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We discuss a simple experiment investigating the shrinkage of surface soap bubbles sitting on
a thin solid plate with a circular orifice located under the apex of the bubble. We identify three
different shrinking regimes, the occurrence of which depends on a combination of key parameters
that include the ratio between initial bubble and orifice sizes and physicochemical properties of the
fluid system. For low-viscosity liquids and/or large ratios, a bubble remains quasi-hemispherical as
shrinking proceeds. By contrast, for liquids with sufficiently large viscosities and/or small geometric
ratios, a bubble seeks the shape of a spherical cap while the air inside it escapes through the orifice.
In this case, shrinking proceeds with a bubble foot that either recedes over time or does not move
for the largest viscosities and/or smallest ratios. We use basic physical arguments to rationalize
the three identified regimes and to explain the shrinking dynamics. Specifically, this model which
captures observations and measurements is based on Bernoulli’s principle for the air flow, volume
conservation and a friction law that accounts for viscous dissipation at the moving bubble foot.

I. INTRODUCTION

The draining of a tank initially filled with a liquid is a
common problem that impacts processes in many fields
that include food and oil industries. It has been investi-
gated starting from the pioneering work by Torricelli who
established a well-known inviscid law for the fluid veloc-
ity1 until a recent work that has revealed the importance
of surface wettability on the speed of drainage.2 Also,
students are familiar with this problem which is useful
in the classroom to introduce both the notion of free fall
and the steady-state Bernoulli’s principle. Here, we in-
vestigate a variant of the Torricelli’s problem, that is, the
case of air escaping a deformable tank by working with
a soap bubble sitting on a solid substrate that has a cir-
cular orifice located under the apex of the bubble. Also,
it is worthwhile noting that the experiment described in
this article can be seen as a variant of a deflating bubble
experiment3 in which the bubble foot would be allowed to
move. In a deflating bubble experiment, a hemispherical
bubble formed at the end of a tube deflates with a pinned
foot when the tube’s other end is opened. Since a long
and narrow tube is used in this study, another difference
between experiments resides in the air flow that satisfies
Poiseuille’s law3 rather than the Bernoulli’s principle.

Bubbles are important for a variety of reasons. For in-
stance, centimeter-sized floating bubbles made by blow-
ing air onto soap films are useful for entertainment and
scientific purposes and they are excellent tools in the
classroom that can aid the learning of physics. For these
reasons, they have been studied for centuries4–6 although
their formation mechanism has been explained only re-
cently.7,8 Also, at smaller scales, bubbles with sizes in
the µm-mm range are employed in diverse applications
in fields that range from material science to medicine
and biology.9 In Nature, surface bubbles with sizes in the
mm-cm range and sitting on a liquid-gas interface play a
key role in processes occurring at the surface of oceans.
These bubbles are indeed important for climate as their
rupture can produce aerosol droplets that contribute to

the formation of sea spray.10–12
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FIG. 1. (a) Photograph illustrating our experiment in which
a surface soap bubble sits on a thin plate above an orifice
that is initially closed; the 6 mm orifice diameter indicates
the scale. Schematic of our (b) setup and (c) experiment
defining the variables at play. (b) A bubble is blown on the
surface over an orifice of radius a until it reaches a desired
value of its radius R0. This process forms a soap film that
seals the orifice which is opened (c) at the origin of time t of
an experiment and we record the temporal variations of the
bubble’s radius of curvature Rc, its height H at its center and
the distance X describing the position of the bubble’s foot.

Not surprisingly, the rupture of such surface bubbles
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FIG. 2. Sequence of images illustrating from top to bottom the three regimes seen experimentally; these images are taken
from the three movies provided as Supplementary Material.22 Top row: A bubble remains hemispherical as shrinking occurs in
regime I. Middle row: A bubble seeks the shape of a spherical cap when shrinking occurs in regime II. Bottom row: In regime
III, a bubble collapses on itself with a distance X that remains unchanged throughout the dynamics. For these experiments,
the initial radius of the bubble is fixed and equal to R0 = 32 ± 1 mm. The values of the radius a of the orifice and liquid
viscosity ηℓ are respectively : (top) 0.5 mm and 1 mPa s, (middle) 2 mm and 1 mPa s and (bottom) 5 mm and 22 mPa s.

and subsequent phenomena have been widely studied by
the physics community for the past decade.13–15 Also,
centimeter-sized surface bubbles can serve as model sys-
tems for other types of flows seen in Nature. Indeed, the
flow properties of isolated vortices that can appear on
the surface of such bubbles bear analogies with those of
hurricanes.17,18 Here, we work with these surface bub-
bles which are not only important to understand natural
processes but also easier to manipulate than those seen
at smaller scales. For instance, we have recently eluci-
dated the formation mechanism of centimeter-sized bub-
bles produced by plunging thin films of liquid in a pool.19

