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To comply with the new challenges of sustainability, the industrial sector is revising its means of supply and production. This entails, for instance, optimizing energy consumption and costs at the operational level. In this vein, this research presents an Order Acceptance Scheduling problem (OAS) on a single machine under electricity time-of-use tariffs and taxed carbon emission periods. The objective is to maximize the total profit. This problem arises when a company decides to select and process a subset of orders only if it is possible within a predetermined time-window. Therefore, the number of possible schedules grow at a factorial rate. To tackle this NP-hard problem, two time-indexed formulations are provided. Finally, to assess the performance of the proposed models, a comparative analysis against a classical formulation is conducted.

INTRODUCTION

For centuries, industry has been a vector for social and economic prosperity, shimmering an indefinite growth. Although, new concerns about environmental issues, such as resource depletion and greenhouse gases (GHG) emission, cast doubt upon this vision. According to the International Energy Agency, the industrial sector accounted for more than a third of the energy used in the world in 2017, which is responsible for climate changes and jeopardizing social advances at the same time. Industry 4.0through the development of smart decision tools and the modernizing of equipmentallows a rational and an accountable response to the sustainability stakes, which aim at maintaining environmental, social and economic viability. At the strategic level, this is embodied by Corporate Social Responsibility (CSR) that advocate for ethics and green sustainability from global reference frameworks. At the operational level, this includes optimizing energy consumption, costs and carbon footprint. To perform efficient demand management, energy suppliers developed preferential rate, designated as timeof-use (TOU) tariffs, at specific times of the day. In the meantime, industrials must abide by the rules on regulation of GHG emissions, which are reflected by the implementation of carbon emission taxes by governments. We can mention that the objectives for reducing GHG emissions were reinforced at COP22 in Marrakesh, Morocco.

In this context, we present two time-indexed models for the OAS problem with electricity TOU tariffs and taxed carbon emission periods. This research follows up the work of [START_REF] Chen | Order acceptance and scheduling problem with carbon emission reduction and electricity[END_REF] which presented a disjunctive model.

The paper is organised as follows. Section 2 includes a review on OAS problems and scheduling under electricity TOU tariffs. Section 3 states the problem and presents the solution approach. Section 4 features the resolution method. Section 5 presents the computational results. The last section concludes the paper and draws perspectives.

STATE OF THE ART

The standard OAS problem is a double-decision problem that consists in the selection and the sequencing of a subset of ordersamong 𝑛with the objective to maximize the total profit. [START_REF] Slotnick | Order acceptance and scheduling: A taxonomy and review[END_REF] proposes a literature review on this topic, indicating that OAS are studied for both single and multi-machines systems and with various job characteristics such as preemption, release date or setup. These problems are generally known to be NP-hard as demonstrated in [START_REF] Palakiti | Order acceptance and scheduling: overview and complexity results[END_REF]. At worst the number of possible schedules is ∑ 𝑘! 𝑛 𝑘=1 , while in standard scheduling problems, all the orders are accepted and thus only 𝑛! sequenceswhich are all the possible permutations of 𝑛 elements without repetitioncan be obtained. (Oğuz et al., 2010) address the OAS problem with release dates, setup times and time-related penalties using a disjunctive Mixed Integer Linear Program (MILP). For the same problem, [START_REF] Cesaret | A tabu search algorithm for order acceptance and scheduling[END_REF] propose a Tabu Search and [START_REF] Silva | Exact and heuristic algorithms for order acceptance and scheduling with sequence-depend-ent setup times[END_REF] provide an efficient arctime-indexed model. However, in the literature, time-indexed formulations are not as developed for OAS problem.

