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Selection of relays based on the classification of mobility-type and
localized network metrics in the Internet of Vehicles

Philippe Fabian*! | Abderrezak Rachedi' | Cédric Guéguen?

!Gaspard Monge Computer Science
Laboratory (UMR 8049), University Summary
Gustave-Eiffel, France

2IRISA (UMR 6074), University of Rennes The ever increasing amount of connected mobile devices and users in the Internet

1, France of Vehicles (IoV) and the fact bicycles, electric scooters and users’ smartphones are
Correspondence also connected poses a real challenge in terms of ensuring Quality of Service (QoS).
*Philippe Fabian. Email: The constantly changing topology due to the high-mobility of devices and users
philippe fabian @univ-eiffel fr greatly impacts its stability and the connectivity of devices. Furthermore, to ensure
Present Address safety of people in the case of autonomous vehicles it is of paramount importance to
Cite Descartes - 5, boulevard Descartes, ensure excellent reliability. This is why we have developed a solution that is based on

F-77454 Marne-la-Vallée . . . . . . o
Machine Learning (ML) to classify devices according to their mobility profile and

that uses a scoring system to select the best candidates to act as Mobile Relays (MR)
amongst devices with a suitable mobility profile. The scoring system allows to find
critical locations in terms of user density. This solution does not require a dedicated
infrastructure such as Road Side Units (RSUs). Simulations results will show the
proposed solution increases the packet delivery ratio by up to 6%, reduces the energy
consumption by up to 30% and increases the efficiency of bandwidth usage without

sacrificing the end delay of users and devices compared to the state of the art.
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1 | INTRODUCTION

Mobile connected devices are more and more present! 23 : pedestrians with mobile phones, motorized vehicles equipped with
an on board computer or public connected bicycles and scooters. All these devices form the Internet of Vehicles (IoV). They
can potentially connect to one another or they can directly connect to Internet using for instance either a 4/5G connection to a
cellular antenna or a WiFi connection through an Access Point (AP). However, in such a dynamic network of mobile devices it is
challenging to ensure topology stability and thus Quality of Service (QoS). Indeed, the topology is constantly changing because
users and devices travel in different directions at different velocities, they connect and disconnect from the network according to
their needs or to save battery life, or because objects such as vehicles cause multipath fading, resulting in some devices gaining
or losing connectivity. Furthermore, users and devices have different needs including high throughput for a multimedia stream
on a smartphone, minimum delay for autonomous vehicles to avoid a collision or low energy consumption to ensure enough
remaining residual energy on a device until the next recharge.

It is not always possible for a device to have a direct connection to a cellular antenna because one might not be available from
a given Internet Service Provider (ISP) in low populated areas (deployment costs too high), the user has no subscription plan
(too expensive or because the user is traveling abroad) or because the radio conditions are bad (path loss, shadowing, multipath
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fading). It is possible to resolve all those issues by using relays to forward data from and to an end user/device. Several solutions
propose the deployment of static relays (dedicated architecture such as Road Side Units (RSU)), Mobile Relays (MR)*°> or
the usage of parked vehicles®. Static relays have limitations such as deployment cost, lack of flexibility and mandatory regular
maintenance of the equipment to ensure reliability. On the other hand, MRs allow for more flexibility and can lower deployment
costs. In our vision, a dynamic solution using regular devices as relays is the next step compared to dedicated MRs as it allows
to implicitly adapt the number of relays and select new ones whenever radio conditions or the needs of users and devices evolve
and has the advantage of no maintenance costs. This solution also offers great flexibility by removing the need for a dedicated
infrastructure. It allows devices without cellular access to connect to Internet through others. Local communications need not
to be forwarded to cellular antennae, which can potentially reduce overhead. Furthermore, this solution can be deployed on top
of an existing routing protocol’8? for even better QoS.

This is why we propose in this paper a solution that dynamically selects relays amongst devices present in the area of interest
based on a Machine Learning (ML) classification algorithm. The proposed solution is an extension of our previous work '’
where the selection of a dynamic relay is not only based on the classification of mobility but also on localized metrics such as
the proposed Expected Packet Count (EPX) and average delay of the different locations. This makes the new solution even better
because taking into account localized network metrics allows to select relays in the most critical locations in order to better
service users and devices. Furthermore, compared to our previous work, we expanded the types of users in our simulations by
adding pedestrians. The highlights of this contribution are :

e We extended the classification algorithm compared to our previous work ' by adding localized network metrics computed
after the classification algorithm has been run in order to take into account the most critical locations in real-time when
selecting relays;

e We created a new localized metric, the EPX which represents the packet density, in order to find critical areas where the
density of devices is highest;

e The performance evaluation has been further improved by adding pedestrians (along with bicycles and cars) in scenarios
considering a light and high density of users, allowing us to test the solution in a very realistic way.

The remaining of this paper is organized as follows : the state of the art is presented in section 2, the proposed solution is
explained in section 3, section 4 details the performance evaluation and, finally, the paper is concluded in section 5.

