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ABSTRACT. We consider the temporal logic with since and until modsdit This temporal logic
is expressively equivalent over the class of ordinals td-firder logic by Kamp'’s theorem. We
show that it has @spPACEcomplete satisfiability problem over the class of ordinafesmong the
consequences of our proof, we show that given the code of som@able ordinad and a formula,
we can decide irspACEwhether the formula has a model overln order to show these results, we
introduce a class of simple ordinal automata, as expressigiichi ordinal automata. THSPACE
upper bound for the satisfiability problem of the temporgidds obtained through a reduction to the
nonemptiness problem for the simple ordinal automata.

INTRODUCTION

The main models for time ar@N, <), the natural numbers as a modeldiécrete timeand the
structure(R, <), the real line as the model feontinuous time These two models are called the
canonical models of timeA major result concerning linear-time temporal logics &nkp theorem
[Kam68, GHR94] which says thdtTL(U,S), the temporal logic havingUntil” and “Sincé as
only modalities, is expressively complete for first-ordeonadic logic of order over the class of
Dedekind-complete linear orders. The canonical modelsnoé tare indeed Dedekind-complete.
Another important class of Dedekind-complete orders isthss of ordinals.

In this paper, the satisfiability problem for the temporajitowith until and since modalities over
the class of ordinals is investigated. This is the oppotyuiti generalize what is known about the
logic overw-sequences. Our main results are the following.

(1) The satisfiability problem fot.TL(U, S) over the class of ordinals mSPACEcomplete.

1998 ACM Subject Classificatior.4.1, F.3.1., F.2.2.
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(2) Aformula¢ in LTL(U,S) has somex-model for some ordinak iff it has ans-model for
somef < wl?+2 where|¢| denotes the size af for some reasonably succinct encoding
(see forthcoming Corollafy 3.3).

In order to prove these results we use an automata-basedaapBic62, VW94]. In Sec-
tion[2, we introduce a new class of ordinal automata which a¥lesimple ordinal automataThese
automata are expressive equivalent to Blchi automataamertable ordinals [BS73]. However,
the locations and the transition relations of these autainate additional structures aslin [Roh97].
In particular, a location is a subset of a baselsetlerein, we provide a translation from formulae
in LTL(U, S) into simple ordinal automata that allows to characterizedbmplexity of the satis-
fiability problem forLTL(U, S). However, the translation of the formufainto the automatom,,
provides an automaton of exponential sizeginbut the cardinal of the basis of; is linear in|¢|.
Section B contains our main technical lemmas. We show tlmerteetvery run in a simple ordinal
automaton is equivalent to a short run. Consequently, vabksh that a formula € LTL(U,S)
has ana-model for some countable ordinal iff it has a model of lengthtruncg2(a) where

truncy|42(a) is a truncated part of strictly less thanul?/*2 x 2 (see the definition of truncation
in SectiorLB). In Sectionl 4 we present two algorithms to stheenonemptiness problem for simple
ordinal automata. The first one runs in (simple) exponetitizg and does not take advantage of the
short run property. The second algorithm runs in polynomsjglce and the short run property plays
the main role in its design and its correctness proof.

In Section’b we investigate several variants of the satisfialproblem and show that all of
them arePsPACEcomplete. Sectiohl6 compares our results with related svofihe satisfiability
problem forLTL(U,S) over w-models ispsPACEcomplete [[SC85]. Reynolds [Rey03, Reyl10b]
proved that the satisfiability problem fof'L(U, S) over the reals iespACEcomplete. The proofs
in [Rey03, Rey10b] are non trivial and difficult to grasp ahisitherefore difficult to compare our
proof technique with those df [Rey(3, Rey10b] even thouglbaleve cross-fertilization would be
fruitful. We provide uniform proofs and we improve upper bds for decision problems considered
in [Cac06, DNQOY|[ Roh97], see aldo [BLWO07]. We also comparneresults and techniques with
Rohde’s thesid [Roh97]. Finally we show how our results ientast of the results from [DNQ7]
and we solve some open problems stated there.

1. LINEAR-TIME TEMPORAL LOGIC WITH UNTIL AND SINCE

1.1. Basic definitions on ordinals. Let us start smoothly by recalling basic definitions and prop
erties about ordinals, see e.g. [Rads82] for additional ri@dteAn ordinal is a totally ordered set
which iswell ordered i.e. all its non-empty subsets have a least element. Gsdererphic ordinals
are considered equal. They can be more conveniently defidedtively by: the empty set (written
0) is an ordinal, ifa is an ordinal, therx U {a} (written « + 1) is an ordinal and, ifX is a set of
ordinals, ther J . x  is an ordinal. The ordering is obtained By< « iff 3 € a. An ordinala is
asuccessoprdinal iff there exists an ordingl such thatwx = 5 + 1. An ordinal which is no0 or

a successor ordinal, islimit ordinal. The first limit ordinal is writterv. Addition, multiplication
and exponentiation can be defined on ordinals inductively:0 = o, a + (8 + 1) = (e + 8) + 1
anda + 8 = sup{a + v : v < 8} wheref is a limit ordinal. Multiplication and exponentiation are
defined similarly. Whenever < g, there is a unique ordingl such thain + v = § and we write

B — « to denotey.



1.2. Temporal logic. The formulae ofLTL(U,S) are defined as follows:

pu=p | 2d | d1 A2 | p1Uda | #1502

wherep € PROP for some countably infinite s&@ROP of atomic propositions. Given a formula
¢ in LTL(U,S), we write sub(¢) to denote the set of subformulae @br their negation assuming
that——) is identified withy). The size ofp is defined as the cardinality efib(¢) and therefore im-
plicitly we encode formulae as DAGSs, which is exponentiatigre succinct that the representation
by trees. This feature will be helpful for defining transbat$ that increase only polynomially the
number of subformulae but for which the tree representatigght suffer an exponential blow-up.
We use the following standard abbreviatidits = ¢ A—(TU-¢), Gt ¢ = =(TU—¢), Fd = =G,
Fto = -Gt—¢, X =L Ugp andX ¢ =L S¢ that do cause only a polynomial increase in size.

An a-modelo is a functiono : @« — P(PROP) for some ordinakx # 0. The satisfaction
relation“ ¢ holds in thea-modelo at position3” (8 < «) is defined as follows:

e 0,fEpiff pea(B),

o 0.8 E—¢iffnoto, 3 ¢,

o 0.8 E b1 Ap2iff 0,8 = ¢1ando, B = o2,

e 0,8 = $1Ugy iff there isy € (5, «) such thatr, v = ¢2 and for everyy’ € (8,7), we
haves, ' | ¢1,

e 0,3 = $1S¢. iff there isy € [0, 3) such that, v = ¢, and for everyy’ € (v, 8), we have
g, /7, ’: ¢1-

Observe that andU are strict “since” and “until” modalities.

The (initial) satisfiability problem fof.TL(U, S) consists in determining, given a formuja
whether there is a modelsuch that, 0 = ¢. Note thaty is satisfiable in a model iff F¢ is initially
satisfiable inr. Therefore, there is a polynomial-time reduction from thiess$iability problem to the
initial satisfiability problem. From now on, we will deal gnivith the initial satisfiability problem
and for the sake of brevity we will call it “satisfiability pptem”.

We recall that well orders are particular cases of Dedekordpiete linear orders. Indeed, a
chain is Dedekind complete iff every non-empty bounded subas a least upper bound. Kamp’s
theorem applies herein.

Theorem 1.1. [Kam68] LTL(U,S) over the class of ordinals is as expressive as the first-order
logic.

Moreover, satisfiability fol.TL(U,S) is known to be decidable and as stated below we can
restrict ourselves to countable models.

Theorem 1.2.

(): [BS73] The satisfiability problem fot.TL(U, S) over the class of countable ordinals is
decidable.

(I: (see e.gIGS85, Lemma §]A formula inLTL(U, S) is satisfiable iff it is satisfiable in a
model of length some countable ordinal.

Observe that in [BS73] it was proved that monadic seconérdajic over the class of count-
able ordinals is decidable and in [G$85] it was shown thatfdrenula of the first-order monadic
logic is satisfiable in a model over an ordinal then it is $@tide in a model over a countable or-
dinal. (1) and (Il) are immediate consequences of thesdtseand the fact that TL(U, S) can be
easily translated into first-order logic.

Consequently.TL(U, S) over the class of ordinals is certainly a fundamental logibe stud-
ied. We recall below a central complexity result that we wiltend to all ordinals.
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Theorem 1.3. [SC85] Satisfiability forLTL(U, S) restricted tow-models issSPACEcomplete.

2. TRANSLATION FROM FORMULAE TO SIMPLE ORDINAL AUTOMATA

In Section[2.11, we introduce a new class of ordinal automatizlwwe call simple ordinal
automata. These automata are expressive equivalent to &iitomata over ordinals [BS[73]. How-
ever, the locations and the transition relations of thedenaata have additional structures. In
Sectior 2.B, we provide a translation frddi'L.(U, S) into simple ordinal automata which assigns
to every formula inLTL(U,S) an automaton that recognizes exactly its models. We borhew t
automata-based approach for temporal logics fiom [VW94WOZ].

