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Abstract

The ROC curve is the gold standard for measuring the performance
of a test/scoring statistic regarding its capacity to discriminate between
two statistical populations in a wide variety of applications, ranging from
anomaly detection in signal processing to information retrieval, through
medical diagnosis. Most practical performance measures used in scor-
ing/ranking applications such as the AUC, the local AUC, the p-norm
push, the DCG and others, can be viewed as summaries of the ROC
curve. In this paper, the fact that most of these empirical criteria can
be expressed as two-sample linear rank statistics is highlighted and con-
centration inequalities for collections of such random variables, referred
to as two-sample rank processes here, are proved, when indexed by VC
classes of scoring functions. Based on these nonasymptotic bounds, the
generalization capacity of empirical maximizers of a wide class of ranking
performance criteria is next investigated from a theoretical perspective.
It is also supported by empirical evidence through convincing numerical
experiments.

1 Introduction

In the context of ranking, a variety of performance measures can be considered.
In the simplest framework of bipartite ranking, where two independent i.i.d.
samples X1, . . . , Xn and Y1, . . . , Ym defined on the same probability space
(Ω, F , P), valued in the same space Z, say Rd with d ≥ 1 for instance, and
drawn from probability distributions G and H respectively (referred to as the
’positive distribution’ and the ’negative distribution’ respectively), the goal pur-
sued is to learn a preorder on Z defined through a scoring function s : Z → R
(which transports the natural order on the real line onto the feature space Z)
such that, for any random observation Z ∈ Z sampled from a distribution that
is equal either to the ’positive distribution’ or to the ’negative one’, the larger
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the score s(z), the likelier it is drawn from the ’positive distribution’ G. Though
easy to formulate, this simple framework encompasses many practical problems
from the design of search engines in Information Retrieval (in this case, for a
specific request, G is the distribution of the relevant digitized documents, while
H is that of the irrelevant ones) to the elaboration of decision support tools in
personalized medicine for instance. In spite of its simplicity there is not one
and only one natural scalar criterion for evaluating the performance of a scoring
rule s(z), but many possible options. The Receiving Operator Characteric curve
(the ROC curve in abbreviated form), i.e. the PP-plot of the false positive rate
vs the true positive rate:

t ∈ R 7→ (P{s(Y) > t}, P{s(X) > t}) ,

denoting by X and Y two generic r.v. with distributions G and H respectively,
provides an exhaustive description of the performance of any scoring rule can-
didate s. However, its functional nature renders direct optimization strategies
rather complex, see e.g. [10]. Empirical risk minimization methods (ERM) are
thus generally based on summaries of the ROC curve, which take the form of
empirical risk functionals where the averages involved are no longer taken over
i.i.d. sequences. The most popular choice is undoubtedly the AUC criterion
(AUC standing for Area Under the ROC Curve), see [1] or [4] for instance, but
when focus is on top-ranked instances, various choices can be considered, e.g.
the Discounted Cumulative Gain or DCG (see [11]), the p-norm push (see [30]),
the local AUC (refer to [7]) or other variants such as those recently introduced
in [26]. The present paper starts from the simple observation that most of these
summary criteria have a common feature: they belong to the class of two-sample
linear rank statistics. Such statistics have been extensively studied in the mathe-
matical statistics literature because of their optimality properties in hypothesis
testing, see [19]. They are widely used in order to test whether two samples
are drawn from the same distribution against the alternative stipulating that
the distribution of one of the samples is stochastically larger than the other.
For instance, the empirical counterpart of the AUC of a scoring function s(z)
corresponds to the popular Mann-Withney-Wilcoxon statistic based on the two
(univariate) samples s(X1), . . . , s(Xn) and s(Y1), . . . , s(Ym). Other rank
statistics can be considered, corresponding to other ways of measuring how the
distribution of the ’positive score’ s(X) is (possibly) stochastically larger than
that of the ’negative score’ s(Y). Now, in the statistical learning view, with the
importance of excess risk bounds, the Empirical Risk Minimization paradigm
must be revisited and new problems, mainly related to the uniform control of
the fluctuations of collections of two-sample linear rank statistics, termed rank
processes throughout the article, and to the measure of the complexity of non-
parametric classes of scoring functions, come up. The arguments required to
deal with risk functionals based on two-sample linear rank statistics have been
sketched in [7] in a very special case.
In the present paper, we relate two-sample linear rank statistics to performance
measures relevant for the ranking problem by showing that the target of ranking
algorithms corresponds to optimal ordering rules in this sense and show that the
generic structure of two-sample linear rank statistics as an orthogonal decompo-
sition after projection onto the space of sums of i.i.d. random variables is the key
to all statistical results related to maximizers of such criteria: consistency, rates
of convergence or model selection. Notice incidentally that the empirical AUC
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is also a U -statistic and a decomposition method akin to that considered in this
paper (though much less general) has been used in order to handle this specific
dependence structure in [4]. In this article, concentration properties of two-
sample rank processes (i.e. collections of two-sample linear rank statistics) are
investigated using the linearization technique aforementioned. While interesting
in themselves, the concentration inequalities established for this class of stochas-
tic processes, when indexed by Vapnik-Chervonenkis classes (abbreviated with
VC-classes) of scoring functions, are next applied to study the generalization ca-
pacity of empirical maximizers of a large collection of performance criteria based
on two-sample linear rank statistics. Notice finally that a preliminary version
of this work is briefly outlined in the conference paper [8]. This article presents
a much deeper analysis of bipartite ranking via maximization of two-sample
linear rank statistics. In particular, it offers a complete and detailed study of
the concentration properties of two-sample rank processes (in a slightly different
framework, stipulating that two independent i.i.d. samples, positive and neg-
ative, are observed, rather than classification data), provides model selection
results and, from a practical perspective, tackles the issue of smoothing the risk
functionals under study here with statistical learning guarantees.
The paper is organized as follows. In Section 2, the main notations are set
out, the bipartite ranking problem is formulated as a statistical learning task
in a rigorous probabilistic framework and the concept of two-sample linear rank
statistic is briefly recalled. It is also explained that, unsurprisingly, natural
performance criteria in bipartite ranking are of the form of two-sample (linear)
rank statistics. Concentration results for rank processes, are established in Sec-
tion 3. By means of the latter, performance of bipartite ranking rules obtained
by maximizing two-sample linear rank statistics are investigated in Section 4.
Finally, Section 5 displays illustrative experimental results, supporting the the-
oretical analysis carried out in the present article. Proofs, technical details and
additional numerical results are deferred to the Appendix section.

2 Motivation and Preliminaries

We start with recalling key notions pertaining to ROC analysis and bipartite
ranking, which essentially motivates the theoretical analysis carried out in the
subsequent section. We next recall at length the definition of two-sample linear
rank statistics, which have been intensively used to design statistical (homo-
geneity) testing procedures in the univariate setup, and finally highlight that
many scalar summaries of empirical ROC curves, commonly used as ranking
performance criteria, are precisely of this form. Here and throughout, the indi-
cator function of any event E is denoted by I{E}, the Dirac mass at any point
x by δx, the generalized inverse of any cumulative distribution function W (t)
on R ∪ {+∞} by W−1(u) = inf{t ∈] −∞, +∞] : W (t) ≥ u}, u ∈ [0, 1]. We
also denote the floor and ceiling functions by u ∈ R 7→ buc and by u ∈ R 7→ due
respectively.

2.1 Bipartite Ranking and ROC Analysis

As recalled in the Introduction section, the goal of bipartite ranking is to learn,
based on independent ’positive’ and ’negative’ random samples {X1, . . . , Xn}
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and {Y1, . . . , Ym}, how to score any new observations Z1, . . . , Zk, being
each either ’positive’ or else ’negative’, that is to say drawn either from G or
else from H, without prior knowledge, so that positive instances are mostly at
the top of the resulting list with large probability. A natural way of defining a
total preorder1 on Z is to map it with the natural order on R∪{+∞} by means
of a scoring rule, i.e. a measurable mapping s : Z →]−∞, ∞]. By S is denoted
the set of all scoring rules. It is by means of ROC analysis that the capacity of
a scoring rule candidate s(z) to discriminate between the positive and negative
statistical populations is generally evaluated.

ROC curves. The ROC curve is a gold standard to describe the dissimilarity
between two univariate probability distributions G and H. This criterion of
functional nature, ROCH,G, can be defined as the parametrized curve in [0, 1]2:

t ∈ R 7→ (1−H(t), 1−G(t)) ,

where possible jumps are connected by line segments, so as to ensure that the
resulting curve is continuous. With this convention, one may then see the ROC
curve related to the pair of d.f. (H,G) as the graph of a càd-làg (i.e. right-
continuous and left-limited) non decreasing mapping valued in [0, 1], defined
by:

α ∈ (0, 1) 7→ 1−G ◦H−1(1− α) ,

at points α such that G ◦ H−1(1 − α) = 1 − α. Denoting by ZH and ZG the
supports of H and G respectively, observe that it connects the point (0, 1 −
G(ZH)) to (H(ZG), 1) in the unit square [0, 1]2 and that, in absence of plateau
(which we assume here for simplicity, rather than restricting the feature space
to G’s support), the curve α ∈ (0, 1) 7→ ROCG,H(α) is the image of α ∈ (0, 1) 7→
ROCH,G(α) by the reflection with the main diagonal of the Euclidean plane (i.e.
the line of equation ’β = α’) as axis. Notice that the curve ROCH,G coincides
with the main diagonal of [0, 1]2 if and only if the two distributions H and G
are equal. Hence, the concept of ROC curve offers a visual tool to examine
the differences between two distributions in a pivotal manner, see Fig. 1. For
instance, the univariate distribution G(dt) is stochastically larger2 than H(dt)
if and only if the curve ROCH,G is everywhere above the main diagonal and
ROCH,G coincides with the left upper corner of the unit square iff the essential
supremum of the distribution H is smaller than the essential infimum of the
distribution G. Another advantage of the ROC curve lies in the probabilistic
interpretation of the popular ROC curve summary, referred to as the Area Under
the ROC Curve (AUC in short)

AUCH,G
def
=

∫ 1

0

ROCH,G(α)dα = P {Y < X}+
1

2
P {X = Y} , (2.1)

where (X,Y ) denotes a pair of independent r.v.’s with respective marginal dis-
tributions H and G.

1A preorder 4 on a set Z is a reflexive and transitive binary relation on Z. It is said to
be total, when either z 4 z′ or else z′ 4 z holds true, for all (z, z′) ∈ Z2.

2Given two distribution functions H(dt) and G(dt) on R ∪ {+∞}, it is said that G(dt)
is stochastically larger than H(dt) iff for any t ∈ R, we have G(t) ≤ H(t). We then write:
H ≤sto G. Classically, a necessary and sufficient condition for G to be stochastically larger
than H is the existence of a coupling (X, Y) of (G,H), i.e. a pair of random variables defined
on the same probability space with first and second marginals equal to H and G respectively,
such that X ≤ Y with probability one.
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a. Probability distributions b. ROC curves

Figure 1: Examples of pairs of distributions and their related ROC curves. The
’negative’ distribution H is represented in blue and three examples of ’positive’
distributions are represented in red, orange and green, like the associated ROC
curves.

Bipartite Ranking as ROC curve optimization. Going back to the multi-
variate setup, where H and G are probability distributions on Z, say Z = Rd
with arbitrary dimension d ≥ 1, the goal pursued in bipartite ranking can be
phrased as that of building a scoring rule s(z) such that the (univariate) distribu-
tion Gs of s(X) is ’as stochastically larger as possible’ than the the distribution
Hs of s(Y). Hence, the capacity of a candidate s(z) to discriminate between
the positive and negative statistical populations can be evaluated by plotting
the ROC curve α ∈ (0, 1) 7→ ROC(s, α) = ROCHs,Gs

(α): the closer to the left
upper corner of the unit square the curve ROC(s, .), the better the scoring rule
s. Therefore, the ROC curve conveys a partial preorder on the set of all scoring
functions: for all pairs of scoring functions s1 and s2, one says that s2 is more
accurate than s1 when ROC(s1, α) ≤ ROC(s2, α) for all α ∈ [0, 1]. It follows
from a standard Neyman-Pearson argument that the most accurate scoring rules
are increasing transforms of the likelihood ratio Ψ(z) = dG/dH(z). Precisely,
it is shown in [9] (see Proposition 2 therein) that the optimal scoring rules are
the elements of the set:

S∗ =
{
s ∈ S s.t. for all z, z′ in Rd : Ψ(z) < Ψ(z′)⇒ s∗(z) < s∗(z′)

}
. (2.2)

We denote by ROC∗(.) = ROC(Ψ, .) and recall incidentally that this optimal
curve is non-decreasing and concave and thus always above the main diagonal
of the unit square. Now, the bipartite ranking task can be reformulated in a
more quantitative manner: the objective pursued is to build a scoring function
s(z), based on the training examples {X1, . . . , Xn} and {Y1, . . . , Ym}, with
a ROC curve as close as possible to ROC∗. A typical way of measuring the
deviation between the two curves is to consider the distance in sup norm:

d∞(s, s∗) = sup
α∈(0,1)

|ROC(s, α)− ROC∗(α)| . (2.3)

Attention should be paid that this quantity is a distance between ROC curves
(or between the related equivalence classes of scoring functions, the ROC curve
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of any scoring function being invariant by strictly increasing transform) not be-
tween the scoring functions themselves. Since the curve ROC∗ is unknown in
practice, the major difficulty lies in the fact that no straightforward statistical
counterpart of the (functional) loss (2.3) is available. In [9] (see also [10]), it has
been however shown that bipartite ranking can be viewed as a superposition of
cost-sensitive classification problems and somehow ’discretized’ in an adaptive
manner, so as to apply empirical risk minimization with statistical guarantees
in the d∞-sense, at the price of an additional bias term inherent to the approx-
imation step. Alternatively, the performance of a candidate scoring rule s can
be measured by means of the L1-norm in the ROC space. Observing that, in
this case, the loss can be decomposed as follows:

d1(s, s∗) =

∫ 1

0

|ROC(s, α)−ROC∗(α)|dα =

∫ 1

0

ROC∗(α)dα−
∫ 1

0

ROC(s, α)dα ,

(2.4)
minimizing the L1-distance to the optimal ROC curve boils down to maximizing
the area under the curve ROC(s, .), that is to say

AUC(s)
def
= AUCHs,Gs

= P{s(Y) < s(X)}+
1

2
P{s(Y) = s(X)} , (2.5)

where X and Y are random variables defined on the same probability space,
independent, with respective distributions G and H, denoting by Gs and Hs the
distributions of s(X) and s(Y) respectively. The scalar performance criterion
AUC(s) defines a total preorder on S and its maximal value is denoted by
AUC∗ = AUC(s∗), with s∗ ∈ S∗. Bipartite ranking through maximization of
empirical versions of the AUC criterion has been studied in several articles,
including [1] or [4]. Extension to multipartite ranking (i.e. when the number
of samples/distributions under study is larger than 3) is considered in [6], see
also [5]. In contrast to [9] or [10], where the task of learning scoring rules with
statistical guarantees in sup norm in the ROC space is considered, the present
article focuses on optimization of summary scalar empirical criteria generalizing
the AUC that takes the form of two-sample linear rank statistics, as could be
naturally expected when addressing ranking problems.

2.2 Two-Sample Linear Rank Statistics

If the curve ROCH,G is the appropriate tool to examine to which extent a
univariate distribution G is stochastically larger than another one H, practical
decisions are generally made on the basis of the observations of two univariate
independent random i.i.d. samples {X1, . . . , Xn} and {Y1, . . . , Ym}, drawn
from G and H respectively. Computing the empirical cumulative distribution
functions Ĥm(t) = (1/m)

∑m
j=1 I{Yj ≤ t} and Ĝn(t) = (1/n)

∑n
i=1 I{Xi ≤ t}

for t ∈ R, one can plot the empirical ROC curve:

R̂OC = ROCĤm, Ĝn
. (2.6)

Observe that the ROC curve (2.6) is an increasing broken line connecting (0, 0)
to (1, 1) in the unit square [0, 1]2 and is fully determined by the set of ranks
occupied by the positive instances within the pooled sample {Rank(Xi) : i =
1, . . . , n}, where:
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∀i ∈ {1, . . . , n} Rank(Xi) = NF̂N (Xi) , (2.7)

with F̂N (t) = (1/N)
∑n
i=1 I{Xi ≤ t} + (1/N)

∑m
j=1 I{Yj ≤ t} and N = n + m.

