
HAL Id: hal-03190510
https://hal.science/hal-03190510

Submitted on 7 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Searching stack overflow for API-usage-related bug fixes
using snippet-based queries

Martin Monperrus, Eduardo C. Campos, Marcelo Maia

To cite this version:
Martin Monperrus, Eduardo C. Campos, Marcelo Maia. Searching stack overflow for API-usage-
related bug fixes using snippet-based queries. 26th Annual International Conference on Computer
Science and Software Engineering, 2016, Toronto, Canada. �hal-03190510�

https://hal.science/hal-03190510
https://hal.archives-ouvertes.fr


HAL Id: hal-03190510
https://hal.archives-ouvertes.fr/hal-03190510

Submitted on 7 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Searching stack overflow for API-usage-related bug fixes
using snippet-based queries

Martin Monperrus, Eduardo Campos, Marcelo Maia

To cite this version:
Martin Monperrus, Eduardo Campos, Marcelo Maia. Searching stack overflow for API-usage-related
bug fixes using snippet-based queries. Proceedings of the 26th Annual International Conference on
Computer Science and Software Engineering, 2016, Toronto, Canada. �hal-03190510�

https://hal.archives-ouvertes.fr/hal-03190510
https://hal.archives-ouvertes.fr


Searching Stack Overflow for API-usage-related Bug Fixes
Using Snippet-based Queries

Eduardo C. Campos
Faculty of Computing
Federal University of

Uberlândia, Brazil
eccampos@ufu.br

Martin Monperrus
University of Lille & Inria

Lille, France
martin.monperrus@univ-

lille1.fr

Marcelo A. Maia
Faculty of Computing
Federal University of

Uberlândia, Brazil
marcelo.maia@ufu.br

ABSTRACT
Project-specific bugs are related to the misunderstanding 
or incomplete implementation of functional requirements. 
API-usage-related bugs are independent of the functional 
requirements. Usually they cause an unexpected and wrong 
output or behavior because of an incorrect usage of an API 
(Application Programming Interface). We propose an ap-
proach to find fixes for API-usage-related bugs, which is 
based on matching snippets being debugged against related 
snippets in a Q&A website (Stack Overflow). We analyzed 
real code excerpts from OHLOH Code Search containing 
API method calls that may lead to API-usage-related bugs 
depending on how they are used by developers. We con-
ducted a study with these excerpts to verify to what extent 
the proposed approach provides proper information from 
Stack Overflow to fix these potential API-usage-related bugs. 
The results are encouraging: 66.67% of Java excerpts with 
potential API-usage-related bugs had their fixes found in the 
top-10 query results. Considering JavaScript excerpts, fixes 
were found in the top-10 results for 40% of them. These re-
sults indicate that our approaches (i.e., lsab-java and lsab-js 
combined with the keyword filter) outperform Google and 
Stack Overflow in searching for API-usage-related bug fixes.

CCS Concepts
•Software and its engineering → Software libraries 
and repositories;

Keywords
API-usage-related bugs, crowd debugging, crowd knowledge

1. INTRODUCTION
Developers frequently need to use methods they are not 

familiar with or they do not remember how to use [16]. 
Unfortunately, some of the most severe obstacles faced by 
developers learning a new API are related to its documen-
tation, in particular because of scarce information about

API’s design, usage scenarios, and code examples [3][21]. As
a result, developers may write code inconsistent with API
documentation and thus introduce bugs [33].

The battle against software bugs exists since software ex-
isted. It requires much effort to fix bugs, e.g., Kim and
Whitehead [8] report that the median time for fixing a sin-
gle bug is about 200 days. The process of debugging is
strongly related to the nature of the bug. For example, de-
bugging a segmentation fault means focusing on allocation
and deallocation of memory, while debugging an error of
NullPointerException means finding which line of code is
accessing some attribute or operation (API element) on a
null variable.

In this paper, we claim that there exists a class of bugs that
relates to the common misunderstanding of an API. Those
bugs have a common characteristic: they occur repeatedly
in different contexts and they are independent of the appli-
cation domain. For instance, there are plenty of JavaScript
programmers who experienced that parseInt(“08”) returns 0
whereas the expected result is 8. This class of bugs is called
“API-usage-related bugs”, because it is likely that this kind
of bug has already occurred several times and there exists
a description of the problem somewhere on the web, along
with its explanation and fix. In other terms, the crowd has
already identified the bug and its solution.

Generally speaking on debugging, one common limitation
of research techniques that support automating or semi-
automating debugging is their reliance on a set of strong
assumptions on how developers behave when debugging (e.g.,
the approaches tend to assume perfect bug understanding)
[18]. A more flexible solution would allow developers to
inform a suspicious code snippet and get extra knowledge
that would help understanding what would be possibly wrong
with that pattern of code. In fact a common behavior of
developers is to post pieces of code that contain bugs in
question-answer (Q&A) sites, in order to obtain a diagnosis
of correction for that particular bug. Treude et al. [28]
pointed out that Stack Overflow (SO) is particularly effective
for code reviews, for conceptual questions and for novices.

So, for programmers who experience an API-usage-related
bug, the SO crowd can be asked for a way to fix the bug
using their own suspicious snippets. However, such approach
would require an effective way to search the crowd knowledge
using suspicious code snippets.

General purpose search engines were not designed to re-
ceive snippets as queries: typically these engines do not work
well with large queries. Alternatively, different code mining
techniques and tools have been proposed to retrieve rele-



vant software components from different repositories with
the aim of assisting developers during the software reuse
process (e.g., Sourceforge 1, Google Code Search2, Exemplar
[13]). However, these customized code search engines were
designed to index all information of software projects (e.g.,
help documentation, API calls used inside each application,
textual descriptions of applications, etc.) instead of only code
snippets. Moreover, code search engines were not designed
to allow snippets being used as query. For instance, Google
Code Search allows regular expressions and typical fields,
such as, file/class/method names. Other engines like, Source-
forge and Exemplar allow keywords as input. In other words,
these kind of engines are not suitable to match developers’
snippets with crowd’s snippets.

Therefore, our approach aims to recommend posts of SO
whose code match developers’ snippets. The motivation is
that the answer’s text provided by SO community members
along with the code snippets could be helpful to assist de-
velopers during the debugging tasks at hand because they
show how to use these code snippets, i.e., the whole post may
help to overcome the cognitive distance [10] to understand
problems in these code snippets.

To sum up, our contributions are as follows:

• An empirical analysis of code-snippet matching using
code snippets of SO written in Java and JavaScript
programming languages. This analysis showed that the
built-in search engine of SO is not adequate when used
with code snippets as input query;

• The construction of specific indexes for Apache Solr3

containing lexical and syntactic information of source
code snippets written in Java and JavaScript program-
ming languages. Those indexes serve as core infrastruc-
ture for a recommendation system;

• The construction of a dataset containing 30 code ex-
cerpts (i.e., snippets) with potential API-usage-related
bugs picked from OHLOH Code Search 4 (i.e., 15 ex-
cerpts in Java and 15 in JavaScript) and 30 posts of
SO that fix the respective potential API-usage-related
bug;

• Our recommendation strategies for code excerpts with
potential API-usage-related bugs (i.e., lsab-java and
lsab-js combined with the keyword filter) outperform
Google and SO, and 66.67% of Java excerpts and 40%
of JavaScript excerpts could have a proper recommen-
dation in the top-10 results.