2 | RELATED WORK

Existing solutions presented in this section are regrouped into three categories : general, ML based and Cluster Head (CH)
based. General approaches (subsection 2.1) concern the selection of relays based on a mathematical model. They are based on
Markov chains or cost functions. ML based approaches (subsection 2.2) use machine learning to select relays. Finally, CH based
solutions work by electing one relay for each group (or cluster) of users, hence the appellation “cluster head” (subsection 2.3).

2.1 | General approaches

Authors in!! propose a solution to select mobile relays amongst vehicles to allow other vehicles to connect to Internet through
them. Neighboring vehicles are connected through WiFi and relays connect to Internet using LTE. Several metrics are used
to select relays such as speed, Received Signal Strength (RSS), stability of links and distance between vehicles. Though this
solution is good, it does not consider several mobility types and simulations are done in straight lines on highways. In!?, the
authors use Matching Game to predict the radio conditions of Unmanned Aerial Vehicles (UAVs). Once UAVs have determined
their own needs, the proposed solution dynamically adapts the mode selection, the time scheduling and the channel allocation
to improve performance on the network. However, the authors of this paper studied cases where the number of UAVs is no more
than a few tens and only a subset of drones generate data packets. This solution is thus not adapted to a road network where
several hundreds of users can generate data at the same time. The solution proposed in '3 uses a relay selection mechanism to
help nodes that suffer from high interference. If the radio conditions of a node are too bad, it will scan its surroundings to find
suitable neighbors to relay its data. The best neighbor is found using a M/M/1/K first-come-first-serve scheme. This solution
allows any node to potentially serve as a relay but it is studied in a context without mobility, which does not make it adapted
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to the IoV. The authors in ' propose to add MRs to help fixed relays during heavy traffic periods. Markov chains are used to
predict when heavy traffic periods will happen. With this information, the optimal paths for MRs are computed and they are
sent on those paths to assist fixed relays. Although this solution considers mobility of users, MRs are considered to move at a
constant speed and end users can only connect to a relay (fixed or mobile). This limits the flexibility of the proposed solution as
any user must be in range of a relay and there is a required dedicated architecture (fixed relays).

2.2 | Machine Learning based solutions

Mchergui et al. ' propose the use of deep learning to select relays in order to increase performance. The solution is studied on a
road network in the context of Vehicular Ad hoc Network (VANET). RSUs are used to allow vehicles to connect to Internet. The
combination of several features in a deep learning algorithm is interesting. However, RSUs are static and this makes the proposed
solution non-adapted in an environment where it is not always possible to deploy a dedicated infrastructure. In'® authors use a
ML model based upon K-nearest neighbors for relay selection in the context of VANETS. The purpose is for a vehicle to select
the best RSU in range or, if none are nearby, to select the best candidate (i.e. another vehicle) to forward data to a relay. Though
the use of several features and multi-hop data forwarding makes the model adapted to VANETS, a dedicated architecture of
RSUs is required. Furthermore, only one class of mobility (motorized vehicles) is considered. Authors in!” propose a Fuzzy-
based Q-Learning Routing Protocol to find the best next hop based on the node’s residual energy, movement and buffer space.
The proposed solution is tested in different scenarios with several tens of nodes with velocities up to 1.5 m/s. However, in the
context of IoV there can be up to hundreds of users and they can move significantly faster. Authors in'® use deep learning for
the selection of a relay in the case of a node having bad radio conditions due to shadowing. There are several metrics used to
determine the best relay. However, this solution only considers a user can connect to a base station through one relay (one hop).

2.3 | Electing a relay through cluster head selection

The solution proposed in'® exploits the proximity of buses at intersections to forward data. Bus density, road connectivity and
the path of bus lines are used to determine on which bus the data is forwarded. This solution relies on the presence of a bus
network with a minimum density to efficiently forward data. Also, the delivery delay from simulations ranges from 7 to 10
seconds. These make the proposed solution inadequate in areas without bus lines or for applications needing a real-time latency.
Al-Kharasani et al.?° propose a clustering solution to connect nodes in a VANET. Several metrics like bandwidth, connectivity,
velocity and distance are used to create a cluster of vehicles. However, the proposed solution is tested in scenarios using constant
speed and only motorized vehicles (i.e. high-mobility users) are considered. In?!, the authors propose a scheme where vehicles
with similar motion are regrouped in clusters. The cluster head is also connected to the infrastructure using a cellular link. The
clustering allows to regroup vehicles with a similar trajectory together so only the head need to be connected to the infrastructure
or to other clusters’ head. However, in the context of urban mobility several different types of users are present and many
intersections will cause users to travel apart from one another with a high probability. In??, authors tackle the problem of joint
relay assignment and energy-efficiency maximization to assign a relay to clusters of users. To do so, authors propose to formulate
the problem considering users’ constraints as a maximization problem, solve the problem for each pair of cluster/relay, and
finally assign the relay. The assignment is achieved with a linear complexity. However, the performance evaluation focuses on
relatively static users and only 12 of them are considered. This is non-adapted to the IoV where hundreds of devices with very
different mobility patterns are present at the same time. In??, authors propose a scheme to select relays based on network and
trust metrics in VANETS to select trustworthy relays. However, the proposed solution makes use of dedicated RSUs and only
one class of mobility is considered.