Breakpoints of the piecewise linear curve (2.6) necessarily belong to the set
of gridpoints {(j/m, i/n) : j ∈ {1, . . . , m− 1} and i ∈ {1, . . . , n− 1}}. De-
note by X(i) the order statistics related to the sample {X1, . . . , Xn}, i.e.
Rank(X(n)) > · · · > Rank(X(1)), and by Y(j) those related to the sample
{Y1, . . . , Ym}. Consider the càd-làg step function:

α ∈ [0, 1] 7→
m∑
j=1

γ̂j · I{α ∈ [(j − 1)/m, j/m[} , (2.8)

where, for all j ∈ {1, . . . , m}, we set:

γ̂j =
1

n

n∑
i=1

I{Xi > Y(m−j+1)} =
1

n

n∑
i=1

I{Rank(X(n−i+1)) > Rank(Y(m−j+1))}

=
1

n

n∑
i=1

I{j ≥ N − Rank(X(n−i+1))− i+ 2} .

The ROC curve (2.6) is the continuous broken line that connects the jump
points of the step curve (2.8) and can thus be expressed as a function of the
’positive ranks’ i.e. the Rank(Xi)’s only. As a consequence, any summary of
the empirical ROC curve, is a two-sample rank statistic, that is a measurable
function of the ’positive ranks’. In particular, the empirical AUC, i.e. the AUC
of the empirical ROC curve (2.6), also termed the rate of concording pairs or
the Mann-Whitney statistic, can be easily shown to coincide, up to an affine
transform, with the sum of ’positive ranks’, the well-known rank-sum Wilcoxon
statistic [37]:

Ŵn,m =

n∑
i=1

Rank(Xi) . (2.9)

Indeed, we have:

Ŵn,m = nmAUCĤm,Ĝn
+

n(n + 1)

2
.

However, two-sample rank statistics (i.e. functions of the Rank(Xi)’s) form a
very rich collection of statistics and this is by no means the sole possible choice
to summarize the empirical ROC curve.

Definition. 1. (Two-sample linear rank statistics) Let φ : [0, 1] → R
be a nondecreasing function. The two-sample linear rank statistics with ’score-
generating function’ φ(u) based on the random samples {X1, . . . , Xn} and
{Y1, . . . , Ym} is given by:

Ŵφ
n,m =

n∑
i=1

φ

(
Rank(Xi)

N + 1

)
. (2.10)

The statistics (2.10) defined above are all distribution-free when H = G and
are, for this reason, particularly useful to detect differences between the dis-
tributions H and G and widely used to perform homogeneity tests in the uni-
variate setup. Tabulating their distribution under the null assumption, they
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can be used to design unbiased tests at certain levels α in (0, 1). The choice
of the score-generating function φ can be guided by the type of difference be-
tween the two distributions (e.g. in scale, in location) one possibly expects, and
may then lead to locally most powerful testing procedures, capable of detecting
’small’ deviations from the homogeneous situation. More generally, depending
on the statistical test to perform, one may use particular function φ, Figure
2 shows classic score-generating functions broadly used for two-sample statis-
tical tests (refer to [17]). One may refer to Chapter 9 in [31] or to Chapter
13 in [35] for an account of the (asymptotic) theory of rank statistics. In the
present paper, two-sample linear rank statistics are used for a very different
purpose, as empirical performance measures in bipartite ranking based on two
independent multivariate samples {X1, . . . , Xn} and {Y1, . . . , Ym}. The
analysis of the bipartite ranking problem carried out in Section 4, based on
the concentration inequalities established in Section 3, shows the relevance of
evaluating the ranking performance of a scoring rule candidate s(z) by comput-
ing a two-sample linear rank statistic based on the univariate samples obtained
after scoring {s(X1), . . . , s(Xn)} and {s(Y1), . . . , s(Ym)} and establishes
statistical guarantees for the generalization capacity of scoring rules built by
optimizing such an empirical criterion.

Figure 2: Curves of two-sample score-generating functions with the associated
statistical test: Logistic test φlog(u) = 2

√
3(u − 1/2) in blue, Logrank test

φlrk(u) = − log(1 − x) in purple, Mann-Whitney-Wilcoxon test φmww(u) = u
in red, Median test φmed(u) = sgn(u − 1/2) in orange, Van der Waerden test
φvdw(u) = Φ−1(u) in green, Φ being the normal quantile function.

2.3 Bipartite Ranking as Maximization of Two-Sample
Rank Statistics

As foreshadowed above, empirical performance measures in bipartite ranking
should be unsurprisingly based on ranks. We propose here to evaluate empir-
ically the ranking performance of any scoring function candidate s(z) in S by
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means of statistics of the type:

Ŵφ
n,m(s) =

n∑
i=1

φ

(
Rank(s(Xi))

N + 1

)
, (2.11)

where N = n + m, φ : [0, 1] → R is some Borelian nondecreasing function.
This quantity is a two-sample linear rank statistic (see Definition 1) related
to the score-generating function φ(u) and the samples {s(X1), . . . , s(Xn)}
and {s(Y1), . . . , s(Ym)}. This statistic is invariant by increasing transform
of the scoring function s, just like the (empirical) ROC curve and, as recalled
in the previous section, it is a natural and common choice to quantify differ-
ences in distribution between the univariate samples {s(X1), . . . , s(Xn)} and
{s(Y1), . . . , s(Ym)}, to evaluate to which extent the distribution of the first
sample is stochastically larger than that of the second sample in particular. It
consequently appears as legitimate to learn a scoring function s by maximizing
the criterion (2.11). Whereas rigorous arguments are developed in Section 4,
we highlight here that, for specific choices of the score-generating function φ,
many relevant criteria considered in the ranking literature can be accurately
approximated by statistics of this form:

• φ(u) = u - this choice leads to the celebrated Wilcoxon-Mann-Whitney
statistic which is related to the empirical version of the AUC.

• φ(u) = uI{u ≥ u0}, for some u0 ∈ (0, 1) - such a score-generating function
corresponds to the local AUC criterion, introduced recently in [7]. Such a
criterion is of interest when one wants to focus on the highest ranks.

• φ(u) = uq - this is another choice which puts emphasis on high ranks but
in a smoother way than the previous one. This is related to the q-norm
push approach taken in [30]. However, we point out that the criterion
studied in the latter work relies on a different definition of the rank of
an observation. Namely, the rank of positive instances among negative
instances (and not in the pooled sample) is used. This choice permits to
use independence which makes the technical part much simpler, at the
price of increasing the variance of the criterion.

• φ(u) = φN (u) = c ((N + 1)u) I{u ≥ k/(N + 1)} - this corresponds to the
DCG criterion in the bipartite setup (see [11]), one of the ’gold standard
quality measure’ in information retrieval, when grades are binary. The
c(i)’s denote the discount factors, c(i) measuring the importance of rank
i. The integer k denotes the number of top-ranked instances to take into
account. Notice that, with our indexation, top positions correspond to
the largest ranks and the sequence {c(i)}i≤N should be chosen increasing.

Depending on the choice of the score-generating function φ, some specific pat-
terns of the preorder induced by a scoring function s(z) can be either enhanced
by the criterion (2.11) or else completely disappear: for instance, the value of
(2.11) is essentially determined by the possible presence of positive instances
among top-ranked observations, when considering a score generating function φ
that rapidly vanishes near 0 and takes much higher values near 1.

Investigating the performance of maximizers of the criterion (2.11) from a
nonasymptotic perspective is however far from straightforward, due to the com-
plexity of the latter (i.e. a sum of strongly dependent random variables). It
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requires in particular to prove concentration inequalities for collections of two-
sample linear rank statistics, indexed by classes of scoring functions of controlled
complexity (i.e. of VC-type), referred to as two-sample rank processes through-
out the article. It is the purpose of the next section to establish such results.

3 Concentration Inequalities for Two-Sample Rank
Processes

This section is devoted to prove concentration bounds for collections of two-
sample linear rank statistics (2.11), indexed by classes S0 ⊂ S of scoring func-
tions. In order to study the fluctuations of (2.11) as the full sample size N
increases, it is of course required to control the fraction of ’positive’/’negative’
observations in the pooled dataset. Let p ∈ (0, 1) be the ’theoretical’ frac-
tion of positive instances. For N ≥ 1/p, we suppose that n = bpNc and
m = d(1 − p)Ne = N − n. Define the mixture probability distribution F =
pG + (1 − p)H. For any s ∈ S, the distribution of s(X) (i.e. the image of G
by s) is denoted by Gs, that of s(Y) (i.e. the image of H by s) by Hs. We
also denote by Fs the image of distribution F by s. For simplicity, the same
notations are used to mean the related cumulative distribution functions. We
also introduce their statistical versions Ĝs,n(t) = (1/n)

∑n
i=1 I{s(Xi) ≤ t} and

Ĥs,m(t) = (1/m)
∑m
j=1 I{s(Yj) ≤ t} and define:

F̂s,N (t) = (n/N)Ĝs,n(t) + (m/N)Ĥs,m(t) . (3.1)

Since n/N → p as N tends to infinity, the quantity above is a natural estimator
of the c.d.f. Fs. Equipped with these notations, we can write:

1

n
Ŵφ
n,m(s) =

1

n

n∑
i=1

φ

(
N

N + 1
F̂s,N (s(Xi))

)
. (3.2)

Hence, the statistic (3.2) can be naturally seen as an empirical version of the
quantity defined below, around which it fluctuates.

Definition. 2. For a given score-generating function φ, the functional

Wφ(s) = E[(φ ◦ Fs)(s(X))] , (3.3)

is referred to as the ”Wφ-ranking performance measure”.

Indeed, replacing F̂s,N (s(Xi)) in (3.2) by Fs(s(Xi)) and taking next the expec-
tation permits to recover (3.3). Observe in addition that, for φ(u) = u, the
quantity (3.3) is equal to AUC(s) (2.5) a soon as the distribution Fs is continu-
ous. The next lemma reveals that the criterion (3.3) can be viewed as a scalar
summary of the ROC curve.

Lemma. 3. Let φ be a score-generating function. We have, for all s in S,

Wφ(s) =
1

p

∫ 1

0

φ(u)du− 1− p
p

∫ 1

0

φ (p(1− ROC(s, α)) + (1− p)(1− α)) dα .

(3.4)

10



proof. Using the decomposition Fs = pGs + (1 − p)Hs, we are led to the
following expression:

pWφ(s) =

∫ 1

0

φ(u) du− (1− p)E[(φ ◦ Fs)(s(Y))] .

Then, using a change of variable, we get:

E[(φ ◦ Fs)(s(Y))] =

∫ 1

0

φ(p(1− ROC(s, α)) + (1− p)(1− α)) dα .

As revealed by Eq. (3.4), a score-generating function φ that takes much higher
values near 1 than near 0 defines a criterion (3.3) that mainly summarizes the
behavior of the ROC curve near the origin, i.e. the preorder on the set of
instances with highest scores.

Below, we investigate the concentration properties of the process:{
1

n
Ŵφ
n,m(s)−Wφ(s)

}
s∈S0

. (3.5)

As a first go, we prove, by means of linearization techniques, that two-sample
linear rank statistics can be uniformly approximated by much simpler quanti-
ties, involving i.i.d. averages and two-sample U -statistics. This will be key to
establish probability bounds for the maximal deviation:

sup
s∈S0

∣∣∣∣ 1nŴφ
n,m(s)−Wφ(s)

∣∣∣∣ , (3.6)

under adequate complexity assumptions for the class S0 of scoring functions
considered and to study next the generalization ability of maximizers of the
empirical criterion (3.2) in terms of Wφ-ranking performance. Throughout the
article, all the suprema considered, such as (3.6), are assumed to be measurable
and we refer to Chapter 2.3 in [36] for more details on the formulation in terms
of outer measure/expectation that guarantees measurability.

Uniform approximation of two-sample linear rank statistics. Whereas
statistical guarantees for Empirical Risk Minimization in the context of classifi-
cation or regression can be directly obtained by means of classic concentration
results for empirical processes (i.e. averages of i.i.d. random variables), the
study of the fluctuations of the process (3.5) is far from straightforward, insofar
as the terms averaged in (3.2) are not independent. For averages of non-i.i.d.
random variables, the underlying statistical structure can be revealed by or-
thogonal projections onto the space of sums of i.i.d. random variables in many
situations. This projection argument was the key for the study of empirical AUC
maximization or that of within cluster point scatter, which involved U -processes,
see [4] and [3]. In the case of U -statistics, this orthogonal decomposition is
known as the Hoeffding decomposition and the remainder may be expressed as
a degenerate U -statistic, see [20]. For rank statistics, a similar though more
complex decomposition can be considered. We refer to [18] for a systematic use
of the projection method for investigating the asymptotic properties of general
statistics. From the perspective of ERM in statistical learning theory, through

11



the projection method, well-known concentration results for standard empiri-
cal processes and U -processes may carry over to more complex collections of
random variables such as two-sample linear rank processes, as revealed by the
approximation result stated below. It holds true under the following technical
assumptions.

Assumption 1. Let M > 0. For all s ∈ S0, the random variables s(X) and
s(Y) are continuous, with density functions that are twice differentiable and
have Sobolev W2,∞-norms3 bounded by M < +∞.

Assumption 2. The score-generating function φ : [0, 1] 7→ R, is nondecreasing
and twice continuously differentiable.

Assumption 3. The class of scoring functions S0 is a VC class of finite VC
dimension V < +∞.

For the definition of VC classes of functions, one may refer to e.g. [36], see
section 2.6.2 therein, and also recalled in Appendix section A.3. By means of
the proposition below, the study of the fluctuations of the two-sample linear
rank process (3.5) boils down to that of basic empirical processes.

Proposition. 4. Suppose that Assumptions 1-3 are fulfilled. The two-sample
linear rank process (3.5) can be linearized/decomposed as follows. For all s ∈ S0,

Ŵφ
n,m(s) = nŴφ(s)+

(
V̂ Xn (s)− E

[
V̂ Xn (s)

])
+
(
V̂ Ym (s)− E

[
V̂ Ym (s)

])
+Rn,m(s) ,

(3.7)
where

Ŵφ(s) =
1

n

n∑
i=1

(φ ◦ Fs) (s(Xi)) ,

V̂ Xn (s) =
n− 1

N + 1

n∑
i=1

∫ +∞

s(Xi)

(φ′ ◦ Fs)(u)dGs(u) ,

V̂ Ym (s) =
n

N + 1

m∑
j=1

∫ +∞

s(Yj)

(φ′ ◦ Fs)(u)dGs(u) .

For any δ ∈ (0, 1), there exist constants c1, c3 > 0, c2 ≥ 1, c4 > 6, c5 > 3,
depending on φ and V, such that

P
{

sup
s∈S0
|Rn,m(s)| < t

}
≥ 1− δ , (3.8)

where t = c1 + c2 log(c4/δ) as soon as N ≥ (c3/p) log(c5/δ).

The proof of this linearization result is detailed in the Appendix section B.1
(refer to it for a description of the constants involved in the bound stated above).