The remainder of this paper is organized as follows. Section
2 presents the concept of API-usage-related bugs and an
empirical study of them. Section 3 presents the methodology
of our work. Section 4 presents the experiments performed
with code snippets of SO. Section 5 shows the experiment
conducted with code excerpts that contain potential API-
usage-related bugs. Related work is surveyed and shown in
Section 6. In Section 7, we draw our conclusions.

1http://sourceforge.net/ (verified 05/02/2016)
2http://www.google.com/codesearch (verified 05/02/2016)
3http://lucene.apache.org/solr/ (verified 05/02/2016)
4https://code.openhub.net/ (verified 05/02/2016)

2. API-USAGE-RELATED BUGS
API-usage-related bugs are not bugs in functions or meth-

ods of an API. In this paper, we suppose that the API
does not contain bugs. API-usage-related bugs occur due
to an incorrect usage of the functions or API methods by
the developer. In opposition to API-usage-related bugs,
project-specific bugs relate to misunderstanding or incorrect
implementation of domain concepts.

Definition: An “API-usage-related bug” is a bug that causes
an unexpected and wrong output or behavior resulting from
an incorrect usage of an API.

Let us illustrate the definition with some examples. In
Java, there is a method of “java.lang.Math” library called
cos. The full signature of this method is “public static
double cos(double)”. The argument of this method is an
angle, in radians. This method returns the trigonometric
cosine of an angle. Despite this apparently simple descrip-
tion and self-described name, this method poses problems
to many developers, as witnessed by the dozens of Q&As
on this topic on Q&A websites 5. Many Q&As relate to
the same issue: Why does Math.cos() give a wrong result?.
One of the reasons is that if the argument of Math.cos
is passed in degrees rather than radians, the method gives
wrong result. Why is the question asked again and again?
We hypothesize that the semantics of Math.cos is counter-
intuitive for many people (they erroneously assume that the
angle must be passed in degrees), and consequently, the very
same issue occurs in many development situations, indepen-
dently of the domain. The fix for this problem is to use the
method Math.toRadians to convert an angle to radians,
i.e., “Math.cos(Math.toRadians(angle))”.

Let’s consider another example in JavaScript. There is
a function called parseInt, which parses a string given as
input and returns the corresponding integer value. This func-
tion also poses problems to many developers, as witnessed
by the dozens of Q&As on this topic on Q&A websites 6.
Again, many Q&As relate to the same issue: Why does par-
seInt(“08”) produce 0 and not 8?. The answer is that if the
argument of parseInt begins with 0, it is parsed as octal
(base 8). The fix for this problem is to specify the base.
We hypothesize that the semantics of parseInt is counter-
intuitive for many people (they erroneously assume that the
base is 10 rather than 8, perhaps because of the numerical
decimal system is most frequently used in general operations
involving numbers).

How to fix API-usage-related bugs? To fix API-
usage-related bugs, we propose a system that relies on code
snippet matching between the suspicious snippet under debug
and the related pieces of code present in the SO questions.
When facing an API-usage-related bug, the developer would
ask our system to be pointed to relevant answer on SO.
Our system is based on the fact that Q&As of SO often
contain API-usage-related bug fixes. To sum up, to fix an
API-usage-related bug, ask the crowd using your suspicious
snippet [15].

Why does our approach use code snippets as input
query instead of terms? We claim that searching for bug
fixes using snippets instead of terms is more suitable to fix

5http://stackoverflow.com/search?q=Math.cos+java
6http://stackoverflow.com/search?q=%5Bjavascript
%5D+title%3AparseInt



API-usage-related bugs because understanding the root cause
of a failure for developers typically involves complex activities
such as navigating program dependencies and rerunning the
program with different inputs [18]. Moreover, API-usage-
related bugs do not have exception stack traces that allow
to locate the counter-intuitive API method.

Where do API-usage-related bugs come from? They
appear when a developer of an API makes design decisions
that go against the common sense, “common sense” being
defined as the intuition and expectation being hold by many
developers. In the parseInt example, most people expect
that parseInt(“08”) returns 8. We see at least three main
reasons behind API-usage-related bugs:

• First, the API under consideration may be poorly docu-
mented [3][31]. For example, the official documentation
of the API can not contain code snippets that teach
how to use a particular API method [16][24][29];

• Second, the API under consideration may seem compre-
hensible enough for some developers who do not read
the documentation;

• Third, the API may assume something implicitly. For
instance, parseInt implicitly assumes that prefixing
the string with “0” means that an octal base is chosen.

A detailed study of why API-usage-related bugs appear
is out of scope of this paper, it requires inter-disciplinary
work between different fields such as software engineering
and psychology.

Beyond the toy examples we have just discussed so far,
there should be sufficient API-usage-related bug fixes on SO
to motivate a recommendation system for this kind of bug.
However, it is not possible to manually assess whether the
millions of posts of SO refer to API-usage-related bugs or
not. Hence, we need an automated technique to assess ap-
proximately the space of “API-usage-related bug fixes”. This
estimate has the only goal to know if there are sufficient oc-
currences of these kind of fixes to motivate a recommendation
system.

We adopted the following criteria to identify SO threads
(question + answers) as potentially containing an“API-usage-
related bug fix”. First, it must contain one snippet in the
question since our proposed approach consists of understand-
ing the piece of code queried in our recommendation system.
Second, they should be limited to a particular language.
Third, they should have an accepted answer to be sure that
the crowd was able to solve the bug. In order to select Java or
JavaScript API-usage-related bugs, we use a filter on the tag-
ging metadata of the question (i.e., we select questions if and
only if they are tagged by “javascript” or “java”). The March
2013 dump of SO contains 3,389,743 posts. By applying
the 3 filters aforementioned, we obtain 179,885 and 197,158
posts for Java and JavaScript, respectively. In our opinion,
these values are sufficient numbers, supporting our intuition
that there is a wealth of information in API-usage-related
bug fixes on SO.

3. METHODOLOGY
In this section, we present four research questions about

code snippet search and API-usage-related bugs (RQ1, RQ2,
RQ3 and RQ4), the programming topics that will be subject
of assessment, the preprocessing functions for code snippets

and the local SO database used to conduct experiments with
SO code snippets (i.e., Experiments I and II).

Before detailing the experiments, we will briefly explain
what is indexing. The standard technique of indexing-based
search consists of two transformation functions tindex and
tquery. The first function tindex transforms the documents
(i.e., posts of SO) into terms, and the second function tquery
transforms the query into terms as well. The ranking consists
of matching the document terms against the query terms.
The functions tindex and tquery are not necessarily identical,
since the nature of documents (style, structure, etc.) is often
different from the nature of queries.