2.1. Simple ordinal automata.

Definition 2.1. A simple ordinal automator is a structure B, Q, dnext, O1im) SUch that
B is afinite set (thdvasisof A),

@ C P(B) (the set oflocations,

dnext © @ X @ 1s thenext-step transition relatign

diim € P(B) x Q is thelimit transition relation

A can be viewed as a finite directed graph whose set of nodesicdised. Limit transitions,
whose interpretation is given below, allow reaching a ndtkr an infinite amount of steps. Given
a simple ordinal automatad, ana-path (or simply a path) is a map: a — @ for somea > 0
such that

e foreveryf +1 < a, (r(B),r(8+ 1)) € dnext
e for every limit ordinal 3 < «, (Byim(r, 8),7(8)) € d1im Where

Biim (1, B) & {a € B: 3+ < Bsuch that for every ' € (v,8), a € r(v)}.

The setBy;,,,(r, 5) contains exactly the elements of the basis that belong ty éseation from
somey < S until 5. We sometimes writéy;,,, (r) instead ofBy;,,, (r, ) whena is a limit ordinal.
Given ana-pathr, for 3, 3/ < o we write
e >3 to denote the restriction ofto positions greater or equal t
e -3 to denote the restriction ofto positions less or equal 16
e 7[5, to denote the restriction afto positions in[3, A" (half-open interval).

A simple ordinal automaton withcceptance conditionis a structure of the form
<B> Q> Ia F> ]:7 5ne:vt> 5lzm>
where
e [ C (Qis the set ofnitial locations,
e F' C ( is the set offinal locations for accepting runs whose length is some successor

ordinal,
e F C P(B) encodes the accepting condition for runs whose length igdionit ordinal.

Given a simple ordinal automaton with acceptance condifianaccepting runs a pathr : « — Q
such that

e r(0) €1,

e if ais a successor ordinal, the(w — 1) € F, otherwiseBy;,,,(r) € F.



The nonemptiness problerfor simple ordinal automata consists in checking whetdehas an
accepting run. Our current definition for simple ordinalcméata does not make them language
acceptors since they have no alphabet. It is possible torathaidefinition a finite alphabét and

to define the next-step transition relation as a subsé ef X x @, see an example on the right-
hand side of Figurel1l. Additionally, the current definiticemdoe viewed as the case either when
the alphabet is a singleton or when the read letter is enciodib@ locations through the dedicated
elements of the basis. This second reading will be in factl usglicitly in the sequel. We also
write A to denote either a simple ordinal automaton or its extensitinacceptance conditions.

2.2. Relationships with Blichi automata. Simple ordinal automata with acceptance conditions
and alphabet define the same class of languages as standiaal atutomata in the sense of [Blic64,
Biic65]. Main arguments are provided below for the sake ofmeteness. However, we do not need
this correspondence in our forthcoming developments. Taim interest for our model of simple
ordinal automata rests on the fact that it allows us to oltagnpromisedsPACEuUpper bound. A
standard ordinal automatois a structured = (3, Q, I, F, F, Sneat, O1im) Such that

Y is a finite alphabet,
Q is a finite set of locations,

5ne:mt c Q X X X Q andélim - P(Q) X Q1
e [ FCQandF C P(Q).

Awordu : o — Y is accepteddy A iff there isr : « — @ such that
o forevery3 +1 < a, (r(8),u(B),r(B + 1)) € dnewt,
o for every limit ordinalg < «, (inf(r, 8),7(8)) € 0im Where
inf(r, ) d:ef{q € Q : for all v < B thereis v € (a, B) such that r(v) = ¢}.
As usualinf(r, 3) denote the set of locations that appear cofinally before
e r(0) € I and if« is a successor ordinal, thefw — 1) € F, otherwiseinf(r, o) € F.

We writeL(.A) to denote the set of words accepteddySimilar definitions can be given for simple
ordinal automata with acceptance conditions and alphabet.

Lemma 2.2.

(): Given a simple ordinal automataA, there is a standard ordinal automatod’ such that
L(A) = L(A).

(IN): Given a standard ordinal automato#, there is a simple ordinal automato#’ such that
L(A) = L(A).

Proof. (I) Let A be a simple ordinal automato# = (3, B,Q, I, F, F, dpext, O1im ). We consider
the standard ordinal automatofi of the form (X, Q, I, F, F, dpeat, 9};,,) Such that(Y, q) € &}, .
iff there is a limit transition Z, ¢) € d;;,,, satisfying the conditions below.

e foreveryq € Y, we haveZ C ¢/,

e for every element € (B \ Z), there isy’ € Y such thats & ¢'.
One can easily check tha{.4) = L(.A’). Observe thatd’ can be exponentially larger thas
(I Let A= (X,Q,I,F,F,oneut, o1im) be a standard ordinal automaton. We build a simple ordinal
automatond’ = (X, B', Q" I', F', F', 8], ..t 0};,,,) @s follows.
* B'=P(Q).
e ={XePB):3qge @, X ={Y € P(Q) : ¢ € Y}}. Below, wheng € Q,
by abusing notation, we also writeto denote the corresponding location(t equal to
{YePQ):qeY}.
5
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Figure 1: Ordinal automata acceptihg

o ['=IF =FandF = F.
e Forac X andQ7 (]/ € Q1 <Q>a>q,> € 51/16:vt Only if <Q>a>q,> € 5nemt-
e ForY’ C B'andq € Q, (Y',q) € 9}, only if there is a limit transitionY’, ¢) € d;,, such
thatY’ = {a € B': Y Ca}.
Again, one can easily check thiat.A) = L(A’). (]

Let Ly be the set of worda : o — {0, 1} such that for3 < «, 3 = w?y for some ordinaly
iff u(8) = 1. The left-hand side of Figuie 1 presents a standard orduiah@aton (with three loca-
tions) acceptind.g. Next-step transitions are represented by plain arrowseesdimit transitions
are represented by dashed arrows. Moreokee= {q1, qu, g>,2} andF = P({q1, quw, §>u2})-
The right-hand side of Figufé 1 presents a correspondinglsiordinal automaton along the lines
of the proof of Lemma 2]2. Its basiB is equal toP({q1, ¢, ¢>.2}) and we writeq; to denote
Hat A et {ar, ¢502t {910 ws 502} - @ @ndas,2 are defined similarly.

2.3. Translation from LTL(U,S) formulae to simple ordinal automata. As usual, a seY" is a
maximally Boolean consisteatibset ofsub(¢) when the following conditions are satisfied:
e foreveryy € sub(¢), w e Yiff v €Y,
o for everyy; A g € sub(¢), 1 ANpy € Y iff 41,109 € Y.
Given a formulag, the simple ordinal automatad, = (B, Q, I, F, F, 0pext, 01im) IS defined as
follows:
B = sub(¢).
Q is the set of maximally Boolean consistent subsetsud{¢).
1 is the set of locations that containand no elements of the forgy Ss.
F'is the set of locations with no elements of the fafaiys.

A subsetY” of B is in F if there are na); andv, such that{;, 9, 1 Uihe} C Y.

Forallg,qd € Q, (q,q) € dnext % the conditions below are satisfied:

(nexty): for everyy Uiy € sub(o), 11Uy € q iff either iy € ¢’ or ¢, 11Ut € ¢/,

(nexts): for everyiSiye € sub(¢), 1S9 € ¢ iff either o € q or iy, 11Sy9 € g.
ForallY C Bandqg € Q, (Y,q) € diim % the conditions below are satisfied:

(limyl): if 41, ~1ba, 1Ushy € Y, then eitherps € g or iy, 91 Uths € g,

(limy2): if 91,91 Upe € gandy; € Y, theny,Uys € Y,

(limy3): if Y1 € Y, ¢ € g andyy Uy is in the basisB, theny Uy, € Y,

(limg): for everyy; Sy € sub(d), 1Se € ¢ iff (1 € Y andy; Sy, € Y).

Even though the conditions above are compatible with theétiah that a location contains the
formulae that are promised to be satisfied, at the curregesdtanight sound mysterious how the
conditions have been made up (mainly for the conditiongedlto limit transitions). For some of
them, their justification comes with the proof of Lemmal 2.3.



Let o be ana-model andp be a formula inLTL(U, S). TheHintikka sequencéor o and¢ is
ana-sequencd??? defined as follows: for everg < a,

H?(8) € {0 € sub(¢) : 0,3 = ).
Given arunr : a« = @Q, we writemod(r) : o — P(PROP) to denote thex-modelo defined as

follows: o(3) &' {p € PROP : p € r(B)}. Itis clear that ifr is an Hintikka sequence fer andg,
thenmod(r) = o.
Now we can state the correctness lemma.

Lemma 2.3.

(1): If 0,0 = ¢, then the Hintikka sequence ferand ¢ is an accepting run of .