3Recall that the Sobolev space W2,∞ is the space of all Borelian functions h : R → R
such that h and its first and second order weak derivatives h′ and h′′ are bounded almost-
everywhere. Denoting by ||.||∞ the norm of the Lebesgue space L∞ of Borelian and
essentially bounded functions, W2,∞ is a Banach space when equipped with the norm
||h||2,∞ = max{||h||∞, ||h′||∞, ||h′′||∞}.
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Its main argument consists in decomposing (3.2) by means of a Taylor expansion
at order two of the score generating function φ(u) and applying next the Hájek
orthogonal projection technique (recalled at length in the Introduction Lemma
A.1 for completeness) to the component corresponding to the first order term.
The quantity Rn,m(s) is then formed by bringing together the remainder of the
Hájek projection and the component corresponding to the second order term of
the Taylor expansion, while the probabilistic control of its order of magnitude is
established by means of concentration results for (degenerate) one/two-sample
U -processes (see the Appendix section A.4 for more details). It follows from
decomposition (3.7) combined with triangular inequality that:

sup
s∈S0

∣∣∣∣ 1nŴφ
n,m(s)−Wφ(s)

∣∣∣∣ ≤ sup
s∈S0

∣∣∣Ŵφ(s)−Wφ(s)
∣∣∣

+ sup
s∈S0

1

n

∣∣∣V̂ Xn (s)− E
[
V̂ Xn (s)

]∣∣∣+ sup
s∈S0

1

n

∣∣∣V̂ Ym (s)− E
[
V̂ Ym (s)

]∣∣∣
+ sup
s∈S0

1

n
|Rn,m(s)| . (3.9)

Hence, nonasymptotic bounds for the maximal deviation of the process (3.5) can
be deduced from concentration inequalities for standard empirical processes, as
shall be seen below. Before this, a few comments are in order.

Remark 1. (On the complexity assumption) We point out that alterna-
tive complexity measures could be naturally considered, such as those based on
Rademacher averages, see e.g. [22]. However, as different types of stochastic
process (i.e. empirical process, degenerate one-sample U -process and degenerate
two-sample U -process) are involved in the present nonasymptotic study, different
types of Rademacher complexities (see e.g. [4]) should be introduced to control
their fluctuations as well. For the sake of simplicity, the concept of VC-type
class of functions is used here.

Remark 2. (Smooth score-generating functions) The subsequent anal-
ysis is restricted to the case of smooth score-generating functions for simplifica-
tion purposes. We nevertheless point out that, although one may always build
smooth approximants of irregular score generating functions, the theoretical re-
sults established below can be directly extended to non-smooth situations, at the
price of a significantly greater technical complexity.

The theorem below provides a concentration bound for the two-sample rank pro-
cess (3.5). The proof is based on the uniform approximation result precedingly
established, refer to the Appendix section B.3 for technical details.

Theorem. 5. Suppose that the assumptions of Proposition 4 are fulfilled. Then,
there exist constants C1, C3 > 0, C2 ≥ 24, depending on φ, V and C4 ≥ C1

depending on φ, such that:

P
{

sup
s∈S0

∣∣∣∣ 1nŴφ
n,m(s)−Wφ(s)

∣∣∣∣ > t

}
≤ C2e

−pC3Nt
2

, (3.10)

as soon as C1/
√
pN ≤ t ≤ C4 min(p, 1− p).

The concentration inequalities stated above are extensively used in the next
section to study the ranking bipartite learning problem, when formulated as
Wφ-ranking performance maximization.
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4 Performance of Maximizers of Two-Sample Rank
Statistics in Bipartite Ranking

This section provides a theoretical analysis of bipartite ranking methods, based
on maximization of the empirical ranking performance measure (2.11). While
the concentration inequalities established in the previous section are the key
technical tools to derive nonasymptotic bounds for the deficit of Wφ-ranking
performance measure of empirical maximizers, we start by showing that the
criterion (3.3) is relevant to measure ranking performance, whatever the score
generating function φ is chosen, beyond the examples listed in Subsection 2.3.

Optimal elements. The next result states that optimal scoring functions do
maximize the Wφ-ranking performance and form a collection that coincides with
the set S∗φ of maximizers of (3.3), provided that the score-generating function
φ is strictly increasing on (0, 1).

Proposition. 6. Let φ be a score-generating function. The assertions below
hold true.

(i) For all (s, s∗) ∈ S × S∗, we have Wφ(s) ≤ Wφ(s∗) = W ∗φ , where W ∗φ
def
=

Wφ(Ψ).

(ii) Assuming in addition that the score-generating function φ is strictly in-
creasing on (0, 1), we have: S∗φ = S∗.

The proof immediately results from (3.4) combined with the fact that the ROC
curve of increasing transforms of the likelihood ratio Ψ(z) dominates everywhere
any other ROC curve, as recalled in Section 2.1: ∀(s, s∗) ∈ S×S∗, ∀α ∈ (0, 1),
ROC(s, α) ≤ ROC(s∗, α) = ROC∗(α). Details are left to the reader.

Remark 3. (On plug-in ranking rules) Theoretically, a possible approach
to bipartite ranking is the plug-in method ([12]), which consists of using an
estimate Ψ̂ of the likelihood function as a scoring function. As shown by the
subsequent bound, when φ is differentiable with a bounded derivative, when Ψ̂
is close to Ψ in the L1-sense, it leads to a nearly optimal ordering in terms of
W-ranking criterion:

W ∗φ −Wφ

(
Ψ̂
)
≤ (1− p)||φ′||∞E[|Ψ̂(X)−Ψ(X)|] .

However, the bound above may be loose and the plug-in approach faces computa-
tional difficulties when dealing with high-dimensional data, see [16], which pro-
vide the motivation for exploring algorithms based on Wφ-ranking performance
maximization.

Remark 4. (Alternative probabilistic framework) We point out that
the present analysis can be extended to the alternative setup, where, rather than
assuming that two samples of sizes n and m, ’positive’ and ’negative’, are avail-
able for the learning tasks considered in this paper, the i.i.d. observations Z are
supposed to come with a random label Y either equal to +1 or else to −1, indi-
cating whether Z is distributed according to G or H. If p denotes the probability
that the label Y is equal to 1, the number n of positive observations among a
training sample of size N is then random, distributed as a binomial of size N
with parameter p.
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Consider any maximizer of the empirical Wφ-ranking performance measure over
a class S0 ⊂ S of scoring rules:

ŝ ∈ arg max
s∈S0

Ŵφ
n,m(s) . (4.1)

Since we obviously have:

W ∗φ −Wφ(ŝ) ≤ 2 sup
s∈S0

∣∣∣∣ 1nŴφ
n,m(s)−Wφ(s)

∣∣∣∣+

(
W ∗φ − sup

s∈S0
Wφ(s)

)
, (4.2)

the control of deficit of W -ranking performance of empirical maximizers of (3.2)
can be deduced from the concentration properties of the process (3.5).

4.1 Generalization Error Bounds and Model Selection

The corollary below describes the generalization capacity of scoring rules based
on empirical maximization of Wφ-ranking performance criteria. It straightfor-
wardly results from Theorem 5 combined with the bound (4.2).

Corollary. 7. Let ŝ be an empirical Wφ-ranking performance maximizer over

the class S0, i.e. ŝ ∈ arg maxs∈S0 Ŵ
φ
n,m(s). Under the assumptions of Proposi-

tion 4, for any δ ∈ (0, 1), we have with probability at least 1− δ:

W ∗φ −Wφ(ŝ) ≤ 2

√
log(C2/δ)

pC3N
+

(
W ∗φ − sup

s∈S0
Wφ(s)

)
, (4.3)

as soon as N ≥ 1/(pmin(p, 1 − p)2C3C
2
4 ) log(C2/δ) and δ ≤ C2e

−C2
1C3 where

the constants Ci, i ≤ 4, being the same as those involved in Theorem 5.

The result above establishes that maximizers of the empirical criterion (2.11)
achieve a classic learning rate bound of order OP(1/

√
N) when based on a train-

ing data set of size N , just like in standard classification, see e.g. [12]. Refer to
the Appendix section B.4 for the proof of an additional result, that provides a
bound in expectation for the deficit of Wφ-ranking performance measure, similar
to that established in the subsequent analysis, devoted to the model selection
issue.

Model selection by complexity penalization. We have investigated the
issue of approximately recovering the best scoring rule in a given class S0 in the
sense of the Wφ-ranking performance measure (3.3), which is satisfactory only
when the minimum achieved over S0 is close to W ∗φ of course. We now address
the problem of model selection, that is the problem of selecting a good scoring
function from one of a collection of VC classes Sk, k ≥ 1. A model selection
method is a data-based procedure that aims at achieving a trade-off regarding
two contradictory objectives, i.e. at finding a class Sk rich enough to include a
reasonable approximant of an element of S∗, while being not too complex so that
the performance of the empirical minimizer over it ŝk = arg maxs∈Sk Ŵφ

n,m(s)
can be statistically guaranteed. We suppose that all class candidates Sk, k ≥ 1,
fulfill the assumptions of Proposition 4 and denote by Vk the VC dimension
of the class Sk. Various model selection techniques, based on (re-)sampling or
data-splitting procedures, could be naturally considered for this purpose. Here,
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in order to avoid overfitting, we focus on a complexity regularization approach,
of which study can be directly derived from the rate bound analysis previously
carried out, that consists in substracting to the empirical ranking performance
measure the penalty term (increasing with Vk) given by:

pen(N, k) = B1

√
Vk
pN

+

√
2C log k

p2N
, (4.4)

for pN ≥ B2Vk where the constants B1 and B2 are those involved in Proposi-
tion 21 and C = 6(‖φ‖2∞ + 9‖φ′‖2∞ + 9||φ′′||2∞). The scoring function selected
maximizes the penalized empirical ranking performance measure, it is ŝk̂(z)
where:

k̂ = arg max
k≥1

{
1

n
Ŵφ
n,m(s)− pen(N, k)

}
. (4.5)

The result below shows that the scoring rule ŝk̂ nearly achieves the expected
deficit of Wφ-ranking performance that would have been attained with the help
of an oracle, revealing the model minimizing W ∗φ − E[Wφ(ŝk)].

Proposition. 8. Suppose that the assumptions of Proposition 4 are fulfilled for
any class Sk with k ≥ 1 and that supk≥1 Vk < +∞. Then, we have:

W ∗φ − E
[
Wφ(ŝk̂)

]
≤

min
k≥1

{
2pen(N, k) +

(
W ∗φ − sup

s∈Sk
Wφ(s)

)}
+ 2

√
C

p2N
, (4.6)

as soon as pN ≥ B2 supk≥1 Vk, where the constant B2 > 0 is the same as that
involved in Proposition 21 and C = 6(‖φ‖2∞ + 9‖φ′‖2∞ + 9||φ′′||2∞).

Refer to the Appendix section B.5 for the technical proof.

4.2 Kernel Regularization for Ranking Performance Max-
imization

Many successful algorithmic approaches to statistical learning (e.g. boosting,
support vector machines, neural networks) consist in smoothing the empirical
risk/performance functional to be optimized, so as to use computationally fea-
sible techniques based on gradient descent/ascent methods. Concerning the
empirical criterion (2.11), although one may choose a regular score generating
function φ (cf Remark 2), smoothness issues arise when replacing Fs in (3.3)
by the raw empirical c.d.f. (3.1). A classic remedy involves using a kernel-
smoothed version of the empirical c.d.f. instead. Let K : R → R be a second-
order Parzen-Rosenblatt kernel i.e. a Borelian symmetric function, integrable
w.r.t. the Lebesgue measure such that

∫
K(t)dt = 1 and

∫
t2K(t)dt < +∞.

Precisely, for any h > 0 and all t ∈ R, define the smoothed approximation of
the c.d.f. Fs(t):

F̃s,h(t) =

∫
R
κ

(
t− u
h

)
Fs(du) , (4.7)

where κ(t) =
∫ t
−∞K(u)du and h > 0 is the bandwidth that determines the de-

gree of smoothing, see e.g. [27]. The uniform integrated error sups∈S0
∫
|F̃s,h(t)−
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Fs(t)|dt is shown to be of order O(h2) under the assumptions recalled below,
see [21].

Assumption 4. Let R > 0. For all s in S0, the cumulative distribution function
Fs is differentiable with derivative fs such that

∫
(f ′s(t))

2dt ≤ R.

Assumption 5. The kernel function K is of the form K1 ◦K2, where K1 is a
function of bounded variation and K2 is a polynomial.

Notice that Assumption 4 is fulfilled as soon as Assumption 1 is satisfied with
R ≥M . The statistical counterpart of (4.7) is then:

F̂s,N,h(t) =
1

N

n∑
i=1

κ

(
t− s(Xi)

h

)
+

1

N

m∑
j=1

κ

(
t− s(Yj)

h

)
. (4.8)

A smooth version of the theoretical criterion (3.3) is given by:

W̃φ,h(s) = E[(φ ◦ F̃s,h)(s(X))] , (4.9)

for all s ∈ S and an empirical version of the latter is Ŵφ
n,m,h(s)/n, where:

Ŵφ
n,m,h(s) =

n∑
i=1

(φ ◦ F̂s,N,h)(s(Xi)) . (4.10)

For any maximizer s̃ of (4.10) over the class S0 of scoring function candidates,
we almost-surely have:

W ∗φ −Wφ (s̃) ≤ 2 sup
s∈S0

∣∣∣∣ 1nŴφ
n,m,h(s)− W̃φ,h(s)

∣∣∣∣+ sup
s∈S0

∣∣∣W̃φ,h(s)−Wφ(s)
∣∣∣

+

{
W ∗φ − sup

s∈S0
Wφ(s)

}
. (4.11)

This decomposition is similar to that obtained in (4.2) for maximizers of the
criterion (2.11), apart from the additional bias term. Since the latter can be
shown to be of order O(h2) under appropriate regularity conditions and the
first term on the right hand side of the equation above can be controlled like in
Theorem 5, one may bound the deficit of Wφ-ranking performance measure of
s̃ as follows.

Proposition. 9. Suppose that the assumptions of Proposition 4 are fulfilled,
as well as Assumptions 4 and 5. Let s̃ be any maximizer of the smoothed cri-
terion (4.10) over the class S0. Then, for any δ ∈ (0, 1), there exist constants
C1, C3 > 0, C2 ≥ 24 depending on φ, K, R, V, C4 ≥ C1, and C5 > 0 is a con-
stant depending on φ, K and R, such that we have with probability at least 1−δ:

W ∗φ −Wφ(s̃) ≤ 2

√
log(C2/δ)

pC3N
+ C5h

2 +

{
W ∗φ − sup

s∈S0
Wφ(s)

}
, (4.12)

as soon as N ≥ 1/(pmin(p, 1− p)2C3C
2
4 ) log(C2/δ) and δ ≤ C2e

−C2
1C3 .

The proof is detailed in the Appendix section B.6.
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5 Numerical Experiments

It is the purpose of this section to illustrate empirically various points high-
lighted by the theoretical analysis previously carried out: in particular, the ca-
pacity of ranking rules obtained by maximization of empirical Wφ-performance
measures to generalize well and the impact of the choice of the score generat-
ing function φ on ranking performance from the perspective of ROC analysis.
Some practical issues, concerning the maximization of smoothed versions of
the empirical Wφ-performance criterion, are also discussed through numerical
experiments. Additional experimental results can be found in the Appendix
section C. All experiments displayed in this article can be reproduced using the
code available at https://github.com/MyrtoLimnios/grad_2sample.