In our proposed approach, the terms are preprocessed code
snippets. Moreover, the result of a search on Apache Solr’s
index is a ranked list of documents (i.e., posts of SO), in
which the first one is the more similar to the search query
and the last one is the less similar. Each post in this ranking
has a numeric value that we call Solr’s score that represents
its similarity to the query (i.e., it is done by Apache Solr
in the current implementation). Thus, the first post of the
ranking has the greater Solr’s score and the last one has the
smallest value.

3.1 Research Questions
This subsection presents the four research questions con-

sidered in the study.

RQ1: What is the accuracy of SO query mechanism when
input queries are code snippets?

The research question RQ1 intends to investigate whether
the search engine of SO can cope well with snippet-based
queries. Experiment I will be conducted to answer this
research question. Given a code snippet present in some
post of SO and using this same code snippet as input to the
built-in search engine of SO, we want to assess how well this
search engine can find the post that contains the queried
code snippet.

RQ2: Which indexing mechanism for code snippets is more
effective for the topics considered in this study: the native
index of SO site or a customized index using Apache Solr?

The research question RQ2 intends to investigate whether
the construction of Apache Solr indexes containing informa-
tion of code snippets improves the code-based queries. We
compared the results obtained in the Experiment I with
the results obtained in the Experiment II.

RQ3: Which preprocessing function for code snippets best
improves the effectiveness of Solr indexes?

The research question RQ3 intends to investigate to what
extent the use of preprocessing functions for code snippets
during the phases of indexing and querying improves the ef-
ficacy of code-based query and which preprocessing function
provides the best improvement. We conducted the Experi-
ment II to answer this research question. In this experiment,
we build different indexing alternatives for Apache Solr.

RQ4: How effective is the ranking produced by the proposed
recommendation system to find fixes for potential API-usage-
related bugs?

The research question RQ4 intends to investigate how
the proposed recommendation system copes with potential



API-usage-related bugs present in the code excerpts of real
software projects. We conducted the Experiment III to
answer this research question. This experiment is dedicated
for potential API-usage-related bugs and uses code excerpts
picked from real software projects hosted on OHLOH Code
Search website 7. These code excerpts contain some API
method calls that can lead to API-usage-related bugs. We
collected a sample of API method calls on SO site that
have this behavior in order to build a dataset with potential
API-usage-related bugs.

3.2 Considered Topics
We considered the following topics in our study: Java An-

droid, Java non-Android and JavaScript. We decided to
investigate Java Android separately because mobile applica-
tion development is a trendy topic, with an upward-tendency
that increments fast [12]. By also considering plain Java
Q&As, we can investigate whether our preprocessing func-
tions for code snippets behave according to specific software
platforms (such as Android). The JavaScript related Q&As
explore the domain of web development which is among the
most active topics on SO.

3.3 Preprocessing functions for code snippets
Code snippets have a different nature compared to natural

language texts. So, traditional information retrieval tech-
niques for text preprocessing may not produce the desired
terms for index construction. We define some preprocessing
functions for code snippets and constructed specific indexes
of Apache Solr using these functions in order to perform
the Experiments I, II and III. We investigated six prepro-
cessing functions listed below for the Java and JavaScript
programming languages.

3.3.1 Function “raw”
This identity function does not modify the content of

the piece of source code, i.e., does not perform any code
preprocessing.

3.3.2 Term Extraction for Java and JavaScript (pp1)
This function returns all alphanumeric sequences present

in the code snippet using the regular expression “[0-9a-zA-
Z $]+”. The main desired effect is to remove all punctuation
characters.

3.3.3 Syntactic Function for Java (pp2)
This function considers elements of the context-free gram-

mar of the language: it processes the Java code snippet and
returns a set of compound terms corresponding to nodes of
the abstract syntax tree of this code snippet. They are: type
in variable declaration (e.g., int), method signature (e.g.,
void onAnimateMove[float, float, long]) and method
invocation (e.g., onAnimateMove). We use the Eclipse
JDT Core Component 8 to generate the abstract syntax tree
for the code snippet.

3.3.4 Lexical Function for JavaScript (pp3)
This function returns a list of lexical values (i.e., variable

names and string literals) for the JavaScript code snippets
using the Rhino API 9.

7https://code.openhub.net/ (verified 05/02/2016)
8http://www.eclipse.org/jdt/core/component
9https://developer.mozilla.org/en−US/

3.3.5 Lightweight Syntactic Analysis and Binding for
Java (lsab-java)

This function processes the Java code snippet and extracts
their API method calls. The characteristics of this parser
are:

• Lightweight Syntactic Analysis: the parser processes
the code snippet and identifies all variable declarations
and all API method calls occurring in the code snippet
(e.g., Calendar x; produces the term Calendar);

• Lightweight Binding : the parser resolves the bindings
identified in the previous step, i.e., the syntactic analy-
sis phase (e.g., Calendar x; x.getInstance() => the
variable access “x” is replaced by the respective type,
resulting in term Calendar.getInstance()). More-
over, this parser generates as output the terms: Calen-
dar.getInstance and getInstance. We decided also
to index the method name (i.e., the name that appears
after the “.”) to cover the cases where it is not possible
to resolve the binding (i.e., some code snippets of SO
do not have the variable declaration statement).

3.3.6 Lightweight Syntactic Analysis and Binding for
JavaScript (lsab-js)

This function processes the JavaScript code snippet and
extracts their API method calls. It performs the same steps
made by the parser lsab-java, but contains parsing routines
specific to the JavaScript language (e.g., the word “function”
is a reserved word of the JavaScript language while this
same word is not a reserved word of the Java language).
When a developer declares a specific application domain
function, the reserved word “function” is used (e.g., function
functionName()). In this study, we decided not to index
the names of application domain functions, since we are
interested only in the API method calls. The project-specific
texts (e.g., project method name) would not match the bug
appearing in the Q&A web site [4].

Table 1 shows the preprocessing functions for code snippets
per type (i.e., No preprocessing, Lexical and Syntactic) and
programming language (i.e., Java and JavaScript) considered
in this study.

Table 1: Preprocessing functions for code snippets
per type and programming language.

Type Java JavaScript
No preprocessing raw raw
Lexical pp1 pp1, pp3
Syntactic pp2, lsab-java lsab-js

3.4 Local SO Database
We downloaded a release of SO public data dump10 (the

version of March 2013) and imported the data into a rela-
tional database in order to perform experiments with SO
code snippets. The “posts” table of this database stores all
questions posted by questioners in the website until the date
the dump was built (3,389,743 questions). This table also
stores all answers to each question, if any.

docs/Mozilla/Projects/Rhino
10http://blog.stackoverflow.com/category/cc-wiki-dump/



We used the Java library HTML Cleaner11 in order to
extract the code snippets of the questions and answers of SO.
We have identified the presence of code snippets in the posts
of SO through the use of HTML tags “<pre> <code>...”.
The next section shows the experiments with SO snippets
conducted in this study.