All of these solutions either lack support for several mobility types typically found in cities (pedestrians, e-scooters, bicyles and
motorized vehicles), require a dedicated architecture to operate or they consider a limited amount of hops to connect devices to
base stations. In our vision, a more general approach with a greater flexibility is mandatory in improving system performance.
Thus, we propose a solution that supports different mobility types, can adapt to devices’ needs in real-time and only requires
one cellular antenna to work. Few devices with cellular connectivity are needed to serve as relays.
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FIGURE 1 The proposed architecture made up of the Fog part and the Cloud part. Here, 4 users have access to Internet through
the cellular antenna.

3 | DYNAMIC SELECTION OF RELAYS

In this section, we present the architecture and an overview of the proposed solution (sec. 3.1), we discuss the MR selection
algorithm in details (sec. 3.2), we analyze selected algorithms (sec. 3.3) and we explain the novel metric EPX (sec. 3.4).

3.1 | Architecture and overview

The proposed architecture, inspired from Software Defined Networking (SDN)?, is depicted on figure 1 and it is made up of
two parts : the Fog part and the Cloud part. Users with Internet connectivity (pedestrians with a smartphone, connected cars
and so on) and the cellular antenna (all circled in green on fig. 1) compose the Fog part of the network. On figure 1, fog users
have a wireless link to the antenna represented as a black-dashed line. Internet and the Control Server are the Cloud part of the
architecture (in light blue on fig. 1). This architecture allows a higher degree of flexibility because a dedicated infrastructure is
not required, except for one cellular antenna. Even without an antenna users can still communicate locally. Given we assume all
of them can be mobile at any time, such an architecture is well adapted compared to a static one where devices can potentially
leave the range of the antenna.

The algorithm will run either using a two step mode (initialization mode) or a four step mode (on-going mode). The
initialization mode is as follows :

1. Users that have Internet access connect to the controller to send their mobility data (such as velocity, acceleration, type
of road the device is on, etc.) as depicted on figure 1;

2. The controller uses the data to determine the mobility profile of the users. The ones with the appropriate profile are selected
as relays.

This mode is executed when the network is yet to be built. This is similar to our previous work !°. Once the network is built, the
selection mechanism can be further optimized by running the on-going mode :

1. Users send to the controller their mobility data (such as velocity, acceleration, type of road the user is on, etc.) and their
network metrics (such as the average delay of their packets and the average amount of transmitted packets), along with
their location as depicted on figure 1;

2. The controller uses the mobility data to determine the mobility profile of users. Users with the appropriate profile are
pre-selected and tagged as potential relays;

3. The controller uses the network metrics to find the most critical locations. A critical location is one where the values of
metrics are considered as too high;
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FIGURE 2 The established topology after a run of the proposed solution.

4. Relays are elected on priority in critical locations. Then, as long as there are locations considered as critical other relays
are selected as well.

Figure 2 is an example of the topology once the algorithm has been run and relays have been elected. Relays are users directly
connected to the antenna. We remind the reader that in this case there were four users with Internet access (see figure 1), labeled
from 1 to 4 on figure 2. Here, bicycle user 1 and pedestrian user 2 are the elected MRs. Pedestrian user 3 was not elected because
her radio conditions are too bad (she is located inside a building). Car user 4 was not elected as a MR because he is a high-
mobility user, not suitable for the stability of the topology. The “appropriate profile” is determined according to local needs. In
our case, we consider soft-mobility users (i.e. pedestrians) have the best profile because of their low mobility. Indeed, if they
are elected as relays the resulting topology is expected to be more stable compared to electing faster users like connected cars.

The addition of localized metrics such as average delay and EPX (see subsection 3.4) allows to find locations where the density
of users and devices is higher. This allows to select relays at these locations which minimizes the number of hops needed by
users and devices to reach the relay. The probability of re-transmissions is lower and the end-to-end delay is likely to decrease.
This in turn increases QoS. Limiting the number of elected relays minimizes interference between them. Please note that the
localized metrics are not part of the classification. They are used after the running of the ML algorithm to enhance the selection
mechanism by providing the critical locations.

In our case, the features to classify the mobility-type of users are the position, the velocity and the maximum acceleration. As
explained earlier in this section, this data is sent to the controller. However, only the position through time is required (velocity
and acceleration can be deduced from it). We suppose the data is measured on a device each 100 ms and sent every second to the
controller. This can be further optimized by sending only one position value as long as it does not change. One X, y, z position
can fit in three 4-octets variables (so 10 - 12 for 1 second). This data needs to be sent once every tens of seconds in practice
because the selection process happens at about this frequency, so the overhead is not very high (a few packets per minute).

