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ABSTRACT. We consider the temporal logic with since and until modalities. This temporal logic
is expressively equivalent over the class of ordinals to first-order logic by Kamp’s theorem. We
show that it has aPSPACE-complete satisfiability problem over the class of ordinals. Among the
consequences of our proof, we show that given the code of somecountable ordinalα and a formula,
we can decide inPSPACEwhether the formula has a model overα. In order to show these results, we
introduce a class of simple ordinal automata, as expressiveas Büchi ordinal automata. ThePSPACE

upper bound for the satisfiability problem of the temporal logic is obtained through a reduction to the
nonemptiness problem for the simple ordinal automata.

INTRODUCTION

The main models for time are〈N, <〉, the natural numbers as a model ofdiscrete timeand the
structure〈R, <〉, the real line as the model forcontinuous time. These two models are called the
canonical models of time. A major result concerning linear-time temporal logics is Kamp theorem
[Kam68, GHR94] which says thatLTL(U,S), the temporal logic having “Until” and “Since” as
only modalities, is expressively complete for first-order monadic logic of order over the class of
Dedekind-complete linear orders. The canonical models of time are indeed Dedekind-complete.
Another important class of Dedekind-complete orders is theclass of ordinals.
In this paper, the satisfiability problem for the temporal logic with until and since modalities over
the class of ordinals is investigated. This is the opportunity to generalize what is known about the
logic overω-sequences. Our main results are the following.

(1) The satisfiability problem forLTL(U,S) over the class of ordinals isPSPACE-complete.
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(2) A formulaφ in LTL(U,S) has someα-model for some ordinalα iff it has anβ-model for
someβ < ω|φ|+2 where|φ| denotes the size ofφ for some reasonably succinct encoding
(see forthcoming Corollary 3.3).

In order to prove these results we use an automata-based approach [Büc62, VW94]. In Sec-
tion 2, we introduce a new class of ordinal automata which we call simple ordinal automata. These
automata are expressive equivalent to Büchi automata overcountable ordinals [BS73]. However,
the locations and the transition relations of these automata have additional structures as in [Roh97].
In particular, a location is a subset of a base setB. Herein, we provide a translation from formulae
in LTL(U,S) into simple ordinal automata that allows to characterize the complexity of the satis-
fiability problem forLTL(U,S). However, the translation of the formulaφ into the automatonAφ

provides an automaton of exponential size in|φ| but the cardinal of the basis ofAφ is linear in|φ|.
Section 3 contains our main technical lemmas. We show there that every run in a simple ordinal
automaton is equivalent to a short run. Consequently, we establish that a formulaφ ∈ LTL(U,S)
has anα-model for some countable ordinalα iff it has a model of lengthtrunc|φ|+2(α) where
trunc|φ|+2(α) is a truncated part ofα strictly less thanω|φ|+2 × 2 (see the definition of truncation
in Section 3). In Section 4 we present two algorithms to solvethe nonemptiness problem for simple
ordinal automata. The first one runs in (simple) exponentialtime and does not take advantage of the
short run property. The second algorithm runs in polynomialspace and the short run property plays
the main role in its design and its correctness proof.

In Section 5 we investigate several variants of the satisfiability problem and show that all of
them arePSPACE-complete. Section 6 compares our results with related works. The satisfiability
problem forLTL(U,S) over ω-models isPSPACE-complete [SC85]. Reynolds [Rey03, Rey10b]
proved that the satisfiability problem forLTL(U,S) over the reals isPSPACE-complete. The proofs
in [Rey03, Rey10b] are non trivial and difficult to grasp and it is therefore difficult to compare our
proof technique with those of [Rey03, Rey10b] even though webelieve cross-fertilization would be
fruitful. We provide uniform proofs and we improve upper bounds for decision problems considered
in [Cac06, DN07, Roh97], see also [BLW07]. We also compare our results and techniques with
Rohde’s thesis [Roh97]. Finally we show how our results entail most of the results from [DN07]
and we solve some open problems stated there.

1. LINEAR-TIME TEMPORAL LOGIC WITH UNTIL AND SINCE

1.1. Basic definitions on ordinals. Let us start smoothly by recalling basic definitions and prop-
erties about ordinals, see e.g. [Ros82] for additional material. An ordinal is a totally ordered set
which iswell ordered, i.e. all its non-empty subsets have a least element. Order-isomorphic ordinals
are considered equal. They can be more conveniently defined inductively by: the empty set (written
0) is an ordinal, ifα is an ordinal, thenα ∪ {α} (writtenα + 1) is an ordinal and, ifX is a set of
ordinals, then

⋃

α∈X α is an ordinal. The ordering is obtained byβ < α iff β ∈ α. An ordinalα is
a successorordinal iff there exists an ordinalβ such thatα = β + 1. An ordinal which is not0 or
a successor ordinal, is alimit ordinal. The first limit ordinal is writtenω. Addition, multiplication
and exponentiation can be defined on ordinals inductively:α+ 0 = α, α+ (β + 1) = (α+ β) + 1
andα+ β = sup{α+ γ : γ < β} whereβ is a limit ordinal. Multiplication and exponentiation are
defined similarly. Wheneverα ≤ β, there is a unique ordinalγ such thatα + γ = β and we write
β − α to denoteγ.
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1.2. Temporal logic. The formulae ofLTL(U,S) are defined as follows:

φ ::= p | ¬φ | φ1 ∧ φ2 | φ1Uφ2 | φ1Sφ2

wherep ∈ PROP for some countably infinite setPROP of atomic propositions. Given a formula
φ in LTL(U,S), we writesub(φ) to denote the set of subformulae ofφ or their negation assuming
that¬¬ψ is identified withψ. The size ofφ is defined as the cardinality ofsub(φ) and therefore im-
plicitly we encode formulae as DAGs, which is exponentiallymore succinct that the representation
by trees. This feature will be helpful for defining translations that increase only polynomially the
number of subformulae but for which the tree representationmight suffer an exponential blow-up.
We use the following standard abbreviationsGφ = φ∧¬(⊤U¬φ),G+φ = ¬(⊤U¬φ), Fφ = ¬G¬φ,
F+φ = ¬G+¬φ, Xφ =⊥ Uφ andX−1φ =⊥ Sφ that do cause only a polynomial increase in size.

An α-modelσ is a functionσ : α → P(PROP) for some ordinalα 6= 0. The satisfaction
relation “φ holds in theα-modelσ at positionβ” (β < α) is defined as follows:

• σ, β |= p iff p ∈ σ(β),
• σ, β |= ¬φ iff not σ, β |= φ,
• σ, β |= φ1 ∧ φ2 iff σ, β |= φ1 andσ, β |= φ2,
• σ, β |= φ1Uφ2 iff there isγ ∈ (β, α) such thatσ, γ |= φ2 and for everyγ′ ∈ (β, γ), we

haveσ, γ′ |= φ1,
• σ, β |= φ1Sφ2 iff there isγ ∈ [0, β) such thatσ, γ |= φ2 and for everyγ′ ∈ (γ, β), we have
σ, γ′ |= φ1.

Observe thatS andU are strict “since” and “until” modalities.
The (initial) satisfiability problem forLTL(U,S) consists in determining, given a formulaφ,

whether there is a modelσ such thatσ, 0 |= φ. Note thatφ is satisfiable in a modelσ iff Fφ is initially
satisfiable inσ. Therefore, there is a polynomial-time reduction from the satisfiability problem to the
initial satisfiability problem. From now on, we will deal only with the initial satisfiability problem
and for the sake of brevity we will call it “satisfiability problem”.

We recall that well orders are particular cases of Dedekind complete linear orders. Indeed, a
chain is Dedekind complete iff every non-empty bounded subset has a least upper bound. Kamp’s
theorem applies herein.

Theorem 1.1. [Kam68] LTL(U,S) over the class of ordinals is as expressive as the first-order
logic.

Moreover, satisfiability forLTL(U,S) is known to be decidable and as stated below we can
restrict ourselves to countable models.

Theorem 1.2.
(I): [BS73] The satisfiability problem forLTL(U,S) over the class of countable ordinals is

decidable.
(II): (see e.g.[GS85, Lemma 6]) A formula inLTL(U,S) is satisfiable iff it is satisfiable in a

model of length some countable ordinal.

Observe that in [BS73] it was proved that monadic second-order logic over the class of count-
able ordinals is decidable and in [GS85] it was shown that if aformula of the first-order monadic
logic is satisfiable in a model over an ordinal then it is satisfiable in a model over a countable or-
dinal. (I) and (II) are immediate consequences of these results and the fact thatLTL(U,S) can be
easily translated into first-order logic.

Consequently,LTL(U,S) over the class of ordinals is certainly a fundamental logic to be stud-
ied. We recall below a central complexity result that we willextend to all ordinals.
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Theorem 1.3. [SC85]Satisfiability forLTL(U,S) restricted toω-models isPSPACE-complete.

2. TRANSLATION FROM FORMULAE TO SIMPLE ORDINAL AUTOMATA

In Section 2.1, we introduce a new class of ordinal automata which we call simple ordinal
automata. These automata are expressive equivalent to Büchi automata over ordinals [BS73]. How-
ever, the locations and the transition relations of these automata have additional structures. In
Section 2.3, we provide a translation fromLTL(U,S) into simple ordinal automata which assigns
to every formula inLTL(U,S) an automaton that recognizes exactly its models. We borrow the
automata-based approach for temporal logics from [VW94, KVW00].

2.1. Simple ordinal automata.

Definition 2.1. A simple ordinal automatonA is a structure〈B,Q, δnext, δlim〉 such that

• B is a finite set (thebasisof A),
• Q ⊆ P(B) (the set oflocations),
• δnext ⊆ Q×Q is thenext-step transition relation,
• δlim ⊆ P(B)×Q is thelimit transition relation.

A can be viewed as a finite directed graph whose set of nodes is structured. Limit transitions,
whose interpretation is given below, allow reaching a node after an infinite amount of steps. Given
a simple ordinal automatonA, anα-path (or simply a path) is a mapr : α → Q for someα > 0
such that

• for everyβ + 1 < α, 〈r(β), r(β + 1)〉 ∈ δnext,
• for every limit ordinalβ < α, 〈Blim(r, β), r(β)〉 ∈ δlim where

Blim(r, β)
def
= {a ∈ B : ∃ γ < β such that for every γ′ ∈ (γ, β), a ∈ r(γ′)}.