4. EXPERIMENTS WITH CODE SNIPPETS
FROM SO

We conducted some experiments with the search engine
of SO and the search engine of Apache Solr to answer the
research questions (RQ1, RQ2, and RQ3). Subsection 4.1
aims to answer the research question RQ1 and presents the
experiments conducted with SO native site index.

4.1 Experiment I: Querying SO native site in-
dex

We investigate whether the search engine of SO is able to
cope well with code-based queries. Our idea was to query the
search engine of SO using code snippets that already exist in
SO. We consider that SO handles code-based queries well if
the post that contains such code snippet is rated in the top-10
positions of search engine results. This situation corresponds
to the case where the developer queries our recommendation
system with a snippet that contains some potential API-
usage-related bug and gets the fix for his problem. In cases
where SO does not find the posts that fix these potential API-
usage-related bugs, we say that this site does not respond well
to queries that are code snippets. This is an indication that
a special indexing technique needs to be developed for better
search results. We conducted the following experimental
procedure in the following order:

• Step 1: We randomly selected 1000 code snippets from
SO for each of the topics considered in this study (i.e.,
“Java Android”, “Java non-Android” and “JavaScript”);

• Step 2: For each selected code snippet, we save the
SO identifier of the post that contains the snippet;

• Step 3: We perform two different queries in the SO site
for each picked code snippet: a query considering the
code snippet in its natural state (i.e., function “raw”)
and another query considering the result generated by
the preprocessing function “pp1” in the code snippet;

• Step 4: For each queried code snippet, we calculate
in which position in the top-10 the post of SO that
contains the code snippet under study (i.e., saved in
Step 2) appears in the ranking.

Experiment I enabled us to answer the research question
RQ1.

11http://htmlcleaner.sourceforge.net/

Summary of RQ1. The results of Experiment I showed
that SO does not have good efficacy when dealing with
code-based queries. In addition, this experiment confirms
the results obtained by Monperrus et al. [15].

This leads to: 1) preprocessing the code snippets to
improve the efficacy of API-usage-related bug matching;
2) build several dedicated indexes containing the infor-
mation of SO’s snippets to investigate whether these in-
dexes would be more suitable for code-based queries, i.e.,
whether these indexes would yield better results than us-
ing the SO native site index. We constructed all these
dedicated indexes using the Apache Solr search engine.

Table 2 shows the results obtained in Experiment I.

4.2 Experiment II: Building and Querying the
indexes raw, pp1, pp2, pp3, lsab-java and lsab-js
of Apache Solr

We built eight Apache Solr indexes to answer research
questions RQ2 and RQ3. They are: Java-raw, Java-
pp1, Java-pp2, Java-lsab, JavaScript-raw, JavaScript-
pp1, JavaScript-pp3, and JavaScript-lsab. Each index
consists of all Java or JavaScript code snippets from local
database processed with the respective preprocessing func-
tion (e.g., Java-lsab index consists of all Java code snippets
from local database processed with the preprocessing function
lsab-java).

As previously stated in Experiment I, for each topic (i.e.,
Java Android, Java non-Android and JavaScript), we use
1000 code snippets. These snippets were also used to perform
the Experiment II. For each Java code snippet, we perform a
query on each of the four indexes of Apache Solr (i.e., Java-
raw, Java-pp1, Java-pp2, and Java-lsab). In the case
that the code snippet is written in JavaScript, we perform a
query in each of the four remaining indexes of Apache Solr
(i.e., JavaScript-raw, JavaScript-pp1, JavaScript-pp3
and JavaScript-lsab).

For example: given a Java code snippet (i.e., the snippet
belongs to the Java Android or Java non-Android topics), it is
processed using the following preprocessing functions for Java
code: raw, pp1, pp2, and lsab-java. After preprocessing the
code using one of the preprocessing functions, the generated
output is searched in the respective index of Apache Solr.
We define the following rule in order to make the index terms
(i.e., tindex) become as similar as possible to the query terms
(i.e., tquery): Code snippets preprocessed with the function
X only consult the Apache Solr index that was constructed
using the same preprocessing function X.

Experiment II allowed us to answer the research questions
RQ2 and RQ3.

Summary of RQ2. The results of Experiment II show
that searching in an index of Apache Solr previously con-
structed is much more effective than searching in the SO
native site index. The column “Not Found” of Table 3
shows that in all indexes, the number of not found re-
sults was ≤ 26% (much less than those of Table 2, e.g.,
for JavaScript topic, we obtained 86% for tindex = SO
and tquery = pp1). Moreover, the column Rank ≤ 10 of
Table 3 shows the high performance of all indexes in the
code-based queries (≥ 61.8%).



Table 2: Using SO Snippets as Code-based Queries (SO refers to Stack Overflow, hence tindex=SO means
that the indexing function is that of Stack Overflow, “raw” means that no preprocessing is used). “PP” refers
to preprocessing.

Topic Index PP Query PP Not Found Rank #1 Rank ≤ 5 Rank ≤ 10
Java Android tindex=SO tquery=raw 89.3% 8.9% 9.8% 9.9%
Java Android tindex=SO tquery=pp1 94.7% 4.7% 4.9% 5.2%
Java non-Android tindex=SO tquery=raw 90.4% 8.7% 9.4% 9.4%
Java non-Android tindex=SO tquery=pp1 89.1% 10.5% 10.5% 10.6%
JavaScript tindex=SO tquery=raw 95% 4.5% 4.9% 5%
JavaScript tindex=SO tquery=pp1 86% 12.7% 13.8% 13.9%

Summary of RQ3. In the Experiment II, the lexical
function pp1 was better in all topics (“Java Android”,
“Java non-Android”and“JavaScript”), i.e., smaller amount
of not found results than other preprocessing functions.
The column “Not Found” of Table 3 showed that, in some
cases, the functions pp2 and pp3 had a number of not
found results greater than the raw function (i.e., for
the topics “Java non-Android” and “JavaScript”). The
lsab-java parser was much better on the topic “Java non-
Android” than in the topic “Java Android”. One possible
explanation for this is that the topic “Java Android” not
only uses the Java language for creating graphical user
interfaces (GUIs), but also makes use of XML markup
language. However, the parser lsab-java was not designed
for processing XML.

Table 3 shows the results obtained in Experiment II. The
column “Not Found” of Table 3 shows the amount of posts
from SO not found in each index.

5. EXPERIMENT WITH POTENTIAL API-
USAGE-RELATED BUGS

Now, we leverage the knowledge gained in the first three
research questions (RQ1, RQ2 and RQ3) to study the ef-
ficacy of a recommendation system for API-usage-related
bugs based on SO. To perform experiments with potential
API-usage-related bugs present in different real-world soft-
ware projects, it was necessary to build a dataset of potential
API-usage-related bugs. The construction process of this
dataset is a hard task. On SO, users ask different kind of
questions. Nasehi et al. [17] identified four categories of
questions related to the main concerns of the questioners
and what they wanted to solve in SO: Debug-corrective, How-
to-do-it, Need-to-know and Seeking-different-solution. The
Debug-corrective category is very close to our work because
the developer posts the buggy code in SO in order to glean
the fix. But there is a number of bugs that are not related
to API methods usage. The next subsection details the steps
taken to build this dataset.