(Il): If r is an accepting run ofd,, thenmod(r),0 = ¢ andr is the Hintikka sequence for
mod(r) and¢.

(mn): ¢ is satisfiable ift44 has an accepting run.

Proof. First, (1ll) is an immediate consequence of (1) and (l1).

() Suppose that there is a model: « — P(PROP) (with o > 0) such thatr,0 = ¢. By
usingLTL(U, S) semantics, it is straightforward to check ti&t? is accepted by;.
(I) Let r : o — Q be an accepting run ofl;. Let us show by structural induction that for all
Y € sub(¢) andf < «, we havemod(r), 8 = ¢ iff ¢ € r(5). The base case and the cases with
Boolean operators in the induction step are by an easy \ardic The only interesting cases in the
induction step are related to the temporal operatbesdS. Below, leto be mod(r).
CaseU: ¢ = 1 Ui,
Let us reasomd absurdumSuppose thafs : ¢ € r(8)} # {3 : 0,5 |= ¢}. Let 5 be the smallest
ordinal which belongs to only one of these sets. We consulercases: d, § = ¢ andy & r(5))
— Case | below — orf € r(8) anda, 8 |~ 1) — Case Il below.

Casel: Let~ be the smallest ordinal verifying < v < «, 0,7 = 12 and for everyy’ €
(8,7), we haveo,~" = 11 A —1p. By induction hypothesisy, € r(vy) and for every
v € (B,7), {tb1, ~ha} S (7).

First, we are going to show thaty € r(v/) for everyy’ € [3,v). This is true forg.
Assume that this is true fg#’ then it is true for3’ + 1 by condition (nexj). Assume that
~' is a limit ordinal andy ¢ r(3’) for every’ € [3,~'). Then, by condition (lig2) we
obtain that-y € r(7’). Next, consider two cases:

Case a):+ is a successor, say = 3’ + 1. We have— € r(8’) andvys € r(vy). This
contradicts condition (ney).
Case b):~ is a limit ordinal. In this cas€—, 91} C By (r,y) andyy € (). This
contradicts condition (lig3).

Casell: now suppose that, Uy, € 7(5) ando, 5 = 11 Uths.
Case a): For everyy such thaty € (3, «), we haveo,y £ 19 (12 does not hold onr
strictly after3).
By induction hypothesis, for every € (3, «), -2 € r(v). Let us show that for every
Y€ (5704)1 {¢1>7/)1U¢2} c 7’(’7)
Base casey = + 1.
By condition (nexy), ¥1Uv € 7(8) and—ibg € r(B+ 1) imply {11, 91Ute} C r(B+1).
Induction step
e if v = 9/ + 1, then by condition (nex), 11 Ue € r(v') and—y € r(v + 1) imply
{1, ¥1U¢o} Cr(y' +1).
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e if v is a limit ordinal then by induction hypothesi§);, 12, Y1 Uto} C By (1, 7).
By condition (limy1), {¢1,¥1Ute} C r(v) sinceyy & r(y).

Consequently, ifx is a limit ordinal, then{v;, 19,91 Uths} C By, (1, @) which is in
contradiction with the definition oF in A,. Similarly, if o = o/ + 1, theny; Uy, € r(a)
which is in contradiction with the definition df.

Case b):There is a minimal ordinaj € (5, «) such thav, v = —¢1 A =), and for every
v € (B,7), we haves,v" | 11 A —by. By induction hypothesis{—1, =2} C r(v)
and for everyy’ € (8,7), {¢1, 2} C r(¥'). Let us show that for every’ € (3,7),

{1,991 U} Cr(v)).

Base casey’ = 5 + 1.
By condition (nexg), ¥1Uvs € r(B) and—1pg € r(B + 1) imply {1,91Uta} C 7(v).
Induction step
e If v/ =~+" +1, then by condition (nex), )1 Uy € r(v") and—)y € r(7” + 1) imply
{1, ¥1U¢a} Cr(v" +1).
e If 4/ is alimit ordinal, then by induction hypothesig)1, =12, Y1 Uta} C By (r,7).
By condition (limy1), {¢1,¢%1Uthe} C r(v') sinceys & r(v').
Consequently, ify is a limit ordinal, then{v)1, =9, 11 Utbe } C By (1, ) which leads to
a contradiction by condition (ligil). Indeed, by induction hypothesis;iy, =12} C (7).
Similarly, if v = 4/ + 1, theny Uy ¢ r(+") which leads to a contradiction by condition
(nexyy).

CaseS: ¢ = 91Sys.

Let us reasorad absurdum Suppose tha{g : v € r(8)} # {8 : 0,8 E ¥}. Let g be the
smallest ordinal that belongs to only one of these sets. rAgeg¢ distinguish two cases, namely
either ¢, 5 = v andy ¢ r(3)) — Case | below — orf € r(3) ando, 8 I~ 1)) — Case Il below.

Casel: so > 0 and there isy € [0, 3) such thatr,y = 12 and for everyy’ € (v, 3), we
haveo, v |= ;. By induction hypothesig), € r(v) and for everyy’ € (v, 3), ¥1 € r(y/).
Observe that for every’ € (v, 8), we haver, v = ¢ andy € r(v/) (8 is minimal).

e If 3 = B’ + 1 then by condition (nex) o & r(8') and {¢1, ¢S} € r(B). If
~v = /, then this leads to a contradiction singe € r(v). Similarly, if v < ', then
v & r(p') sinceyy € r(B'). Sinceo, ' = 11514, this leads to a contradiction by the
minimality of 5.

e If B is a limit ordinal, then by condition (lig) eitherv; ¢ By, (r, 5) oOr 1Sy &
Byim(r, 8). By induction hypothesisy; € By, (r, 8). Hence, there i$’ € (v, )
such that); Sy & r(5’), which is in contradiction with the minimality of.

Casell:

Case a):For everyy € [0, ), o, 8 [~ s.
By induction hypothesis, for every € [0, 5), 12 & (). Moreover, for everyy € [0, ),
we haveo, 5 £ 11Sv,.

e If 3 = 3 + 1 then by condition (nexd, {v1,11S¢¥2} C r(5’) which leads to a
contradiction by minimality of3.

e If Sis alimit ordinal, then{t, 1S9} C By (r, 8) by condition (lims). Hence, for
somefs’ < B, Y1Syy € ('), which leads again to a contradiction by the minimality
of 5.



e If 5 = 0, then we also have a contradiction sing®) does not contain any since
formulae. Observe that in the previous case analyses wdinais, the case “0” has
been irrelevant.

Case b):o, 8 |~ ¢ and not a).

Remember that) € r(). There is’ < 8 such thaw, 3’ |~ ;. Otherwise, by induction
hypothesis and by not a), we havgs |= v, a contradiction.

Case b.1:There is a maximal position < /8 such thaw, v |~ 1.

For everyy' € (v,(), we haveo,vy £ 1, otherwises, 8 = ¢ which would lead to a
contradiction. Let us show by transfinite induction thatdeery+’ € (v, 8], ¥ & r(v/).
Base casey’ = v + 1.

b1, by € r(y) imply by condition (nexg) thaty & r(v").

Induction step:

o If v/ =" + 1, then—), ) € r(+") by induction hypothesis. By condition (next
&)

e If 4/ is a limit ordinal, then—¢ € By;,,,(r,~') and by condition (ling), ¢ & r(v').

Hencen) ¢ r(3), which leads to a contradiction.

Case b.2There is no maximal positiofy < 3 such thaw, v [~ ; (the most delicate case).
Consequently, there is a unique positipn< 3 such that for everyy < ~, there isy’ <
~" < ~ verifying =1 € r(v”). This means that

o foreveryy’ € [, 8], ¢1 € r(v),

* Yy ¢ Blim(T77) and,

e by condition (liny) ¢ & ().

Moreover, for everyy’ € (v, 3), =12 € r(v') otherwise by induction hypothesis, 3 = v,
which would lead to a contradiction. Let us show by transfimitduction that for every
v e OBy ErH)

Base casey’ = v + 1.

—), —pg € r(y) imply by condition (nexg) ¢ & r(v/).

Induction step:

o If v/ =4" + 1, then—)e, =) € r(v”) by induction hypothesis. By condition (next
Y Er(y)

e If 4/ is alimit ordinal, then-¢) € By;,,,(r,~") and by condition (lirg), v & r(v').

Hence ¢ r(3), which leads to a contradiction.

3. SHORT RUN PROPERTIES

In this section, we establish pumping arguments that areluseshow that

e in order to check the satisfiability status of the formglathere is no need to consider
models of length greater than?!+2,

e simple ordinal automata cannot distinguish ordinals wdmtical tails (defined below pre-
cisely with the notion ofruncation.

Let. A be a simple ordinal automaton aldbe a subset of its basi¥’ is said to bgresentin
A iff either there is a limit transition of the fornlY,¢) in AorY € F. Given a sely” present in
A, its weight notedweight(Y"), is the maximal such thaty; C Y5 C --- C Y} is a sequence of
present subsets id andY; = Y (C denotes proper subset inclusion). Obviouslyight(Y) <
card(B) + 1.