MOSIM '20 -November 12-14, 2020 -Agadir -Morocco Energy considerations are essential for both economic and environmental reasons. With energy prices increase, demanding specification and taxes, the operational level takes a crucial part in the efforts for sustainability. Pricing policies, especially TOU rate, are largely studied for single and more complex systems. For instance, [START_REF] Aghelinejad | Production scheduling optimisation with machine state and time-dependent energy costs[END_REF] exploit machine states mechanism to minimize total energy costscomprising idle, transition and processing energyon a single machine with a predetermined sequence. The latter use an on/off time-indexed model. [START_REF] Che | An efficient greedy insertion heuristic for energy-conscious single machine scheduling problem under time-of-use electricity tariffs[END_REF] formulate a timeindexed MILP and designed a greedy heuristic for the single machine under TOU electricity tariffs in order to minimize total energy costs. The same authors in [START_REF] Che | Energy-conscious unrelated parallel machine scheduling under timeof-use electricity tariffs[END_REF] investigate the unrelated parallel machine under TOU tariffs with energy costs minimization. [START_REF] Ho | Electricity cost minimisation for optimal makespan solution in flow shop scheduling under time-of-use tariffs[END_REF] jointly enhance energy costs and makespan for a two-machine flow shop under TOU tariffs. Finally, for a job-shop system with TOU tariffs and peak-power considerations, [START_REF] Masmoudi | Job-shop scheduling problem with energy consideration[END_REF] employ a time-indexed formulation for the problem of minimizing energy costs. In the literature, energy aspects are also integrated as constraints. In [START_REF] Liao | Multi-objective optimization of single machine scheduling with energy consumption constraints[END_REF], weighted completion time and weighted tardiness are minimized on a single machine with a periodic threshold on energy consumption. [START_REF] Fang | Flow shop scheduling with peak power consumption constraints[END_REF] minimize the makespan of a flow shop under peak power consumption constraints. GHG emission management is another major challenge at the operational level. [START_REF] Foumani | The impact of various carbon reduction policies on green flowshop scheduling[END_REF] provide a comprehensive study on the different carbon taxes policies applied to a flow shop. [START_REF] Zhang | Energy-conscious flow shop scheduling under time-of-use electricity tariffs[END_REF] develop a time-indexed formulation for a flow shop under TOU tariffs and carbon emission periods with a trade-off between the low-carbon emission period and the TOU onpeak hours. In their work, peak demands are handled by natural gas and base energy is provided by coal-based sources, which emit more GHG.

Few studies have been done for the OAS under TOU tariffs, and even fewer have been focused on GHG emissions. The work of [START_REF] Chen | Order acceptance and scheduling problem with carbon emission reduction and electricity[END_REF] is the first of its kind, while proposing a benchmark and an exact solving approach with a disjunctive formulation. On this basis and upon their study, Section 3 provides two time-indexed MILP for the OAS problem with release dates under energy aspects. In Section 4 and 5, a comparative analysis based on the number of feasible and optimal solutions found and the time spent to solve instances is carried out. In addition, the characteristics of the models in terms of number of constraints and variables are discussed.

PROBLEM FORMULATION AND SOLUTION APPROACH

We investigate an OAS problem on a single nonpreemptive machine with release dates. Each order 𝑗 is characterized by its processing time 𝑝 𝑗 , release date 𝑟 𝑗 , due date 𝑑 𝑗 , deadline 𝑑 ̅ 𝑗 , revenue 𝑒 𝑗 , tardiness penalty 𝑤 𝑗 and power consumption Ω 𝑗 .

Figure 1: Profit calculation of an order 𝑗 taken from [START_REF] Chen | Order acceptance and scheduling problem with carbon emission reduction and electricity[END_REF] Figure 1 presents the profit calculation of an order 𝑗 according to its deadline, due date and tardiness penalties. An order 𝑗 is accepted only if it can be finished before its deadline 𝑑 ̅ 𝑗 ; besides , it earns the totality of its revenue 𝑒 𝑗 until its due date 𝑑 𝑗 , since the tardiness penalties 𝑤 𝑗 are applied after 𝑑 𝑗 .