In fact, the experiments described in this article do not
require sophisticated equipment and they could be easily
performed at low cost by students as a laboratory activ-
ity. Students would need a solution for blowing bubbles,
a straw, a smartphone camera to record the dynamics,
Petri dishes that could be used as thin plates and a drill
with drill bits of different sizes. In addition, this experi-
ment will give students an opportunity to learn about an
intrinsic property of fluid-fluid interfaces, that is, surface
tension. This fluid parameter is the interfacial energy re-
quired to increase the surface of an interface by one unit.
At the curved liquid-air interfaces forming a bubble, sur-
face tension can also be seen as a force per unit length
which is at the origin of a pressure difference between
the inside and the outside of a bubble. This overpressure

existing inside drops and bubbles is notoriously known
as the Laplace pressure. In our study, because of these
properties, a bubble empties itself into the atmosphere
as the air inside it flows through the open orifice from
the high pressure (inside the bubble) to the low pressure
(outside the bubble).

In our experiments, three distinct shrinking regimes
can be observed depending on the geometric and physic-
ochemical variables at play (see Fig. 1 and Fig. 2 for
a description of our experiment and illustrative exam-
ples of the different shrinking regimes). In the first two
regimes, an initially hemispherical bubble either remains
quasi-hemispherical or seeks the shape of a spherical cap
as shrinkage proceeds with a bubble foot that recedes
throughout the dynamics. In the third regime, bubbles
flatten over time with a nonmoving bubble foot. Com-
bining Bernoulli’s principle for the air flow, conservation
of the air flow rate and friction acting on the bubble’s
foot, our modeling work concurs well with experiments.

II. EXPERIMENTS

At first glance, these simple experiments seem appro-
priate for introductory physics laboratories. However,
they require knowledge of fluid dynamics, dimensional
analysis and differential equations. Thus they should
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3

be more appropriate for upper-division students. The
regime in which a bubble remains quasi-hemispherical
during an experiment could be a good project for un-
dergraduate physics students. Indeed, we show in this
case that the shrinking dynamics is described by a first-
order ordinary differential equation that can be solved
analytically by making an assumption easily met experi-
mentally. We find an excellent agreement between exper-
imental data and predictions of the temporal variations
of the bubble size and time at which shrinking ends. This
regime is easily observed with a large bubble (& 30 mm
in diameter) shrinking on a plate having a small hole
(. 1 mm in diameter) with a soap solution consisting
of a few drops of dishwashing detergent diluted in tap
water. The slow dynamics observed in this regime could
be recorded with a smartphone video camera. The time
at which shrinking ends would then be obtained by a di-
rect observation of a movie and the temporal variations
of a bubble’s size would be measured using a free image
processing program such as Tracker20 or ImageJ.21

The experiments and analysis described in the second
part of the article (shrinking spherical caps) might be
more appropriate for graduate students. Indeed, in this
case, a force accounting for the friction acting on a bub-
ble’s foot during shrinkage is introduced in the modeling
work so that calculations get slightly more involved. The
resulting ODE describing an experiment is then solved
numerically. This would be a good computational exer-
cise for graduate physics students. Also, in the case of
shrinking spherical cap, the variations of three different
primary outcomes (rather than one) can be measured,
which makes a good image analysis program needed.
To summarize, the main purpose of our article is to re-

port experimental findings and modeling work that could
be used as a laboratory activity for both undergraduate
or graduate physics major courses. The exact content of
the activity would depend on the level of experience of
the students. The physics teacher would have a choice
between several activities discussed throughout this pa-
per and summarized in the four-item list below. These
items are sorted in ascending order of required level:

– Observations: Least experienced students could try
to identify the three different regimes that can be ob-
served with the naked eye. Using different liquids and
surfaces with holes of various sizes they could be encour-
aged to guess which physicochemical properties of a liq-
uid and geometric parameters of the problem control the
occurrence of a regime.
– Building an experimental setup: After gathering the

equipment needed to conduct experiments, i.e. a solution
for blowing bubbles, a camera, a light source, thin plates
with holes and a needle to puncture a film sealing an
orifice, students could build an experimental setup that
would allow them to record movies which can be analyzed
using a free image processing software. They should pay
particular attention to the position of the camera and
lighting conditions and they should make sure the plates
are leveled. Students would then be able to visualize on

a computer screen the regimes seen experimentally with
the naked eye. Focusing on regime I, they could eventu-
ally try to analyze a movie with the aforementioned soft-
ware to obtain the temporal variations of the geometric
quantities characterizing a bubble.