Given a pathr :  — @ in A with a limit ordinal « > w, its weight notedweight(r), is the
maximal value in the set

{weight(Byim(r, 8)) : 8 < a, [ is alimit ordinal} U {weight(Bj;,(r))}

Whena is a successor ordinal, the maximal value is computed only fihe first set of the above
union. By convention, if a path has no limit transition, thehweight is zero (equivalently, its
length is strictly less thaw + 1). Furthermore, we writall(r) to denote the set

all(r) € () r(8)
B<a
that corresponds to the set of elements from the basis tbairasent in all locations of the run
Let r, ' be two paths of respective lengthanda’. We say that- andr’ are congruent written
r ~ 7', iff the conditions below are meet:

(1) r(0) = r'(0).

(2) Either bothe anda’ are successor ordinals an@ — 1) = »/(o/ — 1) or botha ando’ are

limit ordinals andBy;,,, (1) = Bjim(17).

(3) all(r) = all(r").

Let r; be a path of lengtlv andr, be a path of lengtl# such that if« is a limit ordinal then
(Biim(r1),m2(0)) € 014 Otherwiser; (o — 1) = r2(0). The concatenation; - 2 is the pathr of
lengtha + 8 such that fory € [0, @), 7(y) = r1(y) and fory € [0,8), r(a + ) = ra(7y). For
every ordinaly, the concatenation ef-sequences of paths is defined similarly. The relatiois a
congruence for the concatenation operation on paths &slstatletails below.

Lemma 3.1.
(D: Letr -7y - 7" andr; be two paths such thaty ~ r1. Then,r - r; - ' is a path that is
congruent ta- - rg - r’.
(: Letry,r,r¢,... andrd ri 2 ... be twow-sequences of pairwise consecutive paths
such that fori > 0, 7§ ~ 7% and their length is a successor ordinal rif(ry -r§-r2-...) -
is a path, then it is congruent to- (7 - 71 - 72 ....) -7’
The proof of the above lemma is by an easy verification butmsthat for the proof of ()
the third set of equalities from the definition of the congree~ ensures that - (r§-rg-r3-...) '
is a path.

Lemma 3.2. Letr : @ — @ be a path inA for some countable ordinal such that ifa is a limit
ordinal, thenBy;,,, (r) is present ind. Then, there is apathl : o/ — Q for o/ < w™max(1weight(r))+1
such that- ~ " and weight(r') < weight(r).

Proof. The proof is by induction on the weight of the paths. When tleggim of the path is zero,
r’ = r already satisfies the condition~ /. We only treat below the cases with paths of length
some limit ordinals. The case with paths of length some ssmreordinals is similar. All the runs
' built below satisfy thatveight(r’) < weight(r) for the following reasons. Indeed, no additional
limit transitions are applied when building from » and whenr is of length some limit ordinal,
Biim(r) = Blim/(r"). Hence, below we shall not further emphasiggght (') < weight(r).
Base case dweight(r) = 1 anda = w?.
There isn > 0 such that

(1) for everya € B\ all(r), there isy < w - n such that & r(v),

(2) all(r>w.n) = Biim(r).
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The first condition states thatdfdoes not belong tell(r), then this is already witnessed by,,.,,.
Furthermore, in generall(r>,,.x) C By (r) but the second condition above states thakftarge
enough, we can obtaiBy;,, (r) C all(r>g.n).

Henceall(r<w.n) = all(r) and Biim, (7>w.(n+1)) = Blim (). Besides By, (1) is present inA.
LetY; = Bjim(r<w.i) fori > n+1. By construction of, for all i > n+1, By, (r) C Y;. Moreover,
weight (By;m (1)) = 1. Hence, for alk > n+ 1, Y; = By, (r). Consequentlyy’ : w- (n+1) — Q
with 7/(8) = r(B) for 8 < w-(n+ 1) verifiesr ~ r’. In order to show thatll(r) = all(+') it is suf-
ficient to observe thatll(r) C all(r’) sincer’ contains less locations tharandall(r ) = all(r).

Base case 2weight(r) = 1 anda = w? x 3.

The proof is by transfinite induction. The base case Wita 1 is actually the above base case 1.
Now suppose that = w? x (3+1). By induction hypothesis and by the base case 1, there drs pat
iy = Qandr” 1y — Qsuchthat’ ~ r_,oy g, 1" ~ 5,25 andy + 7/ < w?. Consequently,
the concatenation of andr” provides a path satisfying the adequate conditions.

Now suppose thatr = w? x § wherej is a limit ordinal. Sincex is countable, there is an
increasing sequendg; );cn of ordinals strictly smaller tha such that5, = 0 andg = lim §;
(see e.qg.[[R0s82, Theorem 3.36]). Observe that for exedy,; — 3; < 5. Hence, for every,
by induction hypothesis, there is a path: v; — Q such that; ~ 2., 25, ,) andy; < w?.
Consequentlyy), - v} - % - - - is a path of length at most? congruent to- by Lemmd 3.1 (the length
may be exactly,?). By using again arguments from the base case 1, we obtaithalza satisfies
the adequate conditions.

Base case 3weight(r) = 1 anda = w? x B+ w x n (n € N).
The existence of a path satisfying the adequate conditfoas immediate consequence of the base
case 2.
Induction case
Case 1 a = wWeight(n)+1,
There isn > 0 such that

(1) for everya € B\ all(r), there isy < w™esh(") .y, such that ¢ r(v),

(2) all(rs  weight(r).p,) = Biim(r)-
Hence,all(r weight(r).,) = all(r) and B, (75 weight (). (1)) = Blim(r). Besides,Byy,(r) is
present ind andweight (By;,, (r)) < weight(r). If there is a limit ordinal3 € [wWeight () . pn_q)
such thatBy;,, (r<3) = Bum(r), thenr’ : § — Q with 7/(y) = r(y) for v < 3 verifies the
required conditions. Otherwise, suppose that for everjt lardinal 3 € [w™eigh (") . n ), we
have By, (<) # Bum(r). By construction ofr, for every limit ordinal 3 in [w™e#h* (") . n_q),
Biim(r) C Bum(r<p). By induction hypothesis, for evety> n, there is a path, : v; — @Q such
thatr,weigni(r) g weient () x (i41)) ~ 74 @Ndy; < w™eisb(r), Consequentlyy( - 4 - 7 - - - is a path of
length less tham"eight(") that is congruent to by Lemmd3.1.
Case 2 a = wWeisht(+1 5 3,
The proof is by transfinite induction as in the base case 2ddgdsuppose that = wWeight(n)+1 »
(8 +1). There are paths’ : v — Q andr” : 4" — @ such that’ ~ r_ weight(r)+155, 7" ~
Ts weight(n)+1y g @AY + 7" < wWeight(r)+1 - Consequently, the concatenationrofindr” provides
a path satisfying the adequate conditions.

Now suppose that = w"eight()+1 » 3 where$ is a limit ordinal. Hence, there is an in-
creasing sequenag; );cn of ordinals strictly smaller thap such thatgy = 0 andg = lim 5;
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(see e.g.[[R0s82, Theorem 3.36]). Observe that for eiety.; — 5; < 5. Hence, for every, by
induction hypothgsis, there is a path: v, — @ such that ~ r weigni(r)+1, B eI x B, )
andy; + 1 < w"eisht()+1 Consequentlyy), - 7} - r4 - - - is a path of length less thamveight(")+1
congruent ta- by Lemmd 3.1l (the lenght may be equaltt©ieht(")+1) By using the case 1 in the
induction step, we can get a path that satisfies the adeqoladitions.

Case 3 o = wWeight(n)+1 g4 weight(r) 5 Nweight(r) T+ -+ @ X 111 With Teighe(r), - - - 1 € N.
The existence of a path satisfying the required conditisraniimmediate consequence of the case
2. L]

Lemmal3.2 below states a crucial property for most of comlaeesults established in the
sequel. Indeed, for usual ordinal automata, it is not ptesdib get this polynomial bound as an
exponent ofwv for the length of the short paths. Actually, the exponentnisdr in the cardinal of
its basis and can be logarithmic in the number of locationdaige automata. By combination of
Lemmd 2.8 and Lemnia 3.2, we obtain the following interestasyilt.

Corollary 3.3. If ¢ is satisfiable, them has ana-model witha < w!?l+2,

Forn € N, let trunc, be the function that assigns to every ordimal> 0 an ordinal in
(0,w™2) as follows. « can be written in the formy = w"y +  with § € [0,w™). Then
trunc, (o) = w™ x min(vy,1) + B. For instanceruncy(w?) = w?, truncy(w? + w) = w? +w
andtruncs(w? x 2) = w?. The ordinalsy, 8 aren-equivalent written o =, 3, & trunc, (a) =
trunc, (5).