5.1 A Gradient-Based Algorithmic Approach

We start by describing the gradient ascent method (GA) used in the experiments
in order to maximize the smoothed criterion (4.10) obtained by kernel smoothing
over the class of scoring functions S0 considered, as proposed in section 4.2,
see Algorithm 1. Precisely, suppose that S0 is a parametric class, indexed
by a parameter space Θ ⊂ Rd with d ≥ 1 say: S0 = {sθ : X → R, θ ∈
Θ}. Assume also that, for all z ∈ Z, the mapping θ ∈ Θ 7→ sθ(z) is of class
C1 (i.e. continuously differentiable) with gradient ∂θsθ(z) and that the score-
generating function φ fulfills Assumption 2. The gradient of the smoothed
ranking performance measure of sθ w.r.t. to the parameter θ, is given by: for
all θ ∈ Θ, h > 0,

∇θ
(
Ŵφ
n,m,h(sθ)

)
=

n∑
i=1

φ′
(
F̂sθ,N,h(sθ(Xi))

)
∇θ
(
F̂sθ,N,h(sθ(Xi))

)
, (5.1)

where the gradient of F̂sθ,N,h(sθ(z)) w.r.t. to θ is:

∇θ
(
F̂sθ,N,h(sθ(z))

)
=

1

Nh

n∑
i=1

K

(
sθ(z)− sθ(Xi)

h

)
(∂θsθ(z)− ∂θsθ(Xi))

+
1

Nh

m∑
j=1

K

(
sθ(z)− sθ(Yj)

h

)
(∂θsθ(z)− ∂θsθ(Yj)) , (5.2)

for any z ∈ Z, using the fact that κ′ = K.
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Algorithm 1: Gradient Ascent for W -ranking performance maximiza-
tion

Data: Independent i.i.d. samples {Xi}i≤n and {Yj}j≤m.
Input: Score-generating function φ, kernel K, bandwidth h > 0,

number of iterations T ≥ 1, step size η > 0.
Result: Scoring rule sθ̂n,m(z).

1 Choose the initial point θ(0) in Θ;
2 for t = 0, . . . , T − 1 do

3 compute the gradient estimate ∇θ
(
Ŵφ
n,m,h(sθ(t))

)
;

4 update the parameter θ(t+1) = θ(t) + η∇θ
(
Ŵφ
n,m,h(sθ(t))

)
;

5 end

6 Set θ̂n,m = θ(T ).

In practice, the iterations are continued until the order of magnitude of the
variations ||θ(t+1)− θ(t)|| becomes negligible. Then, the approximate maximum
sθ̂n,m(z) output by Algorithm 1 is next used to rank test data. Averages over

several Monte-Carlo replications are computed in order to produce the results
displayed in Subsection 5.3.

5.2 Synthetic Data Generation

We now describe the data generating models used in the simulation experiments,
as well as the parametric class of scoring functions, which the learning algorithm
previously described is applied to.

Score-generating functions. To illustrate the importance of the function φ
in the Wφ-performance ranking criterion, we successively consider φMWW (u) =
u (MWW), φPol(u) = uq, q ∈ N∗ (Pol, [30]) and φRTB(u) = SoftPlus(u −
u0) + u0Sigmoid(u − u0), u0 ∈ (0, 1) (RTB, smoothed version of [7]), where
the activation functions are defined by: SoftPlus(u) = (1/β) log(1 + exp(βu))
and Sigmoid(u) = 1/(1 + exp(−λu)), β, λ > 0 being hyperparameters to fit and
control the derivative’s slope.

Probabilistic models. Two classic two-sample statistical models are used
here, namely the location and the scale models, where both samples are drawn
from multivariate Gaussian distributions. We denote by S+

d (R) the set of posi-
tive definite matrices of dimension d× d, by Id the identity matrix.

Location model. Inspired by the optimality properties of linear rank statis-
tics regarding shift detection in the univariate setup (cf Subsection 2.2), the
model considered stipulates that X ∼ Nd(µX ,Σ) and Y ∼ Nd(µY ,Σ) where Σ ∈
S+
d (R) and the mean/location parameters µX and µY differ. The Algorithm 1 is

implemented here with Z = Rd = Θ and S0 = {sθ(·) = 〈·, θ〉, θ ∈ Θ} as class of
scoring functions, where 〈·, ·〉 denotes the Euclidean scalar product on the fea-
ture space Rd, and consequently exhibits no bias caused by the model. Indeed,
by computing the loglikelihood ratio, one may easily check that the function
〈θ∗, ·〉, where θ∗ = Σ−1(µX−µY ), is an optimal scoring function for the related
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Figure 3: Curves of the three score-generating functions under study:
φMWW (u) = u in blue, φPol(u) = u3 in orange, φRTB(u) = SoftPlus(u −
u0) + u0Sigmoid(u − u0) the smoothed version of u 7→ uI{u ≥ u0} in green,
vertical line at x = u0 in black.

bipartite ranking problem. Denoting by ∆(t) = (1/
√

2π)
∫ t
−∞ exp(−u2/2)du,

t ∈ R, the c.d.f. of the centered standard univariate Gaussian distribution, one
may immediately check that the optimal ROC curve is given by:

∀α ∈ (0, 1), ROC∗(α) = 1−∆

(
∆−1(1− α) +

√
(µX − µY)TΣ−1(µX − µY)

)
.

Three levels of difficulty are tested through the implementations Loc1, Loc2
and Loc3. The nearly diagonal covariance matrix of the three models has its
eigenvalues in [0.5, 1.5] and µX = (1 + ε)µY with ε = 0.10 (resp. ε = 0.20 and
ε = 0.30) for Loc1 (resp. Loc2 and Loc3). The empirical ROC curves over the
test pooled samples and additional curves are depicted in Fig. 10, 4, 11 for
resp. Loc1, 2 and 3. The averaged ROC curves and the best one are gathered
for the three models in Fig. 5. In Fig. 6, the evolution of the averaged empirical
value of the Wφ-criteria on the train set during the algorithm is computed. Fig.
14 shows the results for Loc2 and 3 for three different parameters of the RTB
model with u0 ∈ {0.70, 0.90, 0.95}.

Scale model. Consider now the situation where X ∼ Nd(µ,ΣX) and Y ∼
Nd(µ,ΣY ), the distributions having the same location vector µ ∈ Rd but differ-
ent scale parameters ΣX and ΣY in S+

d (R). The Algorithm 1 is implemented
with Z = Rd, Θ = S+

d (R) and S0 = {sθ(z) = 〈z, θ−1z〉, for all z ∈ Z, θ ∈
Θ}, with the notations previously introduced. By computing the likelihood ra-
tio, one immediately checks that sθ∗(·), with θ∗ = Σ−1X − Σ−1Y , is an optimal
scoring function for the related scale model. For models Scale1, Scale2 and
Scale3, observations are centered, ΣY = Id and ΣX = Id + (ε/d)H, where ε is
taken equal to 0.70, 0.80 and 0.90 respectively and H a d× d symmetric matrix
with real entries such that all the eigenvalues of ΣX ∈ S+

d (R) are close to 1.
Similar to the location models, the empirical ROC curves over the test pooled
samples and additional curves are depicted in Fig. 7, 12, 13 for resp. Scale1, 2
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and 3. The averaged ROC curves and the best one are gathered for the three
models in Fig. 8. In Fig. 9, the evolution of the averaged empirical value of
the Wφ-criteria on the train set during the Algorithm is computed. Fig. 15
shows the results for Scale2 for three different parameters of the RTB model
with u0 ∈ {0.60, 0.70, 0.80}.

Experimental parameters. In all the experiments below, the pooled train
sample is balanced, i.e. n = m = 150 and the dimension of the feature space is
d = 15. Similarly for the test sample with n = m = 106 and d = 15. Concerning
the score-generating functions, we consider q = 3 (Pol) and u0 = 0.9 (RTB).
We use the Gaussian smoothing kernel K(u) = (1/

√
2π) exp{−u2/2} with a

bandwidth h ∼ N−1/5, yielding an (asymptotically) optimal trade-off between
bias and variance. Algorithm 1 is implemented with T = 50 and a learning
step size η of order 1/

√
T . For each model, B = 50 Monte-Carlo replications of

the train pooled sample. Based on the latter, a standard deviation for the test
average ROC curve is computed for each model.

Evaluation of the criteria. In order to evaluate the performance of the
scoring function produced by an early-stopped version of Algorithm 1 depending
on the score-generating function chosen, it is used to score the test sample and
the corresponding ROC curves and its average are compared to those of the
optimal scoring function sθ∗(z). Also we consider the best/worst curves in the
sense of resp. the minimization/maximization of the generalization error of the
set of ROC curves obtained computed over the test pooled sample. Particular
attention is paid to the behavior of these curves near the origin, which reflects
the ranking performance for the instances with highest score values.

5.3 Results and Discussion

We now analyze the experimental results, by commenting on the test ROC
curves obtained after learning the scoring functions, using the early-stopped ver-
sion of the Algorithm 1 described above, that maximize the chosen (smoothed
variant of the) Wφ-performance measure: MWW, Pol and RTB. We compare
them with ROC∗. All the experiments were run using Python.

For both the location and scale models, we ran the algorithm for three increasing
levels of difficulty defined by the decreasing value of the parameter ε. Figures 5
(location) and 8 (scale) show that the three methods (MWW, Pol, RTB) learn

an empirical parameter θ̂n,m such that the corresponding ROC curve gets close
to ROC∗ (red curves) and the more ε increases and the more the scoring rule
learned generalizes well. Fig. 6 (location) and 9 (scale) reveal the monotonicity
of the evolution of the empirical criteria, as the number of iterative steps of Al-
gorithm 1 increases. Unsurprisingly, all the results show an increasing ability to
learn a scoring function that maximizes the three Wφ-performance measures, as
ε increases (i.e. when the distribution G and H are significantly more different
from each other).

Analyzing the average of the empirical ROC curves obtained, MWW performs
better for the location model as its corresponding curve converges faster to

21



ROC∗ for all ε. This phenomenon was expected due to the well-known high
power of the related Mann-Whitney-Wilcoxon test statistic in this modeling.
The aggregated ROC curve for the Pol method also performs well, while RTB’s
presents a low performance compared to MWW, see Fig. 5. Indeed, considering
only the best ranked observations at each iteration in the learning procedure,
does not always achieve a good scoring parameter and is enhanced by the early-
stopped rule. It results in a higher variance and a larger spectrum of the empiri-
cal curves both at the same time, see the light blue curves in Fig. 4.3. and 11.3.
(Loc2 and Loc3). The slow convergence for the RTB method is illustrated with
Loc1, where almost both samples are blended/coincide, for which only the ROC
curves above the diagonal were kept. For the scale model, the aggregated ROC
curves are comparable for the three methods with a slightly higher performance
obtained by RTB and we note the faster convergence of the algorithm for this
model, see Fig. 9.

Looking at the best ROC curves (dark blue lines), defined as those obtained by
the scoring function minimizing the generalization error for each criterion, RTB
yields to a scoring function that generalizes best for most of the models. In
particular, when focussing on the ’best’ instances in the learning procedure, the
obtained empirical scoring functions have higher performance at the beginning
of the ROC curves, see the zoomed plots. Also, choosing the optimal proportion
1 − u0 of observations to consider for the score-generating function results in
different performance measures. Figure 14 gathers the resulting plots for models
Loc2 and 3 with u0 in {0.7, 0.9, 0.95} while Fig. 15 depicts the scale model 2
with u0 in {0.6, 0.7, 0.8} and a higher number of loops T = 70. Considering the
best ROC curves for all models shows that when u0 tends to one, the beginning
of the curve is accurately learned. Incidentally, note that the proportion of ob-
servations considered has to be large enough, so that the optimization algorithm
performs well.

6 Conclusion

This article argues that two-sample linear rank statistics provide a very flexible
and natural class of empirical performance measures for bipartite ranking. We
have showed that it encompasses in particular well-known criteria used in med-
ical diagnosis and information retrieval and proved that, in expectation, these
criteria are maximized by optimal scoring functions and put the emphasis on
specific parts of their ROC curves, depending on the score generating function
involved in the criterion considered. We have established concentration results
for collections of such statistics, referred to as two-sample rank processes here,
under general assumptions and have deduced from them statistical learning
guarantees for the maximizers of such ranking criteria in the form of a gen-
eralization bound of order OP(1/

√
N), where N means the size of the pooled

training sample. Algorithmic issues concerning practical maximization have
also been investigated and we have displayed numerical results supporting the
theoretical analysis carried out.
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1.a. φMWW (u) = u

2.b. φPol(u) = u3

1.a. φMWW (u) = u

2.b. φPol(u) = u3

A Definitions and Preliminary Results

For the sake of clarity, crucial concepts and results extensively used in the
technical analysis subsequently carried out are first recalled.

A.1 Hájek Projection Method

The Hájek projection method introduced in the seminal contribution [18] aims
at decomposing (linearizing) any (possibly complex) square integrable statistic
based on independent observations, so as to express it as an average of indepen-
dent r.v.’s plus an uncorrelated term. The proof of Proposition 4 crucially relies
on this technique. For completeness, it is described in the following lemma, one
may refer to Chapter 11 in [35] for further details.

Lemma. 10. (Hájek projection, [18]) Let Z1, . . . , Zn be independent
r.v.’s and Tn = Tn(Z1, . . . , Zn) be a real-valued square integrable statistic. The

Hájek projection of Tn is defined as T̂n =
∑n
i=1 E[Tn | Zi] − (n − 1)E[T ]. It is

the orthogonal projection of the square integrable r.v. Tn onto the subspace of
all variables of the form

∑n
i=1 gi(Zi), for arbitrary measurable functions gi s.t.

E[g2i (Zi)] < +∞.
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3.c. φRTB(u) = uI{u ≥ 0.9} 3.c. φRTB(u) = uI{u ≥ 0.9}

Figure 4: Empirical ROC curves and average ROC curve for Loc2 (ε = 0.20).
Samples are drawn from multivariate Gaussian distributions according to section
5.2, scored with early-stopped GA algorithm’s optimal parameter for the class
of scoring functions. Hyperparameters: u0 = 0.9, q = 3, B = 50, T = 50.
Parameters for the training set: n = m = 150; d = 15; for the testing set:
n = m = 106; d = 15. Figures 1, 2, 3 correspond resp. to the models MMW,
Pol, RTB. Light blue curves are the B(= 50) ROC curves that are averaged in
green (solid line) with +/− its standard deviation (dashed green lines). The
dark blue and purple curves correspond to the best and worst scoring functions
in the sense of minimization and maximization of the generalization error among
the B curves. The red curve corresponds to ROC∗.

A.2 U-statistics and U-processes

As mentioned in Section 3, (degenerate) one/two-sample U -statistics are in-
volved in the definition of the residual term introduced in Proposition 4. We
recall the definition of such statistics generalizing basic i.i.d. sample averages,
as well as some of their properties. See e.g. [23] for an account of the theory of
U -statistics.

Definition. 11. (One-sample U-Statistic of degree two) Let n ≥ 2.
Consider a i.i.d. sequence X1, . . . , Xn drawn from a probability distribution µ
on a measurable space X and k : X 2 → R a square integrable function w.r.t. µ⊗
µ. The one-sample U -statistic of degree 2 and kernel function k based on the
Xi’s is defined as:

Un(k) =
1

n(n− 1)

∑
1≤i6=j≤n

k(Xi, Xj) . (A.1)

As can be shown by a basic Lehmann-Scheffé argument, the statistic Un(h)
is the unbiased estimator of the parameter θ(k) =

∫
k(x1, x2)µ(dx1)µ(dx2)

with minimum variance. Its Hájek projection can be expressed as follows: the
projection of Un(k) − θ(k) onto the space of all random variables

∑n
i=1 gi(Xi)

with
∫
g2i (x)µ(dx) < +∞ is Ûn(k) = (1/n)

∑n
i=1 k1(Xi), with k1 = k1,1 + k1,2,

k1,1(x) = E[k(X1, x)] − θ and k1,2(x) = E[k(x, X2)] − θ for all x ∈ X . The
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1. Loc1, ε = 0.10 2. Loc2, ε = 0.20 3. Loc3, ε = 0.30

Figure 5: Average of the ROC curves (solid line), best ROC curves (dashed line)
for the three location models Loc1, Loc2 and Loc3. In blue for MWW, orange
for Pol, green for RTB, red for ROC∗. Samples are drawn from multivariate
Gaussian distributions according to section 5.2, scored with early-stopped GA
algorithm’s optimal parameter for the class of scoring functions and averaged
after B = 50 loops. Hyperparameters: u0 = 0.9; q = 3, B = 50, T = 50.
Parameters for the training set: n = m = 150; d = 15; for the testing set:
n = m = 106; d = 15.

