return the best implementation of the requested
functionality. Moreover, we aim to be able to deal with every kind of function
despite the paradigm of the language in which they are implemented.

In [14,15,16,17], De Meester et al. broaden the vision presented in [12] by
introducing new concepts, e.g. content negotiation. These approaches are very
similar to our vision, with the main difference (which is also one of the main
challenges of our approach) that we aim to automatically discover, identify and
annotate the source code, while these previous works foresee the manual pub-
lication of description and implementations by developers. The works discuss
briefly ranking the functions, but do not mention what metrics are to be used.

The last very recent initiative is Wikilambda [18] by the Wikimedia foun-
dation. Its aim is to abstract Wikipedia by offering several implementations of
functions allowing, firstly, to render the content of Wikidata in natural language
using predefined templates and, as a final goal, to make the referenceable func-
tions available on the Web. The main limitation of such an initiative is that
the repository needs to be manually populated with functions written by the

Towards a Linked Open Code 7

community, meaning that the success of the approach depends on the expertise
and the will of the community, and code already present on the Web cannot be
exploited.

3 Long-term perspectives

Transitioning from open code to Linked Open Code is challenging, yet it repre-
sents tremendous opportunities for diverse communities.

Linking data and code in a standard way would open perspectives to fully
open and link libraries of programming languages and tools. This promising step
enables to auto-construct, from scratch, small utilities computing data. Initia-
tives like DeepCode 7 for code completion can use this work to improve their
models. Later on, frameworks such as GPT-3 can be trained on such data. One
can also imagine shareable Deep Learning models in the same way, alongside
their data, and in a ready-to-use negotiable format. Another important aspect
granted by this transition is datasets of cross-language linked functions, ready
to use as a base for code translation projects. We believe that syntactical code
translation of code artifacts is not enough to achieve the same performance level
obtained by experts of each language. Visual Programming Languages (VPLs)
started emerging in the last decades and allow users to create programs and algo-
rithms by assembling visual blocks instead of writing actual code. By providing
a consistent organization of the information, they allow better performance in
design and problem-solving [19] and bring programming to non-specialists. Vi-
sual programming environments are not only developed for teaching purposes 8

but also to support the design of real-world applications [20] and workflows such
as the Node-RED 9 language, widely use in the context of the Internet of Things.
Providing a structure allowing to reuse code assets as black-boxes would allow
the emergence of a global VPL to build software relying on functions available
on the Linked Open Code.

We think that the FAIR code vision is not FAIR enough when applied to the
Semantic Web. Multiple resources openly available on the Web are not used to
their full potential.

References

1. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, 284(5):34–43, 2001.

2. The W3C SPARQL Working Group. Sparql 1.1 overview. Technical report, World
Wide Web Consortium, 2013.

3. Roberto Di Cosmo, Morane Gruenpeter, and Stefano Zacchiroli. Identifiers for
Digital Objects: the Case of Software Source Code Preservation. In iPRES 2018 -
15th International Conference on Digital Preservation, pages 1–9, Boston, United
States, September 2018.

7 https://www.deepcode.ai/
8 https://scratch.mit.edu/
9 https://nodered.org/

https://www.deepcode.ai/
https://scratch.mit.edu/
https://nodered.org/

8 Ahmed El Amine Djebri, Antonia Ettorre, and Johann Mortara

4. Sinuhe Arroyo, Emilia Cimpian, John Domingue, Cristina Feier, Dieter Fensel,
B Knig-Ries, Holger Lausen, Axel Polleres, and Michael Stollberg. Web service
modeling ontology primer. W3C Member Submission, 2005.

5. Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. Feature
location in source code: a taxonomy and survey. Journal of software: Evolution
and Process, 25(1):53–95, 2013.

6. Benjamin Benni, Sébastien Mosser, Mathieu Acher, and Mathieu Paillart. Char-
acterizing Black-box Composition Operators via Generated Tailored Benchmarks.
Journal of Object Technology, 19(2), 2020.

7. Maurizio Atzori. call: A Nucleus for a Web of Open Functions. In International
Semantic Web Conference (Posters & Demos), pages 17–20, 2014.

8. Maurizio Atzori. Toward the web of functions: Interoperable higher-order functions
in SPARQL. In International Semantic Web Conference, pages 406–421. Springer,
2014.

9. Olivier Corby, Catherine Faron-Zucker, and Fabien Gandon. LDScript: a linked
data script language. In International Semantic Web Conference, pages 208–224.
Springer, 2017.

10. Pascal Neveu, Caroline Domerg, Juliette Fabre, Vincent Nègre, Emilie Gennari,
Anne Tireau, Olivier Corby, Catherine Faron-Zucker, and Isabelle Mirbel. Us-
ing ontologies of software: example of R functions management. In International
Workshop on Resource Discovery, pages 43–56. Springer, 2010.

11. Mattia Atzeni and Maurizio Atzori. CodeOntology: RDF-ization of source code.
In International Semantic Web Conference, pages 20–28. Springer, 2017.

12. Ben De Meester, Anastasia Dimou, Ruben Verborgh, and Erik Mannens. An
ontology to semantically declare and describe functions. In European Semantic
Web Conference, pages 46–49. Springer, 2016.

13. Mattia Atzeni and Maurizio Atzori. What is the cube root of 27? question answer-
ing over codeontology. In International Semantic Web Conference, pages 285–300.
Springer, 2018.

14. Ben De Meester, Anastasia Dimou, Ruben Verborgh, Erik Mannens, and Rik
Van de Walle. Discovering and using functions via content negotiation. In Pro-
ceedings of the 15th International Semantic Web Conference: Posters and Demos,
pages 1–4. CEUR-WS, 2016.

15. Lander Noterman. Discovering and Using Functions via Semantic Querying. Mas-
ter’s thesis, Ghent University, 2018.

16. Ben De Meester, Lander Noterman, Ruben Verborgh, and Anastasia Dimou.
The function hub: an implementation-independent read/write function descrip-
tion repository. In European Semantic Web Conference, pages 33–37. Springer,
2019.

17. Ben De Meester, Tom Seymoens, Anastasia Dimou, and Ruben Verborgh.
Implementation-independent function reuse. Future Generation Computer Sys-
tems, 110:946–959, 2020.

18. Denny Vrandečić. Architecture for a multilingual wikipedia. arXiv preprint
arXiv:2004.04733, 2020.

19. Kirsten N. Whitley. Visual programming languages and the empirical evidence for
and against. Journal of Visual Languages & Computing, 8(1):109–142, 1997.

20. Beate Jost, Markus Ketterl, Reinhard Budde, and Thorsten Leimbach. Graphi-
cal programming environments for educational robots: Open roberta-yet another
one? In 2014 IEEE International Symposium on Multimedia, pages 381–386. IEEE,
2014.

	Towards a Linked Open Code