– Regime I, interpretation of the results and the impor-

tance of approximations in physics: Based on their guess
of the fluid and geometric key parameters at play (first
item on this list), students should be given a chance, and
time, to try to explain the physics behind their measure-
ments in regime I. The physics teacher could guide stu-
dents as they construct their understanding and he/she
could introduce the model of the experiment after some
time if needed. The students could then be asked to try
to find an approximation (as explained in our article)
that would make the determined first-order differential
equation solvable analytically. Ultimately, they would
then conduct several experiments within this limit and
try to adjust the results with the analytical solution of
the simpler form taken by the ODE.

– Regime II and III, custom-written image processing

and numerical simulations: More experienced students
could pursue the project with the experimental and the-
oretical investigations of regimes II and III. The script of
our image processing program could help as a handout for
the image processing.22 The teacher would likely provide
the students with the expression of the viscous force and
students would then establish the differential equations
driving the dynamics themselves and they could solve
them numerically and compare the resulting predictions
to their experimental results.

Figure 1 shows the experimental setup and defines the
variables at play in our experiment. To prepare a sur-
face bubble (Figure 1(a) shows a photograph of such a
bubble), we first place a soap film at the end of a circu-
lar nozzle of diameter 1 cm by dipping the nozzle into
one of the soap solutions described below. The soap
film is then curved by injecting air at controlled pressure
through the nozzle with a flow control system (Fluigent).
The contact between the curved film and the plate cre-
ates a surface bubble which spreads over the substrate
that is initially wetted with the same solution until a de-
sired bubble radius R0 = 10 − 35 mm is reached. As a
drilled plate, we use the bottom surface of a 100×20 mm
Petri dish (Falcon). Wetting the solid substrate with
the soap solution produces a thin film of liquid having a
homogeneous thickness in the range 15 − 25 µm and a
size that is made larger than the prepared bubble; film
thicknesses are measured with a spectrometer (Avantes
AvaSpec-2048) in our study. The prepared bubble which
rests on a liquid film of the soap solution is hemispherical
as it is at equilibrium with its surroundings, i.e., the soap
film at the level of the bubble’s foot is perpendicular to
the horizontal wetted substrate.23,24 A bubble is made of
a soap solution consisting of 2 wt.% of dishwashing liq-
uid (Palmolive Original, Colgate-Palmolive) in 98 wt.%
Milli-Q water to which an amount (either 0, or 40, or
70 wt.%) of glycerol (Sigma-Aldrich) is added. The liq-
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4

uid dynamic viscosity and density are ηℓ and ρℓ. γ is the
air-liquid surface tension. Table I summarizes the values
of ηℓ and γ for the three soap solutions containing dif-
ferent amount of glycerol. The air density and dynamic
viscosity are ρ and η, respectively. The apex of the bub-
ble is located over the center of the circular orifice of
radius a = 0.5− 6.5 mm that is initially closed. Indeed,
during the formation of a surface bubble, its spreading
over the plate leaves a soap film on the orifice which seals
it. In our experiments, an orifice is drilled in a thin plate
whose thickness is negligible compared to the radius a.
For fixed bubble and hole sizes and a given liquid, we
find that experiments conducted with different bubble
and film thicknesses give the same shrinking dynamics;
the thickness of the film forming a bubble is in the range
2 − 10 µm in our experiments. This point should fur-
ther facilitate implementing the experiment as a project
for students. In addition, we have verified that results
obtained with bubbles blown by mouth were identical to
those provided by our setup.

TABLE I. Dynamic viscosities and air-liquid surface tensions
of the three soap solutions prepared with different amounts of
glycerol as indicated. The quantities were measured at 20◦ C.

glycerol concentration (wt.%) ηℓ (m Pas) γ (m N/m)
0 1 25
40 4 25
70 22 30

A bubble begins to collapse, i.e., the air begins to es-
caped out of the bubble, when the orifice is opened (i.e.,
rapidly punctured with a needle) at the origin of time t
and we record with a camera (Photron Fastcam SA3) the
temporal evolution of the three main outcomes of the ex-
periment: The maximal height H of a bubble measured
between its apex and the center of the orifice, the bub-
ble’s radius of curvature Rc and the distance X describ-
ing the position of a bubble’s foot (see Fig. 1 and Fig. 2
defining variables at play). Images of an experiment are
analyzed using a custom-written MATLAB software; an
annotated script of this software is provided as Supple-
mentary Material.22 In our study, the contact angle that
the surface of the bubble makes with the substrate at
the level of the bubble’s foot is θ. As illustrated in Fig. 2
for experiments conducted for a fixed initial bubble ra-
dius R0 = 32 ± 1 mm, two of the three soap solutions
and three holes of different radii, three different shrink-
age scenarios described below can be observed.
For an experiment conducted with the liquid having

the lowest viscosity and the smallest orifice of the studied
set, i.e. the largest ratio between initial bubble and orifice
sizes, a bubble remains quasi-hemispherical as shrinking
proceeds. This is regime I shown in the top row of im-
ages in Fig. 2, an experiment for which θ = 89 ± 1 ◦

throughout the dynamics. In our study, we refer to the
quasi-hemispherical bubbles seen in regime I as hemi-
spherical bubbles for the sake of simplicity. As shown in
the middle sequence of photographs in Fig. 2, a bubble
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FIG. 3. Experimental variations with time of the normal-
ized distances describing a bubble: The radius of curvature
rc = R/R0, height h = H/R0 and distance x = X/R0 that
correspond to the three regimes shown in the sequences of im-
ages in Fig. 2 and the three movies provided as Supplementary
Material.22 Parameters are identical to those of Fig. 2.