Lemma 3.4. Let A be a simple ordinal automaton.
(I): If r is a path of lengtho™eight(")+1 « o for some countable ordinal > 0, then there is a
path7’ of lengthw™“eight(")+1 sych that ~ ' andweight (') < weight(r).
(I): If a pathr has lengthw"eight()+1 and weight(rr) > 1, then for every ordinab > 0,
there is a path” of lengthw ™Mt (")+1 » o such that- ~ r’ andweight (') < weight(r).
(In): If r is a path of length some countable ordinaland 8 ~..q(p)+2 @, then there is a
paths’ of length3 such that~ ~ .

Only in (1), the ordinalx is supposed to be countable.

Proof. (Ill) is a direct consequence of (1) and (Il). Indeed, sugpas= wdB)+24) 1 4, and

B = werdB)1+2yl 1 ~f with 4 = ) € [0,w®dB)+2) andyy > 1iff v, > 1. If vg = 4 = 0,
thena = 5 and we are done. Otherwisedight(r) > 1), let K > 0 such thatK + weight(r) =
card(B) + 2. Sinceweight(r) < card(B) + 1 such a valuek exists and therefore (I) can be
applied. There is a run’ such that’ ~ 7, caracs)+2,, andr’ is of lengthew™eish ()1 by (1), If
weight (') # weight(r), then we apply again (I) orf in order to obtain a run” such that” ~ r/,

" is of lengthw™eight(")+1 |f againweight () # weight(r'), we cannot repeat this process more
thancard(B) + 1 times. Eventually, we obtain a rug such thatry ~ r.cara(s)+2,, andrg is of
lengtheeigbt(ro)+1 By (11), there is a runr; such thatr; ~ ro andry is of lengthw@d(B)+2~ hy
(1. Consequentlyry « 75 cara(5) 42, ~ 7 ANATT - 75 cara(5)+2., IS Of length/3.

(I) The proof is by transfinite induction on. Again, all the runsr’ built below satisfy that
weight (") < weight(r) for the following reasons. Indeed, no additional limit séions are ap-
plied when building’ from r and whenr is of length some limit ordinal By, (r) = By (1').
Hence, below we shall not further emphasizgéght(r’) < weight(r). We behave similarly for the
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proof of (I1).

Observe that the runcannot be of lengttv. In the sequel, we assume thatight(r) > 1. The base
case witho = 1 is immediate. Suppose that the induction assertion hal@sftr o and let us show
that it holds true foex 4+ 1. By Lemmd3.2, there is a rur of length strictly less thap"eight(r)+1
such that’ ~ r_weigni(r)+1 o HENCE 75 jveigni(r+1,.4 ~ 7 @nd its length is exacthyisht(r)+1,
Now suppose that is a limit ordinal and for every smaller ordinal, the progednblds true. Let
be a run of lengthu™eight()+1 » o There exists an increasing sequefeg);cn With ap = 0 and
o = lim o; (see e.g.[[R0s82, Theorem 3.36]). Fop 0, let o, be w™eisht()+1q, 4 yweight(r),
Observe thabz; _ wwcight(r)—i—lai — wwoight(r) andwwoight(r)+1ai < a; < wwcight(r)+1ai+1. For
i >0, let §; bewvsh(+L x ;. For everyi > 0, letr; be the pathri,: 5., ). By Lemma3.2,
for everyj > 0, there is a path’; congruent tor; of length strictly less than,"<ig"(+1 and
weight (r}) < weight(r;). Letr’ be the runv(g, o\ 77(,.01) 717 [82,02)72 - - -- The pathr’ is exactly
of lengthw™eight()+1 and it is congruent to.

(I The proof is by double induction on the weight and@n

Base caseweight(r) = 1.

Let f : [N]2 — Q x P(Q) x Q be the function whose domain is made of unordered dairg} of
natural numbers (say,< j) such that

F{i:33) E (@ % ), Biim (M) (@ X )
By Ramsey Theorem (see e.g. [Ram30, Ros82]), there is aitérdizty” C N such thatf restricted
to [Y]? is constant. Hence, there is a valige, A, ¢*) and an infinite sequende< ig < i; < iy <
- such that for everys > 0, we havef({ix,ir+1}) = (¢*, A, ¢*). Observe thatd = By, ()
and for everyk, we also haveByi,,, (1) € Blim (T wxiy wxir,1))- SinCeweight(r) = 1, we get that
Blim(r) = Blim(r[wxik,wxiwrl))'

Let us come back to the proof by induction. The base casewithl is immediate. Suppose
that the property holds true farand let us show that it holds true far+1. By induction hypothesis,
there is a path’ congruent to- of lengthw? x a. Sincers,x;, is also a path of length?, »’ “T>wxio
is a path Brim (r<wxi,) = A), itis congruent to- and its length is preciselfw? x o) + w?.

Now suppose that is a limit ordinal and for every smaller ordinal, the progehblds true.
There exists a strictly increasing sequefeg);cn With ag = 0 anda = lim «;. By the induction
hypothesis there is a run of lengthw? x (aj11—ay) congruenttors,xi; (r>wxi, is also of length
w?). Then,rg-r1-r9 - - - is congruent te and it is of lengthv? x . Observe thaby;,, (ro-r1-r9 - -+ )
is preciselyA that is equal taBy;,,,(r), as stated above.

Induction step: weight(r) > 1 and the property holds for all the paths of weight strictlysli¢han

weight(r).

The base case with = 1 is immediate.

e Suppose that the property holds true forand let us show that it holds true far+ 1.
As in the base case, we define a coloring functfosuch that we color the interval with
endpoints at positions of the form™eight(") x n. Similarly to the base case, there is a
triple (¢*, A, ¢*) and a sequence < iy < i; < is < --- such that for every: > 0,
finyine1}) = (g%, A, q%). If there isp < w™eight(+1 such thatByim, (r<g) = Biim(r)
then by induction hypothesis, thererfs~ r such that is of lengthw™eight(")+1 » o and
Biim(r") = Biim(r<). Hencer’ -rs g is apathy’ -7 5 ~ r and its length igo™eisht(r+1
13



(o + 1). If there is no such an ordinas, for every limit ordinal 3 € [w™eieht(") x
(iy — 1), W™ x 41), Bim(r) C Biym(rs) since A C By (r<g). HenceW =
Welght (7 weighi(r) » (5, 1) wweisht(r) ;) < Weight(r). By the induction hypothesis there
IS & TUNF' ~ 7 weighi(r) (4 1) oweisne(r) iy ) OF l€NGthw™ +1x (w(veleht)=W) s ) that is
of lengthw™eisht(")+1 x « by associativity of multiplication. Hence. yeign () x (i 1) * 7" -
T weight(r) i, ~ 7 and it is of lengthwWeight I+l 5 (o 4 1),

e Now suppose that is a limit ordinal and for every smaller ordinal, the progerblds true.
There exists a strictly increasing sequefieg);cn With oy = 0 anda = lim «;. As above,
a triple of the form(q*, A, ¢*) and anw-sequence, < i; < iy < ... can be defined.
Observe that for every > 1, for every limit ordinal3 € [w"Veight (") x (3, — 1), wWeight(r) x
ix), Biim(r) C Biim(r,8) sinceA = By, (r) and A C By, (r, 5). Hence the weight
OF 7 weight(r) (5, —1) wweiahe() 5, ), NOtEA Wy, is less or equal taveight(r). By induction
hypothesis, for every > 1, there is a pathty, ~ 7, weigni(r) (i, —1) wreisht(r) x5, Of length
WWrH1 5 ((weight(r)=Wi) 5 (a1 — oy ), that is of lengtho™eigt ()1 (| —ay). Hence
r' = rirors. .. is path, it is congruent te and of lengthw™eight()+1 » o, It is worth
observing thaB3;,, (') = A.

L]

Because of the translation from formulae to automata, weatsmestablish a pumping lemma
at the level of formulae.

Lemma 3.5.

(): Let. A be a simple ordinal automaton with acceptance conditiord @n3 be countable
ordinals such thaty ~.,.q(p)+2 8- Then,A has an accepting run of lengthiff A has an
accepting run of lengtls.

(I): Let¢ be a formula inLTL(U,S) and «, 8 be countable ordinals such that ~ 412 5.
Theng has anoa-model iffp has ag-model.

Proof. (I) Direct consequence of LemrhaB.2 and Lenima 3.4 since ingepins can be viewed as
paths.

(Il) By Lemma[2.3,¢ has am-model iff A, has an accepting runof lengtha. Since the cardinal
of the basis of4,, is precisely|¢|, by (I) we get that4, has an accepting runof lengtha iff A,
has an accepting runof length 3. Equivalently, has a3-model. ]

4. CHECKING NONEMPTINESS OF SIMPLE ORDINAL AUTOMATA

In this section, we provide algorithms to check whether apnordinal automaton admits
accepting runs. The first one runs in exponential time. Oting algorithm runs in polynomial
space in the size of the basis (see Sedtioh 4.2).