In the initial work of [START_REF] Chen | Order acceptance and scheduling problem with carbon emission reduction and electricity[END_REF], the horizon is divided into 𝑚 and ℎ intervals of electricity TOU and carbon emission respectively. Each electricity TOU interval 𝑘 = 1, … , 𝑚 is characterized by an electricity cost 𝐸𝐶 𝑘 and a starting time 𝑏 𝑘 and each carbon emission interval 𝑙 = 1, … , ℎ is defined by its starting time 𝑔 𝑙 and an amount 𝑞 𝑙 of emitted carbon per kg, applying a 𝑇𝑎𝑥 for each emitted kg of CO2. For the sake of simplicity, in our formulations the time horizon is split into 𝑇 periods determined in equation ( 1), where each period is characterized by its electricity TOU cost and the amount of emitted CO2.

𝑇 = max 𝑗=1,…,𝑛 𝑑 ̅ 𝑗 + 1 (1)
In this problem, idle times are considered but their energy consumption is neglected. The objective is to maximize the sum of the profit of the orders minus the environmental costs during processing time.

Two time-indexed MILP models are developed for this profit and time-driven problem. These formulations rely on the discretization of time, i.e. time is divided into unitary slots 𝑡 = 0, … , 𝑇.

The energy cost 𝑐 𝑗𝑡 is precomputed for each order 𝑗 = 1, … , 𝑛 and at each time processing time 𝑡 = 𝑟 𝑗 , … , 𝑑 ̅ 𝑗 :

𝑐 𝑗𝑡 = Ω 𝑗 60 (∑ 𝐸𝐶 𝑘 𝕝𝑡≥𝑏 𝑘-1 𝑡<𝑏 𝑘 𝑚 𝑘=1 + 𝑇𝑎𝑥 ∑ 𝑞 𝑙 𝕝𝑡≥𝑔 𝑙-1 𝑡<𝑔 𝑙 ℎ 𝑙=1 ) (2) 
In equation ( 2 

Pulse formulation

The first time-indexed model is known as the pulse formulation, where the binary decision variables 𝑥 𝑗𝑡 = 1 indicates that order 𝑗 = 1, … , 𝑛 starts at time 𝑡 = 1, . . , 𝑇 or not (𝑥 𝑗𝑡 = 0). Note that the possible periods for the starting time of an order 𝑗 are 𝑡 = 𝑟 𝑗 , … , 𝑑 ̅ 𝑗 -𝑝 𝑗 + 1.

The profit 𝑓 𝑗𝑡 of an order 𝑗 = 1, … , 𝑛 at time 𝑡 = 𝑟 𝑗 + 𝑝 𝑗 , … , 𝑑 ̅ 𝑗 is precomputed. Equation (3) corresponds to this calculation, which is the revenue minus the possible tardiness penalties when 𝑡 > 𝑑 𝑗 .

𝑓 𝑗𝑡 = 𝑒 𝑗 -𝑤 𝑗 max{0; 𝑡 -𝑑 𝑗 }

(3)

The corresponding MILP is written as follows.

maximize ∑ ∑ 𝑥 𝑗𝑡 (𝑓 𝑗𝑡 -(∑ 𝑐 𝑗𝑡 ′ 𝑡+𝑝 𝑗 -1 𝑡 ′ =𝑡
))

𝑑 ̅ 𝑗 -𝑝 𝑗 +1 𝑡=𝑟 𝑗 𝑛 𝑗=1

(4)

∑ 𝑥 𝑗𝑡 𝑛 𝑗=1 ≤ 1, ∀𝑡 = 0, … , 𝑇 (5) 
∑ 𝑥 𝑗𝑡 𝑑 ̅ 𝑗 -𝑝 𝑗 +1 𝑡=𝑟 𝑗 ≤ 1, ∀𝑗 = 1, … , 𝑛 (6) 
∑ 𝑥 𝑗𝑡 𝑟 𝑗 -1 𝑡=0 = 0, ∀𝑗 = 1, … , 𝑛 (7) 
∑ 𝑥 𝑗𝑡 𝑇 𝑡=(𝑑 ̅ 𝑗 -𝑝 𝑗 +1)+1 = 0, ∀𝑗 = 1, … , 𝑛 (8) 
𝑥 𝑖𝑡 + ∑ 𝑥 𝑗𝑡 ′ 𝑡+𝑝 𝑖 -1 𝑡 ′ =𝑡 𝑟 𝑗 +1≤𝑡 ′ ≤𝑑 ̅ 𝑗 ≤ 1, ∀𝑖, 𝑗 = 1, … , 𝑛; 𝑖 ≠ 𝑗, ∀𝑡 = 𝑟 𝑖 , … , 𝑑 ̅ 𝑖 -𝑝 𝑖 + 1 (9)
The objective ( 4) is the maximization of the sum of the total profit of each order, that is the profit 𝑓 𝑗𝑡 including the tardiness penalties and environmental cost during the processing time, given by the sum of 𝑐 𝑗𝑡 ′ from the starting time 𝑡 until completion 𝑡 + 𝑝 𝑗 -1. Constraints (5) specify that at each time 𝑡, the machine can start only one job. Constraints (6) restrict the starting time of each order to the interval defined from its release date to its deadline.