The setBlim(r, β) contains exactly the elements of the basis that belong to every location from
someγ < β until β. We sometimes writeBlim(r) instead ofBlim(r, α) whenα is a limit ordinal.

Given anα-pathr, for β, β′ < α we write

• r≥β to denote the restriction ofr to positions greater or equal toβ,
• r≤β to denote the restriction ofr to positions less or equal toβ,
• r[β,β′) to denote the restriction ofr to positions in[β, β′) (half-open interval).

A simple ordinal automaton withacceptance conditionsis a structure of the form

〈B,Q, I, F,F , δnext, δlim〉

where

• I ⊆ Q is the set ofinitial locations,
• F ⊆ Q is the set offinal locations for accepting runs whose length is some successor

ordinal,
• F ⊆ P(B) encodes the accepting condition for runs whose length is some limit ordinal.

Given a simple ordinal automaton with acceptance conditions, anaccepting runis a pathr : α→ Q

such that

• r(0) ∈ I,
• if α is a successor ordinal, thenr(α− 1) ∈ F , otherwiseBlim(r) ∈ F .
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The nonemptiness problemfor simple ordinal automata consists in checking whetherA has an
accepting run. Our current definition for simple ordinal automata does not make them language
acceptors since they have no alphabet. It is possible to add in the definition a finite alphabetΣ and
to define the next-step transition relation as a subset ofQ × Σ × Q, see an example on the right-
hand side of Figure 1. Additionally, the current definition can be viewed as the case either when
the alphabet is a singleton or when the read letter is encodedin the locations through the dedicated
elements of the basis. This second reading will be in fact used implicitly in the sequel. We also
write A to denote either a simple ordinal automaton or its extensionwith acceptance conditions.

2.2. Relationships with Büchi automata. Simple ordinal automata with acceptance conditions
and alphabet define the same class of languages as standard ordinal automata in the sense of [Büc64,
Büc65]. Main arguments are provided below for the sake of completeness. However, we do not need
this correspondence in our forthcoming developments. The main interest for our model of simple
ordinal automata rests on the fact that it allows us to obtainthe promisedPSPACEupper bound. A
standard ordinal automatonis a structureA = 〈Σ, Q, I, F,F , δnext, δlim〉 such that

• Σ is a finite alphabet,
• Q is a finite set of locations,
• δnext ⊆ Q× Σ×Q andδlim ⊆ P(Q)×Q,
• I, F ⊆ Q andF ⊆ P(Q).

A word u : α→ Σ is acceptedby A iff there isr : α→ Q such that

• for everyβ + 1 < α, 〈r(β), u(β), r(β + 1)〉 ∈ δnext,
• for every limit ordinalβ < α, 〈inf(r, β), r(β)〉 ∈ δlim where

inf(r, β)
def
= {q ∈ Q : for all γ < β there is γ′ ∈ (α, β) such that r(γ′) = q}.

As usual,inf(r, β) denote the set of locations that appear cofinally beforeβ.
• r(0) ∈ I and ifα is a successor ordinal, thenr(α− 1) ∈ F , otherwiseinf(r, α) ∈ F .

We writeL(A) to denote the set of words accepted byA. Similar definitions can be given for simple
ordinal automata with acceptance conditions and alphabet.

Lemma 2.2.
(I): Given a simple ordinal automatonA, there is a standard ordinal automatonA′ such that

L(A) = L(A′).
(II): Given a standard ordinal automatonA, there is a simple ordinal automatonA′ such that

L(A) = L(A′).

Proof. (I) Let A be a simple ordinal automatonA = 〈Σ, B,Q, I, F,F , δnext, δlim〉. We consider
the standard ordinal automatonA′ of the form〈Σ, Q, I, F,F , δnext, δ

′
lim〉 such that〈Y, q〉 ∈ δ′lim

iff there is a limit transition〈Z, q〉 ∈ δlim satisfying the conditions below.

• for everyq′ ∈ Y , we haveZ ⊆ q′,
• for every elementa ∈ (B \ Z), there isq′ ∈ Y such thata 6∈ q′.

One can easily check thatL(A) = L(A′). Observe thatA′ can be exponentially larger thanA.
(II) Let A = 〈Σ, Q, I, F,F , δnext, δlim〉 be a standard ordinal automaton. We build a simple ordinal
automatonA′ = 〈Σ, B′, Q′, I ′, F ′,F ′, δ′next, δ

′
lim〉 as follows.

• B′ = P(Q).
• Q′ = {X ∈ P(B′) : ∃ q ∈ Q, X = {Y ∈ P(Q) : q ∈ Y }}. Below, whenq ∈ Q,

by abusing notation, we also writeq to denote the corresponding location inQ′ equal to
{Y ∈ P(Q) : q ∈ Y }.
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Figure 1: Ordinal automata acceptingL0

• I ′ = I, F ′ = F andF ′ = F .
• Fora ∈ Σ andq, q′ ∈ Q, 〈q, a, q′〉 ∈ δ′next only if 〈q, a, q′〉 ∈ δnext.
• ForY ′ ⊆ B′ andq ∈ Q, 〈Y ′, q〉 ∈ δ′lim only if there is a limit transition〈Y, q〉 ∈ δlim such

thatY ′ = {a ∈ B′ : Y ⊆ a}.

Again, one can easily check thatL(A) = L(A′).

Let L0 be the set of wordsu : α → {0, 1} such that forβ < α, β = ω2γ for some ordinalγ
iff u(β) = 1. The left-hand side of Figure 1 presents a standard ordinal automaton (with three loca-
tions) acceptingL0. Next-step transitions are represented by plain arrows whereas limit transitions
are represented by dashed arrows. Moreover,F = {q1, qω, q≥ω2} andF = P({q1, qω, q≥ω2}).
The right-hand side of Figure 1 presents a corresponding simple ordinal automaton along the lines
of the proof of Lemma 2.2. Its basisB is equal toP({q1, qω, q≥ω2}) and we writeq1 to denote
{{q1}, {q1, qω}, {q1, q≥ω2}, {q1, qω, q≥ω2}}. qω andq≥ω2 are defined similarly.

2.3. Translation from LTL(U,S) formulae to simple ordinal automata. As usual, a setY is a
maximally Boolean consistentsubset ofsub(φ) when the following conditions are satisfied:

• for everyψ ∈ sub(φ), ¬ψ ∈ Y iff ψ 6∈ Y ,
• for everyψ1 ∧ ψ2 ∈ sub(φ), ψ1 ∧ ψ2 ∈ Y iff ψ1, ψ2 ∈ Y .

Given a formulaφ, the simple ordinal automatonAφ = 〈B,Q, I, F,F , δnext, δlim〉 is defined as
follows:

• B = sub(φ).
• Q is the set of maximally Boolean consistent subsets ofsub(φ).
• I is the set of locations that containφ and no elements of the formψ1Sψ2.
• F is the set of locations with no elements of the formψ1Uψ2.
• A subsetY of B is inF if there are noψ1 andψ2 such that{ψ1,¬ψ2, ψ1Uψ2} ⊆ Y .

• For all q, q′ ∈ Q, 〈q, q′〉 ∈ δnext
def
⇔ the conditions below are satisfied:

(nextU): for everyψ1Uψ2 ∈ sub(φ), ψ1Uψ2 ∈ q iff either ψ2 ∈ q′ orψ1, ψ1Uψ2 ∈ q
′,

(nextS): for everyψ1Sψ2 ∈ sub(φ), ψ1Sψ2 ∈ q′ iff either ψ2 ∈ q orψ1, ψ1Sψ2 ∈ q.

• For allY ⊆ B andq ∈ Q, 〈Y, q〉 ∈ δlim
def
⇔ the conditions below are satisfied:

(limU1): if ψ1,¬ψ2, ψ1Uψ2 ∈ Y , then eitherψ2 ∈ q or ψ1, ψ1Uψ2 ∈ q,
(limU2): if ψ1, ψ1Uψ2 ∈ q andψ1 ∈ Y , thenψ1Uψ2 ∈ Y ,
(limU3): if ψ1 ∈ Y , ψ2 ∈ q andψ1Uψ2 is in the basisB, thenψ1Uψ2 ∈ Y ,
(limS): for everyψ1Sψ2 ∈ sub(φ), ψ1Sψ2 ∈ q iff (ψ1 ∈ Y andψ1Sψ2 ∈ Y ).

Even though the conditions above are compatible with the intuition that a location contains the
formulae that are promised to be satisfied, at the current stage it might sound mysterious how the
conditions have been made up (mainly for the conditions related to limit transitions). For some of
them, their justification comes with the proof of Lemma 2.3.
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Let σ be anα-model andφ be a formula inLTL(U,S). TheHintikka sequencefor σ andφ is
anα-sequenceHσ,φ defined as follows: for everyβ < α,

Hσ,φ(β)
def
= {ψ ∈ sub(φ) : σ, β |= ψ}.

Given a runr : α → Q, we writemod(r) : α → P(PROP) to denote theα-modelσ defined as

follows: σ(β)
def
= {p ∈ PROP : p ∈ r(β)}. It is clear that ifr is an Hintikka sequence forσ andφ,

thenmod(r) = σ.
Now we can state the correctness lemma.

Lemma 2.3.
(I): If σ, 0 |= φ, then the Hintikka sequence forσ andφ is an accepting run ofAφ.
(II): If r is an accepting run ofAφ, thenmod(r), 0 |= φ and r is the Hintikka sequence for
mod(r) andφ.

(III): φ is satisfiable iffAφ has an accepting run.