U -statistic (A.1) is said to be degenerate when the k1,l(X1)’s are equal to zero
with probability one, it is then of order OP(1/n). Hence, once recentered, the

U -statistic (A.1) can be written as the i.i.d. average Ûn(h) plus a degenerate U -
statistic. This decomposition is known as the (second) Hoeffding representation
of U -statistics and provides the key argument to establish limit results for such
functionals, see e.g. [31].

The notion of U -statistic can be generalized in several ways, by considering
kernels with a number of arguments (i.e. degree) higher than 2 or by extending
it to the multi-sample framework.

Definition. 12. (Two-sample U-Statistic of degree (1, 1)) Let n, m in
N∗. Consider two independent i.i.d. sequences X1, . . . , Xn and Y1, . . . , Ym re-
spectively drawn from probability distributions µ and ν on the measurable spaces
X and Y. Let ` : X × Y → R be a square integrable function w.r.t. µ⊗ ν. The
two-sample U -statistic of degree (1, 1), with kernel function `(x, y) and based on
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1. φMWW (u) = u 2. φPol(u) = u3 3. φRTB(u) = uI{u ≥ 0.9}

Figure 6: Average of the empirical Wφ-ranking performance measure over the
B = 50 loops for the three location models Loc1, Loc2 and Loc3. Samples are
drawn from multivariate Gaussian distributions according to section 5.2, scored
with early-stopped GA algorithm’s optimal parameter for the class of scoring
functions and averaged after B = 50 loops. Hyperparameters: u0 = 0.9; q = 3,
B = 50, T = 50. Parameters for the training set: n = m = 150; d = 15; for the
testing set: n = m = 106; d = 15.

1.a. φMWW (u) = u

2.b. φPol(u) = u3

1.a. φMWW (u) = u

2.b. φPol(u) = u3
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3.c. φRTB(u) = uI{u ≥ 0.9} 3.c. φRTB(u) = uI{u ≥ 0.9}

Figure 7: Empirical ROC curves and average ROC curve for Scale1 (ε = 0.70).
Samples are drawn from multivariate Gaussian distributions according to section
5.2, scored with early-stopped GA algorithm’s optimal parameter for the class
of scoring functions. Hyperparameters: u0 = 0.9, q = 3, B = 50, T = 50.
Parameters for the training set: n = m = 150; d = 15; for the testing set:
n = m = 106; d = 15. Figures 1, 2, 3 correspond resp. to the models MMW,
Pol, RTB. Light blue curves are the B(= 50) ROC curves that are averaged in
green (solid line) with +/− its standard deviation (dashed green lines). The
dark blue and purple curves correspond to the best and worst scoring functions
in the sense of minimization and maximization of the generalization error among
the B curves. The red curve corresponds to ROC∗.

the Xi’s and the Yj’s is defined as:

Un,m(`) =
1

nm

n∑
i=1

m∑
j=1

`(Xi, Yj) . (A.2)

A classic example of two-sample U -statistic of degree (1, 1) is the Mann-Whitney
statistic, with symmetric kernel `(x, y) = I{y < x}+ (1/2)I{y = x} on R2 and
degree (1, 1). It is a natural (unbiased) estimator of the AUC: when computed
from univariate samples X1, . . . , Xn and Y1, . . . , Ym with distributions H and
G on R, it is equal to AUCĤm,Ĝn

with the notations of Subsection 2.2 and can

be thus viewed as an affine transform of the rank-sum Wilcoxon statistic (2.9).
The Hájek projection of (A.2) is obtained by computing the orthogonal projec-
tion of the recentered r.v. Un,m(`)−E[Un,m(`)] onto the subpace of L2 composed
of all random variables

∑n
i=1 gi(Xi)+

∑m
j=1 fj(Yj) with

∫
g2i (x)µ(dx) < +∞ and∫

f2j (y)ν(dy) < +∞, namely Ûn,m(`) = (1/n)
∑n
i=1 `1,1(Xi)+(1/m)

∑m
j=1 `1,2(Yj),

with `1,1(x) = E[`(x, Y1)] − E[Un,m(`)] and `1,2(y) = E[`(X1, y)] − E[Un,m(`)]
for all (x, y) ∈ X × Y. The U -statistic Un,m(`) is said to be degenerate when
the random variables `1,1(X1) and `1,2(Y1) are equal to zero with probability
one. Similar to (A.1), the recentered version of the two-sample U -statistic of

degree (1, 1) (A.2) can be written as a sum of two i.i.d. averages Ûn,m(`) plus
a degenerate U -statistic of order OP(1/n) + OP(1/m). Again, the Hoeffding
decomposition is the key to directly extend limit results known for i.i.d. aver-
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1. Scale1, ε = 0.70 2. Scale2, ε = 0.90 3. Scale3, ε = 1.10

Figure 8: Average of the ROC curves (solid line), best ROC curves (dashed line)
for the three scale models Scale1, Scale2 and Scale3. In blue for MWW, orange
for Pol, green for RTB, red for ROC∗. Samples are drawn from multivariate
Gaussian distributions according to section 5.2, scored with early-stopped GA
algorithm’s optimal parameter for the class of scoring functions and averaged
after B = 50 loops. Hyperparameters: u0 = 0.9; q = 3, B = 50, T = 50.
Parameters for the training set: n = m = 150; d = 15; for the testing set:
n = m = 106; d = 15.

ages (e.g. SLLN, CLT, LIL) to statistics of the type (A.2). In the subsequent
technical analysis, nonasymptotic uniform results are required for U -processes,
namely collections of U -statistics indexed by classes of kernels. By means of
the Hoeffding decomposition, concentration bounds for U -processes can be ob-
tained by combining classic concentration bounds for empirical processes and
concentration bounds for degenerate U -processes, such as those recalled in A.4.

A.3 V C-type Classes of Functions - Permanence Proper-
ties

The concentration inequalities for U -processes recalled in Appendix A.4 and
involved in the proof of the main results stated in this article apply to collections
of kernels that are of VC-type, a classic concept used to quantify the complexity
of classes of functions. It is recalled below, see e.g. [36] for generalizations and
further details.

Definition. 13. A class F of real-valued functions defined on a measurable
space Z is a bounded V C-type class with parameter (A,V) ∈ (0, +∞)2 and
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1. φMWW (u) = u 2. φPol(u) = u3 3. φRTB(u) = uI{u ≥ 0.9}

Figure 9: Average of the empirical Wφ- ranking performance measure over the
B = 50 loops for the three location models Loc1, Loc2 and Loc3. Samples are
drawn from multivariate Gaussian distributions according to section 5.2, scored
with early-stopped GA algorithm’s optimal parameter for the class of scoring
functions and averaged after B = 50 loops. Hyperparameters: u0 = 0.9; q = 3,
B = 50, T = 50. Parameters for the training set: n = m = 150; d = 15; for the
testing set: n = m = 106; d = 15.

constant envelope LF > 0 if for all ε ∈ (0, 1):

sup
Q

N(F , L2(Q), εLF ) ≤
(
A

ε

)V
, (A.3)

where the supremum is taken over all probability measures Q on Z and the
smallest number of L2(Q)-balls of radius less than ε required to cover class F
(i.e. covering number) is meant by N(F , L2(Q), ε).

Recall that a bounded VC class of functions with VC dimension V < +∞
is of VC-type and fulfills the condition above with V = 2(V − 1) and A =
(cV (16e)V )1/(2(V−1)), where c is a universal constant, see e.g. Theorem 2.6.7 in
[36]. The lemma stated below permits to control the complexity of the classes
of kernels/functions involved in the Hoeffding decompositions of a two-sample
U -process of degree (1, 1) or of a one-sample U -process of degree 2, cf subsection
A.2.

Lemma. 14. Let X and Y be two independent random variables, valued in X
and Y respectively, with probability distributions µ and ν. Consider L a VC-type
bounded class of kernels ` : X × Y → R with parameters (A,V) and constant
envelope LL > 0. Then, the sets of functions {x ∈ X 7→ E[`(x, Y )] : ` ∈ L},
{y ∈ Y 7→ E[`(X, y)] : ` ∈ L}, {`(x, y)− E[`(X, y)]− E[`(x, Y )] : ` ∈ L} are
also VC-type bounded classes.

proof. Consider first the uniformly bounded class L1 composed of functions
x ∈ X 7→ E[`(x, Y )] with ` ∈ L. Let ε > 0 and P be any probability measure
on X . Define the probability measure Pν(dx, dy) = P (dx)ν(dy) on X × Y and
consider a ε-covering of the class L with centers `1, . . . , `K w.r.t. the metric
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L2(Pν), K ≥ 1. For all ` ∈ L, there exists k ≤ K such that:∫
x∈X

∫
y∈Y

(`(x, y)− `k(x, y))2Pν(dx, dy) ≤ ε2 .

By virtue of Jensen’s inequality, we have∫
X

(E[`(x, Y )]− E[`k(x, Y )])2P (dx)

≤
∫
X
E[(`(x, Y )− `k(x, Y ))2]P (dx)

=

∫
X

∫
Y

(`(x, y)− `k(x, y))2ν(dy)P (dx) ≤ ε2 .

Hence, one gets a ε-covering of the class L1 with balls of centers {E[`k(·, Y )] :
k = 1, . . . , K} in L2(P ). This proves that

N(L1, L2(P ), εLL) ≤ N(L, L2(Pν), εLL).

As a similar reasoning can be applied to the two other classes of functions, one
then gets the desired result.

A.4 Concentration Inequalities for Degenerate U-processes.

In [24] (see Theorem 2 therein), a concentration bound for one-sample de-
generate U -processes of arbitrary degree indexed by L2-dense classes of non-
symmetric kernels is established. The lemma below is a formulation of the latter
in the specific case of degenerate U -processes of degree 2 indexed by VC-type
bounded classes of non-symmetric kernels.

Lemma. 15. Let n ≥ 2 and X1, . . . , Xn be i.i.d. random variables drawn
from a probability distribution µ on a measurable space X . Let K be a class of
measurable kernels k : X 2 → R such that supx,x′∈X 2 |k(x, x′)| ≤ D < +∞ and∫
X 2 k

2(x, x′)µ(dx)µ(dx′) ≤ σ2 ≤ D2, that defines a degenerate one-sample U -
process of degree 2, based on the Xi’s: {Un(k) k ∈ K}. Suppose in addition that
the class K is of VC-type with parameters (A,V). Then, there exist constants
C1 > 0, C2 ≥ 1 and C3 ≥ 0 depending on (A,V) such that:

P
{

sup
k∈K
|Un(k)| ≥ t

}
≤ C2 exp

{
−C3(n− 1)t

σ

}
, (A.4)

as soon as C1 log(2D/σ) ≤ (n− 1)t/σ ≤ nσ2/D2.

The next lemma provides a similar nonasymptotic result for degenerate two-
sample U -processes of degree (1, 1).

Lemma. 16. Let (n, m) ∈ N∗. Consider two independent i.i.d. random sam-
ples X1, . . . , Xn and Y1, . . . , Ym respectively drawn from the probability distribu-
tions µ and ν on the measurable spaces X and Y. Let L be a class of degenerate
non-symmetrical kernels ` : X × Y → R such that sup(x,y)∈X×Y |`(x, y)| ≤ L <

+∞ and
∫
X×Y `

2(x, y)µ(dx)ν(dy) ≤ σ2 ≤ L2, that defines a degenerate two-
sample U -process of degree (1, 1), based on the Xi, Yj’s: {Un,m(`) ` ∈ L}. Sup-
pose in addition that the class L is of VC-type with parameters (A,V). Then,
for all t > 0, there exists a universal constant K > 2 such that:
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P
{

sup
`∈L
|Un,m(`)| ≥ t

}
≤ K2V(A/L)2Ve4/L

2

exp

{
−nmt

2

ML2

}
, (A.5)

for all nmt2 > max(84 log(2)L2V, (log(2)L2V/2)1+δ), δ ∈ (1, 2) constant and
M = 163/2.

Its proof is given in B.7 and is inspired from that of Lemma 2.14.9 in [36] and
of Lemma 3.2 in [34] for empirical processes, and from Lemma 2.4 in [28] which
gives a version in expectation applicable to degenerate two-sample U -processes
of arbitrary degree indexed by Lp-dense classes of kernels.

B Technical Proofs

The proofs of the results stated in the paper are detailed below.

B.1 Proof of Proposition 4

Let θ0 ∈ (0, 1). Since φ(u) ∈ C2([0, 1],R) by virtue of Assumption 2, a Taylor
expansion of order two yields: for all θ ∈ (0, 1)

φ(θ) = φ(θ0) + (θ − θ0)φ′(θ0) +

∫ θ

θ0

(θ − u)φ′′(u)du . (B.1)

Let s ∈ S0. For all t ∈ R, we have

φ

(
NF̂s,N (t)

N + 1

)
= φ ◦ Fs(t) +

(
NF̂s,N (t)

N + 1
− Fs(t)

)
φ′ ◦ Fs(t)

+

∫ NF̂s,N (t)/(N+1)

Fs(t)

(
NF̂s,N (t)

N + 1
− u

)
φ′′(u)du , (B.2)

with probability one. Let i ≤ n, for t = s(Xi), (B.2) writes:

φ

(
NF̂s,N (s(Xi))

N + 1

)
= φ ◦ Fs(s(Xi))

+

(
NF̂s,N (s(Xi))

N + 1
− Fs(s(Xi))

)
φ′ ◦ Fs(s(Xi)) + ti(s) a.s. , (B.3)

where

|ti(s)| ≤ (‖φ′′‖∞/2)
(
N/(N + 1)F̂s,N (s(Xi))− Fs(s(Xi))

)2
.

Hence, by summing over i ∈ {1, . . . , n}, one gets that the approximation of

Ŵn,m(s) stated below holds true almost-surely:

Ŵn,m(s) = nŴφ(s) +Bn,m(s) + T̂n,m(s) , (B.4)
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where

Bn,m(s) =

n∑
i=1

(
NF̂s,N (s(Xi))

N + 1
− Fs(s(Xi))

)
φ′ ◦ Fs(s(Xi)), (B.5)

|T̂n,m(s)| =

n∑
i=1

|ti(s)| ≤
‖φ′′‖∞

2

n∑
i=1

(
NF̂s,N (s(Xi))

N + 1
− Fs(s(Xi))

)2

.(B.6)

Linearization of Bn,m(·). First, observe that

Bn,m(s) =
1

N + 1

n∑
i=1

n∑
j 6=i

I{s(Xj) ≤ s(Xi)}φ′ ◦ Fs(s(Xi))

+
1

N + 1

n∑
i=1

m∑
j=1

I{s(Yj) ≤ s(Xi)}φ′ ◦ Fs(s(Xi))

+

n∑
i=1

(
1

N + 1
− Fs(s(Xi))

)
φ′ ◦ Fs(s(Xi)) . (B.7)

Notice that the first two terms are U -processes indexed by S0, cf Section A.2,
while the last term is an empirical process. Indeed, one may write

Bn,m(s) =
n(n− 1)

N + 1
Un(ks) +

nm

N + 1
Un,m(`s) + K̂n,m(s) , (B.8)

where

Un(ks) =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

I{s(Xj) ≤ s(Xi)}φ′ ◦ Fs(s(Xi)) (B.9)

is a (nondegenerate) 1-sample U -process of degree 2 based on the random sam-
ple {X1, . . . , Xn} with nonsymmetric kernel ks(x, x

′) = I{s(x′) ≤ s(x)}φ′ ◦
Fs(s(x)) on X × X ,

Un,m(`s) =
1

nm

n∑
i=1

m∑
j=1

I{s(Yj) ≤ s(Xi)}φ′ ◦ Fs(s(Xi)) (B.10)

is a (nondegenerate) two-sample U -process of degree (1, 1) based on the samples
{X1, . . . , Xn} and {Y1, . . . , Ym} with kernel `s(x, y) = I{s(y) ≤ s(x)}φ′ ◦
Fs(s(x)) on X × Y, and

K̂n,m(s) =

n∑
i=1

(
1

N + 1
− Fs(s(Xi))

)
φ′ ◦ Fs(s(Xi))

is an empirical process based on the Xi’s. In order to write Bn,m as an empir-
ical process plus a (negligible) remainder term, the Hoeffding decomposition is
applied to the U -processes above, cf Appendix A.2:

Un(ks) = E[Un(ks)] + Ûn(ks) +Rn(ks) , (B.11)

Un,m(`s) = E[Un,m(`s)] + Ûn,m(`s) +Rn,m(`s) , (B.12)
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where

Ûn(ks) =
1

n

n∑
i=1

ks,1,1(Xi) +
1

n

n∑
i=1

ks,1,2(Xi) , (B.13)

with ks,1,1(x) = E[ks(x,X)]−E[Un(ks)] and ks,1,2(x) = E[ks(X, x)]−E[Un(ks)],
and

Ûn,m(`s) =
1

m

m∑
j=1

`s,1,1(Yj) +
1

n

n∑
i=1

`s,1,2(Xi) , (B.14)

with `s,1,1(y) = E[`s(X, y)]−E[Un,m(`s)] and `s,1,2(x) = E[`s(x,Y)]−E[Un,m(`s)].
Consequently, the Hájek projection of the process Bn,m(s) is given by

B̂n,m(s)−E[B̂n,m(s)] =
n(n− 1)

N + 1
Ûn(ks)+

nm

N + 1
Ûn,m(`s)+K̂n,m(s)−E[K̂n,m(s)] .