4.1. An exponential-time algorithm for checking nonemptiness.Let A be a simple ordinal au-
tomaton(B, Q, I, F, F, dnext, 91im)- We provide below an algorithm to check giveny € @ and
n € N whether there is path : « + 1 — @ such that(0) = ¢, r(«) = ¢’ anda < w". Given
an ( + 1)-path we writeabs(r) to denote the triplgr(0), all(r),r(«)). We define a family of
relations containing the triples of the foras(r). Each relationR?; below is therefore a subset of

Q xP(B) x Q.
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e Ro={{q,qaNd.q) : (¢,q) € bneat}
e Fori ¢ N,

R; = {(qo, m Aj, qm+1> :dqo, ... ,qm+1,A0, L. ,Am s.t. /\ <qj, Aj, q]'_|_1> S RZ}
j=0 Jj=0
e Fori € N, R,y is defined fromR,, as follows: (¢, 4, ¢') € R4, iff one of the conditions
holds true:
1. (¢, A,¢) € R,
2. there existq, A',¢") € R, (2.1),(¢",Y,q") € R, and a limit transitionY, ¢') € ;i
(2.2) suchthat = A’'NY N¢.
The above numbering will be reused in Figlte 2.
Let us first observe a few facts, whose proofs are by an ea#icaton.
(1) Wheneverq, A,¢') € R;, AC qNq.
(2) BecauseR; C R;,; for all i, for someN < 23xcard(B) L 1 Ry., = Ry. The bound
93xcard(B) 1 1 takes simply into account thgl C P(B).
In the sequel, forn. > 0 and for(q, A,¢') € Q x P(B) x Q, we establish the equivalence of
the propositions below:
e there isa + 1 < w1 and an(a + 1)-pathr such thatbs(r) = (g, 4, q'),
e (q,A,q) € R,

Lemma4.1.If (¢, A,q¢') € R,, then there existv < w™ and an ¢ + 1)-path such thatbs(r) =
(¢, A, q").

Proof. The proof is by induction om. For the bases = 0, the proof is by an easy verification.
In the induction step, suppose that A,¢’) € R,41. First suppose thaly, A,q¢’) € R), that is
there arego, .., gm+1, Ao, - -+, Ap such thatA\™ (g;, Aj, gj41) € Rny A = (L5 A, g0 = ¢
andg,,+1 = ¢'. By induction hypothesis, far € [0, m], there is a path; : «; + 1 — @ such that
abs(r;) = (qi, Ai, qi+1) anda; < ™. Henceyrg - - - - -, is a path of the desired form of length
strictly less thanu™.

If (¢, A,q') € R, then necessarily, by definition &, 1, there existY’, ¢') € djim, (q, A’,¢") €
R/ and(¢",Y,q") € R}, suchthatd = A’ NY N¢'.

Hence, by definition of2/, and by induction hypothesis there is a patha. + 1 — @ of length
strictly less thanu™ betweeny andq”. Similarly, there is a path’ : 8 + 1 — Q of length strictly
less thano™ betweeny” andq”. Observe that” = r - (r')“q’ is a path of length strictly less than
W™, Bl (r") = Y andabs(r”) = (g, A, ¢'). ]

Consequently, ifg, A, ¢') € R/, then there isy + 1 < w™*! and an(a + 1)-pathr such that
abs(r) = (q, A, ¢'). A converse result can also be established.

Lemma4.2. Letr : « + 1 — @ be a path such that < w”. Thenabs(r) € R),.

Proof. The proof is by induction om. The base case = 0 is immediate. In the induction step,
let r be a path of lengtlx < w1, If o < w", by induction hypothesiér(0), all(r),r(a)) € R,
and thereforér(0), all(r), r(«)) € Ry4+1 SinceR), C R, +1. Now suppose that = w™ x m + 3
with 8 < w™ andm > 0. In order to show thatr(0),all(r),r(a)) € R, itis sufficient to
consider the case = w". Indeed,R;,_, is closed under composition, i.e. (o, Ao, qy) € R},
and(qq, A1,q;) € R;, 1, then(qo, Ao N A1, ¢}) € R;,,,. SO, suppose thatis of lengthw™ + 1. By
induction hypothesis, for evefy< i < i/, {r(w" ! x i), A; o, r(w™ ! x ")) € R/, for someA, ;.
By Ramsey Theorem, there ale< ig < i; < ... such that(r(w" ! x i), A r(w™ 1t x
15
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ixs1)) is the same for alk > 0. Letj = ig andj’ = i;. By induction hypothesis{r(w™~! x
7),Aj 5, r(w"x4")) € Rl since the length Qffn—15jwn—1x 1 IS strictly less than™. Moreover,
we haved; j; = By (r,w™). So, there existr(0), A',¢") € Rl (A’ = Ao j, ¢" = r(w"! x j)),
(¢".Y,q") € R, (Y = A, j») and alimit transitionY, r(w™)) € i, SUch thatd = A'NY Nr(w™).
Consequently(r(0), all(r),r(a)) € R, ;. (]

We provide below a first complexity result.

Lemma 4.3. The nonemptiness problem for simple ordinal automata witteptance conditions
can be checked in exponential timecind(B).

Proof. Let.A be of the form{B, Q, I, F, F, Oneat, O1im)- A has an accepting run iff eitheA( there
areqo € I, gy € F andA C B such that(qo, 4, ¢¢) € R;, for somen or (B) there arey, € I, and
a runr from gy such thatBy;,,,(r) € F. (A) deals with accepting runs of length some successor
ordinal, whereasR) deals with accepting runs of length some limit ordinal.

In order to checkA), itis sufficient to test fokqo, A4, ¢7) € I xP(B)x F whether(qy, A, qf) €

rard(B)+3  Feara(B)44- Sincecard(Q) isin O(2¢24(B)), computingR a5 +4 takescard (B)+

4 steps that requires polynomial timelid| and exponential time inard(B), we obtain the desired
result. Observe that we can take advantage of the fact tmaputing the transitive closure of a
relation and the maximal strongly connected componentsbeatione in polynomial time in the
size of the relations.

By Ramsey theoremB) is equivalent to the following condition: there ayec @, A C B,
A" € F and runs- andry such thatbs(r1) = (qo, 4, q) andabs(r2) = (g, 4’, ).

Hence. in order to check these, it is enough to check whellee taregyy € 1, ¢ € @ and
A C Bsuchthat(qo, A,q) € R, qp)43 (A" 0) € Riyq(p) 43 @NDA’ € F. This can be done in
exponential time as forX).

[

As a corollary of Lemma_4]3, satisfiability f&/TL(U,S) is in EXPTIME. Moreover, this can
be improved as shown in the proof of Theorlen 5.1 presentedétidB 5.

4.2. A polynomial-space algorithm. We improve below the bound in Lemrha 4.3 by taking ad-
vantage that the recursive depth is linear and only paths$ wiost exponential length need to be
computed.

Theorem 4.4. The nonemptiness problem for simple ordinal automata cartbeked in polynomial
space incard(B).

Proof. By Lemméd 4.1 and Lemnia 4.2 and by the fact that fonalt 0, we haveR,, C Rearq(B)+4,
we obtain that4d has an accepting run iffX) there aregy € I, ¢y € F and A C B such that
(90, A, q5) € Reara(p)+s Or (B) there aregy € I, ¢ € Q and A’ C B such that(gp, A’, q) €
Reara()+41 (@, A’ q) € Reara(py+4 andA” € F. B denotes the basis of.

The function PATH defined in Figurld 2 checks recursively aketa triple belongs tdy.
Typically, the specification is that there is an acceptingpotation for PATHA, (g, A, ¢'), N) iff
(q,A,q') € Ry for the ordinal automatord. It takes into account that the number of potential
triples in R is bounded. Observe that the algorithm is nondetermingstit any guess that breaks
some condition somewhere aborts the computation.

In order to check A), the non-deterministic algorithm guessgse I, q; € FFandA C B
(encoded in polynomial space @(card(B)) and test whether
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PATH(A, (¢, 4,¢"), N)
o If N = 0then (if (eitherA £ ¢ N ¢ or (q,q') & dnert) thenabor t else returrt r ue);
e If N > 0 then go non-deterministically to 1. or 2.
(1.): Guess on-the-fly a sequence

<q07 AOa QI>> <q1> A17 q2>7 ey <Qm7 Am7 qm+1>
such that

—m< 93xcard(B)+1 +1
— for0 <i <m, PATH(A, (¢, 4;,qi+1), N — 1) returnst r ue,
- A= ﬂj Aj
- q=q0,q = qm1;

(2.): We guess here two long sequences:
(2.1): Guess on-the-fly a sequence

<QO7 A07 q1>7 <q17 A17 Q2>7 ceey <Qma AM7 QM+1>
such that
—m< 23><0ard(B)+1 +1
— for0 <i <m, PATH(A, (¢, 4i, qi+1), N — 1) returnst r ue,
- A= ﬂj Aj;
= go = ¢,
(2.2): Guess a limit transitionY’, ¢’) € d;;,,, and on-the-fly a sequence
<Q(,)7 {)>qi>> (q{b ,1>qé>v AR <q;mA;n’>q;n’+1>
such that
— m/ < 93xcard(B)+1
—foro < /z < 7,n’, PATH(A, fqz’-,A;-,ql’-Jrﬁ,lN — 1) returnst r ue,
- A=ANg,)NN;ALY =, A]
=40 = Gmi1
e Returnt r ue.