made of the same solution seeks the shape of a spheri-
cal cap as shrinking proceeds when the size of the orifice
is increased. This regime is herein denoted regime II.
In a third regime (regime III) seen for the liquid hav-
ing the largest viscosity and the orifice with the largest
value of a in Fig. 2, as the air escapes through the ori-
fice, the dynamics is characterized by a bubble collaps-
ing on itself with a nonmoving bubble’s foot (see bottom
row of images in Fig. 2). For the whole study, we non-
dimensionalize the problem with Rc = R0rc, H = R0h,
X = R0x = and t = τε where τ is a characteristic time
of the experiment that is defined in section IIIA. Fig-
ure 3 shows temporal evolutions of the normalized dis-
tances that correspond to the sequences of images re-
ported in Fig. 2. For this investigation, image processing
captures most of the shrinking dynamics in any of the
three regimes (see Fig. 3) but it fails to describe the last
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5

moments of an experiment. As a result, the experimental
time tend at which shrinking ends is obtained by a direct
observation of the movie of an experiment.
We rationalize these experimental observations and

measurements in section III and we compare the resulting
predictions to systematic experiments in section IV.

III. MODEL OF THE FLOW

In what follows, we model the different shrinking dy-
namics obtained in the three regimes seen experimentally
(Figs. 2 and 3). Firstly, in section IIIA, we begin by the
regime I in which the bubbles remain hemispherical while
it shrinks. Secondly, we rationalize in section III B the
dynamics seen in regime II, that is, the regime in which
the shape of a bubble is a spherical cap as shrinking pro-
ceeds. Lastly, we rationalize in section III C our findings
in regime III where a bubble’s foot is pinned during an
experiment. For each of the three regimes seen experi-
mentally, we model the dynamics assuming the air flow
satisfies Bernoulli’s principle. Indeed, for the investigated
flow configuration, it seems reasonable to consider that
air is inviscid so that dissipative effects by viscous forces
can be neglected and air flow can be described with the
Bernoulli’s equation as shown below. By contrast, vis-
cous dissipation impacts the motion of a bubble’s foot in
our experiment and a Reynolds number associated with
this flow can be defined. This Reynolds number Rℓ can
be written eρℓẊ/ηℓ where ρℓ and e are the liquid density
and thickness of the liquid film under a bubble, respec-
tively. For the plot illustrating Regime II in the middle
panel of Fig. 2, we find thatRℓ isO(10−1) throughout the
dynamics which indicates that viscous effects are indeed
important at the bubble’s foot; we have used an average
film thickness e = 20 µm to determine this estimate.

A. Regime I: the case of hemispherical bubbles
(θ ∼= π/2)

For the hemispherical bubbles seen in regime I (see top
photographs in Fig. 2 and Movie S1 in the Supplemen-
tary Material22), Bernoulli’s relation written along the
vertical streamline between the apex of the bubble and

the center of the orifice reads P0+
4γ
Rc

+ ρṘc
2

2 = P0+
ρv0

2

2

where P0 is the atmospheric pressure.6,25 It is worth-
while noticing that in contrast with Torricelli’s prob-
lem1 which is driven by the hydrostatic pressure, the
dynamics is driven in our case by the Laplace pres-
sure 4γ

Rc
. The Bernoulli’s relation can be rearranged as

v0
2 = Ṙc

2
+ 8γ

ρRc
. As mentioned above, the conserva-

tion of the air flow rate gives V̇ = 2Rc
2Ṙc = −a2v0.

Using this relation in the expression of the velocity v0
determined using Bernoulli’s principle, one readily finds
the following first-order ordinary differential equation for

Rc: Ṙc =
dRc

dt = 2
√
2a2

√

γ
ρRc

1√
4Rc

4−a4
.