5.1 API-usage-related Bugs Dataset
The following steps were performed for the construction

of such dataset:

• Step 1: We use the 3 filters (contains code in the
question, tagged, answered) mentioned above in Section
2 to select candidate API-usage-related posts;

• Step 2: A manual analysis was performed with the
first 50 returned posts for each programming language,
resulting in the identification of 30 API-usage-related

bugs, 15 for the Java language and 15 for the JavaScript
language;

• Step 3: In order to obtain code from real-world soft-
ware projects that contain potential API-usage-related
bugs, we manually analyzed method calls found on
snippets from SO posts, selecting the method name
related to the respective API-usage-related bug (e.g.,
a counter-intuitive API method). The corresponding
method name was queried in the OHLOH Code Search
site 12. We selected the first returned Java class and
JavaScript function for being the representative code
excerpt with potential API-usage-related bug. In or-
der to produce the final excerpts of Java classes, we
removed from the encountered classes the methods that
did not call the method used in the query and instance
variables.

• Step 4: The code excerpts with potential API-usage-
related bugs found on the OHLOH site were selected to
compose the dataset. Then, we construct a pair of two
Web addresses for each potential API-usage-related bug
present in the dataset: the OHLOH address of the code
with potential API-usage-related bug and the address
of an arbitrary post of SO that fixes this potential
API-usage-related bug.

The dataset of potential API-usage-related bugs used in
this study is available online 13.

5.2 Experiment III: Excerpts from OHLOH
with Potential API-usage-related Bugs

The impact of using real-world code snippets in Experi-
ment III is to simulate a real software maintenance scenario.
For each potential API-usage-related bug of the dataset (rep-
resented by an excerpt of real open-source code that can lead
to API-usage-related bug and its respective correction in
SO), we want to measure the position of the Q&A solution in
the top-10 results after querying with the real code excerpt.
So, for each code searched in our system, the position of the
post of SO that solves the potential bug was calculated. It
would be a possibility to evaluate the top-10 results for each
queried snippet to obtain the quality of the overall recom-
mendation because there may be more than one post of SO
that discusses the fix of the potential API-usage-related bug.
However, we decided to investigate the position of the API-
usage-related bug fix in the ranking to obtain the accuracy
of the recommendation.

12https://code.ohloh.net/ (verified 05/02/2016)
13https://github.com/eduardocunha11/API-usage-related-
bugs (verified 30/08/2016)



Table 3: Using SO Snippets as Code-based Queries (SOLR refers to Apache Solr, hence tindex=SOLR means
that the search index was constructed using Apache Solr, “raw” means that no preprocessing was used). “PP”
refers to preprocessing.

Topic Index PP Query PP Not Found Rank #1 Rank ≤ 5 Rank ≤ 10
Java Android tindex=SOLRraw, tquery=raw 15.1% 61.9% 74% 78.5%
Java Android tindex=SOLRpp1, tquery=pp1 3.1% 85.7% 94.2% 95%
Java Android tindex=SOLRpp2, tquery=pp2 11.1% 71.3% 79% 81.7%
Java Android tindex=SOLRlsab−java, tquery=lsab-java 26% 59.9% 68.2% 69.5%
Java non-Android tindex=SOLRraw, tquery=raw 11.2% 70.1% 82.4% 85.4%
Java non-Android tindex=SOLRpp1, tquery=pp1 3.5% 90% 95% 95.9%
Java non-Android tindex=SOLRpp2, tquery=pp2 17% 63.8% 73.9% 76.5%
Java non-Android tindex=SOLRlsab−java, tquery=lsab-java 9.9% 79.8% 86.9% 88.7%
JavaScript tindex=SOLRraw, tquery=raw 7.3% 74.3% 88.7% 90.4%
JavaScript tindex=SOLRpp1, tquery=pp1 0.9% 90.5% 98.1% 98.8%
JavaScript tindex=SOLRpp3, tquery=pp3 11.9% 77.5% 85.6% 86.8%
JavaScript tindex=SOLRlsab−js, tquery=lsab-js 23.9% 51.6% 58.3% 61.8%

Before explaining how we performed the queries with poten-
tial API-usage-related bugs in the indexes of Apache Solr, it
is necessary to understand about the keyword filter that was
used for query construction. The next subsection presents
the methodology used to construct the keyword filter.

5.2.1 Building the Keyword Filter
Table 4 shows the keyword filter used in the Apache Solr’s

query. The filter is added to the query of Apache Solr at
the time which is performed the query in the index. These
keywords were taken from a qualitative analysis involving 70
posts of SO containing API-usage-related bugs. These posts
were also selected using the 3 filters (contains code in the
question, tagged, answered) mentioned above in Section 2.
A manual analysis was performed with the first 100 returned
posts for each programming language.

Table 4 presents the most recurrent keywords in the titles
of these selected posts (i.e., each keyword appeared at least
10 times in the title of these posts). The next subsection
explains how to use the keyword filter to query a desired
Apache Solr’s index.

Table 4: Filter used in the Apache Solr’s query.
Keywords considered in the filter
unexpected, incorrect, wrong, output, return, returns, result,
results, behavior, weird, strange, odd, problem, problems

5.2.2 Building Queries for Apache Solr using the Key-
word Filter

Figure 1 shows the usage of the keyword filter in Apache
Solr’s query. The example in this figure is for a Java code
excerpt #15 . Each document added to the index of Apache
Solr has a set of fields, which store the information about
document registration. Two fields are shown: “postTitle” and

“codeText”. The former refers to the title of SO’s post, while
the latter contains the output generated by the preprocessing
function after processing the SO code snippet. In this figure,
the snippet was preprocessed with the function lsab-java,
which returns those terms denoting the names of invoked
API methods.

The query related to Figure 1 has the following meaning:
return the posts of SO (i.e., documents from the index) that
have at least one of the keywords defined in Table 4 present
in their title and whose code snippets have the API method
calls present in the queried code excerpt. The query with no

keyword filter would not have the fields “postTitle”, but only
the field “codeText”.

Figure 1: Example of Apache Solr’s query using the
keyword filtering.

For each of the 15 potential API-usage-related bugs present
in our dataset selected for the Java language, we performed
6 different queries using Apache Solr, with 2 queries by index
(i.e., pp1 without filter, pp1 with filter, pp2 without
filter, pp2 with filter, lsab-java without filter and lsab-
java with filter).

For each of the 15 potential API-usage-related bugs present
in our dataset selected for the JavaScript language, we per-
formed 6 different queries using Apache Solr, with 2 queries
by index (i.e., pp1 without filter, pp1 with filter, pp3
without filter, pp3 with filter, lsab-js without filter
and lsab-js with filter). We can see that the first query of
each index did not use the keyword filter, while the second
query of each index used such filter.