Figure 2: Algorithm PATH

PATH(A, (g0, A, qf), card(B) + 4)

returnst r ue. Condition B) admits a similar treatment. The non-deterministic aliponi PATH
defined below works in polynomial spacedird(B) assuming that the last argument is polynomial
in card(B) which is the case withard(B) + 4.

In (1.), guessing on-the-fly a long sequence means that wadyconsecutive triples are kept
in memory at any time. We introduce a counter that will gusarthatm < 23*card(B)+1 gnd
it requires only space i (card(B)). Moreover, in order to checkl = [, A; we need two
auxiliary variables that bookkeep the; computed so far. Similar techniques are used in (2.) to
guarantee that this non-deterministic algorithm requirdg polynomial space i (card(B) + N)
(we only need more variables and steps). It is straightfoivi@ show that PATHA, (¢, A,¢’), N)
has a computation that returhs ue (all the guesses were correct) {ff, A, ¢') € Ry. Finally, by
using Savitch Theorem [Savi70], we can conclude that norieagst can be checked in deterministic
polynomial space irard(B). ]

Observe that the algorithm in the proof of Theofem 4.4 rurspaced (card(B) x (card(B) +
log (card(Q))+log (card(dyim))+log (card(dnest))). INdeed, the recursive depth isGicard(B)).
17



This is certainly sufficient to get forthcoming results abitne complexity ofLTL(U, S). Neverthe-
less, the exact complexity characterization of the nongrags problem is open. It seems unlikely
that the problem can be solvedNmOGSPACE

5. COMPLEXITY OF SATISFIABILITY PROBLEMS

We establish new complexity results for problems related.¥d.(U, S) satisfiability which
follow from the intermediate results we have establishethso

5.1. Complexity of LTL(U, S). Here is the main result of the paper.

Theorem 5.1. The satisfiability problem folLTL(U,S) over the class of ordinals i®SPACE
complete.

Proof. By Theoreni 1.R(ll), a formula is satisfiable iff it is satigfia on some model of countable
length. By Lemma 2]3, given a formuain LTL(U, S), there is an automatad, whose accepting
runs correspond exactly to modelsqf In order to check nonemptiness 4f,, we do not build it
explicitly (as usual) but we run the algorithm from the preéfTheoren{ 4.4 and we compute the
locations, and transition relations gf, on demand. Hence, we obtain a polynomial space non-
deterministic algorithm since the cardinality of the badisi, is in O(|¢|) and checking whether a
subset ofB is a location of4, or (g, ¢") € dpear OF (Y, q) € 01, can be done in polynomial space
in O(|¢]). Again by Savitch Theorem [Savi70], we get that the satidfigigroblem forLTL(U,S)

is in PSPACE ThePspPACElower bound can be easily shown inherited from LTL. ]

Our procedure to show thespACEupper bound is not optimal and it is subject to many re-
finements but it is sufficient for our needs. For instances passible to have as a base set for
A, the subset obub(¢) made of until or since subformulae and propositional vagisbIndeed,
the implicit presence of other subformulae can be deducagkthto maximal consistency. This
refinement possibly decreases the length of the small models

Due to Kamp’s Theorem [Kam68], we get the following coroflar

Corollary 5.2. LetLTL(U,S,0q,...,0) be an extension diTL(U, S) with k first-order defin-
able temporal operators.

Then the satisfiability problem for the logiT'L(U, S, O4, ..., O) over the class of ordinals
iS in PSPACE

Indeed, every formul®;(p1,...,pn,) encoded as a DAG can be translated into an equiva-
lent formula inLTL(U, S) encoded as a DAG over the propositional variables .., p,,. Since
O4,..., 0 and their definition inL.TL(U, S) are constants diTL(U,S, O4,...,0x), we obtain a
translation in polynomial-time (with our definition for tlsze of formulae).

5.2. A family of satisfiability problems. The satisfiability problem fo.TL(U,S) asks for the
existence of a model for a given formula. A natural varianthi$ problem consists in fixing the
length of the models in advance as for LTL. The satisfiabgityblem forLTL(U, S) overa-models,
notedSAT(«, LTL(U,S)), is defined as follows:

input:: a formulag in LTL(U, S);

question:: Is ¢ satisfiable over an-model?
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In this subsection we prove tha8AT(«, LTL(U,S)) is in PSPACEfor every countable ordinat.
First we consider the case of ordinals strictly less thén Let us establish that for every < w®
there is a formulalef,, in LTL(U, S) with the truth constant (no propositional variable) such that
for every5-modelo, we haver, 0 = def,, iff 5 = a.

Lemma 5.3. Given an ordinald < a = wktay, +---whmay, < w® withk; > ... > k,, > 0 and
ag,, - .- ak,, € N\ {0}, there is a formulalef,, in LTL(U, S) of linear size in)_,(k; x aj,) such
that for any modebr, we haver, 0 = def,, iff o is of lengtha.

Proof. We define a family(¢;);>¢ such that for all--modelso and 8 < «, we haveo, 8 |= y; iff
3 is a multiple ofw’. We setpy = T and by inductionp; 1 = ¢; A ~(—p;S¢;). Observe thaly;|
is polynomial ini since it is defined as the cardinality 8fb(¢;). Now let us definelef, ast(«)
defined recursively below:

o t(1) =—FTT,t(n) =Xt(n—1)forn > 1,

o t(whag, + - +whmay, ) = o, U(pr, AWk (ag, — 1) +- - +whmay,)) with k; >0

and @, > 20rm > 1),

o t(w) = GTXIT AFtT AGTXT,

o t(wk) = GT—pp, A GF T, 1 with &y > 1.
The size ofdef,, isin O3, (k; x ag,)). ]

We are now in position to state the following result.
Corollary 5.4. For everya < w“, the problenSAT («, LTL(U,S)) is in PSPACE

Proof. ¢ has aa-model iff ¢y = ¢ A def,, is satisfiable over the class of ordinals. Thanks to
Lemmd5.8 and Theoreim 5.1, we obtain gsACEuUpper bound. ]

Now we consider the case of a countable ordimat w“. Leto’ be the unique ordinal strictly
less thanv* such thate = w* x v + o for some ordinaly. Note that for every:, truncy(«) =
truncg (w* + of) < w. By Lemma3.5(1l),¢ has an-model iff ¢ has an5-model witha ) =
truncg|o(a) = truHC|¢|+2(w|¢|+2 + a'). Hence,¢ has ano-model iff ¢ A def, , is satisfiable
(over the class of countable ordinals). Since the sizée6f, ., is polynomial in the size o, we
derive from Theorern 511 the following result.

[¢]

Corollary 5.5. For every countablex > w*, the problemSAT(«, LTL(U,S)) is in PSPACE

Corollaries 5.4 5]5 and the arguments similar to the argusni@ the proof of Corollari 512
imply the result below.

Theorem 5.6. The satisfiability problem fobTL(Oy, . .., Oy ) restricted toa-models is irPSPACE
for every finite sefOy, ..., O} of first-order definable temporal operators and for everyrdable
ordinal a.

Observe that ity is finite, thenSAT (o, LTL(Oy, ..., Oy)) is NP-complete otherwisesPACE

hardness foBAT («, LTL(U, S)) follows from pspACEcompleteness SAT (w, LTL(U, S)).

5.3. Uniform satisfiability. Buchi (see, e.g./ [BS73]) has shown that there fmide amount of
data concerning any countable ordinal that determinesatzadlic theory.

Definition 5.7 (Code of an ordinal) Let « be a countable ordinal and let be in[1, w].
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(1) Writea = w™a’ + ¢ with ¢ < w™ (this can be done in a unique way), and let
(a) = -2 ifd =0
Pl =0 21 ifo<d <w

(2) F¢#0,write¢ =, w" " a,_; Wherea; € w fori < n anda, # 0 (this can be done
in a unique way), and le,,(a) := (ay,...,aq). If { =0, lett,,(a) = —3.
(3) Them-codeof « is the pair(p,,(a), tm,(a)).

The following is implicit in [BS73].

Theorem 5.8(Code Theorem)There is an algorithm that, given a monadic second-ordetesare
¢ and thew-codeof a countable ordinaty, determines whethéry, <) |= ¢.

Lemmd3.5 can be rephrased as “thg ¢ 2)-code of an ordinalv determines whethes has a
model of lengthy”.

Let C = (b,ay,...ap) be anm-code. Its size is defined as+ ag + a1 + -+ + a,. Itis
clear that form; < ms themsy-code of an ordinal determines its; -code and there is a linear-time
algorithm, that givennsy-code of an ordinal angh; < my computes then;-code of the ordinal.

The arguments used in the proof of Corollaryl 5.5 show thefadlg theorem.