Using τ = Gτin, where G =
(

R0

a

)2
is a geometric

dimensionless quantity and τin =
√

ρR0
3

γ is an inertio-

capillary timescale, this ODE can be re-written for rc

ṙc =
drc
dε

= 2

√

2

rc

G√
4G2rc4 − 1

(1)

which can be solved numerically. Interestingly, the
ODE can take an even simpler form that can be solved
analytically when we make an assumption easy to meet

experimentally. Within the limit G =
(

R0

a

)2
= − v0

2Ṙc
≫

1, it is indeed reasonable to consider that the term Ṙc
2

is negligible compared to v0
2 in the Bernoulli relation so

that the ODE takes the form

ṙcrc
5/2 = −

√
2 (2)

which has an analytical solution, that is, rc
7/2 should

decrease linearly with the normalized time ε = t/τ as

rc
7/2 = 1− 7√

2
ε. (3)

In other words, when G =
(

R0

a

)2 ≫ 1, the time tend
at which all air has escaped out of a hemispherical bub-

ble should be tend =
√
2
7 τ ≃ 0.202

(

R0

a

)2
√

ρR0
3

γ . These

predictions are compared to experiments in section IV.

B. Regime II: the case of spherical caps (θ < π/2)
with a moving bubble’s foot

When θ < π/2, as shrinking proceeds (see middle se-
quence images in Fig. 2 and Movie S2 in the Supple-
mentary Material22), the bubble’s shape is a spherical
cap having a volume π

3H
2(3Rc − H). The conserva-

tion of the air flow rate now gives the relation v0 =

−H
a2

[

Ḣ(2Rc −H) +HṘc

]

. Bernoulli’s principle writ-

ten along the vertical streamline between the bubble’s
apex and the center of the orifice gives v20 = 8γ

ρRc
+ Ḣ2.

Combining the two expressions of the air velocity v0,
non-dimensionalizing as mentioned in the previous sec-
tion and using τ = Gτin as in the case of hemispherical
bubbles, one easily obtains

h
[

ḣ(2rc − h) + hṙc

]

= − 1

G

√

ḣ2 +
8G2

rc
. (4)

To close the problem, one needs to write a second equa-
tion relating ṙc, rc, ḣ and h. Such an equation is provided
by taking into account viscous dissipation that occurs at
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µ

total capillary

force

viscous force

flow
X 

°,´`

µ

2×−→γ

βγ
[

ηℓ
γ
|Ẋ|

]

2/3 −→x

−→x

FIG. 4. Schematic of a surface soap bubble used in our study
and close-up view of a bubble’s foot illustrating the forces per
unit foot length acting on it as discussed in the text. For
the sake of clarity, this simplified view does not show the
four surface tensions (two liquid-gas tensions and two liquid-
solid ones) acting on the bubble’s foot in the direction of the
wetted solid. For each of the two pairs of phases (liquid-solid
and liquid-gas), the two acting forces are indeed equal and
opposite to each other so that they cancel one another out.
The bubble sits on a thin film of liquid which is the same
inside and outside the bubble’s foot. Hence, it has no effect
on the resultant forces. Also partially shown in the close-
up view are the soap molecules covering the two liquid-air
interfaces of the soap bubble.

the bubble foot moving on the wet solid. Viscous fric-
tion indeed explains the change in the dynamics seen
between regime I and II (see Fig. 2): An initially hemi-
spherical bubble becomes a spherical cap in regime II
as its flattening dynamics is faster that the motion of
its foot on the solid. Consequently, contrary to its vari-
ations in regime I, h is smaller than rc and x at any
time in regime II (see Fig. 3). Written per unit foot
length, the viscous force acting on a bubble’s foot in the
direction of the solid plane varies nonlinearly with the

foot’s velocity and has the classical form βγ
[

ηℓ

γ |Ẋ|
]2/3

,

where β is a parameter that depends on boundary con-
ditions.26,27 A capillary force with magnitude 2γ is also
acting on a bubble’s foot in the direction of the bub-
ble surface. Figure 4 shows a close-up view of a bubble’s
foot illustrating these forces. Considering quasistatic mo-
tion, the projection of the equilibrium forces onto −→x
(Figure 4 defines the x-axis) in the direction of the wet

wall plane gives 2γ cos θ = βγ
[

ηℓ

γ |Ẋ|
]2/3

. Since X is

decreasing with time in regime II, we have |Ẋ| = −Ẋ.
Also, because of geometry, cos θ = (Rc − H)/Rc and
X2+(Rc−H)2 = Rc

2. The derivation of the latter equa-

tion gives Ẋ =
(

ṘcH + ḢRc − ḢH
)

/
√
2RcH −H2.

Combining this expression and the balance of forces and
non-dimensionazing with dimensionless quantities as in
section IIIA, one finds the second equation

hṙc+ ḣ(rc−h) = −2
√
2T

(

1− h

rc

)3/2
√

h(2rc − h) (5)

where T is the ratio of timescales T = τ/τvis with the

visco-capillary timescale τvis = β3/2ηℓR0/γ.
The combination of Eq. (4) and Eq. (5) gives

(

h2rc
2 − 1

G2

)

ḣ2 − 2Irch
2ḣ+

(

h2I2 − 8

rc

)

= 0 (6)

where I = 2
√
2T

(

1− h
rc

)3/2
√

h(2rc − h). This

model is confronted to experiments in section IV.