We used the same preprocessing functions used in the
Experiment II to conduct the Experiment III. Both the
preprocessing functions pp1 and raw suffer from the problem
of the presence of reserved words of the language (e.g., stop
words as: “public”, “class”, etc.). Therefore, in Experiment
III, the indexes Java-raw and JavaScript-raw were not
considered.

We build new Apache Solr indexes to conduct the Experi-
ment III because we are no longer interested in considering
all Java and JavaScript code snippets present in our local



database. Ideally, we would like to index only code snip-
pets related to API-usage-related bugs to improve the search
mechanism. To accomplish this, we use the 3 filters (contains
code in the question, tagged, answered) mentioned above in
Section 2 to select candidate API-usage-related posts. After
this, all code snippets present in the post of SO (i.e., snippets
present in the question along with snippets present in the
answer(s)), after the completion of the preprocessing were
indexed so that each post of SO was associated with exactly
one document in the index of Apache Solr.

5.2.3 Comparing results with Google
Last but not least, we compared our results to searching

in SO with Google, which is the most popular general pur-
pose search engine, i.e., a general front-door to the crowd
knowledge.

Other custom code search engines are not suitable for off-
the-shelf comparison because they do not index SO content.
They would require an adaptation to index snippets and link
them to respective posts. In other words, they address a
different problem scope.

For each of the 30 potential API-usage-related bugs in our
dataset selected for the Java and JavaScript, we performed
a Google search within SO aiming at understanding to what
extent this search engine retrieves some post of SO mapped
in our dataset.

We define a protocol for searching Google, based on the
following rules:

• The search query should be restricted to SO site. For
this, we specified Google to search within the SO site
adding the search parameter “site:stackoverflow.com”
to the query;

• Google is not good with long query. Thus, the search
query should be limited to a maximum of 32 words
(threshold adopted by Google itself).

We also investigate whether Google benefits from querying
with preprocessed excerpts. The preprocessing functions pp1,
lsab-java, and lsab-js were applied in Java and JavaScript
excerpts present in our dataset. We also searched Google
without preprocessing those excerpts, i.e., raw query.

5.3 Results and Discussion of Experiment III
This section presents and discusses the results obtained in

the Experiment III. Table 5 has the following structure: the
first column contains the id for each OHLOH code excerpt
present in our dataset, the second column contains the Web
address of the SO’s post that fixes a particular potential API-
usage-related bug written in Java language. The remaining
columns refer to the positions occupied by these posts of SO
in the top-10 ranking produced by the Apache Solr search
engine and Google search engine. Concerning Apache Solr
search engine, we considered the preprocessing functions pp1,
pp2, and lsab-java without/with the use of the filter in the
query of Apache Solr. Concerning Google, we considered the
preprocessing functions raw, pp1, and lsab-java. Each row
of the Table 5 corresponds to a potential API-usage-related
bug written in Java mapped in our dataset.

Table 6 has similar structure as Table 5 but it is related
to potential API-usage-related bugs written in JavaScript
language. Concerning Apache Solr search engine, we con-
sidered the preprocessing functions pp1, pp3, and lsab-js

without/with the use of the filter in the query of Apache
Solr. Concerning Google, we considered the preprocessing
functions raw, pp1, and lsab-js.

The colored cells of Tables 5 and 6 indicate the positions
in the top-10 search results found by Google or Apache Solr.
We observed that Google does not cope well in searching
for fixes to potential API-usage-related bugs, even with ex-
cerpts preprocessed by our parsers (i.e., lsab-java and lsab-js).
These results indicate that these parsers combined with the
keyword filter outperform Google in searching for fixes to
potential API-usage-related bugs. Those tables show that
the likelihood of finding a post of SO that fixes a potential
API-usage-related bug written in Java or JavaScript program-
ming languages increases when using the keyword filter in the
Apache Solr’s query (less “not found” – - cells). Experiment
III allowed us to answer the research question RQ4.

Summary of RQ4. Experiment III revealed that the
proposed approach performed better for Java than for
JavaScript. For both languages, the proposed approach
obtained the best (and promising) results using, respec-
tively, the preprocessing functions lsab-java and lsab-js,
combined with the keyword filter. Although in general,
the proposed approach outperformed Google, the latter
could find fixes in specific cases where the approach could
not find (four out of thirty cases).

5.4 Threats to Validity
The main threat to external validity is that the dataset

we use is small and may not be representative of real world
datasets. However, all code excerpts we use are potential
API-usage-related bugs present in real software projects.
Note that many existing studies evaluate their approaches
considering real world code snippets. Moreover, these studies
have datasets whose sizes are similar to or much smaller than
ours [4][19][11].

Another threat to external validity is that our approach
is as good as the database of SO. Currently, results are pre-
sented based on the data dump of March 2013. Although, the
database of SO is growing rapidly. There are approximately
12M questions in the database today (June 2016), while in
March 2013, the database had about 3M questions.

The main threat to internal validity is the size of code
snippets with potential API-usage-related bugs queried in our
system. Our intuition is that the larger the size of the code
snippet queried in our system, the greater is the probability
of introducing noise in the query results because a larger
number of API methods could be considered (i.e., different
API methods could confuse the proposed approach). On the
other hand, our approach is a flexible solution because it
allows developers to inform their own suspicious snippets of
different sizes and get extra knowledge from SO discussions.

6. RELATED WORK
API-usage-related bugs are not really studied in the litera-

ture.
Crowd Debugging. Gao et al. [4] proposed a fully auto-

matic approach to fixing recurring crash bugs via analyzing
Q&A sites. Their approach extracts queries from crash traces
and retrieves a list of Q&A pages. They investigated recur-
ring bugs (i.e., bugs that occur often in different projects)
and observed that many recurring bugs have already been



Table 5: Results of queries performed in the Java indexes pp1, pp2, and lsab-java (without/with the use of
the keyword filter in the Apache Solr’s query; “-” = Post of SO not found in the ranking; “P” refer to the
positions occupied by posts of SO in the ranking.

Id Post of SO that fixes the potential API-usage-related bug Solr Without Filter Solr With Filter Google
http://stackoverflow.com/questions/ Ppp1 Ppp2 Plsab Ppp1 Ppp2 Plsab Praw Ppp1 Plsab

1 13896614/surprising-result-from-math-pow65-17-3233 - - - - - - - - -
2 9065727/why-long-tohexstring0xffffffff-returns-ffffffffffff - - 2 - - 1 - - 3
3 12975924/math-cos-java-gives-wrong-result - - 1 - - 1 1 - 2
4 10603336/bigdecimal-floor-rounding-goes-wrong - - - - - 9 - - -
5 11597244/why-the-result-of-integer-tobinarystring-for - - - 6 - 5 - - 2
6 6899019/java-simpledateformat-returns-unexpected - - - 6 2 - - - -
7 9956471/wrong-result-by-java-math-pow - - - - - - 4 - -
8 12175674/is-java-math-bigintegers-usage-wrong 2 - 2 2 1 1 - - -
9 1755199/calendar-returns-wrong-month - - - 8 - - - - -
10 12213877/is-identityhashmap-class-wrong - - 1 - - 1 - - -
11 14102593/unexpected-output-with-iso-time-8601 - - - - - 6 - - -
12 9230961/unexpected-output-converting-a-string-to-date - - - - - - - - -
13 14213778/unexpected-result-with-outputstream-in-java - - - - 8 6 - - -
14 14836004/java-date-giving-the-wrong-date - - - - 9 3 - - -
15 7215621/why-does-javas-date-getyear-return-111 - - - - 4 3 - - -

Table 6: Results of queries performed in the JavaScript indexes pp1, pp3 and lsab-js (without/with the use
of the keyword filter in the Apache Solr’s query; “-” = Post of SO not found in the ranking; “P” refer to the
positions occupied by posts of SO in the ranking.