(B.15)
The following result provides an approximation of (B.15) and is proved in Ap-
pendix B.2.2.

Lemma. 17. Under Assumptions 1-3, the Hájek projection of the stochas-
tic process Bn,m(·), denoted by B̂n,m(·) and indexed by S0, onto the subspace
generated by the random variables X1, . . . , Xn and Y1, . . . , Ym can be ap-
proximated as follows: for all s ∈ S0,

B̂n,m(s)− E
[
B̂n,m(s)

]
= V̂ Xn (s) + V̂ Ym (s) + R̂n,m(s) , (B.16)

where

V̂ Xn (s) =
n− 1

N + 1

n∑
i=1

ks,1,1(Xi), V̂
Y
m (s) =

n

N + 1

m∑
j=1

`s,1,1(Yj) .

Let δ > 0, there exist constants A1, A3 > 0, A2 ≥ 1 depending on φ and V such
that for all A4 ≥ A1

P
{

sup
s∈S0

∣∣∣∣R̂n,m(s)

∣∣∣∣ > t

}
≤ A2 exp

{
−A3Nt

2

pσ2

}
, (B.17)

as soon as A1σ
√
p log(2‖φ′‖∞/σ)/N ≤ t ≤ pA4‖φ′‖∞, with σ2 =

∫
[0,1]

φ′2.

The last step relies on all previous decompositions, so as to approximate Bn,m(·)
by the sum of two empirical processes V̂ Xn (·) and V̂ Yn (·), with a uniform control

of the error. All residual terms, R̂n,m(s) (Lemma 17) plus the remainders of
the U -processes, are the components of the process RBn,m(s) , see the following
Lemma 18.

Lemma. 18. Suppose that Assumptions 1-3 are fulfilled. The stochastic process
Bn,m(.) can be approximated as follows: for all s ∈ S0,

Bn,m(s)− E [Bn,m(s)] = V̂ Xn (s) + V̂ Ym (s) +RBn,m(s) . (B.18)

Let δ > 0. There exist D1 > 0 universal constant, and constants D3, D4 >
0, D2 ≥ 1, d1, d2 > 3 depending on φ and V, such that with probability at least
1− δ:
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sup
s∈S0
|RBn,m(s)| ≤ ‖φ′‖∞

√
p(1− p)D1 log(d1/δ) + (p‖φ′‖∞D4) log(d2/δ) ,

(B.19)
as soon as N ≥ (pD3)−1 log(D2/δ).

Refer to Appendix B.2.3 for the detailed proof.

A uniform bound for T̂n,m(·). By virtue of (B.5), we have:

sup
s∈S0
|T̂n,m(s)| ≤ n‖φ′′‖∞

(
sup

(s,t)∈S0×R

(
F̂s,N (t)− Fs(t)

)2
+

1

(N + 1)2

)
.

(B.20)
Observe also that

sup
(s,t)∈S0×R

|F̂s,N (t)− Fs(t)| ≤ p sup
(s,t)∈S0×R

|Ĝs,n(t)−Gs(t)|

+ (1− p) sup
(s,t)∈S0×R

|Ĥs,m(t)−Hs(t)|+
2

N
. (B.21)

A classic concentration bound for empirical processes based on the VC inequal-
ity (see e.g. Theorems 3.2 and 3.4 in [2]) shows that, for any δ ∈ (0, 1), we have
with probability at least 1− δ:

sup
(s,t)∈S0×R

|Ĝs,n(t)−Gs(t)| ≤ c
√
V
n

+

√
2 log(1/δ)

n
,

where c > 0 is a universal constant. In a similar fashion, we have, with proba-
bility larger than 1− δ,

sup
(s,t)∈S0×R

|Ĥs,m(t)−Hs(t)| ≤ c
√
V
m

+

√
2 log(1/δ)

m
.

Combining the bounds above with the union bound, (B.21) and (B.20) we obtain
that, for any δ ∈ (0, 1), we have with probability larger than 1− δ:

sup
s∈S0
|T̂n,m(s)| ≤ n||φ′′||∞

(
12

(
c2V + log(2/δ)

N
+

1

N2

)
+

1

(N + 1)2

)
≤ B1 +B2 log(2/δ) , (B.22)

where B1 (resp. B2) is a constant that only depends on φ and V (resp. on φ).
To end the proof, it suffices to observe that the remainder process is the sum of
RBn,m(s) and T̂n,m(s). Combining bounds (B.19) and (B.22), we get that, with
probability at least 1− δ,

sup
s∈S0
|Rn,m(s)| = sup

s∈S0
|RBn,m(s)+T̂n,m(s)| ≤ B1+‖φ′‖∞κpD log(2d/δ)+B2 log(4/δ)

(B.23)
as soon as N ≥ (pD3)−1 log(D2/δ), with D = max(

√
D1, D4), d = max(d1, d2),

κp = max(
√
p(1− p), p). As B2 > 1 , d ≥ 3, and for small δ, we obtain the

upperbound B1 + (‖φ′‖∞κpD +B2) log(2d/δ).
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B.2 Intermediary Results

The intermediary results involved in Section B.1 are now established.

B.2.1 Permanence Properties

The lemmas below claim that the collections of kernels/functions involved in
the decomposition obtained in Appendix B.1 are of VC-type and uniformly
bounded.

Lemma. 19. Suppose that Assumptions 2 and 3 are fulfilled. Then, the col-
lections of kernels {ks(x, x′) : s ∈ S0} and {`s(x, y) : s ∈ S0} and are bounded
VC-type classes of functions with parameters fully determined by V and φ.

proof. Recall that: ∀(x, x′) ∈ X 2,

ks(x, x
′) = I{s(x′) ≤ s(x)} (φ′ ◦ Fs) (s(x)).

Hence, we have sup(x,x′)∈X 2 |ks(x, x′)| ≤ ||φ′||∞ for all s ∈ S0. In additions,

since the collections {(x, x′) ∈ X 2 7→ s(x) : s ∈ S0} and {(x, x′) ∈ X 2 7→
s(x′) : s ∈ S0} are VC classes of functions, classic permanence properties of
VC classes of functions (see e.g. Lemma 2.6.18) shows that {(x, x′) ∈ X 2 7→
s(x) − s(x′) : s ∈ S0} is also a VC class, as well as the class of indicator
functions {(x, x′) ∈ X 2 7→ I{s(x′) ≤ s(x)} : s ∈ S0}. Consequently, the
argument of Lemma 14’s proof permits to see easily that {(x, x′) ∈ X 2 7→
Fs(s(x)) = E[I{s(X) ≤ s(x)}] : s ∈ S0} is of VC type, just like {(x, x′) ∈ X 2 7→
(φ′ ◦ Fs)(s(x)) : s ∈ S0} using the Lipschitz property of φ′, cf Assumption 2.
Finally, being composed of products of a function in the bounded VC-type class
{(x, x′) ∈ X 2 7→ I{s(x′) ≤ s(x)} : s ∈ S0} by a function in the bounded VC-
type class {(x, x′) ∈ X 2 7→ (φ′ ◦Fs)(s(x)) : s ∈ S0}, the collection {ks : s ∈ S0}
is still a bounded VC-type class of functions. A similar reasoning can be applied
to show that {`s : s ∈ S0} is a bounded VC-type class of kernels on X × Y.
The following result is straightforwardly deduced from the lemma above com-
bined with Lemma 14.

Lemma. 20. Suppose that Assumptions 2 and 3 are fulfilled. Then, the
collections of functions/kernels {ks,1,1(x) : s ∈ S0}, {ks,1,2(x) : s ∈ S0},
{ks(x, x′)− ks,1,1(x)− ks,1,2(x′) : s ∈ S0}, {`s,1,1(y) : s ∈ S0}, {`s,1,2(x) : s ∈
S0} and {`s(x, y) − `s,1,1(y) − `s,1,2(x) : s ∈ S0} are bounded VC-type classes
with parameters fully determined by V and φ.

B.2.2 Proof of Lemma 17

For s ∈ S0, by adding the diagonal term, the empirical process can be written

R̂n,m(s) =

(
n

N + 1
− p
) n∑
i=1

ks,1,2(Xi) +

(
m

N + 1
− (1− p)

) n∑
i=1

`s,1,2(Xi) .

(B.24)
We uniformly bound all three empirical processes in probability using classic
concentration bounds, see e.g. Theorem 2.1 in [13], as follows. Assuming As-
sumptions 2-3, Lemma 20 states that each class of functions {ks,1,2 : s ∈ S0},
{`s,1,2 : s ∈ S0} is uniformly bounded and VC-type of parameters depending
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only on φ and on the VC dimension V. For the class {x 7→ φ′ ◦ Fs(s(x)) : s ∈
S0}, the arguments are exposed in the proof of Lemma 19. The variance of the
kernels can be bounded for all s ∈ S0, by σ2 =

∫
[0,1]

φ′2 and σ2 ≤ ||φ′||2∞ and

notice that |n/(N + 1)− p| ≤ 1/N and |m/(N + 1)− (1− p)| ≤ 1/N . Let t > 0,
there exist a sequence of constants A1,i > 0, A2,i ≥ 1, A3,i > 0 depending on φ
and V, i ∈ {1, 2}, such that for all A4,i ≥ A1,i, the following inequalities hold
true.

P

{
1

N
sup
s∈S0

∣∣∣∣ n∑
i=1

ks,1,2(Xi)

∣∣∣∣ > t

}
≤ A2,1 exp

{
−A3,1Nt

2

pσ2

}
, (B.25)

as soon as A1,1σ
√
p log(2‖φ′‖∞/σ)/N ≤ t ≤ pA4,1‖φ′‖∞,

P

{
1

N
sup
s∈S0

∣∣∣∣ n∑
i=1

`s,1,2(Xi)

∣∣∣∣ > t

}
≤ A2,2 exp

{
−A3,2Nt

2

pσ2

}
, (B.26)

as soon as A1,2σ
√
p log(2‖φ′‖∞/σ)/N ≤ t ≤ pA4,2‖φ′‖∞. The union bound

with threshold t/2 yields

P
{

sup
s∈S0

∣∣∣∣R̂n,m(s)

∣∣∣∣ > t

}
≤ A2 exp

{
−A3Nt

2

pσ2

}
, (B.27)

as soon asA1σ
√
p log(2‖φ′‖∞/σ)/N ≤ t ≤ 2pA4‖φ′‖∞, withA1 = 2 max(A1,1, A1,2),

A2 = 2 max(A2,1, A2,2), A3 = min(A3,1, A3,2)/4, A4 = min(A4,1, A4,2) such that
A4 ≥ A1.

B.2.3 Proof of Lemma 18

The remainder of the decomposition (18) is obtained by combining Eq. (B.8),
(B.15) and yields, for all s ∈ S0∣∣RBn,m(s)

∣∣ ≤ |R̂n,m(s)|+ p2N |Rn(ks)|+ p(1− p)N |Rn,m(`s)| .

Suppose Assumptions 2-3 are fulfilled. The first process can be uniformly
bounded on S0 as proved in Lemma 17. For the two others, we apply the
results of Lemmas 15 and 16 as follows. The process Rn(ks) (resp. Rn,m(`s)) is
the residual term obtained by decomposing the U -process Un(ks) (Eq. (B.11),
resp. (B.12))), for all s ∈ S0. By Lemma 20, its class of degenerate ker-
nels {(x, x′) 7→ ks(x, x

′) − ks,1,1(x) − ks,1,2(x′) : s ∈ S0} (resp. {(x, y) 7→
`s(x, y) − `s,1,1(y) − `s,1,2(x) : s ∈ S0}) is uniformly bounded and VC-type of
parameters depending only on φ and on the VC dimension V. Notice that the
three classes of functions have variances and envelopes which can be similarly
bounded by σ2 =

∫
[0,1]

φ′2 ≤ ||φ′||2∞, up to a multiplicative constant for both

residuals. Let δ > 0, there exist constants A1, B1 > 0, A2, B2 ≥ 1, A3, B3 > 0
depending on φ and V s.t. with probability at least 1− δ

sup
s∈S0

∣∣∣∣R̂n,m(s)

∣∣∣∣ ≤ ‖φ′‖∞
√
p log(A2/δ)

A3N
, (B.28)

as soon as N ≥ (pA3)−1 log(A2/δ). Also by Lemma 15
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p2N sup
s∈S0
|Rn(ks)| ≤ (p‖φ′‖∞/B3) log(B2/δ) , (B.29)

when N ≥ (pB3)−1 log(B2/δ). And, by Lemma 16, there exist constants C1 > 0,
C2 > 1 depending on V, φ and a universal constant C3 > 0 such that

p(1− p)N sup
s∈S0
|Rn,m(`s)| ≤ ‖φ′‖∞

√
p(1− p)C3 log(C2/δ) , (B.30)

for log(C2/δ) ≥ C1(‖φ′‖2∞C3)−1. The union bound concludes by considering
constants such that with probability at least 1− δ

sup
s∈S0

|RBn,m(s)| ≤ ‖φ′‖∞
√
p(1− p)C3 log(3C2/δ) + (p‖φ′‖∞/B3) log(3B2/δ) ,

(B.31)
as soon as N ≥ (pD3)−1 log(D2/δ), where D2 = 3 max(A2, B2) and D3 =
min(A3, B3).