3.2 | Mobility classification and optimal relay selection

The proposed solution is made up of two principal parts :
1. The ML algorithm classifies users according to their mobility profile and
2. Their network metrics allow to determine which ones from the above step are the most appropriate to act as relays.

We define a network composed of U users. Each user u possess one vector of mobility-related metrics M :
M,=[m;,m,,....m,], (H

where p is the number of mobility-related metrics. These metrics can be the current or maximum velocity of the user, his
location (i.e. the type of road he is on) and so on. The user periodically records these metrics. Each user u also stores one vector
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of network-related metrics N :

N, =[ny,ny,...,n], 2
where v is the number of network-related metrics the user is experiencing (such as delay, throughput, ETX and so on). The
metrics are periodically recorded as well.

Mobility-related metrics (eq. 1) are used by the ML algorithm as features for the classification. The accuracy in determining
the mobility type of the user (e.g. pedestrian, bicycle, car, etc.) depends on the choice of features and specific algorithm used.

‘We thus introduce the vector of features for each user u :

F,=f1sfaseesfyl st |FI>0 Yu and ¢ <p 3)

That is, the features in equation 3 are a subset of the available mobility-related metrics from equation 1. The same ¢ features
are used from each user and at least one feature must be used. These features are recorded for a length of time equals to 7. The
purpose of 7 is to choose the amount of time during which mobility-related metrics are gathered. Indeed, gathering metrics for
a longer amount of time tends to increase accuracy, but it means waiting more before establishing the profile of the user. This
can lower QoS, especially in time-sensitive applications so a compromise must be found between accuracy and the delay before
predicting the class of a user. The mobility class predicted by the algorithm for each user is thus :

c;’ = L(F,, 7). (@)

In equation 4, L is the selected machine learning algorithm, F, are the features of user u (see eq. 3) and ¢, € C is the predicted
class of user u. Given the prediction is not always correct, we introduce the real class of user u, ¢/ € C, such that :

» cl if the prediction is correct. )
ch =
! e (C\c) if the prediction is wrong.

If the prediction is correct, the predicted and real class of user u are the same. On the other hand, a failed prediction will classify
the user in the wrong class ¢ which is any other class than the real one. The best mobility class C, is determined as the most
appropriate class to serve as relay. For instance, a slow-mobility class (e.g. pedestrian) can be desirable to increase topology
stability.

Once the mobility class of users is determined, the network-related metrics (from eq. 2) are used to find the best location for
electing a relay. First, we divide the studied area into X per Y tiles. The dimensions of each tile can be as small as to have one
user maximum per tile (e.g. Im x 1m) or as big as to have only one tile for the whole area and for all users :

Iip g o hix

Iy o " hx
yx=|7 7. 7 (6)
Iyalyp = Iyx
where each 7, , is one tile. We now define a scoring function .S to compute the score of each tile given the values of network-
related metrics of users :

1,y=SWN,) Vueri,,. @)

The purpose of tiles is to identify the most critical locations (e.g. tiles with high delay, high ETX, low throughput, etc.) to elect
one or more relays inside them. The vector of the most critical locations is introduced :

T CTyy st [T >0. 8)

That is, the vector of the most critical locations (eq. 8) is a subset of the matrix of scores (eq. 6). A location can be considered
critical when QoS requirements are not met, for instance. Finally, relays R can be elected once these locations are determined :

ueR iff wet, )ANweHAwUeC) | t, €T )

That is, a user u will serve as relay if it is located in any critical cell (see eq. 8), has Internet access (belongs to I) and is of the
correct (best) mobility class (eq. 4 and 5). Note that Internet access is essential for a node to be a potential relay because it must
be able to forward traffic back and forth from/to Internet. That is, a node without Internet access is not even a sub-optimal relay
compared to one with Internet access; it can not be a relay at all. Hence, these nodes are not considered by the ML algorithm.

Note that in the case where a critical tile has no user that can serve as relay, these users will eventually be connected to a
neighboring tile. This neighboring tile will become critical and relays will be elected to address the issue.



Algorithm 1 The selection relay algorithm.