Id Post of SO that fixes the potential API-usage-related bug Solr Without Filter Solr With Filter Google
http://stackoverflow.com/questions/ Ppp1 Ppp3 Plsab Ppp1 Ppp3 Plsab Praw Ppp1 Plsab

16 12318830/parseint08-returns-0 - - - - - - 3 - -
17 9859995/unexpected-output-in-javascript - - - - - 5 - - -
18 11477415/why-does-javascripts-regex-exec-not-always - - - - - - - - -
19 8979093/json-stringifyobject-incorrect - - - - - - - - -
20 2587345/javascript-date-parse - - - - - - - - -
21 834757/why-does-getday-return-incorrect-values - - 5 3 9 1 - 2 -
22 1845001/array-sort-is-not-giving-the-desired-result - - - - - - - - -
23 9766201/unexpected-behavior-during-subtraction - - - - - 1 - - -
24 8160550/unexpected-result-adding-numbers-79-0014-95 - - - - - - - - -
25 11363526/weird-output-of-97-98-mapstring-fromcharcode - - - 2 - - 2 - -
26 6223616/math-cos-and-math-sin-are-inaccurate - - 2 - - - - - -
27 8524933/json-parse-unexpected-character-error - - - - - 2 - - -
28 10706272/unexpected-javascript-date-behavior - - - 7 1 2 - - -
29 18509996/get-index-of-empty-space-returns-wrong-value - - - - - 9 - - -
30 262427/javascript-arraymap-and-parseint - - - - - - 3 1 1

discussed over the Q&A sites such as SO. Our approach is
designed to handle a particular class of recurring bugs called
API-usage-related bugs. The latter are related to incorrect
usage of an API by a developer and do not generate ex-
ception stack traces. Moreover, we proposed to search SO
using snippet-based queries instead of terms extracted from
exception stack traces.

Monperrus et al. [15] defined the concept of “crowd bugs”
(i.e., synonym for “API-usage-related bugs”) and proposed
the idea of “debug with the crowd”. Our approach was based
on Monperrus et al. paper and present a complete new set
of empirical results. Moreover, we investigated API-usage-
related bugs present in Java and JavaScript code snippets,
while Monperrus et al. only handle JavaScript API-usage-
related bugs.

F. Chen and S. Kim [2] proposed to mine SO in order
to help developers during debugging tasks. Their approach
is aimed at detecting different types of bugs. Unlike them,
our approach is designed to provide fixes and explanations
from SO for a particular type of bug (i.e., API-usage-related
bugs). Our approach differs in the sense that we suppose
a scenario where developers already know the suspicious
snippet and wants to find if there is a discussion on that
pattern of snippet.

Hartmann et al. [6] presented HelpMeOut, a social rec-
ommender system that aids the debugging of compiler error

messages by suggesting solutions that other programmers
have applied in the past. HelpMeOut uses both error mes-
sages and source code context in the capture and search for
relevant fixes. Unlike HelpMeOut, our approach uses only
code snippets to search SO for API-usage-related bug fixes
because API-usage-related bugs do not generate exception
stack traces.

Semantic code search and code search engines. The
main usage of code search engines is to retrieve code samples
and reusable open source code from the Web. Different works
tackled this problem [32][20][25][26]. The mining of open
source repositories has also been used to identify API and
framework usage and to find highly relevant applications to
be reused [13][14][27]. Differently from the work done so far
on code search, we do not target open source repositories to
provide code samples and reusable code, or to understand
the usage of APIs; instead, we target the crowd knowledge
provided by discussions in SO as alternative source. This
is because we want to provide developers with API-usage-
related bug fixes with explanations, rather than just with
reusable code components/snippets.

Recommender Systems. Different typologies of recom-
mender systems to suggest relevant project artifacts, support
newcomers in a project, and assist developers by suggesting
code examples on the Web relevant to their current task
has been presented. Well-known examples are HIPIKAT



[30], DEEPINTELLISENCE [7], and eROSE [34]. Other
work focused on suggesting relevant documents, discussions
and code samples from the Web to fill the gap between the
IDE and the Web browser. Examples are CODETRAIL [5],
MICA [23], FISHTAIL [22], and DORA [9].

Among the various sources available on the Web, Q&A
Websites and in particular SO, have been the target of many
recommender systems. In a previous work [1], we present
an approach that makes use of “crowd knowledge” available
in SO to recommend information that can assist developers
in their development tasks with a given API. This strategy
recommends a ranked list of question-answer pairs from SO
based on a query. The criteria for ranking are based on
three main aspects: the textual similarity of the pairs with
respect to the query related to the developer’s problem, the
quality of the pairs, and a filtering mechanism that uses
machine learning to consider only “how-to” posts. However,
there are some differences between the work presented here
and this previous work: (i) the previous approach is more
general and it was not designed to deal with API-usage-
related bugs; (ii) the previous approach relies on searching
Lucene indexes using a list of terms as input query, while the
current approach uses suspicious code snippets as input query;
(iii) the previous approach was designed to assist developers
during development tasks while the current approach was
designed to assist developers during debugging tasks.

Ponzanelli et al. [19] proposed Prompter, a recommender
system designed to automatically capturing the code context
in the IDE and suggesting documents from SO that have
enough self-confidence to the developer. Our approach also
takes into account the developer’s code context with the aim
of suggesting relevant SO discussions. However, there are
some differences between the two works: (i) their approach
is more general and addresses a different problem scope (i.e.,
they do not limit their scope to “API-usage-related bugs”);
(ii) they do not use the Apache Solr as search engine. Instead,
they use other search engines (i.e., Google, Bing, and Blekko);
(iii) they implement a different code searching technique.

7. CONCLUSIONS
In this paper, we presented a new approach to find fixes

for API-usage-related bugs using suspicious code snippets
as input query. Typical general and source code search
engines are not designed to handle this type of query. For all
experiments, we considered preprocessing functions for code
snippets written in Java or JavaScript languages. We built a
dataset composed by 30 excerpts with potential API-usage-
related bugs extracted from OHLOH in order to evaluate
our approach. The results showed a clear advantage in
approximately 40% of the approach using the filter in relation
to the approach without using the filter. Moreover, the results
are encouraging: for 66.67% of Java excerpts with potential
API-usage-related bugs picked from OHLOH, we found their
fix in the top-10. Concerning JavaScript excerpts present in
the dataset, for 40% of them, we found their fix in the top-10.
These results suggest that our approaches (i.e., lsab-java and
lsab-js combined with the keyword filter) outperform Google
and SO in searching for fixes to potential API-usage-related
bugs present in real software projects.