B.3 Proof of Theorem 5

Observe, by virtue of Proposition 4 and for all s ∈ S0

∣∣∣∣ 1nŴφ
n,m(s)−Wφ(s)

∣∣∣∣ ≤ 1

n

∣∣∣∣ n∑
i=1

φ ◦ Fs(s(Xi))− E[φ ◦ Fs(s(X))]

∣∣∣∣
+

1

N

∣∣∣∣ n∑
i=1

ks,1,1(Xi)

∣∣∣∣+
1

N

∣∣∣∣ m∑
j=1

`s,1,1(Yj)

∣∣∣∣+
1

n

∣∣∣∣Rn,m(s)

∣∣∣∣ .
Under Assumptions 2-3, we sequentially provide uniform bounds in probability
for all processes. The classes of kernels {x 7→ ks,1,1(x) : s ∈ S0} and {y 7→
`s,1,1(y) : s ∈ S0}, by Lemma 20, are bounded and VC-type of parameters
depending on φ and on the VC dimension V of S0. Their variance can be
bounded, for all s ∈ S0, by σ2 =

∫
[0,1]

φ′2 and σ2 ≤ ||φ′||2∞. As well for the

collection {x 7→ φ ◦ Fs(s(x)) : s ∈ S0} where the arguments are detailed in
Lemma 19 and of variance bounded by, for all s ∈ S0, by Σ2 =

∫
[0,1]

φ2 and

Σ2 ≤ ||φ||2∞. Similarly to Lemma 17, we apply Theorem 2.1 in [13] to the

empirical processes Ŵφ(s), V̂ Xn (s) and V̂ Ym (s) as follows.
Let t > 0. There exist a sequence of constants C1,i > 0, C2,i ≥ 1, C3,i > 0
depending on φ and V, such that for all C4,i ≥ C1,i, i ∈ {1, 2, 3}, the following
inequalities hold true.

P
{

sup
s∈S0

∣∣∣∣Ŵφ(s)−Wφ(s)

∣∣∣∣ > t

}
≤ C2,1 exp

{
−C3,1pNt

2

Σ2

}
, (B.32)

as soon as C1,1‖φ‖∞
√

(1/pN) log(2‖φ‖∞/Σ) ≤ t ≤ C4,1‖φ‖∞.

P

{
1

N
sup
s∈S0

∣∣∣∣ n∑
i=1

ks,1,1(Xi)

∣∣∣∣ > t

}
≤ C2,2 exp

{
−C3,2Nt

2

pσ2

}
, (B.33)

as soon as C1,2||φ′||∞
√

(p/N) log(2‖φ′‖∞/σ) ≤ t ≤ pC4,2||φ′||∞.
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P

 1

N
sup
s∈S0

∣∣∣∣ m∑
j=1

`s,1,1(Yj)

∣∣∣∣ > t

 ≤ C2,3 exp

{
− C3,3Nt

2

(1− p)σ2

}
, (B.34)

as soon as C1,3||φ′||∞
√

((1− p)/N) log(2‖φ′‖∞/σ) ≤ t ≤ (1 − p)C4,3||φ′||∞.
Proposition 4 provides the existence of constants C > 6, D > 0 and c3 >
0, c5 > 3 depending on φ and V, such that

P
{

1

n
sup
s∈S0
|Rn,m(s)| > t

}
≤ C exp

{
− pNt

(‖φ′‖∞κpD +B2)

}
, (B.35)

as soon as N ≥ (c3/p) log(c5/δ). The remainder process is negligible with
respect to the empirical processes and we gather the four bounds to get

P
{

sup
s∈S0

∣∣∣∣ 1nŴφ
n,m(s)−Wφ(s)

∣∣∣∣ > t

}
≤ C2e

−C3Nt
2

, (B.36)

where C2 = 4 max({C2,i, i ≤ 3}, C), C3 = (1/9) min(C3,1p/Σ
2, C3,2/(pσ

2), C3,3/((1−
p)σ2)), as soon as (B.35) is satisfied and C1/

√
pN ≤ t ≤ C4 min(p, 1 − p),

C1 > 0 depending on φ, V and C4 ≥ max(C1,i, i ≤ 3) depending on φ,
C4 = min(C4,1‖φ‖∞, C4,2p‖φ′‖∞, C4,3(1− p)‖φ′′‖∞).

B.4 A Generalization Bound in Expectation

For the sake of completeness, we state and prove a version in expectation of the
generalization result formulated in Corollary 7.

Proposition. 21. Under the assumptions of Proposition 4, the expected risk
bound is derived as follows:

E
[
W ∗φ −Wφ(ŝ)

]
≤ B1

√
V
pN

+W ∗φ − E
[

sup
s∈S0

Wφ(s)

]
, (B.37)

for pN ≥ B2V with constants B1, B2 > 0 depending on φ, V.

proof. Following the decomposition (3.9), we bound in expectation each pro-
cess recalling that they are indexed by uniformly bounded VC-type classes, refer
to Proof B.3 for the details on theoretical guarantees concerning the permanence
properties. For the empirical processes Ŵφ, V̂ Xn and V̂ Ym , we use Theorem 2.1
in [13], whereas for the remainder process, we require the following result that
is proved subsequently.

Lemma. 22. Under the assumptions of Proposition 4, the remainder process
can be uniformly bounded in expectation as follows:

E
[

sup
s∈S0
|Rn,m(s)|

]
≤ D1(1 + 1/p+ 1/

√
p(1− p)) , (B.38)

for pN ≥ D2V with constants D1 > 0 depending on φ, V and D2 > 0 on φ.
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By means of [13], there exist universal constants Bi > 0, and bi > 0, i ∈
{1, 2, 3}, depending on φ, V such that the inequalities below hold true.

E
[

sup
s∈S0

∣∣∣∣Ŵφ(s)−Wφ(s)

∣∣∣∣] ≤ B1

(
b1
V‖φ‖∞
pN

+ ‖φ‖∞

√
b1
V
pN

)
, (B.39)

and

E
[

1

n
sup
s∈S0

∣∣∣V̂ Xn (s)− E
[
V̂ Xn (s)

]∣∣∣] ≤ B2

(
b2
V‖φ′‖∞
pN

+ ‖φ′‖∞

√
b2
V
pN

)
,

(B.40)
as well as

E
[

1

n
sup
s∈S0

∣∣∣V̂ Ym (s)− E
[
V̂ Ym (s)

]∣∣∣] ≤ B3

(
b3
V‖φ′‖∞
pN

+ ‖φ′‖∞

√
b3
V
pN

)
,

(B.41)
observing that

∫
[0,1]

φ2 ≤ ‖φ‖2∞ and
∫
[0,1]

φ′2 ≤ ||φ′||2∞.

The remainder process being of higher order, we conclude

E
[

sup
s∈S0

∣∣∣∣ 1nŴφ
n,m(s)−Wφ(s)

∣∣∣∣] ≤ B
√
b
V
pN

, (B.42)

for pN ≥ max(b,D2)V with constants B > 0 depending on φ and b > 0 depend-
ing on φ, V.

proof. For all s ∈ S0

|Rn,m(s)| ≤ |R̂n,m(s)|+N |Rn(ks)|+N |Rn,m(`s)|+ |T̂n,m(s)| (B.43)

The process appearing first in the remainder induced by the Hájek projection
method (Lemma 17), is composed of sums of empirical processes, hence applying
Theorem 2.1 in [13] to each process of (B.24) yields

E
[

sup
s∈S0

∣∣∣R̂n,m(s)
∣∣∣] ≤ D1

(
d
V‖φ′‖∞
N

+ ‖φ′‖∞

√
d
pV
N

)
, (B.44)

with constants D1 > 0 depending on φ and d > 0 on φ, V.The stochastic
processes Rn(ks) and Rn,m(`s) being both degenerate U -processes, respectively
one-sample of degree 2 and two-sample of degree (1, 1), we apply results in [29]
(see Theorem 6 therein) and [28] (see Lemma 2.4 therein) so as to get

E
[

sup
s∈S0
|Rn(ks)|

]
≤ D2V

pN
, (B.45)

and

E
[

sup
s∈S0
|Rn,m(`s)|

]
≤ D3V√

p(1− p)N
, (B.46)

D2, D3 > 0 constants of φ,V. For T̂n,m(s), the concentration inequality proved
in Eq. (B.22) holds true for all δ ∈ (0, 1). Hence, we have
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E
[

sup
s∈S0

∣∣∣T̂n,m(s)
∣∣∣] ≤ u+

∫ ∞
u

P
{

sup
s∈S0

∣∣∣T̂n,m(s)
∣∣∣ ≥ x} dx

= u+ 2B2e
−(u−B1)/B2 . (B.47)

Minimizing the bound above w.r.t. u > 0, we obtain the point B1 + B2 log(2)
and the upperbound then writes B1 + B2(1 + log(2)), where B1 (resp. B2) is
a constant that only depends on φ and V (resp. on φ). Combining all bounds
together permits to conclude: for N ≥ V log(d), we have

E
[

sup
s∈S0
|Rn,m(s)|

]
≤ D1‖φ′‖∞ +

D2V
p

+
D3V√
p(1− p)

+B1 +B2(1 + log(2))

≤ D(1 + 1/p+ 1/
√
p(1− p)) , (B.48)

where D > 0 constant depending on φ, V. �

B.5 Proof of Proposition 8

We first prove the following lemma.

Lemma. 23. Let S0 ⊂ S and suppose that Assumptions 1-3 are fulfilled. For
all t > 0, we have:

P
{

sup
s∈S0

∣∣∣Wφ(s)− Ŵφ
n,m(s)/n

∣∣∣ ≥ E
[

sup
s∈S0

∣∣∣Wφ(s)− Ŵφ
n,m(s)/n

∣∣∣]+ t

}
≤ exp

{
− p2Nt2

6(‖φ‖2∞ + 9‖φ′‖2∞ + 9||φ′′||2∞)

}
. (B.49)

proof. Recall the decomposition of Ŵφ
n,m(s), for all s ∈ S0, proved in Propo-

sition 4

Ŵn,m(s) = nŴφ(s) +Bn,m(s) + T̂n,m(s) . (B.50)

Considering that sups∈S0

∣∣∣Wφ(s)− Ŵφ
n,m(s)/n

∣∣∣ is a function of the N indepen-

dent random variables X1, . . . , Xn, Y1, . . . , Ym, observe that changing the
value of any of the Xi’s while keeping all the others fixed changes the value of
the supremum by at most

2||φ||∞ + 2||φ′||∞
(

1 +
m+ 2(n− 1)

N + 1

)
+ 2||φ′′||∞

1 + 2m

N2
,

taking into account the jumps of each of the three terms involved in (B.50), see
Eq. (B.7) and (B.20). In a similar way, changing the value of any of the Yj ’s
changes the value of the supremum by at most

2||φ′||∞
n

N + 1
+ 2||φ′′||∞

1 + 2n

N2
.

When taking the squares, both can be upperbounded by 12(‖φ‖2∞ + 9‖φ′‖2∞ +
9||φ′′||2∞). The desired bound stated then straightforwardly results from the
application of the bounded difference inequality, see [25]. �
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Let ε > 0, using Proposition 21 and Lemma 23, we have, for any k ≥ 1,

P

{
Ŵφ
n,m(ŝk)−B1

√
Vk
pN
−Wφ(ŝk) > ε

}

≤ P
{

sup
s∈Sk

∣∣∣Wφ(s)− Ŵφ
n,m(s)/n

∣∣∣ > E
[

sup
s∈Sk

∣∣∣Wφ(s)− Ŵφ
n,m(s)/n

∣∣∣]+ ε

}
≤ exp

{
−p

2Nε2

C

}
, (B.51)

as soon as pN ≥ B2Vk and where C = 6(‖φ‖2∞ + 9‖φ′‖2∞ + 9||φ′′||2∞). For each
k ≥ 1, denote the penalized empirical ranking performance measure by

Ŵφ,k
n,m(ŝk)/n = Ŵφ

n,m(ŝk)/n−B1

√
Vk
pN
−

√
2C log k

p2N
. (B.52)

For any ε > 0, we have, as soon as pN ≥ B2 supk≥1 Vk,

P
{
Ŵφ,k̂
n,m(ŝk̂)/n−Wφ(ŝk̂) ≥ ε

}
≤
∑
k≥1

P
{
Ŵφ,k
n,m(ŝk)/n−Wφ(ŝk) ≥ ε

}

≤
∑
k≥1

P

{
Ŵφ
n,m(ŝk)/n−B1

√
Vk
pN
−Wφ(ŝk) > ε+

√
2C log k

p2N

}

≤
∑
k≥1

exp

−p2N
C

(
ε+

√
2C log k

p2N

)2


≤ exp

(
−p

2Nε2

C

)∑
k≥1

k−2 < 2 exp

{
−p

2Nε2

C

}
. (B.53)

For all k ≥ 1, W ∗k = sups∈SkWφ(s) = Wφ(s∗k) and consider the decomposition

W ∗k −Wφ(ŝk̂) =
(
W ∗k − Ŵφ,k̂

n,m(ŝk̂)/n
)

+
(
Ŵφ,k̂
n,m(ŝk̂)/n−Wφ(ŝk̂)

)
.

The expectation of the second term of the right hand side of the equation above
can be bounded by means of the tail bound (B.53)

E
[
Ŵφ,k̂
n,m(ŝk̂)/n−Wφ(ŝk̂)

]
≤ 2

√
C

p2N
. (B.54)

for any k ≥ 1, as soon as pN ≥ B2 supk≥1 Vk. Concerning the expectation of
the first term, observe that

E
[
W ∗k − Ŵφ,k̂

n,m(ŝk̂)/n
]
≤ E

[
W ∗k − Ŵφ,k

n,m(s∗k)
]

≤ E
[
Wφ(s∗k)− Ŵφ

n,m(s∗k)
]

+ pen(N, k) ≤ B1

√
Vk
pN

+ pen(N, k) ,

for any k ≥ 1, as soon as pN ≥ B2 supk≥1 Vk. Summing the bound obtained
and that in (B.54) gives the desired result.
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B.6 Proof of Proposition 9

The proof consists in combining the two results stated below with the decom-
position (4.11) of the Wφ-ranking performance deficit of the maximizer. The
first result is the analogue of Theorem 5 for the smoothed criterion.

Theorem. 24. Suppose that the assumptions of Proposition 4 are fulfilled.
Then, for any δ ∈ (0, 1), there exist constants C1, C3 > 0, C2 ≥ 24, depending
on φ, K, R, V such that with probability larger than 1− δ:

sup
s∈S0

∣∣∣Ŵφ
n,m,h(s)/n− W̃φ,h(s)

∣∣∣ ≤
√

log(C2/δ)

pC3N
, (B.55)

as soon as N ≥ 1/(pmin(p, 1− p)2C3C
2
4 ) log(C2/δ) and δ ≤ C2e

−C2
1C3 .

The proof being quite similar to that of Theorem 5, it is omitted. Assumption 5
ensuring that the class {K((· − t)/h); , t ∈ Rq, h > 0} (q = 1 here) is bounded
VC-type (see e.g. Lemma 22(ii) in [29] and [14]), classic permanence properties
can be used to check that all the classes of functions over which uniform bounds
are taken are of finite VC dimension. The second result provides a uniform
bound for the additional bias error made when approximating Wφ(s) by W̃φ,h(s)
for s ∈ S0.

Lemma. 25. Suppose that Assumptions 4 is satisfied. Then, for all h > 0, we
have:

sup
s∈S0

∣∣∣W̃φ,h(s)−Wφ(s)
∣∣∣ ≤ C5h

2, (B.56)

where C5 > 0 is a constant depending on φ, K and R only.

Details are left to the reader, the proof is straightforward under Assumption 4,
using the regularity of the score generating function and the uniform integrated
error bound obtained in [21].