1: maxRelays < arg[0]

2: potential Relays — NULL
3: relays < NULL

4: for all users do

5: users.gather M etrics()
6: end for

7: for all users do

8 if A(user) == optimal then

9 potential Relays.append(user)

10: end if

11: end for

12: fori =0 to potential Relays.size() do

13: if computeScore(potential Relay;) > critical Score then
14: relays.append(potential Relay;)

15: end if

16: if relays.size() > maxRelays then

17: break

18: end if

19: end for

20: return relays

Algorithm 1 shows the relay selection process. It is run whenever the maximum number of relays is not reached, for instance
when a MR is disconnecting due to low battery life or because it does not need to be connected to the network any longer. The
parameter of the algorithm (arg/[0]) is the maximum number of relays. Lines 1 to 3 are the initialization steps. The gathering of
users’ metrics is done in lines 4 to 6 (eq. 1 and 2). In lines 7 to 11, the classification algorithm is run for each users to determine
if its mobility profile is suitable to serve as a MR (eq. 4 and 5). If so, it is added to the set of potential relays (line 9). Then,
in lines 12 through 19, the score of the potential relays is computed to find the ones that will best increase performance of the
network (eq. 8). The score is computed in line 13 (eq. 7) and, if the user is satisfying, it is added to the set of relays in line 14
(eq. 9). The adding of relays can be interrupted if enough relays are present (line 16). Finally, the set of relays is returned in
line 20. Note that a user must be in the correct location to become a potential relay. An important advantage of using ML is
the fact it can select a relay amongst non-optimal candidates (for instance a car) if there are no optimal candidates (pedestrian)
available. This can yield to good performance if the car has a temporary low mobility, perhaps due to a traffic jam. This allows
more flexibility compared to an exhaustive search solution as we look at the current features (velocity, acceleration) of nodes
rather than their overall mobility profile.

3.3 | Benchmark of different ML classification algorithms

We tested several ML algorithms to classify the mobility-type of devices. The results are shown in table 1. The training set was
generated with the Simulator of Urban MObility (SUMO, section 4.1). The size of the testing set is 40% of the total data'.

The accuracy of the algorithms depends on the delay allowed to gather data. When the delay is very short (2 s for instance),
the error is rather high because the user was not active long enough. For example, a car just starting might stop at a red light
right away and it is not possible to differentiate it from a bicycle. However, although a longer delay allows for better accuracy, it
also means a longer time before selecting a new relay. During this time, no connectivity will degrade QoS and might not be the
right choice. This is why a compromise must be found between accuracy and delay to yield the best QoS possible.

Table 1 shows various values of accuracy for three different algorithms: K-nearest neighbors, Support Vector Machine (SVM)
and decision tree. For each algorithm, two lines show the accuracy using a 10-cross-validation in classifying users as pedestrian,
bicycle or car for the training and testing sets. Decision tree yields the best accuracy with 99% for the training set and ranging

'We trained the algorithms with different ratios for testing/training sizes and the difference is marginal.
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TABLE 1 The precision in classifying the correct type of mobility against the allowed delay. The table shows the values for the
training and testing sets using 10-cross-validation.

Classification delay (in s)
2 | 4 6 |10 | 14
Training | 97 | 97 | 97 | 97 | 97
Testing | 85 | 82 | 80 | 87 | 90
Training | 93 | 93 | 93 | 93 | 93
Testing | 85 | 77 | 73 | 79 | 78
Training | 99 | 99 | 99 | 99 | 99
Testing | 90 | 98 | 100 | 98 | 98

K-nearest (in %)

SVM (in %)

Decision tree (in %)

TABLE 2 The precision, recall, f-score and the sample size when using the decision tree algorithm.

Classification delay (in s)
2 4 6 10 14
Pedestrian | 22 42 70 72 73
Precision (in %) Bicycle 100 | 100 | 100 | 100 | 100
Car 100 | 100 | 100 | 100 | 100
Pedestrian | 100 | 100 | 100 | 100 | 100

Recall (in %) Bicycle 100 | 40 | 100 | 78 | 100
Car 65 88 93 95 97

Pedestrian | 36 59 82 84 84

F-score (in %) Bicycle 100 | 57 | 100 | 88 | 100
Car 79 94 | 96 | 98 96

Pedestrian | 2 5 7 13 19
Number of samples Bicycle 1 5 5 9 9
Car 20 | 33 | 40 | 66 | 95

from 90% to 100% during testing. K-nearest is the second most accurate with a training accuracy of 97% and a testing accuracy
from 80% (6 s) to 90% (14 s). SVM is the least accurate with correct classification in 93% of cases for the training set and
between 73% and 85% when testing.

The longest delays do not significantly improve the accuracy of the classification. This means a very long delay is not
necessarily better. This is why we use decision tree with delays up to 6 s in the evaluation of performance (sec. 4). In terms of
complexity, decision tree is restricted to a depth of 2 to avoid over-fitting and there are 3 labels as output (see section 4).

Table 2 depicts the precision, recall and the resulting f-score for the decision tree algorithm according to the type of mobility
and delay allowed for the classification. The number of pedestrians, bicycles and cars (“Number of samples”) used during the
evaluation is also in the table. The proportion of bicycles is lower compared to the two others (less significant). Cars are easier
to identify because of the potential high velocity they can reach, although when the allowed delay is very short (2 s), they do
not have time to reach such speed. This explains the relative low recall (65%) compared to a classification delay of 14 s (recall
is then 97%). The precision when identifying pedestrians is also quite low when the delay is 2 s (22%). This is coherent with
results from section 4, where using a delay of 4 s or 6 s yields better results (the classification is more relevant).