In the same manner, constraints ( 7) and ( 8) prevent each order to be processed before its release date and after its deadline. Constraints (9) prevent any order 𝑗 to overlap in the interval [𝑡, 𝑡 + 𝑝 𝑖 -1] when an order 𝑖 starts at time 𝑡 = 𝑟 𝑖 , … , 𝑑 ̅ 𝑖 -𝑝 𝑖 + 1.

Table 1 presents the optimal solution of an example with 𝑛 = 4 orders with their processing times 𝑡 𝑗 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Table 1: Optimal solution represented by the values of the decision variables 𝑥, sequence is 4-2-3 and order 1 is rejected.

For this example, there are 180 constraints and 80 variables. The optimal solution has been found in 0.01 s.

Figure 2: Gantt chart representation for the example.

On-off formulation

The second model presented is the on-off formulation.

Each binary decision variable 𝑥 𝑗𝑡 = 1 indicates whether the order 𝑗 is processed at time 𝑡 = 𝑟 𝑗 , … , 𝑑 ̅ 𝑗 , or not 𝑥 𝑗𝑡 = 0. In addition, the binary decision variable 𝑎 𝑗 = 1 represents whether the order 𝑗 is accepted.

maximize ∑ (𝑎 𝑗 𝑒 𝑗 -𝑤 𝑗 max 𝑡=𝑑 𝑗 ,…𝑑 ̅ 𝑗 {𝑡 -𝑑 𝑗 }𝑥 𝑗𝑡 - 𝑛 𝑗=1 ∑ 𝑐 𝑗𝑡 𝑥 𝑗𝑡 𝑑 ̅ 𝑗 𝑡=𝑟 𝑗 ) (10) ∑ 𝑥 𝑗𝑡 𝑛 𝑗=1 ≤ 1, ∀𝑡 = 0, … , 𝑇 (11) 
∑ 𝑥 𝑗𝑡 𝑟 𝑗 -1 𝑡=0 = 0, ∀𝑗 = 1, … , 𝑛 (12) 
∑ 𝑥 𝑗𝑡 𝑇 𝑡= 𝑑 ̅ 𝑗 +1 = 0, ∀𝑗 = 1, … , 𝑛 (13) 
𝑝 𝑗 𝑎 𝑗 = ∑ 𝑥 𝑗𝑡 𝑑 ̅ 𝑗 𝑡=𝑟 𝑗 , ∀𝑗 = 1, … , 𝑛 (14) 
∑ 𝑥 𝑗𝑡 ′ 𝑡-𝑝 𝑗 𝑡 ′ =𝑟 𝑗 + ∑ 𝑥 𝑗𝑡 ′ 𝑑 ̅ 𝑗 𝑡 ′ =𝑡+𝑝 𝑗 ≤ (1 -𝑥 𝑗𝑡 )𝑝 𝑗 , ∀𝑗 = 1, … , 𝑛, ∀𝑡 = 𝑟 𝑗 , … , 𝑑 ̅ 𝑗 ( 15 
)
The objective function ( 10) is the maximization of the total profit of the accepted orders, i.e. their revenues 𝑎 𝑗 𝑒 𝑗 minus their possible tardiness penalties 𝑤 𝑗 by retrieving the instant 𝑡 = 𝑑 𝑗 , … , 𝑑 ̅ 𝑗 when 𝑥 𝑗𝑡 = 1 (completion time) and the environmental costs during processing time. Constraints (11) state that at each time the machine is either doing nothing or processing an order. Constraints (12) and ( 13) ensure that each order cannot be processed before its release date and after its deadline. Constraints (14) impose that each accepted order must be processed during the totality of its processing time. Constraints (15) guarantee non-preemption by forcing the continuity of the decision variables.
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𝑡 𝑗