Proof. First, (III) is an immediate consequence of (I) and (II).
(I) Suppose that there is a modelσ : α → P(PROP) (with α > 0) such thatσ, 0 |= φ. By

usingLTL(U,S) semantics, it is straightforward to check thatHσ,φ is accepted byAφ.
(II) Let r : α → Q be an accepting run ofAφ. Let us show by structural induction that for all
ψ ∈ sub(φ) andβ < α, we havemod(r), β |= ψ iff ψ ∈ r(β). The base case and the cases with
Boolean operators in the induction step are by an easy verification. The only interesting cases in the
induction step are related to the temporal operatorsU andS. Below, letσ bemod(r).
CaseU: ψ = ψ1Uψ2.
Let us reasonad absurdum. Suppose that{β : ψ ∈ r(β)} 6= {β : σ, β |= ψ}. Let β be the smallest
ordinal which belongs to only one of these sets. We consider two cases: (σ, β |= ψ andψ 6∈ r(β))
– Case I below – or (ψ ∈ r(β) andσ, β 6|= ψ) – Case II below.

Case I: Let γ be the smallest ordinal verifyingβ < γ < α, σ, γ |= ψ2 and for everyγ′ ∈
(β, γ), we haveσ, γ′ |= ψ1 ∧ ¬ψ2. By induction hypothesis,ψ2 ∈ r(γ) and for every
γ′ ∈ (β, γ), {ψ1,¬ψ2} ⊆ r(γ′).

First, we are going to show that¬ψ ∈ r(γ′) for everyγ′ ∈ [β, γ). This is true forβ.
Assume that this is true forβ′ then it is true forβ′ + 1 by condition (nextU). Assume that
γ′ is a limit ordinal andψ 6∈ r(β′) for everyβ′ ∈ [β, γ′). Then, by condition (limU2) we
obtain that¬ψ ∈ r(γ′). Next, consider two cases:
Case a):γ is a successor, sayγ = β′ + 1. We have¬ψ ∈ r(β′) andψ2 ∈ r(γ). This
contradicts condition (nextU).
Case b):γ is a limit ordinal. In this case{¬ψ,ψ1} ⊆ Blim(r, γ) andψ2 ∈ r(γ). This
contradicts condition (limU3).

Case II: now suppose thatψ1Uψ2 ∈ r(β) andσ, β 6|= ψ1Uψ2.
Case a): For everyγ such thatγ ∈ (β, α), we haveσ, γ 6|= ψ2 (ψ2 does not hold onσ
strictly afterβ).
By induction hypothesis, for everyγ ∈ (β, α), ¬ψ2 ∈ r(γ). Let us show that for every
γ ∈ (β, α), {ψ1, ψ1Uψ2} ⊆ r(γ).
Base case: γ = β + 1.
By condition (nextU), ψ1Uψ2 ∈ r(β) and¬ψ2 ∈ r(β+1) imply {ψ1, ψ1Uψ2} ⊆ r(β+1).
Induction step:
• if γ = γ′ + 1, then by condition (nextU), ψ1Uψ2 ∈ r(γ′) and¬ψ2 ∈ r(γ′ + 1) imply
{ψ1, ψ1Uψ2} ⊆ r(γ′ + 1).
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• if γ is a limit ordinal then by induction hypothesis,{ψ1,¬ψ2, ψ1Uψ2} ⊆ Blim(r, γ).
By condition (limU1), {ψ1, ψ1Uψ2} ⊆ r(γ) sinceψ2 6∈ r(γ).

Consequently, ifα is a limit ordinal, then{ψ1,¬ψ2, ψ1Uψ2} ⊆ Blim(r, α) which is in
contradiction with the definition ofF in Aφ. Similarly, if α = α′ + 1, thenψ1Uψ2 ∈ r(α′)
which is in contradiction with the definition ofF .
Case b):There is a minimal ordinalγ ∈ (β, α) such thatσ, γ |= ¬ψ1 ∧ ¬ψ2 and for every
γ′ ∈ (β, γ), we haveσ, γ′ |= ψ1 ∧ ¬ψ2. By induction hypothesis,{¬ψ1,¬ψ2} ⊆ r(γ)
and for everyγ′ ∈ (β, γ), {ψ1,¬ψ2} ⊆ r(γ′). Let us show that for everyγ′ ∈ (β, γ),
{ψ1, ψ1Uψ2} ⊆ r(γ′).

Base case: γ′ = β + 1.
By condition (nextU), ψ1Uψ2 ∈ r(β) and¬ψ2 ∈ r(β + 1) imply {ψ1, ψ1Uψ2} ⊆ r(γ′).
Induction step:
• If γ′ = γ′′+1, then by condition (nextU), ψ1Uψ2 ∈ r(γ

′′) and¬ψ2 ∈ r(γ′′+1) imply
{ψ1, ψ1Uψ2} ⊆ r(γ′′ + 1).

• If γ′ is a limit ordinal, then by induction hypothesis,{ψ1,¬ψ2, ψ1Uψ2} ⊆ Blim(r, γ′).
By condition (limU1), {ψ1, ψ1Uψ2} ⊆ r(γ′) sinceψ2 6∈ r(γ′).

Consequently, ifγ is a limit ordinal, then{ψ1,¬ψ2, ψ1Uψ2} ⊆ Blim(r, γ) which leads to
a contradiction by condition (limU1). Indeed, by induction hypothesis,{¬ψ1,¬ψ2} ⊆ r(γ).
Similarly, if γ = γ′ + 1, thenψ1Uψ2 6∈ r(γ′) which leads to a contradiction by condition
(nextU).

CaseS: ψ = ψ1Sψ2.
Let us reasonad absurdum. Suppose that{β : ψ ∈ r(β)} 6= {β : σ, β |= ψ}. Let β be the
smallest ordinal that belongs to only one of these sets. Again, we distinguish two cases, namely
either (σ, β |= ψ andψ 6∈ r(β)) – Case I below – or (ψ ∈ r(β) andσ, β 6|= ψ) – Case II below.

Case I: soβ > 0 and there isγ ∈ [0, β) such thatσ, γ |= ψ2 and for everyγ′ ∈ (γ, β), we
haveσ, γ′ |= ψ1. By induction hypothesis,ψ2 ∈ r(γ) and for everyγ′ ∈ (γ, β), ψ1 ∈ r(γ′).
Observe that for everyγ′ ∈ (γ, β), we haveσ, γ′ |= ψ andψ ∈ r(γ′) (β is minimal).
• If β = β′ + 1 then by condition (nextS) ψ2 6∈ r(β′) and{ψ1, ψ1Sψ2} 6⊆ r(β′). If
γ = β′, then this leads to a contradiction sinceψ2 ∈ r(γ). Similarly, if γ < β′, then
ψ 6∈ r(β′) sinceψ1 ∈ r(β′). Sinceσ, β′ |= ψ1Sψ2, this leads to a contradiction by the
minimality of β.

• If β is a limit ordinal, then by condition (limS) eitherψ1 6∈ Blim(r, β) or ψ1Sψ2 6∈
Blim(r, β). By induction hypothesis,ψ1 ∈ Blim(r, β). Hence, there isβ′ ∈ (γ, β)
such thatψ1Sψ2 6∈ r(β′), which is in contradiction with the minimality ofβ.

Case II:
Case a):For everyγ ∈ [0, β), σ, β 6|= ψ2.
By induction hypothesis, for everyγ ∈ [0, β), ψ2 6∈ r(γ). Moreover, for everyγ ∈ [0, β),
we haveσ, β 6|= ψ1Sψ2.
• If β = β′ + 1 then by condition (nextS), {ψ1, ψ1Sψ2} ⊆ r(β′) which leads to a

contradiction by minimality ofβ.
• If β is a limit ordinal, then{ψ1, ψ1Sψ2} ⊆ Blim(r, β) by condition (limS). Hence, for

someβ′ < β, ψ1Sψ2 ∈ r(β′), which leads again to a contradiction by the minimality
of β.
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• If β = 0, then we also have a contradiction sincer(0) does not contain any since
formulae. Observe that in the previous case analyses with ordinals, the case “0” has
been irrelevant.

Case b):σ, β 6|= ψ and not a).
Remember thatψ ∈ r(β). There isβ′ < β such thatσ, β′ 6|= ψ1. Otherwise, by induction
hypothesis and by not a), we haveσ, β |= ψ, a contradiction.
Case b.1:There is a maximal positionγ < β such thatσ, γ 6|= ψ1.
For everyγ′ ∈ (γ, β), we haveσ, γ 6|= ψ2, otherwiseσ, β |= ψ which would lead to a
contradiction. Let us show by transfinite induction that foreveryγ′ ∈ (γ, β], ψ 6∈ r(γ′).
Base case:γ′ = γ + 1.
¬ψ1,¬ψ2 ∈ r(γ) imply by condition (nextS) thatψ 6∈ r(γ′).
Induction step:
• If γ′ = γ′′ + 1, then¬ψ2,¬ψ ∈ r(γ′′) by induction hypothesis. By condition (nextS)
ψ 6∈ r(γ′).

• If γ′ is a limit ordinal, then¬ψ ∈ Blim(r, γ′) and by condition (limS), ψ 6∈ r(γ′).
Hence,ψ 6∈ r(β), which leads to a contradiction.
Case b.2There is no maximal positionγ < β such thatσ, γ 6|= ψ1 (the most delicate case).
Consequently, there is a unique positionγ ≤ β such that for everyγ′ < γ, there isγ′ <
γ′′ < γ verifying ¬ψ1 ∈ r(γ′′). This means that
• for everyγ′ ∈ [γ, β], ψ1 ∈ r(γ′),
• ψ1 6∈ Blim(r, γ) and,
• by condition (limS) ψ 6∈ r(γ).

Moreover, for everyγ′ ∈ (γ, β), ¬ψ2 ∈ r(γ′) otherwise by induction hypothesis,σ, β |= ψ,
which would lead to a contradiction. Let us show by transfinite induction that for every
γ′ ∈ (γ, β], ψ 6∈ r(γ′).
Base case:γ′ = γ + 1.
¬ψ,¬ψ2 ∈ r(γ) imply by condition (nextS) ψ 6∈ r(γ′).
Induction step:
• If γ′ = γ′′ + 1, then¬ψ2,¬ψ ∈ r(γ′′) by induction hypothesis. By condition (nextS)
ψ 6∈ r(γ′).

• If γ′ is a limit ordinal, then¬ψ ∈ Blim(r, γ′) and by condition (limS), ψ 6∈ r(γ′).
Hence,ψ 6∈ r(β), which leads to a contradiction.