C. Regime III: the case of spherical caps (θ < π/2)
with a nonmoving bubble’s foot

As illustrated in the bottom images in Fig. 2 and in
Movie S3 in the Supplementary Material,22 our experi-
ments show that in regime III, seen for the smallest ratio
(

R0

a

)2
and/or largest fluid dynamic viscosity ηℓ, the foot

of a bubble barely moves throughout the shrinking pro-
cess [see Fig. 3(a)]. Hence, we assume that it is pinned in

this regime: X = R0 and Ẋ = 0. In regimes II and III, a
bubble’s shape is a spherical cap whose volume written
as a function of H and X using the geometric relation

Rc = (X2+H2)/2H is π
2H(H

2

3 +X2). The conservation

of the air flow rate gives Ḣ(H2 + X2) = −2a2v0 where
the velocity v0 is obtained as in previous sections using
Bernoulli’s principle which reads v20 = 8γ

ρRc
+ Ḣ2. Con-

trary to the case of regime II in which the term Ḣ2 can
take values that are not negligible when compared to the
term 8γ

ρRc
given by the Laplace pressure, in regime III

the former term is more that three orders of magnitude
smaller than the latter; in Appendix B, Fig. B1 illustrates
the comparison between the two terms for the data shown
in Fig. 3(a). Consequently, one can approximately write

v0 =
√

8γ
ρRc

= 4
√

γH
ρ(X2+H2) in regime III so that the flow

rate conservation reads Ḣ = −8a2
√

γ
ρ

√
H

(H2+X2)3/2
. Using

the conditionX = R0 of regime III, non-dimensionalizing
this relation, we find a prediction for the shrinkage time

tend = 1
8Gτin

∫ 1

0
(h2+1)3/2√

h
dh. Solving the integral nu-

merically, we find tend ≃ 0.334Gτin. We compare this
prediction to experiments at the end of section IV.

IV. RESULTS AND DISCUSSION

In this section, we compare the modeling work pre-
sented in section III to systematic experiments.

We begin by rationalizing the results found in regime
I for which a bubble remains hemispherical as shrinking
proceeds, i.e., rc = h = x (see the plot in the top panel
in Fig. 3). Figure 5(a) shows the variations with time of
the normalized radius of curvature rc in this regime for
different soap solutions and radii of the orifice. For the
presented set of experiments in Fig. 5, we work with small
enough orifices and sufficiently large bubbles to fulfill the
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0 0.1 0.202

√

2

7
≃ 0.202

√

2

7

(
R0

a⋆

)2

√
√
√
√ρR0

3

γ
︸ ︷︷ ︸

τ(a = a⋆)

t/τ(a = a⋆)

FIG. 5. (a) Variations with time of rc in regime I for differ-
ent orifices and liquid viscosities as indicated. These experi-
ments are performed with large enough bubbles and orifices

not larger than a millimeter in radius so that G =
(

R0

a

)2

≫ 1.
As a result, the solution of Eq. (2) describes the variations of

rc as, for each set of data, r
7/2
c decreases linearly with the

normalized time ε. Inset: All curves in the main plot collapse
onto a single one when the effective radius a⋆ is used to de-
termine τ ; this single curve is well-described by the black line
which is a prediction calculated using Eq. (3) with a = a⋆. (c)
As predicted, when G ≫ 1, the time at which the air has com-

pletely escaped out of the bubble is tend =
√

2

7

(

R0

a

)2
√

ρR0
3

γ
.

For these experiments, G varies in the 700− 4200 range.

condition G =
(

R0

a

)2 ≫ 1 which has allowed us to write
the approximated ODE Eq. (2); in Fig. 5, G = 700 −
4200. As a result, the temporal evolution of rc should be
described by the solution of Eq. (2), that is, Eq. (3). As
predicted by the latter equation, when rc

7/2 is plotted

as a function of the normalized time ε, this quantity is a
linearly decreasing function of ε [see Fig. 5(b)] for all data
shown in Fig. 5(a). However, these curves do not collapse
onto a single one as expected and the x-intercept of the

predicted line (
√
2
7 ≈ 0.202) is overestimated for each set

of data [Fig. 5(b)]. Both predicted results are obtained
only when an effective radius a⋆ is used instead of the real
one a to calculate τ [see inset of Fig. 5(b)]. Also, using
a = a⋆, figure 5(c) shows that the experimental shrinkage
time in regime I which varies over almost two orders of
magnitude in our study is well-described by Eq. (3) which

predicts tend =
√
2
7 τ ≈ 0.202τ .

regime I

 r
c
=
R
c
/
R

0
, 
h
=
H

/
R

0
, 
x
=
X

/
R

0

"

0

0.5

1

0 0.1 0.2

(i)

FIG. 6. Temporal evolutions of rc, height h and distance
x that correspond to the experiment denoted (i) in Fig. 4.
As indicated by the gray area, the response is not that of
regime I at late time: Friction effects come into play and the
normalized distance are no longer identical. The line which

corresponds to the prediction for regime I, rc =
(

1− 7√
2
ε
)2/7

,

that is given by Eq. (3) with a = a⋆ rationalizes most of the
dynamics.