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 4 0 0 1 1 1 1 0 0 0 0 0 0 0 0 Table 2: Optimal solution represented by the values of the decision variables 𝑥, sequence is 4-2-3.

For this solution and this formulation, there are 97 constraints and 111 variables. The optimal solution has been found in 0.03s.

RESOLUTION METHOD

The considered benchmark derives from the work of [START_REF] Chen | Order acceptance and scheduling problem with carbon emission reduction and electricity[END_REF]. Similar TOU tariffs and carbon emission periods are used. Instances with various number of orders 𝑛 = 5, 10, 15, 20, 50 and with different characteristics are tested in order to have a diverse set of instances. Two coefficients are used to generate the parameters of an instance: the tardiness factor 𝜏 = 0.1, 0.3, 0.5 and the due date ranges 𝑅 = 0.1, 0.5, 0.9. This first comparative study involves 45 instances.

Processing time, release date and revenue are generated with an uniform distribution: 𝑝 𝑗 , 𝑒 𝑗 ~𝒰(1,20) and 𝑟 𝑗 ~𝒰(0, 𝜏𝑝 𝑇 ) with 𝑝 𝑇 = ∑ 𝑝 𝑗 𝑛 𝑗=1

. Due dates, deadlines, tardiness penalties and power consumption are computed from the values of these generated parameters:

𝑑 𝑗 = 𝑟 𝑗 + max{𝑠𝑙𝑎𝑐𝑘, 𝑝 𝑗 } (16) 𝑠𝑙𝑎𝑐𝑘 ~ 𝒰 (𝑝 𝑇 (1 -𝜏 - 𝑅 2 ) , 𝑝 𝑇 (1 -𝜏 + 𝑅 2 )) (17) 
𝑑 ̅ 𝑗 = 𝑑 𝑗 + 𝑅𝑝 𝑗 (18)

𝑤 𝑗 = 𝑒 𝑗 𝑑 𝑗 -𝑑 𝑗 (19) Ω 𝑗 ~𝒰(1, 𝑒 𝑗 ) × 1 2 (20) 
This ensures coherent values for these parameters. For instance, the deadline must be greater or equal to the due date.

The tested models are the pulse formulation, the on/off formulation and the disjunctive model of [START_REF] Chen | Order acceptance and scheduling problem with carbon emission reduction and electricity[END_REF]. For the sake of comparability, each model has been implemented and solved in a commercial solver (IBM CPLEX Optimization Studio v12.9) on a desktop computer with processor Intel i5 2GHz CPU with 4GB RAM. Solving time is limited to 3600 seconds.

COMPUTATIONAL RESULTS

Table 3 resumes the benchmark results for each model and their average performances for 9 instances of same size and different values for 𝜏 and 𝑅. Average solving time (𝑐𝑝𝑢), average gap (𝑔𝑎𝑝) and the number of feasible (#𝑓𝑒𝑎) and optimal (#𝑜𝑝𝑡) solutions found are reported.

In our tests, the gap is retrieved from CPLEX relative MILP gap, which represent the gap between the best bound and the best integral solution found by the solver. A summary of the performances of all formulation on the 45 instances is also provided.

The results clearly point out that time-indexed formulations outperform a standard disjunctive model on average. The pulse formulation find 38 optimal solutions among 44 in 711 seconds on average, which represent a success rate of 86%. In contrast, the disjunctive formulation takes on average more than twice the time to find half of the optimal solutions. The on/off formulation provides similar results to the pulse model, achieving a rate of 84% of optimal solutions found in 721 seconds on average. This model seems to be more performant than the pulse formulation for small to medium instances (𝑛 = 5, 10, 15, 20), finding all the optimal solutions in less time. However, its average gap is less tight than the pulse formulation.