3. SHORT RUN PROPERTIES

In this section, we establish pumping arguments that are useful to show that

• in order to check the satisfiability status of the formulaφ, there is no need to consider
models of length greater thanω|φ|+2,

• simple ordinal automata cannot distinguish ordinals with identical tails (defined below pre-
cisely with the notion oftruncation).

Let A be a simple ordinal automaton andY be a subset of its basis.Y is said to bepresentin
A iff either there is a limit transition of the form〈Y, q〉 in A or Y ∈ F . Given a setY present in
A, its weight, notedweight(Y ), is the maximall such thatY1 ⊂ Y2 ⊂ · · · ⊂ Yl is a sequence of
present subsets inA andY1 = Y (⊂ denotes proper subset inclusion). Obviously,weight(Y ) ≤
card(B) + 1.
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Given a pathr : α → Q in A with a limit ordinalα ≥ ω, its weight, notedweight(r), is the
maximal value in the set

{weight(Blim(r, β)) : β < α, β is a limit ordinal} ∪ {weight(Blim(r))}

Whenα is a successor ordinal, the maximal value is computed only from the first set of the above
union. By convention, if a path has no limit transition, thenits weight is zero (equivalently, its
length is strictly less thanω + 1). Furthermore, we writeall(r) to denote the set

all(r)
def
=

⋂

β<α

r(β)

that corresponds to the set of elements from the basis that are present in all locations of the runr.
Let r, r′ be two paths of respective lengthα andα′. We say thatr andr′ arecongruent, written
r ∼ r′, iff the conditions below are meet:

(1) r(0) = r′(0).
(2) Either bothα andα′ are successor ordinals andr(α− 1) = r′(α′ − 1) or bothα andα′ are

limit ordinals andBlim(r) = Blim(r′).
(3) all(r) = all(r′).

Let r1 be a path of lengthα andr2 be a path of lengthβ such that ifα is a limit ordinal then
〈Blim(r1), r2(0)〉 ∈ δlim otherwiser1(α − 1) = r2(0). The concatenationr1 · r2 is the pathr of
lengthα + β such that forγ ∈ [0, α), r(γ) = r1(γ) and forγ ∈ [0, β), r(α + γ) = r2(γ). For
every ordinalα, the concatenation ofα-sequences of paths is defined similarly. The relation∼ is a
congruence for the concatenation operation on paths as stated in details below.

Lemma 3.1.
(I): Let r · r0 · r′ and r1 be two paths such thatr0 ∼ r1. Then,r · r1 · r′ is a path that is

congruent tor · r0 · r′.
(II): Let r00, r

1
0, r

2
0 , . . . and r01, r

1
1 , r

2
1, . . . be twoω-sequences of pairwise consecutive paths

such that fori ≥ 0, ri0 ∼ ri1 and their length is a successor ordinal. Ifr · (r00 ·r
1
0 ·r

2
0 · . . .) ·r

′

is a path, then it is congruent tor · (r01 · r
1
1 · r

2
1 · . . .) · r

′.

The proof of the above lemma is by an easy verification but observe that for the proof of (II)
the third set of equalities from the definition of the congruence∼ ensures thatr · (r00 ·r

1
0 ·r

2
0 · . . .) ·r

′

is a path.

Lemma 3.2. Let r : α → Q be a path inA for some countable ordinalα such that ifα is a limit
ordinal, thenBlim(r) is present inA. Then, there is a pathr′ : α′ → Q for α′ < ωmax(1,weight(r))+1

such thatr ∼ r′ andweight(r′) ≤ weight(r).

Proof. The proof is by induction on the weight of the paths. When the weight of the path is zero,
r′ = r already satisfies the conditionr ∼ r′. We only treat below the cases with paths of length
some limit ordinals. The case with paths of length some successor ordinals is similar. All the runs
r′ built below satisfy thatweight(r′) ≤ weight(r) for the following reasons. Indeed, no additional
limit transitions are applied when buildingr′ from r and whenr is of length some limit ordinal,
Blim(r) = Blim(r′). Hence, below we shall not further emphasizeweight(r′) ≤ weight(r).
Base case 1: weight(r) = 1 andα = ω2.
There isn ≥ 0 such that

(1) for everya ∈ B \ all(r), there isγ ≤ ω · n such thata 6∈ r(γ),
(2) all(r≥ω·n) = Blim(r).
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The first condition states that ifa does not belong toall(r), then this is already witnessed byr≤ω·n.
Furthermore, in generalall(r≥ω·k) ⊆ Blim(r) but the second condition above states that forn large
enough, we can obtainBlim(r) ⊆ all(r≥ω·n).

Hence,all(r≤ω·n) = all(r) andBlim(r≥ω·(n+1)) = Blim(r). Besides,Blim(r) is present inA.
LetYi = Blim(r≤ω·i) for i ≥ n+1. By construction ofn, for all i ≥ n+1,Blim(r) ⊆ Yi. Moreover,
weight(Blim(r)) = 1. Hence, for alli ≥ n+1, Yi = Blim(r). Consequently,r′ : ω · (n+1) → Q

with r′(β) = r(β) for β < ω · (n+1) verifiesr ∼ r′. In order to show thatall(r) = all(r′) it is suf-
ficient to observe thatall(r) ⊆ all(r′) sincer′ contains less locations thanr andall(r′≤ω·n) = all(r).

Base case 2: weight(r) = 1 andα = ω2 × β.
The proof is by transfinite induction. The base case withβ = 1 is actually the above base case 1.
Now suppose thatα = ω2×(β+1). By induction hypothesis and by the base case 1, there are paths
r′ : γ → Q andr′′ : γ′ → Q such thatr′ ∼ r<ω2×β , r′′ ∼ r≥ω2×β andγ + γ′ < ω2. Consequently,
the concatenation ofr′ andr′′ provides a path satisfying the adequate conditions.

Now suppose thatα = ω2 × β whereβ is a limit ordinal. Sinceα is countable, there is an
increasing sequence(βi)i∈N of ordinals strictly smaller thanβ such thatβ0 = 0 andβ = lim βi
(see e.g. [Ros82, Theorem 3.36]). Observe that for everyi, βi+1 − βi < β. Hence, for everyi,
by induction hypothesis, there is a pathr′i : γi → Q such thatr′i ∼ r[ω2×βi,ω2×βi+1) andγi < ω2.
Consequently,r′0 · r

′
1 · r

′
2 · · · is a path of length at mostω2 congruent tor by Lemma 3.1 (the length

may be exactlyω2). By using again arguments from the base case 1, we obtain a path that satisfies
the adequate conditions.

Base case 3: weight(r) = 1 andα = ω2 × β + ω × n (n ∈ N).
The existence of a path satisfying the adequate conditions is an immediate consequence of the base
case 2.
Induction case.
Case 1: α = ωweight(r)+1.
There isn ≥ 0 such that

(1) for everya ∈ B \ all(r), there isγ ≤ ωweight(r) · n such thata 6∈ r(γ),
(2) all(r≥ωweight(r)·n) = Blim(r).

Hence,all(r≤ωweight(r)·n) = all(r) andBlim(r≥ωweight(r)·(n+1)) = Blim(r). Besides,Blim(r) is

present inA andweight(Blim(r)) ≤ weight(r). If there is a limit ordinalβ ∈ [ωweight(r) · n, α)
such thatBlim(r<β) = Blim(r), thenr′ : β → Q with r′(γ) = r(γ) for γ < β verifies the
required conditions. Otherwise, suppose that for every limit ordinal β ∈ [ωweight(r) · n, α), we
haveBlim(r<β) 6= Blim(r). By construction ofn, for every limit ordinalβ in [ωweight(r) · n, α),
Blim(r) ⊂ Blim(r<β). By induction hypothesis, for everyi > n, there is a pathr′i : γi → Q such
thatr[ωweight(r)×i,ωweight(r)×(i+1)) ∼ r′i andγi < ωweight(r). Consequently,r′0 · r

′
1 · r

′
2 · · · is a path of

length less thanωweight(r) that is congruent tor by Lemma 3.1.
Case 2: α = ωweight(r)+1 × β.
The proof is by transfinite induction as in the base case 2. Indeed, suppose thatα = ωweight(r)+1 ×
(β + 1). There are pathsr′ : γ → Q andr′′ : γ′ → Q such thatr′ ∼ r<ωweight(r)+1×β, r′′ ∼

r≥ωweight(r)+1×β andγ + γ′ < ωweight(r)+1. Consequently, the concatenation ofr′ andr′′ provides
a path satisfying the adequate conditions.

Now suppose thatα = ωweight(r)+1 × β whereβ is a limit ordinal. Hence, there is an in-
creasing sequence(βi)i∈N of ordinals strictly smaller thanβ such thatβ0 = 0 andβ = lim βi
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(see e.g. [Ros82, Theorem 3.36]). Observe that for everyi, βi+1 − βi < β. Hence, for everyi, by
induction hypothesis, there is a pathr′i : γi → Q such thatr′i ∼ r[ωweight(r)+1×βi,ωweight(r)+1×βi+1)

andγi + 1 < ωweight(r)+1. Consequently,r′0 · r
′
1 · r

′
2 · · · is a path of length less thanωweight(r)+1

congruent tor by Lemma 3.1 (the lenght may be equal toωweight(r)+1). By using the case 1 in the
induction step, we can get a path that satisfies the adequate conditions.
Case 3: α = ωweight(r)+1×β+ωweight(r)×nweight(r)+ · · ·+ω1×n1 with nweight(r), . . . ,n1 ∈ N.
The existence of a path satisfying the required conditions is an immediate consequence of the case
2.

Lemma 3.2 below states a crucial property for most of complexity results established in the
sequel. Indeed, for usual ordinal automata, it is not possible to get this polynomial bound as an
exponent ofω for the length of the short paths. Actually, the exponent is linear in the cardinal of
its basis and can be logarithmic in the number of locations for large automata. By combination of
Lemma 2.3 and Lemma 3.2, we obtain the following interestingresult.

Corollary 3.3. If φ is satisfiable, thenφ has anα-model withα < ω|φ|+2.