As shown in Fig. C1 in Appendix C, the effective radius
a⋆ that is adjusted to compare experiments and modeling
work appears to be slightly smaller than a. It is a weakly
dependent function of the soap solution and it varies lin-
early with a roughly as a⋆ = 0.75a. It seems reasonable
to find that an effective radius of the orifice smaller than
the real one should be used to adjust the data since the
speed of the air in the Bernoulli’s relation used for each
regime is written at the center of the orifice.

To summarize, for sets of hemispherical bubbles and
orifices giving sufficiently large geometric dimensionless
parameter G, Figure 5 (b) and (c) show that the shrinking
dynamics are fully captured by the simple law given in
Eq. (3) and that the prediction for tend well describes
experimental findings when a is a free parameter a⋆. The
time τ will hereafter be estimated using a⋆.

Figure 6 shows the temporal evolution of the three nor-
malized distances corresponding to the data denoted (i)
in Fig. 5(a). For this set of data, the response is that
of regime I for most of the dynamics, i.e., rc = h = x
from ε = 0 until the normalized time ε is about 0.18 in
Fig. 6. Friction at the bubble’s foot comes into play at
late times as illustrated by the gray domain displayed in
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22

h

rc x

h

rc

x

h

rc

x

III III I

I

I

IIII

II I

FIG. 7. Temporal variations of rc, height h and distance x for
different fluid dynamic viscosities ηℓ and geometric ratios G =
(

R0

a

)2

as indicated. Symbols stand for experiments and the
lines are calculated using Eq. (6) and the method explained
in the text.

Fig. 6. In this temporal domain, rc ̸= h ̸= x so that
cos θ = 1 − h/rc > 0. As discussed in section III B,
to rationalize these shrinking dynamics, we use MAT-
LAB to solve numerically Eq. (6) for ḣ. Equation (5) is
then used to determine ṙc. Our software written with
MATLAB finds values for h and rc using Euler’s method
and x is then determined using the geometric relation
between the three distances, i.e., x =

√

h(2rc − h). Fig-
ure 7 shows the temporal variations of the distance rc, h

and x with ε for three different geometric ratios
(

R0

a

)2

and the three fluids used in this study as indicated in
the figure. The combination of these nine plots sum-
marizes our study as they demonstrate the transitions
between the three regimes seen experimentally are con-
trolled by both the geometric ratio and the fluid dynamic
viscosity. In addition, in Fig. 7, the lines calculated with
our model concur well with the experimental data rep-
resented by symbols for the three regimes. To obtain a
good agreement between experiments and predictions, β
is introduced as a second free parameter of the model
discussed in section III B. We find that the value taken
by β = 40 ± 8 is independent of the liquid used and the
investigated regime. β is however larger than the value
usually reported in the literature: Depending on whether
the air-liquid interface is mobile or rigid, β ≃ 5− 6.26,27

The larger value of β taken in our experiments could
be explained be the strongly rigid interfaces often found
in commercial detergent solutions which would enhanced
the viscous dissipation at the moving bubble foot.28

Equation (5) reveals that in fact the governing di-

 1 mPa s

 4 mPa s

 22 mPa s

´`

0.1

0.2

0.3

0.4
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10
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4

≈ 0.334

≈ 0.202

 regime

III

 regime

I

 regime

II

T = τ/τvis

t e
n
d
/τ

FIG. 8. Variations of the ratio tend/τ between experimental
shrinkage time and predicted characteristic time with the con-
trolling dimensionless time T = τ/τvis. The symbols stand
for experimental data and the solid line is calculated using
our model.

mensionless parameter of the problem is T = τ/τvis =
Gτin/τvis which does not only comprise the discussed ge-

ometric ratio G =
(

R0

a

)2
and dynamic viscosity ηℓ used

in Fig. 7 but also other parameters of the problem via

the inertio-capillary
(

τin =
√

ρR0
3

γ

)

and visco-capillary

(τvis = β3/2ηℓR0/γ) timescales. As shown in Fig. 8, T
is the parameter that should be tuned to modify the re-
sponse from regime I, to regime II, to regime III. In-
deed, this figure showing the variations of tend/τ with T
summarizes well our findings as the roughly 200 exper-
iments that were performed and analyzed in the three
shrinking regimes collapse onto a single curve that is well-
described by the solid line calculated using our model.
Additionally, although it is difficult to perform experi-
ments when T is smaller than about 10−1, we find that
the predicted expression tend/τ ≃ 0.334 for regime III
(see section III C) emerges from numerical simulations
and correlates with experimental data in this regime (i.e.,
data points in the range T ≃ 0.1–0.3 in Fig. 8); we could
not perform experiments with values of T smaller than
about 10−1 because it is difficult to prepare bubbles with
smaller ratios R0/a and/or larger liquid viscosities ηℓ
than those reported.