8. ACKNOWLEDGMENTS
We would like to thank the Brazilian agencies FAPEMIG,

CAPES and CNPq for partially funding this research.

9. REFERENCES
[1] E. C. Campos, L. B. L. de Souza, and M. d. A. Maia.

Searching Crowd Knowledge to Recommend Solutions
for API Usage Tasks. Journal of Software: Evolution
and Process, 2016. Wiley.

[2] F. Chen and S. Kim. Crowd debugging. In Proceedings
of the ESEC/FSE’ 2015. ACM.

[3] L. B. L. d. Souza, E. C. Campos, and M. d. A. Maia.
On the Extraction of Cookbooks for APIs from the
Crowd Knowledge. In Brazilian Symposium on Software
Engineering (SBES’ 2014), pages 21–30, Sept 2014.

[4] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, and
H. Mei. Fixing Recurring Crash Bugs via Analyzing
Q&A Sites. In Proc. 30th ASE, pages 307–318, 2015.

[5] M. Goldman and R. C. Miller. Codetrail: Connecting
Source Code and Web Resources. Journal of Visual
Languages and Computing, 20(4):223–235, Aug. 2009.

[6] B. Hartmann, D. MacDougall, J. Brandt, and S. R.
Klemmer. What Would Other Programmers Do:
Suggesting Solutions to Error Messages. In Proceedings
of the CHI ’10, pages 1019–1028. ACM, 2010.

[7] R. Holmes and A. Begel. Deep Intellisense: A Tool for
Rehydrating Evaporated Information. In Proc. of the
MSR ’08, pages 23–26, New York, USA, 2008. ACM.

[8] S. Kim and E. J. Whitehead, Jr. How Long Did It Take
to Fix Bugs? In Proc. of the MSR ’06, pages 173–174,
New York, NY, USA, 2006. ACM.

[9] O. Kononenko, D. Dietrich, R. Sharma, and R. Holmes.
Automatically locating relevant programming help
online. In IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’ 2012), pages
127–134, Sept 2012.

[10] C. W. Krueger. Software Reuse. ACM Comput. Surv.,
24(2):131–183, June 1992.

[11] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer.
Genprog: A generic method for automatic software
repair. IEEE Trans. Softw. Eng., 38(1):54–72, Jan.
2012.

[12] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk. An
exploratory analysis of mobile development issues using
Stack Overflow. In Proceedings of the MSR’ 2013,
pages 93–96. IEEE.

[13] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu,
and Q. Xie. Exemplar: A Source Code Search Engine
for Finding Highly Relevant Applications. IEEE Trans.
Software Eng., 38(5):1069–1087, 2012.

[14] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie,
and C. Fu. Portfolio: Finding Relevant Functions and
their Usage. In Proceedings of the 33rd ICSE ’11, pages
111–120, New York, NY, USA, 2011. ACM.

[15] M. Monperrus and A. Maia. Debugging with the
Crowd: a Debug Recommendation System based on
Stackoverflow. Technical report, INRIA, 2014.

[16] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and
A. Marcus. How Can I Use This Method? In Proc. of
the ICSE ’15, pages 880–890. IEEE Press.

[17] S. Nasehi, J. Sillito, F. Maurer, and C. Burns. What
makes a good code example? A study of programming
Q&A in Stack Overflow. In Proceedings of the ICSM’
2012, pages 25–34.



[18] C. Parnin and A. Orso. Are Automated Debugging
Techniques Actually Helping Programmers? In Proc.
ISSTA ’2011, pages 199–209.

[19] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and
M. Lanza. Mining StackOverflow to Turn the IDE into
a Self-confident Programming Prompter. In Proceedings
of the MSR’ 2014, pages 102–111, NY, USA. ACM.

[20] S. P. Reiss. Semantics-based code search. In
Proceedings of the 31st International Conference on
Software Engineering, ICSE ’09, pages 243–253,
Washington, DC, USA, 2009. IEEE Computer Society.

[21] M. P. Robillard and R. Deline. A Field Study of API
Learning Obstacles. Empirical Softw. Engg.,
16(6):703–732, Dec. 2011.

[22] N. Sawadsky and G. C. Murphy. Fishtail: From task
context to source code examples. In Proceedings of the
1st Workshop on Developing Tools As Plug-ins, pages
48–51, New York, NY, USA, 2011. ACM.

[23] J. Stylos and B. A. Myers. Mica: A Web-Search Tool
for Finding API Components and Examples. In Proc.
of the Visual Languages and Human-Centric
Computing, VLHCC ’06, pages 195–202. IEEE
Computer Society, 2006.

[24] S. Subramanian, L. Inozemtseva, and R. Holmes. Live
API Documentation. In Proceedings of the ICSE ’2014,
pages 643–652, New York, NY, USA. ACM.

[25] S. Thummalapenta. Exploiting Code Search Engines to
Improve Programmer Productivity. OOPSLA ’07,
pages 921–922. ACM, 2007.

[26] S. Thummalapenta and T. Xie. Parseweb: A
Programmer Assistant for Reusing Open Source Code
on the Web. In Proc. 22nd ASE, pages 204–213, 2007.

[27] S. Thummalapenta and T. Xie. SpotWeb: Detecting
Framework Hotspots and Coldspots via Mining Open
Source Code on the Web. In Proc. 23rd ASE, pages
327–336, 2008.

[28] C. Treude, O. Barzilay, and M.-A. Storey. How do
programmers ask and answer questions on the web? In
Proc. of the ICSE ’11, pages 804–807. ACM.

[29] C. Treude and M. P. Robillard. Augmenting API
Documentation with Insights from Stack Overflow. In
Proc. of the ICSE ’2016, pages 392–403. ACM.

[30] D. Čubranić and G. C. Murphy. Hipikat:
Recommending Pertinent Software Development
Artifacts. In Proc. of the 25th ICSE ’03, pages 408–418,
Washington, DC, USA, 2003. IEEE Computer Society.

[31] T. Xie and J. Pei. MAPO: Mining API Usages from
Open Source Repositories. In Proceedings of the MSR
’2006, pages 54–57, New York, NY, USA. ACM.

[32] A. Zagalsky, O. Barzilay, and A. Yehudai. Example
Overflow: Using social media for code recommendation.
In Proc. of the RSSE’ 2012, pages 38–42. IEEE
Computer Society.

[33] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring
Resource Specifications from Natural Language API
Documentation. In Proc. 24th ASE, pages 307–318,
2009.

[34] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller.
Mining Version Histories to Guide Software Changes.
In Proceedings of the 26th ICSE ’04, pages 563–572,
Washington, DC, USA, 2004. IEEE Computer Society.