For n ∈ N, let truncn be the function that assigns to every ordinalα > 0 an ordinal in
(0, ωn2) as follows. α can be written in the formα = ωnγ + β with β ∈ [0, ωn). Then
truncn(α) = ωn × min(γ, 1) + β. For instancetrunc2(ω3) = ω2, trunc2(ω2 + ω) = ω2 + ω

andtrunc2(ω2 × 2) = ω2. The ordinalsα, β aren-equivalent, writtenα ≈n β,
def
⇔ truncn(α) =

truncn(β).

Lemma 3.4. LetA be a simple ordinal automaton.

(I): If r is a path of lengthωweight(r)+1 × α for some countable ordinalα > 0, then there is a
pathr′ of lengthωweight(r)+1 such thatr ∼ r′ andweight(r′) ≤ weight(r).

(II): If a path r has lengthωweight(r)+1 andweight(r) ≥ 1, then for every ordinalα > 0,
there is a pathr′ of lengthωweight(r)+1 × α such thatr ∼ r′ andweight(r′) ≤ weight(r).

(III): If r is a path of length some countable ordinalα andβ ≈card(B)+2 α, then there is a
pathr′ of lengthβ such thatr ∼ r′.

Only in (I), the ordinalα is supposed to be countable.

Proof. (III) is a direct consequence of (I) and (II). Indeed, suppose α = ωcard(B)+2γ0 + γ1 and
β = ωcard(B)+2γ′0 + γ′1 with γ1 = γ′1 ∈ [0, ωcard(B)+2), andγ0 ≥ 1 iff γ′0 ≥ 1. If γ0 = γ′0 = 0,
thenα = β and we are done. Otherwise (weight(r) ≥ 1), letK > 0 such thatK + weight(r) =
card(B) + 2. Sinceweight(r) ≤ card(B) + 1 such a valueK exists and therefore (I) can be
applied. There is a runr′ such thatr′ ∼ r≤ωcard(B)+2γ0

andr′ is of lengthωweight(r)+1 by (I). If
weight(r′) 6= weight(r), then we apply again (I) onr′ in order to obtain a runr′′ such thatr′′ ∼ r′,
r′′ is of lengthωweight(r′)+1. If againweight(r′′) 6= weight(r′), we cannot repeat this process more
thancard(B) + 1 times. Eventually, we obtain a runr0 such thatr0 ∼ r≤ωcard(B)+2γ0

andr0 is of

lengthωweight(r0)+1. By (II), there is a runr1 such thatr1 ∼ r0 andr1 is of lengthωcard(B)+2γ′0 by
(II). Consequently,r1 · r≥ωcard(B)+2γ0

∼ r andr1 · r≥ωcard(B)+2γ0
is of lengthβ.

(I) The proof is by transfinite induction onα. Again, all the runsr′ built below satisfy that
weight(r′) ≤ weight(r) for the following reasons. Indeed, no additional limit transitions are ap-
plied when buildingr′ from r and whenr is of length some limit ordinal,Blim(r) = Blim(r′).
Hence, below we shall not further emphasizeweight(r′) ≤ weight(r). We behave similarly for the
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proof of (II).

Observe that the runr cannot be of lengthω. In the sequel, we assume thatweight(r) ≥ 1. The base
case withα = 1 is immediate. Suppose that the induction assertion holds true forα and let us show
that it holds true forα + 1. By Lemma 3.2, there is a runr′ of length strictly less thanωweight(r)+1

such thatr′ ∼ r<ωweight(r)+1×α. Hencer′ ·r≥ωweight(r)+1×α ∼ r and its length is exactlyωweight(r)+1.
Now suppose thatα is a limit ordinal and for every smaller ordinal, the property holds true. Letr
be a run of lengthωweight(r)+1 × α. There exists an increasing sequence(αi)i∈N with α0 = 0 and
α = lim αi (see e.g. [Ros82, Theorem 3.36]). Fori ≥ 0, let α′

i beωweight(r)+1αi + ωweight(r).
Observe thatα′

i − ωweight(r)+1αi = ωweight(r) andωweight(r)+1αi < α′
i < ωweight(r)+1αi+1. For

i ≥ 0, let βi beωweight(r)+1 × αi. For everyi ≥ 0, let ri be the pathr[α′
i,βi+1). By Lemma 3.2,

for every j ≥ 0, there is a pathr′j congruent torj of length strictly less thanωweight(r)+1 and
weight(r′j) ≤ weight(rj). Let r′ be the runr[β0,α

′
0)
r′0r[β1,α

′
1)
r′1r[β2,α2)r

′
2 . . .. The pathr′ is exactly

of lengthωweight(r)+1 and it is congruent tor.

(II) The proof is by double induction on the weight and onα.
Base case:weight(r) = 1.
Let f : [N]2 → Q× P(Q) ×Q be the function whose domain is made of unordered pairs{i, j} of
natural numbers (say,i < j) such that

f({i, j})
def
= 〈r(ω × i), Blim(r[ω×i,ω×j)), r(ω × j)〉

By Ramsey Theorem (see e.g. [Ram30, Ros82]), there is an infinite setY ⊆ N such thatf restricted
to [Y ]2 is constant. Hence, there is a value〈q⋆, A, q⋆〉 and an infinite sequence0 ≤ i0 < i1 < i2 <

· · · such that for everyk ≥ 0, we havef({ik, ik+1}) = 〈q⋆, A, q⋆〉. Observe thatA = Blim(r)
and for everyk, we also haveBlim(r) ⊆ Blim(r[ω×ik,ω×ik+1)). Sinceweight(r) = 1, we get that
Blim(r) = Blim(r[ω×ik ,ω×ik+1)).

Let us come back to the proof by induction. The base case withα = 1 is immediate. Suppose
that the property holds true forα and let us show that it holds true forα+1. By induction hypothesis,
there is a pathr′ congruent tor of lengthω2×α. Sincer≥ω×i0 is also a path of lengthω2, r′ ·r≥ω×i0

is a path (Blim(r<ω×i0) = A), it is congruent tor and its length is precisely(ω2 × α) + ω2.
Now suppose thatα is a limit ordinal and for every smaller ordinal, the property holds true.

There exists a strictly increasing sequence(αi)i∈N with α0 = 0 andα = lim αi. By the induction
hypothesis there is a runrj of lengthω2×(αj+1−αj) congruent tor≥ω×ij (r≥ω×ij is also of length
ω2). Then,r0 ·r1 ·r2 · · · is congruent tor and it is of lengthω2×α. Observe thatBlim(r0 ·r1 ·r2 · · · )
is preciselyA that is equal toBlim(r), as stated above.

Induction step:: weight(r) > 1 and the property holds for all the paths of weight strictly less than
weight(r).
The base case withα = 1 is immediate.

• Suppose that the property holds true forα and let us show that it holds true forα + 1.
As in the base case, we define a coloring functionf such that we color the interval with
endpoints at positions of the formωweight(r) × n. Similarly to the base case, there is a
triple 〈q⋆, A, q⋆〉 and a sequence0 ≤ i0 < i1 < i2 < · · · such that for everyk ≥ 0,
f({ik, ik+1}) = 〈q⋆, A, q⋆〉. If there isβ < ωweight(r)+1 such thatBlim(r<β) = Blim(r)

then by induction hypothesis, there isr′ ∼ r such thatr′ is of lengthωweight(r)+1 × α and
Blim(r′) = Blim(r<β). Hencer′ ·r≥β is a path,r′ ·r≥β ∼ r and its length isωweight(r)+1×
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(α + 1). If there is no such an ordinalβ, for every limit ordinalβ ∈ [ωweight(r) ×

(i1 − 1), ωweight(r) × i1), Blim(r) ⊂ Blim(rβ) sinceA ⊂ Blim(r<β). HenceW =
weight(r[ωweight(r)×(i1−1),ωweight(r)×i1)

) < weight(r). By the induction hypothesis there

is a runr′ ∼ r[ωweight(r)×(i1−1),ωweight(r)×i1)
of lengthωW+1 × (ω(weight(r)−W ) ×α), that is

of lengthωweight(r)+1 × α by associativity of multiplication. Hencer<weight(r)×(i1−1) · r
′ ·

r≥ωweight(r)×i1
∼ r and it is of lengthωweight(r)+1 × (α + 1).

• Now suppose thatα is a limit ordinal and for every smaller ordinal, the property holds true.
There exists a strictly increasing sequence(αi)i∈N with α0 = 0 andα = lim αi. As above,
a triple of the form〈q⋆, A, q⋆〉 and anω-sequencei0 < i1 < i2 < . . . can be defined.
Observe that for everyk ≥ 1, for every limit ordinalβ ∈ [ωweight(r)× (ik−1), ωweight(r)×
ik), Blim(r) ⊆ Blim(r, β) sinceA = Blim(r) andA ⊆ Blim(r, β). Hence the weight
of r[ωweight(r)×(ik−1),ωweight(r)×ik)

, notedWk, is less or equal toweight(r). By induction
hypothesis, for everyk ≥ 1, there is a pathrk ∼ r[ωweight(r)×(ik−1),ωweight(r)×ik)

of length

ωWk+1× (ω(weight(r)−Wk)× (αk+1−αk), that is of lengthωweight(r)+1(αk+1−αk). Hence
r′ = r1r2r3 . . . is path, it is congruent tor and of lengthωweight(r)+1 × α. It is worth
observing thatBlim(r′) = A.

Because of the translation from formulae to automata, we canalso establish a pumping lemma
at the level of formulae.

Lemma 3.5.
(I): LetA be a simple ordinal automaton with acceptance conditions and α, β be countable

ordinals such thatα ≈card(B)+2 β. Then,A has an accepting run of lengthα iff A has an
accepting run of lengthβ.

(II): Letφ be a formula inLTL(U,S) andα, β be countable ordinals such thatα ≈|φ|+2 β.
Thenφ has anα-model iffφ has aβ-model.

Proof. (I) Direct consequence of Lemma 3.2 and Lemma 3.4 since accepting runs can be viewed as
paths.
(II) By Lemma 2.3,φ has anα-model iffAφ has an accepting runr of lengthα. Since the cardinal
of the basis ofAφ is precisely|φ|, by (I) we get thatAφ has an accepting runr of lengthα iff Aφ

has an accepting runr of lengthβ. Equivalently,φ has aβ-model.