B.7 Proof of Lemma 16

We shall prove an exponential bound of Hoeffding’s type for the uniformly
bounded two-sample degenerate U -process {Un,m(`) : ` ∈ L}, where

Un,m(`) =
1

nm

n∑
i=1

m∑
j=1

`(Xi, Yj) . (B.57)

In order to apply standard symmetrization arguments, see e.g. section 2.3 in
[36], consider independent Rademacher variables ε1, . . . , εn and η1, . . . , ηm and
define

Tn,m(`) =
1

nm

n∑
i=1

m∑
j=1

εiηj`(Xi, Yj) , (B.58)

for all ` in L. We start by proving the following lemmas, involved in the argu-
ment.
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Lemma. 26. Let P and Q be probability distributions on measurable spaces
X and Y respectively. Consider the degenerate two-sample U -statistic of degree
(1, 1) (B.57) with a bounded kernel ` : X × Y → R based on the independent
i.i.d. random samples X1, . . . , Xn and Y1, . . . , Ym, drawn from P and Q
respectively. Let two sequences of i.i.d. Rademacher variables ε1, . . . , εn and
η1, . . . , ηm, independent of the Xi’s and Yj’s, such that the randomized process
(B.58) is defined. Then, for any increasing and convex function Φ : R→ R, we
have:

E
[
Φ

(
sup
`∈L
|Un,m(`)|

)]
≤ E

[
Φ

(
4 sup
`∈L
|Tn,m(`)|

)]
, (B.59)

and

E
[
Φ

(
sup
`∈L

Un,m(`)

)]
≤ E

[
Φ

(
4 sup
`∈L

Tn,m(`)

)]
, (B.60)

assuming that the suprema are measurable and that the expectations exist.

proof. We prove the first inequality, the proof of the second one being similar.
Using the independence of the two samples, Fubini’s theorem and the degeneracy
property, one gets that

E
[
Φ

(
sup
`∈L
|Un,m(`)|

)]

= E

E
Φ

sup
`∈L

∣∣∣∣∣∣ 1

nm

n∑
i=1

 m∑
j=1

`(Xi, Yj)

∣∣∣∣∣∣
 | Y1, . . . , Ym


≤ E

Φ

2 sup
`∈L

∣∣∣∣∣∣ 1

nm

n∑
i=1

εi

 m∑
j=1

`(Xi, Yj)

∣∣∣∣∣∣


= E

E
Φ

2 sup
`∈L

∣∣∣∣∣∣ 1

nm

m∑
j=1

(
n∑
i=1

εi`(Xi, Yj)

)∣∣∣∣∣∣
 | (X1, ε1), . . . , (Xn, εn)


≤ E

Φ

4 sup
`∈L

∣∣∣∣∣∣ 1

nm

m∑
j=1

ηj

(
n∑
i=1

εi`(Xi, Yj)

)∣∣∣∣∣∣


= E
[
Φ

(
4 sup
`∈L
|Tn,m(`)|

)]
by applying Lemma 3.5.2 of [33] twice. Incidentally, notice that we can also
show that

E
[
Φ

(
1

4
sup
`∈L
|Tn,m(`)|

)]
≤ E

[
Φ

(
sup
`∈L
|Un,m(`)|

)]
.

by applying twice the reverse inequality in Lemma 3.5.2 of [33]. �

Next, we prove an exponential bound of Hoeffding’s type for degenerate two-
sample U -statistics with bounded kernels.

Lemma. 27. Let P and Q be probability distributions on measurable spaces
X and Y respectively. Consider the degenerate two-sample U -statistic of degree
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(1, 1) (B.57) with a bounded kernel ` : X × Y → R based on the independent
i.i.d. random samples X1, . . . , Xn and Y1, . . . , Ym, drawn from P and Q
respectively. For all t > 0, we then have:

P {Un,m(`) ≥ t} ≤ e−nmt
2/(32c2`), (B.61)

where c` = sup(x,y)∈X×Y |`(x, y)| < +∞.

proof. Let t > 0. The proof is based on Chernoff’s method. For all λ > 0, we
have

P {Un,m(`) ≥ t} ≤ exp (−λt+ log (E[exp(λUn,m(`))]))

≤ exp (−λt+ log (E[exp(4λTn,m(`))])) , (B.62)

using (B.60) with Φ(t) = exp(λt). Observe next that we almost-surely

E[exp(4λTn,m(`)) | X1, . . . , Xn, Y1, . . . , Ym] =
n∏
i=1

m∏
j=1

e4λ`(Xi,Yj)/(nm) + e−4λ`(Xi,Yj)/(nm)

2

≤
n∏
i=1

m∏
j=1

e8λ
2`2(Xi,Yj)/(nm)2 ≤ e8λ

2c2`/(nm),

using the fact that (eu + e−u)/2 ≤ eu
2/2 for all u ∈ R. Integrating the bound

over the Xi’s and Yj ’s and plugging it next into (B.62) yields the desired bound
when choosing λ = nmt/(16c2`). �

Finally, we prove the tail probability version of Lemma 26 stated below.

Lemma. 28. Let P and Q be probability distributions on measurable spaces
X and Y respectively. Consider the degenerate two-sample U -statistic of degree
(1, 1) (B.57) with a bounded kernel ` : X × Y → R based on the independent
i.i.d. random samples X1, . . . , Xn and Y1, . . . , Ym, drawn from P and Q
respectively. Let two sequences of i.i.d. Rademacher variables ε1, . . . , εn and
η1, . . . , ηm, independent of the Xis and Y js, such that the randomized process
(B.58) is defined. Then we have for all t > 0,

P
{

sup
`∈L
|Un,m(`)| ≥ 16t

}
≤ 16P

{
sup
`∈L
|Tn,m(`)| ≥ t

}
, (B.63)

assuming that the suprema are measurable and that the expectations exist.

proof. This lemma, bounding the tail probability of sup`∈L |Un,m(`)| to that
of sup`∈L |Tn,m(`)|, generalizes Lemma 2.7 in [15] and Lemma 3.1 in [32] to
degenerate two-sample U -processes. It is proved by applying twice a version
of the latter result for independent but non necessarily identically distributed
random variables. Indeed, we have: ∀t > 0,
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P
{

sup
`∈L
|Un,m(`)| ≥ 16t

}

= E

P
sup
`∈L

∣∣∣∣∣∣ 1n
n∑
i=1

 1

m

m∑
j=1

`(Xi, Yj)


∣∣∣∣∣∣ ≥ 16t | Y1, . . . , Ym




≤ 4E

P
sup
`∈L

∣∣∣∣∣∣ 1n
n∑
i=1

 1

m

m∑
j=1

εi`(Xi, Yj)


∣∣∣∣∣∣ ≥ 4t | Y1, . . . , Ym




= 4E

P
sup
`∈L

∣∣∣∣∣∣ 1

m

m∑
j=1

{
1

n

n∑
i=1

εi`(Xi, Yj)

}∣∣∣∣∣∣ ≥ 4t | (X1, ε1) . . . , (Xn, εn)




≤ 16P
{

sup
`∈L
|Tn,m(`)| ≥ t

}
.

�

The proof relies on the chaining method applied to the process Un,m(`) indexed
by the class of kernels L, see e.g. the argument used to establish Lemma 2.14.9
in [36]. Define the random semi-metric on L by

d2nm(`1, `2) =
1

nm

∑
i≤n

∑
j≤m

(`1(Xi, Yj)− `2(Xi, Yj))
2 (B.64)

for all kernels `1 and `2 in L. For all q ∈ N∗, consider a number kq ≤ (A/εq)
V of

L2-balls with radius εq ≤ L ≤ 1 and centers `q,k, 1 ≤ k ≤ kq, w.r.t. the (random)
probability measure (1/nm)

∑
i≤n

∑
j≤m δ(Xi,Yj) covering the class L. Assume

that the sequence εq is decreasing as q increases, so that kq is increasing. Let

` ∈ L, q ≥ 1 and ˜̀
q be the center of a ball s.t. dnm(`, ˜̀

q) ≤ εq. Fixing q0 ≤ q in
N∗, the following decomposition holds

Un,m(`) = (Un,m(`)−Un,m(˜̀
q))+Un,m(˜̀

q0)+

q∑
ω=q0+1

(
Un,m(˜̀

ω)− Un,m(˜̀
ω−1)

)
.

Observe that, for all ` in L, we almost-surely have

|Un,m(`)− Un,m(˜̀
q)| ≤ dnm(`, ˜̀

q) ≤ εq .

The triangular inequality yields

‖Un,m(`)‖L ≤ εq+ max
1≤k≤kq0

|Un,m(`q0,k)|+
q∑

ω=q0+1

||Un,m(˜̀
ω)−Un,m(˜̀

ω−1)||L ,

where we used the notation ||V ||L = sup`∈L |V (`)| for any real-valued stochastic
process V indexed by L. Considering ηω > 0 and β > 0 constants such that
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∑q
ω=q0+1 ηω + β ≤ 1, we have for any t > εq:

P {‖Un,m(`)‖L ≥ 16t} ≤
kq0∑
k=1

P {|Un,m(`q0,k))| ≥ 16tβ}

+16

q∑
ω=q0+1

k2ωE
[
sup
`∈L

P
{
|Tn,m(˜̀

ω − ˜̀
ω−1)| ≥ tηω | X1, . . . , Xn, Y1, . . . , Ym

}]
,

(B.65)

using the union bound, Lemma 28 and observing that the suprema corre-
sponding to the terms of the series are actually maxima taken over at most
kωkω−1 ≤ k2ω elements. Lemma 27 permits to bound the first term on the right
hand side of (B.65):

kq0∑
k=1

P {|Un,m(`q0,k))| ≥ 16tβ} ≤ 2kq0 exp

{
−8nm(tβ)2

L2

}
. (B.66)

Concerning the second term, notice that

dnm(˜̀
ω, ˜̀

ω−1) ≤ dnm(`, ˜̀
ω−1) + dnm(˜̀

ω, `) ≤ 2εω−1 . (B.67)

Re-using the start of the argument proving Lemma 27, we have: ∀λ > 0,

P
{
Tn,m(˜̀

ω − ˜̀
ω−1) ≥ tηω | X1, . . . , Xn, Y1, . . . , Ym

}
≤ exp

(
−λtηω + E

[
exp(λTn,m(˜̀

ω − ˜̀
ω−1)) | X1, . . . , Xn, Y1, . . . , Ym

])
with probability one. Like in Lemma 27’s proof, we almost-surely have

E[exp(λTn,m(˜̀
ω − ˜̀

ω−1)) | X1, . . . , Xn, Y1, . . . , Ym] ≤
n∏
i=1

m∏
j=1

eλ
2(˜̀ω−˜̀

ω−1)
2(Xi,Yj)/2(nm)2 ≤ e2λ

2ε2ω−1/(nm) .

Combining the two bounds above with the union bound, it holds with proba-
bility one

P
{∣∣∣Tn,m(˜̀

ω − ˜̀
ω−1)

∣∣∣ ≥ tηω | X1, . . . , Xn, Y1, . . . , Ym

}
≤

2 exp

{
−nm(tηω)2

8ε2ω−1

}
. (B.68)

From (B.65), (B.66) and (B.68), we deduce that

P {‖Un,m(`)‖L ≥ 16t}

≤ 2kq0 exp

{
−8nm(tβ)2

L2

}
+ 32

q∑
ω=q0+1

k2ω exp

{
−nm(tηω)2

8ε2ω−1

}

≤ 2AVε−Vq0 exp

{
−8nm(tβ)2

L2

}
+ 32A2V

q∑
ω=q0+1

ε−2Vω exp

{
−nm(tηω)2

8ε2ω−1

}
.

(B.69)
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Following Lemma 3.2 in [34] and choosing εω = 2−ωL, ηω = 2−ω
√
ω/8, so that

ηω+1/εω = (1/16L)
√
ω + 1, we have

ε−2Vω exp

{
−nm(tηω)2

8ε2ω−1

}
= L−2V exp

{
−(−2V log(2) +

nmt2

4× 83L2
)ω

}
(B.70)

If nmt2 > 84 log(2)L2V, the terms of the series are decreasing w.r.t. ω and
we upperbound by K1L

−2V exp
{
−nmt2ω/(4× 83L2)

}
. Problem 2.14.3 in [36]

applies for ω ∈ {q0 + 1, . . . , q} with ψ(ω) = nmt2ω/(4× 83L2)

q∑
ω=q0+1

ε−2Vω exp

{
−nm(tηω)2

8ε2ω−1

}
≤ K1L

−2Vψ′(q0)−1 exp {−ψ(q0)}

≤ K2L
−2(V−1) exp

{
− nmt2

4× 83L2
q0

}
(B.71)

K1, K2 > 0 constants and nmt2 ≥ 1. For α > 0 large, setting q0 = 2 +
b(nmt2)1/(α−1)c yields to the upperboundK2L

−2(V−1) exp
{
−3nmt2/(4× 83L2)

}
.

For the first tail probability, by setting β = 1/2− 1/(2nmt2) we obtain an up-
perbound of similar form

AVε−Vq0 exp

{
−8nm(tβ)2

L2

}
≤ (A/L)V exp

{
V log(2)(2 + (nmt2)1/(α−1))− 2nmt2

L2
(1− 1/(nmt2))2

}
≤ (2A/L)Ve4/L

2

exp

{
V log(2)(nmt2)1/(α−1) − 2nmt2

L2

}
≤ (2A/L)Ve4/L

2

exp

{
−2nmt2

L2

}
,

as soon as nmt2 > (log(2)L2V/2)1+δ, δ = 1/(α − 2) ∈ (0, 1) for large α.
Gathering both upperbounds, Eq. (B.69) yields

P {‖Un,m(`)‖L ≥ t} ≤ K2V+1(A/L)2Ve4/L
2

exp

{
− 3nmt2

4× 83L2

}
, (B.72)

for all nmt2 > max(1, 84 log(2)L2V, (log(2)L2V/2)1+δ), and K ≥ 1 + 16K2e
−4

constant. Checking lastly that, for all q ≥ 1

8

q∑
ω=q0+1

ηω ≤ 8

q∑
ω=1

ηω ≤ 1 +

∫ ∞
1

2−x
√
xdx ≤ 1 + (π/ log(2))1/2 ≤ 4, (B.73)

so that
∑q
ω=q0+1 ηω + β ≤ 1 as needed.
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C Additional Numerical Experiments

Following Section 5, this section gathers the numerical results of three models
Loc1, Loc3 and Scale2, Scale3, as well as additional experiments regarding the
difference in performance of the W -criteria for the RTB score-generating func-
tion, when we vary the rate u0, for both the location (Fig. 14) and the scale
(Fig. 15) models.

Location model. (Fig. 10, 11)

1. φMWW (u) = u 2. φPol(u) = u3 3. φRTB(u) = uI{u ≥ 0.9}

Figure 10: Empirical ROC curves and average ROC curve for Loc1 (ε = 0.10).
Samples are drawn from multivariate Gaussian distributions according to section
5.2, scored with early-stopped GA algorithm’s optimal parameter for the class
of scoring functions. Hyperparameters: u0 = 0.9, q = 3, B = 50, T = 50.
Parameters for the training set: n = m = 150; d = 15; for the testing set:
n = m = 106; d = 15. Figures 1, 2, 3 correspond resp. to the models MMW,
Pol, RTB. Light blue curves are the B(= 50) ROC curves that are averaged in
green (solid line) with +/− its standard deviation (dashed green lines). The
dark blue and purple curves correspond to the best and worst scoring functions
in the sense of minimization and maximization of the generalization error among
the B curves. The red curve corresponds to ROC∗.

Scale model. (Fig. 12, 13)

Comparison of three RTB score-generating functions for two location
models. (Fig. 14)
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1. φMWW (u) = u 2. φPol(u) = u3 3. φRTB(u) = uI{u ≥ 0.9}

Figure 11: Empirical ROC curves and average ROC curve for Loc3 (ε = 0.30).
Samples are drawn from multivariate Gaussian distributions according to section
5.2, scored with early-stopped GA algorithm’s optimal parameter for the class
of scoring functions. Hyperparameters: u0 = 0.9, q = 3, B = 50, T = 50.
Parameters for the training set: n = m = 150; d = 15; for the testing set:
n = m = 106; d = 15. Figures 1, 2, 3 correspond resp. to the models MMW,
Pol, RTB. Light blue curves are the B(= 50) ROC curves that are averaged in
green (solid line) with +/− its standard deviation (dashed green lines). The
dark blue and purple curves correspond to the best and worst scoring functions
in the sense of minimization and maximization of the generalization error among
the B curves. The red curve corresponds to ROC∗.

Comparison of three RTB score-generating functions for the scale
model. (Fig. 15)
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[5] S. Clémençon and S. Robbiano. The TreeRank Tournament Algorithm for
Multipartite Ranking. Journal of Nonparametric Statistics, 27(1):107–126,
2015.
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