3.4 | New metric : the Expected Packet Count (EPX)

The EPX is different from Expected Transmission Count (ETX)?. It is the total amount of (re-)transmissions needed for packets
sent from a location to reach their destination during a certain time frame. Each hop in the path of these packets counts towards
EPX including re-transmissions. It is the "density of packets" of a given location. A high EPX is the consequence of long paths
to reach a relay, bad radio conditions (many re-transmissions) and/or simply high traffic.
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(a) As A is about to transmit P, the ETX is incremented. (b) B received the packet and tries to send it to C, thus

incrementing the EPX. The transmission fails.

EPX,, =3 EPX,, =3
1

(c) B retries to send P, to C. EPX is incremented to 3. (d) The packet reaches its final destination, C. The packet
reads an EPX of 3 and originates from A.

FIGURE 3 An example of the computation of EPX: packet P, is emitted from A and has destination sink C. The EPX, stored
in P;, concerns the area where A is located.

Figure 3 shows a simple example of the computation of EPX. One packet is emitted from node A and its destination is the sink
node C. First, when the packet is about to be sent after its creation, the value of EPX is incremented to 1 (fig. 3a). The location
of the packet’s source is kept in the packet. When the packet is received on B, its EPX value is incremented as it is about to be
forwarded to C (fig. 3b). The transmission fails due to interference and is not acknowledged by C. B increments the EPX value
again and resends the packet (fig. 3c) to C. The value of EPX is now 3. Finally, C successfully receives the packet (fig. 3d).
Note that the value of EPX from P, concerns the area where the source (here, A) is located, not the source itself. Thus, if a sink
receives multiple packets from a same location, the total EPX is the sum of all EPX values from all packets from this area.

4 | PERFORMANCE EVALUATION

The evaluation of performance is done by comparing four different algorithms. Two scenarios are studied and two parameters
vary (thus, there are 4 series of graphs). The two first graphs of each series (figures a and b in section 4.3) represent the scenario
with a low density of users (column Low density scenario in table 3). The third and fourth graphs of each series (figures ¢ and d
in section 4.3) refer to the scenario with a high density of users (column High density scenario in table 3). The line charts depict
the variation of traffic generated by users, whereas the bar charts represent the change of selection delay (the time during which
network related metrics are gathered for the purpose of classification of the mobility type of users). The studied algorithms are :

1. Without classification does not use any classification. Relays are selected randomly. In line charts it is represented by red
circles. In bar charts it is represented as red-crossed bars with a selection delay of 0 s;

2. With classification uses classification of mobility profile to select a new relay '°. Relays with low mobility are favored. In
graphs, this algorithm is represented by blue diamonds (line) and blue horizontally-lined bars (bar charts);

3. With classification and metrics is the proposed solution. It uses mobility classification (as With classification) and a score
function (see below). It is represented in line charts as green squares and in bar charts as green-filled bars;

4. Static RSUs does not use classification (selection delay of 0 s). RSUs are placed on the studied as static units. In graphs,
this algorithm is represented by purple crosses (line charts) and purple vertically-lined bars (bar charts).

Given the classification requires some time to gather data to determine the mobility profile of users, the selection delay of the
algorithms without classification is always 0 s (no delay). The score function (see eq. 9) for the solution using classification with
metrics combines the delay of tiles with the EPX.
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TABLE 3 Values for the most relevant parameters. " The variable parameter is either traffic density (from 10 to 15 packets/s) or

the relay selection delay (from 2 to 6 s). The solutions without classification always use O s).

Parameter Value Low density scenario | High density scenario
Playground size 1400 m - 1400 m 1400 m - 1400 m
User generation period ~3s ~0.75 s
Num. of users, total ~ 330 ~ 1250
Num. of users, inst. 30-50 100-150
Ratio of relays max. 5 % max. 5 %
Car:bike:pedestrian ratio 3:1:1.25 275:1:15
Simulation duration 1000 s 1000 s
Repetitions 10 10
Traffic model VBR VBR
Traffic densityt 10 to 15 packets/s 10 to 15 packets/s
Relay selection delay [0,2,4,6]s [0,2,4,6]s
Data packet size 1280 bytes 1280 bytes
Max. user throughput 10 Mbps 10 Mbps

4.1 | Simulation setup

Simulations were done using the simulator Omnet++ 5.6.1. Users’ trip were generated using SUMO (Simulation of Urban
MObility) 1.3.1. The studied area is the location of the University Gustave-Eiffel (France) and was downloaded from
OpenStreetMap. SUMO allows to randomly generate trips for different kinds of users (we used cars, bicycles and pedestrians)
in a realistic way. Users follow roads from the downloaded OpenStreeMap area (sidewalks in the case of pedestrians) and
obey to traffic rules. Once the trips of users have been created in SUMO, they are exported to a XML file. Then, the Omnet
simulation will create one "module” (or node) for each user that was generated by SUMO. To train the ML algorithm doing
the classification, we ran another simulation on a different location, allowing us to test the generalization of the algorithm. The
delay of the prediction allows to gather more or less data from users. A lower delay is less accurate (about 70% accuracy for 2 s)
because fewer data from a user’s position, acceleration, speed and so on were accumulated. On the other hand, waiting a longer
time to make the prediction means a higher precision (about 94% for 6 s) but users are not connected during that period.