4. CHECKING NONEMPTINESS OF SIMPLE ORDINAL AUTOMATA

In this section, we provide algorithms to check whether a simple ordinal automaton admits
accepting runs. The first one runs in exponential time. Our optimal algorithm runs in polynomial
space in the size of the basis (see Section 4.2).

4.1. An exponential-time algorithm for checking nonemptiness.Let A be a simple ordinal au-
tomaton〈B,Q, I, F,F , δnext, δlim〉. We provide below an algorithm to check givenq, q′ ∈ Q and
n ∈ N whether there is pathr : α + 1 → Q such thatr(0) = q, r(α) = q′ andα < ωn. Given
an (α + 1)-path we writeabs(r) to denote the triple〈r(0), all(r), r(α)〉. We define a family of
relations containing the triples of the formabs(r). Each relationRi below is therefore a subset of
Q× P(B)×Q.
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• R0 = {〈q, q ∩ q′, q′〉 : 〈q, q′〉 ∈ δnext},
• For i ∈ N,

R′
i = {〈q0,

m
⋂

j=0

Aj , qm+1〉 : ∃ q0, . . . , qm+1, A0, . . . , Am s.t.

m
∧

j=0

〈qj, Aj , qj+1〉 ∈ Ri}

• For i ∈ N, Ri+1 is defined fromR′
i as follows:〈q,A, q′〉 ∈ Ri+1 iff one of the conditions

holds true:
1. 〈q,A, q′〉 ∈ R′

i,
2. there exist〈q,A′, q′′〉 ∈ R′

i (2.1),〈q′′, Y, q′′〉 ∈ R′
i and a limit transition〈Y, q′〉 ∈ δlim

(2.2) such thatA = A′ ∩ Y ∩ q′.

The above numbering will be reused in Figure 2.
Let us first observe a few facts, whose proofs are by an easy verification.
(1) Whenever〈q,A, q′〉 ∈ Ri, A ⊆ q ∩ q′.
(2) BecauseRi ⊆ Ri+1 for all i, for someN ≤ 23×card(B) + 1, RN+1 = RN . The bound

23×card(B) + 1 takes simply into account thatQ ⊆ P(B).

In the sequel, forn ≥ 0 and for〈q,A, q′〉 ∈ Q × P(B) × Q, we establish the equivalence of
the propositions below:

• there isα+ 1 < ωn+1 and an(α+ 1)-pathr such thatabs(r) = 〈q,A, q′〉,
• 〈q,A, q′〉 ∈ R′

n.

Lemma 4.1. If 〈q,A, q′〉 ∈ Rn, then there existα < ωn and an (α + 1)-path such thatabs(r) =
〈q,A, q′〉.

Proof. The proof is by induction onn. For the basen = 0, the proof is by an easy verification.
In the induction step, suppose that〈q,A, q′〉 ∈ Rn+1. First suppose that〈q,A, q′〉 ∈ R′

n, that is
there areq0, . . . , qm+1, A0, . . . ,Am such that

∧m
j=0〈qj, Aj , qj+1〉 ∈ Rn, A =

⋂m
j=0Aj , q0 = q

andqm+1 = q′. By induction hypothesis, fori ∈ [0,m], there is a pathri : αi + 1 → Q such that
abs(ri) = 〈qi, Ai, qi+1〉 andαi < ωn. Hence,r0 · · · · · rm is a path of the desired form of length
strictly less thanωn.

If 〈q,A, q′〉 6∈ R′
n, then necessarily, by definition ofRn+1, there exist〈Y, q′〉 ∈ δlim, 〈q,A′, q′′〉 ∈

R′
n and〈q′′, Y, q′′〉 ∈ R′

n such thatA = A′ ∩ Y ∩ q′.
Hence, by definition ofR′

n and by induction hypothesis there is a pathr : α+1 → Q of length
strictly less thanωn betweenq andq′′. Similarly, there is a pathr′ : β + 1 → Q of length strictly
less thanωn betweenq′′ andq′′. Observe thatr′′ = r · (r′)ωq′ is a path of length strictly less than
ωn+1,Blim(r′′) = Y andabs(r′′) = 〈q,A, q′〉.

Consequently, if〈q,A, q′〉 ∈ R′
n, then there isα + 1 < ωn+1 and an(α + 1)-pathr such that

abs(r) = 〈q,A, q′〉. A converse result can also be established.

Lemma 4.2. Letr : α+ 1 → Q be a path such thatα < ωn. Thenabs(r) ∈ R′
n.

Proof. The proof is by induction onn. The base casen = 0 is immediate. In the induction step,
let r be a path of lengthα < ωn+1. If α < ωn, by induction hypothesis〈r(0), all(r), r(α)〉 ∈ R′

n

and therefore〈r(0), all(r), r(α)〉 ∈ Rn+1 sinceR′
n ⊆ Rn+1. Now suppose thatα = ωn ×m + β

with β < ωn andm > 0. In order to show that〈r(0), all(r), r(α)〉 ∈ R′
n+1 it is sufficient to

consider the caseα = ωn. Indeed,R′
n+1 is closed under composition, i.e. if〈q0, A0, q

′
0〉 ∈ R′

n+1

and〈q′0, A1, q
′
1〉 ∈ R

′
n+1, then〈q0, A0 ∩A1, q

′
1〉 ∈ R

′
n+1. So, suppose thatr is of lengthωn+1. By

induction hypothesis, for every0 ≤ i < i′, 〈r(ωn−1 × i), Ai,i′ , r(ω
n−1 × i′)〉 ∈ R′

n for someAi,i′ .
By Ramsey Theorem, there are0 < i0 < i1 < . . . such that〈r(ωn−1 × ik), Aik ,ik+1

, r(ωn−1 ×
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ik+1)〉 is the same for allk ≥ 0. Let j = i0 andj′ = i1. By induction hypothesis,〈r(ωn−1 ×
j), Aj,j′ , r(ω

n−1×j′)〉 ∈ R′
n since the length ofr[ωn−1×j,ωn−1×j′] is strictly less thanωn. Moreover,

we haveAj,j′ = Blim(r, ωn). So, there exist〈r(0), A′, q′′〉 ∈ R′
n (A′ = A0,j , q′′ = r(ωn−1 × j)),

〈q′′, Y, q′′〉 ∈ R′
n (Y = Aj,j′) and a limit transition〈Y, r(ωn)〉 ∈ δlim such thatA = A′∩Y ∩r(ωn).

Consequently,〈r(0), all(r), r(α)〉 ∈ R′
n+1.

We provide below a first complexity result.

Lemma 4.3. The nonemptiness problem for simple ordinal automata with acceptance conditions
can be checked in exponential time incard(B).

Proof. LetA be of the form〈B,Q, I, F,F , δnext, δlim〉. A has an accepting run iff either (A) there
areq0 ∈ I, qf ∈ F andA ⊆ B such that〈q0, A, qf 〉 ∈ R′

n for somen or (B) there areq0 ∈ I, and
a runr from q0 such thatBlim(r) ∈ F . (A) deals with accepting runs of length some successor
ordinal, whereas (B) deals with accepting runs of length some limit ordinal.

In order to check (A), it is sufficient to test for〈q0, A, qf 〉 ∈ I×P(B)×F whether〈q0, A, qf 〉 ∈
R′

card(B)+3 ⊆ Rcard(B)+4. Sincecard(Q) is inO(2card(B)), computingRcard(B)+4 takescard(B)+

4 steps that requires polynomial time in|A| and exponential time incard(B), we obtain the desired
result. Observe that we can take advantage of the fact that computing the transitive closure of a
relation and the maximal strongly connected components canbe done in polynomial time in the
size of the relations.

By Ramsey theorem, (B) is equivalent to the following condition: there areq ∈ Q, A ⊆ B,
A′ ∈ F and runsr1 andr2 such thatabs(r1) = 〈q0, A, q〉 andabs(r2) = 〈q,A′, q〉.

Hence. in order to check these, it is enough to check whether there areq0 ∈ I, q ∈ Q and
A ⊆ B such that〈q0, A, q〉 ∈ R′

card(B)+3, 〈q,A′, q〉 ∈ R′
card(B)+3 andA′ ∈ F . This can be done in

exponential time as for (A).

As a corollary of Lemma 4.3, satisfiability forLTL(U,S) is in EXPTIME. Moreover, this can
be improved as shown in the proof of Theorem 5.1 presented in Section 5.

4.2. A polynomial-space algorithm. We improve below the bound in Lemma 4.3 by taking ad-
vantage that the recursive depth is linear and only paths of at most exponential length need to be
computed.

Theorem 4.4.The nonemptiness problem for simple ordinal automata can bechecked in polynomial
space incard(B).

Proof. By Lemma 4.1 and Lemma 4.2 and by the fact that for alln ≥ 0, we haveRn ⊆ Rcard(B)+4,
we obtain thatA has an accepting run iff (A) there areq0 ∈ I, qf ∈ F andA ⊆ B such that
〈q0, A, qf 〉 ∈ Rcard(B)+3 or (B) there areq0 ∈ I, q ∈ Q andA′ ⊆ B such that〈q0, A′, q〉 ∈
Rcard(B)+4, 〈q,A′, q〉 ∈ Rcard(B)+4 andA′ ∈ F . B denotes the basis ofA.

The function PATH defined in Figure 2 checks recursively whether a triple belongs toRN .
Typically, the specification is that there is an accepting computation for PATH(A, 〈q,A, q′〉, N ) iff
〈q,A, q′〉 ∈ RN for the ordinal automatonA. It takes into account that the number of potential
triples inRN is bounded. Observe that the algorithm is nondeterministicand any guess that breaks
some condition somewhere aborts the computation.

In order to check (A), the non-deterministic algorithm guessesq0 ∈ I, qf ∈ F andA ⊆ B

(encoded in polynomial space inO(card(B)) and test whether
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PATH(A, 〈q,A, q′〉, N )

• If N = 0 then (if (eitherA 6= q ∩ q′ or 〈q, q′〉 6∈ δnext) thenabort else returntrue);
• If N > 0 then go non-deterministically to 1. or 2.