V. CONCLUSIONS

We have studied the hitherto uninvestigated shrinkage
of centimeter-sized surface bubbles. Our results have re-
vealed three distinct shrinking scenarios, the occurrence
of which is controlled by a dimensionless parameter that
is a function of the physicochemistry of the fluid system
and the geometric variables at play. In the first two sce-
narios, a bubble’s foot recedes when shrinking occurs,
the bubble either remaining hemispherical or seeking the
shape of a spherical cap during the process. In the third
shrinking scenario that we have identified, a bubble flat-
tens with a nonmoving bubble’s foot as shrinking pro-
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ceeds. Contrary to the classical problem of the draining
of a tank through an orifice controlled by the hydrostatic
pressure, the driving force is given by the Laplace pres-
sure in the case of shrinking bubbles and we show that
the process is limited by viscous dissipation acting at a
bubble’s foot. These physical arguments combined with
conservation of air flow rate allow us to present a model
that rationalizes the shrinking dynamics seen in the three
scenarios. As discussed in the article, this experiment
would make a great project for undergraduate and grad-
uate physics courses. First of all, experiments can be
performed by students without the need for sophisticated
equipment. In addition, the first regime is described by
an ODE that has an analytical solution when making a
reasonable approximation. As the resulting predictions
for the temporal variations of a bubble size and time
at which shrinking ends concur well with experiments, a
project based on the study of the first regime should also
teach students the usefulness of well-justified approxima-
tions in physics. Also, upper-division students could ben-
efit from the experiment and particularly from the case of
shrinking spherical caps. This case is indeed described by
an ODE that can be solved numerically making it a good
combination of experimental and computational work.
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Appendix A: Description of the movies22

• Movie S1 - Shrinking quasi-hemispherical bubbles

in regime I: A bubble remains quasi-hemispherical as
shrinking proceeds in regime I. These observations are
made with a low-viscosity fluid soap solution (ηℓ =
1 mPa s), a sufficiently large initial bubble (R0 =
32.68 mm) and a small orifice (a = 0.5 mm).

• Movie S2 - The case of shrinking spherical caps in

regime II: In regime II, a bubble seeks the shape of a
spherical cap as air escapes through the orifice. The vis-
cous effects acting on a bubble’s foot are important in
this regime illustrated for ηℓ = 1 mPa s, a bubble having
an initial radius R0 = 31.66 mm and a value of a = 2 mm
that is four times larger than that of Movie S1.

• Movie S3 - Collapsing bubbles with a nonmoving bub-

ble foot in regime III: For large enough liquid viscosities
(ηℓ = 22 mPa s in the experiment shown in Movie S3)
and sufficiently small ratio between bubble and orifices
radii (R0 = 33.1 mm and a = 5 mm), Movie S3 shows
that the dynamics is characterized by a bubble collapsing
on itself with a nonmoving bubble’s foot.

Appendix B: Comparison between the terms Ḣ2 and
8γ
ρRc

of the Bernoulli’s relation in regime III

Figure B1 shows that Ḣ2 is more than three order
of magnitude smaller than the term 8γ

ρRc
given by the

Laplace pressure in regime III. These data correspond to
the results shown in Fig. 3(a) of the text.

0

1

2

2 3 4 5

1
0
3
  
  
  
(m

2
/
s2

)

 (m2/s2)

 regime III

FIG. B1. Evolution of Ḣ2 with 8γ
ρRc

in regime III for the data

shown in Fig. 3(a).

Appendix C: Relation between measured radius a
and its effective value a⋆

As shown in Fig. C1 the values taken by the free pa-
rameter a⋆ collapse onto a single curve when plotted as a
function of a: a⋆ which is weakly dependent on the fluid
system varies linearly with a roughly as 0.75a.

 1 mPa s
 4 mPa s
 22 mPa s

´`

a (mm)

0

2

4

6

0 2 4 6 8

a
?
 (

m
m

)

FIG. C1. Variations of the effective radius of the orifice a⋆ as
a function of its measured value a for the three soap solutions
as indicated. The line is a guide for the eyes that corresponds
to the equation a⋆ = 0.75a.
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