The list of the most important parameters is presented in table 3. The size of the area is about 1.96 km?. Users are created
on the network each 3 s (low density case) or 0.75 s (high density case). The total and instantaneous number of users represent,
respectively, the amount of users created on one run and how much of them there are at any time. About 5% of the instantaneous
number of users are elected as relays. Most of the users are in cars and the smallest part of users are bicycles. Simulations were
1000 s in length with 10 repetitions to increase results accuracy. All users except relays generate data following a Variable Bit
Rate (VBR). Data packets are set to the minimum size of an IPv6 packet?® and users have a maximum throughput of about 10
Mbps?’. The maximum range of users is about 105-110 m with a path loss based on a —log,,(d) (d is the distance) model*®2°.
The amount of static RSUs (fourth algorithm) is set to 5. This is about the same amount compared to the others (5% of relays),
though it is purposely constant to reflect the fact the infrastructure is static.

4.2 | Studied performance indices

This section provides explanations concerning the Performance Indices (PIs) used for the performance evaluation. We use the
term “PI” to differentiate results shown in this section from metrics used to build the topology (as explained in section 3). PIs
are presented in the same order as the next section (sec. 4.3) for the sake of clarity.

4.2.1 | Packet delivery ratio

The packet delivery ratio (PDR) represents the percentage of generated data packets that reach their final destination. Some
factors such as frequent disconnections of nodes from their neighbors or very bad radio conditions causing the amount of re-
transmissions exceeding the maximum number of retries will cause PDR to decrease. Note that a packet being re-transmitted
many times on each hop can still yield to a high PDR, though other PIs such as delay will increase. The higher the PDR the better.
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4.2.2 | End delay

The end delay is the time taken for a packet to reach its final destination. It depends on how good radio conditions are (many re-
transmissions will increase delay) and on the amount of congestion (buffer occupancy). A low throughput means nodes require
more time to send packets, increasing delay. The amount of nodes a packet has to go through on its path (hop count) does not
necessarily increase delay, as a long path composed of nodes with high throughput and low congestion will perform better than
a short congested path. The lower the delay the better.

4.2.3 | Energy consumption

The energy consumption per node represents the amount of energy spent by each node on transmitting and receiving packets,
including signaling and data packets. A high number of transmissions per unit time implies increased duty-cycling. Bad radio
conditions resulting in many re-transmissions and topology instability causing more signaling are examples of causes of increase
energy consumption. Energy consumption can be very important, especially for devices that can not have their battery recharged.
The lower the consumption the better.

4.2.4 | Throughput usage

The throughput usage represents the percentage of the total throughput a node can achieve that is in use. For instance, if a node
can achieve a maximum throughput of 10 Mbps, a throughput usage of 20% means the node sends on average 2 Mbps of packets,
including signaling and data. A lower value is achieved when good radio conditions (fewer re-transmissions) are present or if
the topology is more stable (less signaling). The lower the throughput usage the better.

4.2.5 | Relative amount of packets reaching destination

PDR, end delay and throughput usage are not enough to see how well the different solutions perform. Indeed, if a solution
generates a very low amount of packets due to lack of connectivity, the PDR of these packets can still be very high, their delay
very short and the usage of throughput will be low as well. The relative amount of packets reaching destination is the number of
packets that reached the final destination compared to the total amount of packets created. It is the PDR times the total amount
of generated packets and represents how well nodes are connected to a relay. The higher the better.

4.3 | Simulation results

The following results are regrouped by the studied metric. We remind the reader that in line charts (where traffic load varies),
the selection delay is 2 s. In bar charts (representing the variation of selection delay), the traffic load is set to 15 packets/s.

4.3.1 | Packet delivery ratio

Figure 4 shows the PDR of the different algorithm. When studying the impact of traffic in the low density scenario, (fig. 4a), the
proposed solution performs significantly better at higher loads. This is because taking into account network metrics allows it to
adapt the location of relays where the need is greater. On the other hand, at lower traffic loads (figs. 4a) all solutions perform
similarly, except the static RSUs. This is because mobile users eventually travel out of range of RSUs resulting in a very low
PDR. In the case of a higher density of users (figs. 4c and 4d), the proposed solution almost always performs significantly better
because of more traffic generated in absolute. Indeed, in the case of a higher density of traffic, the use of network metrics allows
to select relays in the most critical locations. Algorithm with classification has similar results compare to without classification
on figures 4a and 4c because the low amount of relays (5%, see table 3) and the fact that users within the correct class of mobility
are not differentiated from one another makes it harder to select a candidate in a critical location. The same is seen on figures 4b
and 4d. The variance of the proposed solution increases with the selection delay in the low density scenario (fig. 4b) because the
network metrics used for the scoring function are older (less accurate). This is not the case in the second scenario 4d because
the higher density of users greatly increases the amount of network metrics and better locations are available to select a relay.
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4.3.2 | End delay