(1.): Guess on-the-fly a sequence

〈q0, A0, q1〉, 〈q1, A1, q2〉, . . . , 〈qm, Am, qm+1〉

such that
– m < 23×card(B)+1 + 1,
– for 0 ≤ i ≤ m, PATH(A, 〈qi, Ai, qi+1〉, N − 1) returnstrue,
– A =

⋂

j Aj

– q = q0, q′ = qm+1;
(2.): We guess here two long sequences:

(2.1): Guess on-the-fly a sequence

〈q0, A0, q1〉, 〈q1, A1, q2〉, . . . , 〈qm, Am, qm+1〉

such that
– m < 23×card(B)+1 + 1,
– for 0 ≤ i ≤ m, PATH(A, 〈qi, Ai, qi+1〉, N − 1) returnstrue,
– A′ =

⋂

j Aj;
– q0 = q;

(2.2): Guess a limit transition〈Y, q′〉 ∈ δlim and on-the-fly a sequence

〈q′0, A
′
0, q

′
1〉, 〈q

′
1, A

′
1, q

′
2〉, . . . , 〈q

′
m, A

′
m′ , q′m′+1〉

such that
– m′ < 23×card(B)+1,
– for 0 ≤ i ≤ m′, PATH(A, 〈q′i, A

′
i, q

′
i+1〉, N − 1) returnstrue,

– A = (A′ ∩ q′m′+1) ∩
⋂

j A
′
j , Y =

⋂

j A
′
j ,

– q′0 = qm+1;
• Returntrue.

Figure 2: Algorithm PATH

PATH(A, 〈q0, A, qf 〉, card(B) + 4)

returnstrue. Condition (B) admits a similar treatment. The non-deterministic algorithm PATH
defined below works in polynomial space incard(B) assuming that the last argument is polynomial
in card(B) which is the case withcard(B) + 4.

In (1.), guessing on-the-fly a long sequence means that only two consecutive triples are kept
in memory at any time. We introduce a counter that will guarantee thatm < 23×card(B)+1 and
it requires only space inO(card(B)). Moreover, in order to checkA =

⋂

j Aj we need two
auxiliary variables that bookkeep theAj computed so far. Similar techniques are used in (2.) to
guarantee that this non-deterministic algorithm requiresonly polynomial space inO(card(B)+N)
(we only need more variables and steps). It is straightforward to show that PATH(A, 〈q,A, q′〉, N )
has a computation that returnstrue (all the guesses were correct) iff〈q,A, q′〉 ∈ RN . Finally, by
using Savitch Theorem [Sav70], we can conclude that nonemptiness can be checked in deterministic
polynomial space incard(B).

Observe that the algorithm in the proof of Theorem 4.4 runs inspaceO(card(B)×(card(B)+
log (card(Q))+log (card(δlim))+log (card(δnext))). Indeed, the recursive depth is inO(card(B)).
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This is certainly sufficient to get forthcoming results about the complexity ofLTL(U,S). Neverthe-
less, the exact complexity characterization of the nonemptiness problem is open. It seems unlikely
that the problem can be solved inNLOGSPACE.

5. COMPLEXITY OF SATISFIABILITY PROBLEMS

We establish new complexity results for problems related toLTL(U,S) satisfiability which
follow from the intermediate results we have established sofar.

5.1. Complexity of LTL(U,S). Here is the main result of the paper.

Theorem 5.1. The satisfiability problem forLTL(U,S) over the class of ordinals isPSPACE-
complete.

Proof. By Theorem 1.2(II), a formula is satisfiable iff it is satisfiable on some model of countable
length. By Lemma 2.3, given a formulaφ in LTL(U,S), there is an automatonAφ whose accepting
runs correspond exactly to models ofφ. In order to check nonemptiness ofAφ, we do not build it
explicitly (as usual) but we run the algorithm from the proofof Theorem 4.4 and we compute the
locations, and transition relations ofAφ on demand. Hence, we obtain a polynomial space non-
deterministic algorithm since the cardinality of the basisof Aφ is inO(|φ|) and checking whether a
subset ofB is a location ofAφ or 〈q, q′〉 ∈ δnext or 〈Y, q〉 ∈ δlim can be done in polynomial space
in O(|φ|). Again by Savitch Theorem [Sav70], we get that the satisfiability problem forLTL(U,S)
is in PSPACE. ThePSPACElower bound can be easily shown inherited from LTL.

Our procedure to show thePSPACEupper bound is not optimal and it is subject to many re-
finements but it is sufficient for our needs. For instance, it is possible to have as a base set for
Aφ the subset ofsub(φ) made of until or since subformulae and propositional variables. Indeed,
the implicit presence of other subformulae can be deduced thanks to maximal consistency. This
refinement possibly decreases the length of the small models.

Due to Kamp’s Theorem [Kam68], we get the following corollary.

Corollary 5.2. LetLTL(U,S,O1, . . . ,Ok) be an extension ofLTL(U,S) with k first-order defin-
able temporal operators.

Then the satisfiability problem for the logicLTL(U,S,O1, . . . ,Ok) over the class of ordinals
is in PSPACE.

Indeed, every formulaOi(p1, . . . , pni
) encoded as a DAG can be translated into an equiva-

lent formula inLTL(U,S) encoded as a DAG over the propositional variablesp1, . . . , pni
. Since

O1, . . . ,Ok and their definition inLTL(U,S) are constants ofLTL(U,S,O1, . . . ,Ok), we obtain a
translation in polynomial-time (with our definition for thesize of formulae).

5.2. A family of satisfiability problems. The satisfiability problem forLTL(U,S) asks for the
existence of a model for a given formula. A natural variant ofthis problem consists in fixing the
length of the models in advance as for LTL. The satisfiabilityproblem forLTL(U,S) overα-models,
notedSAT(α,LTL(U,S)), is defined as follows:

input:: a formulaφ in LTL(U,S);
question:: Is φ satisfiable over anα-model?
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In this subsection we prove thatSAT(α,LTL(U,S)) is in PSPACEfor every countable ordinalα.
First we consider the case of ordinals strictly less thanωω. Let us establish that for everyα < ωω

there is a formuladefα in LTL(U,S) with the truth constant⊤ (no propositional variable) such that
for everyβ-modelσ, we haveσ, 0 |= defα iff β = α.

Lemma 5.3. Given an ordinal0 < α = ωk1ak1 + · · ·ωkmakm < ωω with k1 > . . . > km ≥ 0 and
ak1 , . . . akm ∈ N \ {0}, there is a formuladefα in LTL(U,S) of linear size in

∑

i(ki × aki) such
that for any modelσ, we haveσ, 0 |= defα iff σ is of lengthα.

Proof. We define a family(ϕi)i≥0 such that for allα-modelsσ andβ < α, we haveσ, β |= ϕi iff
β is a multiple ofωi. We setϕ0 = ⊤ and by inductionϕi+1 = ϕi ∧ ¬(¬ϕiSϕi). Observe that|ϕi|
is polynomial ini since it is defined as the cardinality ofsub(ϕi). Now let us definedefα ast(α)
defined recursively below:

• t(1) = ¬F+⊤, t(n) = Xt(n− 1) for n > 1,
• t(ωk1ak1 + · · ·+ωkmakm) = ¬ϕk1U(ϕk1 ∧ t(ω

k1(ak1 − 1)+ · · ·+ωkmakm)) with k1 > 0
and (ak1 ≥ 2 orm > 1),

• t(ω) = G+X−1⊤ ∧ F+⊤ ∧ G+X⊤,
• t(ωk1) = G+¬ϕk1 ∧ GF+ϕk1−1 with k1 > 1.

The size ofdefα is inO(
∑

i(ki × aki)).

We are now in position to state the following result.

Corollary 5.4. For everyα < ωω, the problemSAT(α,LTL(U,S)) is in PSPACE.

Proof. φ has aα-model iff ψ = φ ∧ defα is satisfiable over the class of ordinals. Thanks to
Lemma 5.3 and Theorem 5.1, we obtain thePSPACEupper bound.

Now we consider the case of a countable ordinalα ≥ ωω. Letα′ be the unique ordinal strictly
less thanωω such thatα = ωω × γ + α′ for some ordinalγ. Note that for everyk, trunck(α) =
trunck(ω

k + α′) < ωω. By Lemma 3.5(II),φ has anα-model iff φ has aα|φ|-model withα|φ| =

trunc|φ|+2(α) = trunc|φ|+2(ω
|φ|+2 + α′). Hence,φ has anα-model iff φ ∧ defα|φ|

is satisfiable
(over the class of countable ordinals). Since the size ofdefα|φ|

is polynomial in the size ofφ, we
derive from Theorem 5.1 the following result.

Corollary 5.5. For every countableα ≥ ωω, the problemSAT(α,LTL(U,S)) is in PSPACE.

Corollaries 5.4, 5.5 and the arguments similar to the arguments in the proof of Corollary 5.2
imply the result below.

Theorem 5.6. The satisfiability problem forLTL(O1, . . . ,Ok) restricted toα-models is inPSPACE,
for every finite set{O1, . . . ,Ok} of first-order definable temporal operators and for every countable
ordinal α.

Observe that ifα is finite, thenSAT(α,LTL(O1, . . . ,Ok)) is NP-complete otherwisePSPACE-
hardness forSAT(α,LTL(U,S)) follows from PSPACE-completeness ofSAT(ω,LTL(U,S)).

5.3. Uniform satisfiability. Büchi (see, e.g., [BS73]) has shown that there is afinite amount of
data concerning any countable ordinal that determines its monadic theory.

Definition 5.7 (Code of an ordinal). Let α be a countable ordinal and letm be in[1, ω].
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(1) Writeα = ωmα′ + ζ with ζ < ωm (this can be done in a unique way), and let

pm(α) :=

{

−2 if α′ = 0
−1 if 0 < α′ < ω1

.

(2) If ζ 6= 0, write ζ =
∑

i≤n ω
n−i · an−i whereai ∈ ω for i ≤ n andan 6= 0 (this can be done

in a unique way), and lettm(α) := (an, . . . , a0). If ζ = 0, let tm(α) = −3.
(3) Them-codeof α is the pair(pm(α), tm(α)).

The following is implicit in [BS73].