The size of time-indexed formulations (constraints and variables) is their main weakness. Indeed, both timeindexed formulations cannot find all the feasible solutions of the benchmark due to either out-of-memory issues or low quality gap. At worst, the on-off formulation has 𝒪(𝑛𝑇) + 𝒪(𝑛) variables and 𝒪(𝑛𝑇) constraints, whereas the pulse formulation has 𝒪(𝑛𝑇) variables and 𝒪(𝑛 2 𝑇) constraints. The disjunctive formulation has 𝒪(𝑛 2 ) + 𝒪(𝑛𝑚) + 𝒪(𝑛ℎ) variables and constraints.

As seen in Section 3, the pulse formulation binary variables contain information for both acceptance and the instant where the order starts, whereas the on/off formulation differs in semantic. A binary variable 𝑥 𝑗𝑡 in the pulse formulation corresponds to 𝑝 𝑗 + 1 variables in the on/off formulation. The pulse formulation effectiveness on average compared to the on/off model may reside in the use of less binary variables and thus imply a lower number of branching. Nevertheless, the number of constraints in the on/off model provides an advantage for small instances.

CONCLUSION AND PERSPECTIVES

In this paper, we presented two time-indexed formulations for the OAS with release dates under energy aspects.

Our proposed formulations are more performant on average than the disjunctive formulation described in [START_REF] Chen | Order acceptance and scheduling problem with carbon emission reduction and electricity[END_REF]. This can be explained by their LP-relaxation which provide good bound for medium instances, according to [START_REF] Van Den Akker | Time-Indexed Formulations for Machine Scheduling Problems: Column Generation[END_REF]. Moreover, time-indexed models seem to be the most efficient formulations '20 -November 12-14, 2020 -Agadir -Morocco for this problem since the objective is the maximization of a time-driven profit comprising time-related penalties and time-varying environmental costs. However, these formulations are limited by their spatial complexity. Our future work is focused on the development of dedicated cuts or other exact approaches that have the potential to improve the performances for large instances. Finally, time-indexed formulations for an extension of the proposed problem with setup-dependent sequence are under development. 
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  ), 𝕝 𝑥 denotes the indicator function, which takes value 1 if condition 𝑥 holds and 0 otherwise. For each order 𝑗 at each time 𝑡, the power consumptionexpressed into minutesis multiplied by the cost of the respective TOU interval 𝑘 = 1, … , 𝑚 of period 𝑡 ∈ [𝑏 𝑘-1 , 𝑏 𝑘 [ and the taxed CO2 emission interval 𝑙 = 1, … , ℎ of period 𝑡 ∈ [𝑔 𝑙-1 , 𝑔 𝑙[ . MOSIM'20 -November 12-14, 2020 -Agadir -Morocco 

  𝑝 = [5,3,2,4], release dates 𝑟 = [1,2,1,1], due dates 𝑑 =[6,5,12,7], deadlines 𝑑 ̅ =[9,10,14,12], revenues 𝑒 = [10,10,6,10], power consumption Ω = [1,2,1,1] and weight penalties 𝑤 = [2,1,3,2]. Finally, the starting times of TOU and carbon emission intervals 𝑏 = 𝑔 = [0,5,8], the electricity price 𝐸𝐶 = [2,10,2] and the amount of CO2 emitted 𝑞 =[START_REF] Liao | Multi-objective optimization of single machine scheduling with energy consumption constraints[END_REF]1,[START_REF] Liao | Multi-objective optimization of single machine scheduling with energy consumption constraints[END_REF] are defined.

Table 3 :

 3 Models performances in terms of solving time, gap to the best-bound, feasible and optimal solutions (*out-of-memory status or found infinite gap).

	45	24	1693 2.5	44	38	711 0.05 44	37	721	1.2
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