Figure 5 shows the average end delay of data packets for the different solutions. It is interesting to see that although the PDR
was not better in the low density scenario (fig. 4a) for the proposed solution, the end delay is better (fig. 5a). This is because
even though there are fewer choices to select a potential relay, the network metrics still help in determining the most critical
locations. When studying the selection delay in the low density scenario (see fig. 5b), the proposed solution is better, except
when the selection delay is 4 s. As stated at the beginning of section 4.1, this is due to the fact an average selection delay will
decrease the accuracy of the network metrics but it will only increase the classification accuracy by a moderate amount. On
the other hand, either a short selection delay (accurate network metrics and shorter waiting time) or a longer selection delay
(much more accurate classification) are preferable. For the high density scenario (figs. 5S¢ and 5d), the delay is comparable to the
other algorithms. In this case, the high amount of users makes the delay and EPX increase in all locations. The other solutions
perform similarly (figs. 5a, 5b, 5c and 5d) for the same reasons mentioned before. The variance of static RSUs tends to be very
high because the location of RSUs varies from one run to another and users tend to travel out of their range. This highlights the
relevance of dynamically selecting relays in the context of IoV.

4.3.3 | Energy consumption

The average energy consumption per user is depicted on figure 6. In all scenarios (figs. 6a, 6b, 6¢ and 6d), the proposed solution
consumes less energy. The higher PDR (fig. 4) and the similar or lower end delay (fig. 5) show that there are less re-transmissions,
resulting in a lower consumption of energy. It is worth noting that even though there are more users and packets generated on the
high density scenario (see fig. 8), the consumption per user is not necessarily higher. This is due to the fact that more paths are
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FIGURE 7 The average throughput usage in the different scenarios.

available, so the PDR is higher (as depicted on fig. 4c) and there are less re-transmissions. Static RSUs consume more energy
because of lower PDR (fig. 4) and higher delays (fig. 5) caused by more re-transmissions and losses.

4.3.4 | Throughput usage

Figure 7 shows the average throughput usage per node of the different solutions. In the low density and high density scenarios
(figs. 7a and 7c), the usage increases with load for all algorithms. The usage is higher in the low density case compared to the
high density case due to a higher PDR (fig. 4a compared to fig. 4c) and more re-transmissions. Static RSUs’ PDR is similar in
low and high density cases, so the throughput usage is similar. The selection delay (figs. 7b and 7d) does not impact much the
throughput usage, though the variance increases slightly for the algorithm with classification and metrics in the low density case
(fig. 7b) because of the decreased accuracy of the network metrics.

4.3.5 | Relative amount of packets reaching destination

The relative amount of packets reaching their final destination compared to the amount of generated packets is presented in
figure 8. The proposed solution shows better results in the low density scenario at higher loads (fig. 8a) and in the high density
scenario (fig. 8c). This follows the results on the PDR (fig. 4a and fig. 4c). The selection delay does not impact the relative
amount of arrived packets for the proposed solution in both scenarios (figs. 8c and 8d). The low PDR of Static RSUs explain
why the amount of packets reaching the destination is low.



14

5

3,5%10° T T T T T T 2,5%10°

Relative amount of arrived packets

o
X
<

1,2x10°

ithout cf y
S :
<1051
3x10 With classi. and metrics
Static RSUs

2x10°F

10°F 10°
8x10°

6x10°F

4x10°F

Relative amount of arrived packets
Relative amount of arrived packets
Relative amount of arrived packets

5x10°- "\ P 2x10°F om w121
% \* % S
o 1 12 15 14 1 0 11 12 15 14 1 0 2 4 6
Average traffic generation per node (packets/s) Sink selection delay (s) Average traffic generation per node (packets/s) Sink selection delay (s)
(a) The impact of the average (b) The impact of the selection (¢) The impact of the average (d) The impact of the selection
network load in the low density delay in the low density scenario. network load in the high density delay in the high density
scenario. scenario. scenario.
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| CONCLUSION

Guaranteeing QoS in the oV is still a challenging issue. The different mobility profile of users (pedestrians, bicycles, e-scooters,
cars, buses and so on), their different velocity and their different paths contribute to the instability of the topology. We are
convinced our solution to dynamically select relays amongst users by running a machine learning algorithm to classify users
according to their mobility profile and the use of network metrics to find critical locations is key in improving QoS in the IoV.
Results show the proposed solution increases the PDR by up to 6%, reduces the average energy consumption of users by up to
30% and increase topology stability by reducing re-transmissions. Future work will focus on extending the solution to support
more wireless technologies and network metrics.
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