Theorem 5.8(Code Theorem). There is an algorithm that, given a monadic second-order sentence
φ and theω-codeof a countable ordinalα, determines whether〈α,<〉 |= φ.

Lemma 3.5 can be rephrased as “the (|φ|+2)-code of an ordinalα determines whetherφ has a
model of lengthα”.

Let C = (b, an, . . . a0) be anm-code. Its size is defined asn + a0 + a1 + · · · + an. It is
clear that form1 < m2 them2-code of an ordinal determines itsm1-code and there is a linear-time
algorithm, that givenm2-code of an ordinal andm1 < m2 computes them1-code of the ordinal.

The arguments used in the proof of Corollary 5.5 show the following theorem.

Theorem 5.9(Uniform Satisfiability).
(I): There is a polynomial-space algorithm that, given anLTL(U,S) formula φ and theω-

codeof a countable ordinalα, determines whetherφ has anα-model.
(II): There is a polynomial-space algorithm that, given anLTL(U,S) formulaφ and the (|φ|+

2)-code of a countable ordinalα, determines whetherφ has anα-model.

6. RELATED WORK

In this section, we compare our results with those from the literature related to satisfiability.
It is worth noting that an axiomatization ofLTL(U,S) over ordinals can be found in [Ven93].
Nevertheless, the concern in this above-mentioned paper isquite different from ours.

6.1. Comparison with Rohde’s thesis. In [Roh97], it is shown that an uniform satisfiability prob-
lem for temporal logic with until (and without since) can be solved in exponential time (flows of
time are countable ordinals). The inputs of this problem area formula inLTL(U) and the repre-
sentation of a countable ordinal. The satisfiability problem is also shown inEXPTIME. In order
to obtain this upper bound, formulae are shown equivalent toalternating automata and a reduction
from alternating automata into a specific subclass of non-deterministic automata is given. Finally, a
procedure for testing nonemptiness is provided. Here are the similarities between [Roh97] and our
results.

(1) We also follow an automata-based approach and the class of non-deterministic automata
in [Roh97] and ours have a structured set of locations and limit transitions use elements that
are true from some position.

(2) Existence ofα-paths in the automata depends on some truncation ofα.
(3) The logical decision problems can be solved in exponential time.

However, our work improves some results from [Roh97].

(1) Our temporal logic includes the until and since operators (instead of until only) and it is
therefore as expressive as first-order logic.
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(2) We establish a tightPSPACEupper bound (instead ofEXPTIME) thanks to the introduction
of simple ordinal automata.

(3) Our proofs are shorter and transparent (instead of the lengthy developments from [Roh97]).

Consequently, the developments from [Roh97] and ours follow the same approach with differ-
ent definitions for automata, different intermediate lemmas and distinct final complexity bounds.
On the other hand, the structure of the whole proof to obtain the main complexity bounds is similar.

6.2. LTL over other classes of linear orderings. Even though the results for linear-time temporal
logics from [Rey03, Rey10b] involve distinct models, our automata-based approach has similar-
ities with these works that uses a different proof method, namely mosaics. Indeed, equivalence
classes of the relation∼ between runs of length a successor ordinal roughly correspond to mosaics
from [Rey03]. We recall the main results below.

Theorem 6.1.
(I): [Rey10b]The satisfiability problem for the temporal logic with untiland since over the

reals isPSPACE-complete.
(II): [Rey03] The satisfiability problem forLTL(U) over the class of all linear orders is

PSPACE-complete.

The proofs in [Rey03, Rey10b] are much more involved than ourproofs since the orders are
more complex than the class of ordinals. Moreover, a recent work [Cri09] has established that
LTL(U,S) over the class of linear orderings has an elementary complexity by using transducers
as done in [Mic84] for standard LTL. More precisely, satisfiability for LTL(U,S) augmented with
future and past Stavi operators is in 2EXPSPACE[Cri09]. Nevertheless, complexity ofLTL(U,S)
over the class of linear orderings has been recently solved:for any temporal logic with a finite set
of modalities definable in the existential fragment of second-order logic has aPSPACEsatisfiability
problem over the class of linear orderings [Rab10a, Rab10b](see also [Rey10a]). Moreover, observe
thatLTL(U,S) over the reals has been recently shown inPSPACEin [Rey10a], which allows us to
obtain in a different way thatLTL(U,S) over the countable ordinals is inPSPACE (see the full
arguments in [Rab10a, Section 13]).

6.3. Quantitative temporal operators. In this section, we show that the main results from [DN07]
are subsumed by the current paper. We also solve an open problem from [Cac06, DN07]. For
every fixed countable ordinalα ≤ ω, let us introduce the logic LTL(Oα) where the set of temporal
operatorsOα is defined as follows:{Xβ : β < ωα} ∪ {Uβ : β ≤ ωα}. The models ofLTL(Oα) as
those ofLTL(U,S) and the formulae ofLTL(Oα) are precisely defined by:

φ ::= p | ¬φ | φ1 ∧ φ2 | X
βφ | φ1U

βφ2.

The satisfaction relation is inductively defined below whereσ is a model for LTL(Oα) (we omit the
obvious clauses):

• σ, β |= Xβ′
φ iff β + β′ is a position ofσ andσ, β + β′ |= φ,

• σ, β |= φ1U
β′
φ2 iff there isγ ∈ (0, β′) such thatβ+γ is a position ofσ, we haveσ, β+γ |=

φ2 and for everyγ′ ∈ (0, γ), we haveσ, β + γ′ |= φ1.

The satisfiability problem for LTL(Oα) consists in determining, given a formulaφ, whether
there is a modelσ such thatσ, 0 |= φ. The main results of [Cac06, DN07] are the following:
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(1) For everyk ∈ N \{0}, the satisfiability problem for LTL(Ok) restricted to models of length
ωk is PSPACE-complete when the natural numbers occurring in formulae are encoded in
unary. With binary representation, it becomesEXPSPACE-hard (mainly because a temporal
operatorX2n is helpful to specify concisely the cell contents of exponential-space Turing
machines).

(2) LTL(Oω) restricted to models of lengthωω is decidable.

Observe that LTL(Ok) cannot express the temporal operatorU over the class of countable
ordinals but it can do it on models of lengthωk. Hence, each logicLTL(Ok) is less expressive
thanLTL(U,S).

Moreover, it is easy to show that for everyα ≤ ω, the logicLTL(Oα) is expressively equivalent
(over the class of countable ordinals) to its sublogic over the following setO′

α of temporal operators:

O′
α = {Xωi

: ωi < ωα, i ∈ N} ∪ {Uωβ

: ωβ ≤ ωα, β ≤ ω}.

This set is finite whenα is finite. Moreover, there is a linear-time (and logarithmicspace) meaning
preserving translation fromLTL(Oα) into LTL(O′

α).
Let us translateφ in LTL(O′

ω) into a formulat(φ) in LTL(U,S) homomorphically for the
Boolean operators and such that the propositional variables remain unchanged. Here are the re-
maining clauses of translation:

• t(ψ1U
ωi
ψ2) = (¬ϕi ∧ t(ψ1))U(¬ϕi ∧ t(ψ2)), t(ψ1U

ωω
ψ2) = t(ψ1)Ut(ψ2),

• t(Xωi

ψ1) = ¬ϕiU(ϕi ∧ t(ψ1)).
The formulaϕi is defined in the proof of Lemma 5.3. The following result is easy to show.

Lemma 6.2. (I) Let φ be inLTL(O′
ω \ {Uωω

}). t(φ) is equivalent toφ over the class of countable
ordinals, i.e. for allα-modelsσ andβ < α, we haveσ, β |= φ iff σ, β |= t(φ). (II) Let φ be in
LTL(O′

ω). For all ωω-modelsσ andβ < ωω, we haveσ, β |= φ iff σ, β |= t(φ). Moreover,|t(φ)| is
linear in |φ|.

(I) is essentially based on the properties of formulaeϕi and on the exclusion ofUωω
. (II) simply

takes advantage of the fact that for theωω-models,U andUωω

are obviously equivalent.
We obtain alternative proofs for known results and we get newresults.

Theorem 6.3. For everyk ∈ N \ {0},

(I): the satisfiability problem forLTL(Ok) overωk-models is inPSPACEwith unary encoding
of natural numbers,

(II): the satisfiability problem forLTL(O′
k) restricted toωk-models isPSPACE-complete,

(III): for every countable infinite ordinalα, the satisfiability problem forLTL(O′
k) restricted

to α-models isPSPACE-complete.

(III) is an instance of Theorem 5.6. (II) is an instance of (III) (with unary encoding of natural
numbers). (I) can be shown by observing that there is a logarithmic space meaning preserving
translation fromLTL(Ok) to LTL(O′

k). (I) is the main result of [DN07] with the unary encoding
of natural numbers occurring in ordinal expressions. Finally, the corollary below improves the non-
elementary bounds obtained in [Cac06, DN07] forLTL(Oω) by reducing this temporal logic to the
monadic second order logics, and then to Buchi ordinal automata.

Corollary 6.4. Satisfiability forLTL(Oω) over the class ofωω-models isPSPACE-complete with
unary encoding of natural numbers in formulae.

22



7. CONCLUSION

In the paper, we have shown that the linear-time temporal logic with until and since over the
class of ordinals, namelyLTL(U,S) has aPSPACE-complete satisfiability problem. Due to Kamp’s
Theorem [Kam68], we know thatLTL(U,S) is a fundamental temporal logic since it is as expressive
as first-order logic over the class of ordinals. In order to establish this tight complexity character-
ization, we have introduced the class of simple ordinal automata. This class of automata is more
structured than usual ordinal automata and the sets of locations have some structural properties,
typically it is a subset of the powerset of some set (herein called the basis). As a consequence, we
are also able to improve some results from [Roh97, DN07]. Forinstance the uniform satisfiability
problem isPSPACE-complete and we obtain alternative proofs for results in [DN07]. Recent results
about the polynomial space upper bound for LTL over various classes of linear orderings can be
found in [Rab10a, Rab10b] by using the so-called composition technique and the automata-based
technique used in this paper.

Acknowledgments: We would like to thank the anonymous referees for helpful suggestions
and remarks.
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