Theorem 5.9(Uniform Satisfiability)
(I): There is a polynomial-space algorithm that, givenIahL(U, S) formula ¢ and thew-
codeof a countable ordinaty, determines whethet has ana-model.
(I): There is a polynomial-space algorithm that, givenlari.(U, S) formula¢ and the (¢|+
2)-code of a countable ordinal, determines whether has ana-model.

6. RELATED WORK

In this section, we compare our results with those from ttegdture related to satisfiability.
It is worth noting that an axiomatization &fTL(U,S) over ordinals can be found in [Ven93].
Nevertheless, the concern in this above-mentioned papgiits different from ours.

6.1. Comparison with Rohde’s thesis. In [Roh97], it is shown that an uniform satisfiability prob-
lem for temporal logic with until (and without since) can bl@ved in exponential time (flows of
time are countable ordinals). The inputs of this problemaafermula inLTL(U) and the repre-
sentation of a countable ordinal. The satisfiability prablis also shown irExPTIME. In order
to obtain this upper bound, formulae are shown equivaleattewnating automata and a reduction
from alternating automata into a specific subclass of naardenistic automata is given. Finally, a
procedure for testing nonemptiness is provided. Here &sithilarities between [Roh97] and our
results.

(1) We also follow an automata-based approach and the cfassnedeterministic automata
in [Roh97] and ours have a structured set of locations anidtliemsitions use elements that
are true from some position.

(2) Existence ofv-paths in the automata depends on some truncatien of

(3) The logical decision problems can be solved in expoaktithe.

However, our work improves some results fram [Rah97].

(1) Our temporal logic includes the until and since opesafanstead of until only) and it is
therefore as expressive as first-order logic.
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(2) We establish a tightspacEupper bound (instead &fxPTIME) thanks to the introduction
of simple ordinal automata.
(3) Our proofs are shorter and transparent (instead of tigtg developments from [Roh97]).

Consequently, the developments fram [Roh97] and oursvidite same approach with differ-
ent definitions for automata, different intermediate leraraad distinct final complexity bounds.
On the other hand, the structure of the whole proof to obtamtain complexity bounds is similar.

6.2. LTL over other classes of linear orderings. Even though the results for linear-time temporal
logics from [Rey03| Rey10b] involve distinct models, outamata-based approach has similar-
ities with these works that uses a different proof methodnelg mosaics. Indeed, equivalence
classes of the relation between runs of length a successor ordinal roughly correspmmosaics
from [Rey03]. We recall the main results below.

Theorem 6.1.

(N: [Reyl0B]The satisfiability problem for the temporal logic with urdihd since over the
reals isPSPACEcOomMplete.

(I: [Rey03] The satisfiability problem foL.TL(U) over the class of all linear orders is
PSPACEcCOmMplete.

The proofs in[[Rey03, Reyl0b] are much more involved thanpraofs since the orders are
more complex than the class of ordinals. Moreover, a recemk JCri09] has established that
LTL(U,S) over the class of linear orderings has an elementary coiitypley using transducers
as done in[[Mic84] for standard LTL. More precisely, satisflity for LTL(U, S) augmented with
future and past Stavi operators is iBX2SPACE[Cri09]. Nevertheless, complexity afTL(U,S)
over the class of linear orderings has been recently soffieedany temporal logic with a finite set
of modalities definable in the existential fragment of setorder logic has @sPACEsatisfiability
problem over the class of linear orderings [Rab10a, Rab(Eaie] alsg [Reyl0a]). Moreover, observe
that LTL(U, S) over the reals has been recently showr&PACEIn [Rey10a], which allows us to
obtain in a different way thalTL(U,S) over the countable ordinals is msPACE (see the full
arguments in[Rabl0a, Section 13]).

6.3. Quantitative temporal operators. In this section, we show that the main results from [DNO7]
are subsumed by the current paper. We also solve an opereprdldm [Cac06, DNO7]. For
every fixed countable ordinal < w, let us introduce the logic LTI(®,) where the set of temporal
operators0,, is defined as follows{X” : 8 < w®} U {U® : B < w®}. The models oL.TL(O,) as
those ofLTL (U, S) and the formulae oETL(O,,) are precisely defined by:

¢u=p | 0 | d1Ad | X6 | $1U s
The satisfaction relation is inductively defined below whelis a model for LTLQO,,) (we omit the
obvious clauses):
e 0,0 =X ¢iff B+ 3 is aposition ofr ando, 3 + ' = &,
e 0,0 = ¢1U7 ¢y iffthereisy € (0, 8') such that3++ is a position ofr, we haver, 5+~ =
¢ and for everyy’ € (0,7v), we haver, 8 + v = ¢1.

The satisfiability problem for LTLQ,,) consists in determining, given a formufa whether
there is a modefr such thatr, 0 = ¢. The main results of [CacD6, DNO7] are the following:
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(1) Foreveryk € N\ {0}, the satisfiability problem for LTL®;) restricted to models of length
w* is PsPACEcOomplete when the natural numbers occurring in formulaeemcoded in
unary. With binary representation, it beconeesspACcEhard (mainly because a temporal
operatorX?” is helpful to specify concisely the cell contents of expdiaspace Turing
machines).

(2) LTL(O,,) restricted to models of length” is decidable.

Observe that LTLQ;) cannot express the temporal operatbiover the class of countable
ordinals but it can do it on models of lengitf. Hence, each logi€.TL(0O}) is less expressive
thanLTL(U,S).

Moreover, it is easy to show that for every< w, the logicLTL(Q,,) is expressively equivalent
(over the class of countable ordinals) to its sublogic okerfollowing set?’, of temporal operators:

O = (X 1w <w*ieNPU{UY :wf <w® B <w)
This set is finite whem is finite. Moreover, there is a linear-time (and logarithragace) meaning
preserving translation frodTL(O,,) into LTL(O.,).
Let us translatey in LTL(O),) into a formulat(¢) in LTL(U,S) homomorphically for the

Boolean operators and such that the propositional vasatdmain unchanged. Here are the re-
maining clauses of translation:

o t(11U%" o) = (mp; A (1)) U(mi A t(2)), (11U 1) = (1)Ut (a),
o t(X¥"¢1) = =i U (i A t(h1)).
The formulay; is defined in the proof of Lemma’.3. The following result isyeto show.

Lemma 6.2. (1) Let ¢ be inLTL(O, \ {U~"}). t(¢) is equivalent tap over the class of countable
ordinals, i.e. for alla-modelse and 8 < «, we haveo, 5 | ¢ iff 0,5 = t(¢). (Il) Let ¢ be in
LTL(0O.,). For all w*-modelss and 8 < w*, we haver, 8 |= ¢ iff o, 8 |= t(¢). Moreover,|t(¢)] is
linear in |¢|.

(1) is essentially based on the properties of formuytaand on the exclusion &f““. (II) simply
takes advantage of the fact that for thié-models,U andU“" are obviously equivalent.
We obtain alternative proofs for known results and we get reswilts.

Theorem 6.3. For everyk € N\ {0},

(I): the satisfiability problem foETL(0;,) overw*-models is irrsPACEwith unary encoding
of natural numbers,

(I): the satisfiability problem foETL(O;,) restricted tow®-models isssPACEcomplete,

(Im:  for every countable infinite ordinat, the satisfiability problem foLTL(O;,) restricted
to a-models isPSPACEcOmMplete.

(1) is an instance of Theoren 5.6. (ll) is an instance of)({lvith unary encoding of natural
numbers). (I) can be shown by observing that there is a lttgmaic space meaning preserving
translation fromLTL(Oy) to LTL(O},). (1) is the main result of [DNQO7] with the unary encoding
of natural numbers occurring in ordinal expressions. ntie corollary below improves the non-
elementary bounds obtained in [Cac06, DNO7]HaiL(O,,) by reducing this temporal logic to the
monadic second order logics, and then to Buchi ordinal aatam

Corollary 6.4. Satisfiability forLTL(O,,) over the class of’-models isPSPACECOmplete with
unary encoding of natural numbers in formulae.
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7. CONCLUSION

In the paper, we have shown that the linear-time temporat ith until and since over the
class of ordinals, namelyTL(U, S) has apSPACEcomplete satisfiability problem. Due to Kamp’s
Theorem([Kam68], we know th&fT'L(U, S) is a fundamental temporal logic since itis as expressive
as first-order logic over the class of ordinals. In order talggsh this tight complexity character-
ization, we have introduced the class of simple ordinal mat@. This class of automata is more
structured than usual ordinal automata and the sets ofitmsahave some structural properties,
typically it is a subset of the powerset of some set (herelieddhe basis). As a consequence, we
are also able to improve some results from [Roh97, DNO7].ifkgtance the uniform satisfiability
problem ispsPACEcOomplete and we obtain alternative proofs for results iINQIJ]. Recent results
about the polynomial space upper bound for LTL over varidasses of linear orderings can be
found in [Rab10d, Rab10b] by using the so-called compasigchnigue and the automata-based
technique used in this paper.

Acknowledgments: We would like to thank the anonymous referees for helpfulggstions
and remarks.
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