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Flow-induced instabilities of springs-mounted plates in viscous flows: a global
stability approach

Johann Moulin1, a) and Olivier Marquet1

ONERA-DAAA, 8 rue des Vertugadins, 92190 Meudon, France

(Dated: 1 March 2021)

The linear stability of a typical aeroelastic section, consisting in a rectangular plate mounted on flexion and
torsion springs, is revisited here for low-Reynolds-number incompressible flows. By performing global stability
analyses of the coupled fluid-solid equations, we find four types of unstable modes related to different physical
instabilities and classically investigated with separate flow models: coupled-mode flutter, single-mode flutter
and static divergence at high reduced velocity U∗ and vortex-induced vibrations at low U∗. Neutral curves for
these modes are presented in the parameter space composed of the solid-to-fluid mass ratio and the reduced
velocity. Interestingly, the flutter mode is seen to restabilize for high reduced velocities thus leading to a
finite extent flutter region, delimited by low-U∗ and high-U∗ boundaries. At a particular low mass ratio, both
boundaries merge such that no flutter instability is observed for lower mass ratios. The effect of the Reynolds
number is then investigated, indicating that the high-U∗ restabilization strongly depends on viscosity. The
global stability results are compared to a statically calibrated Theodorsen model: if both approaches converge
in the high mass ratio limit, they significantly differ at lower mass ratios. In addition, the Theodorsen model
fails to predict the high-U∗ restabilization of the flutter mode.

I. INTRODUCTION

Flow-induced vibrations of coupled fluid-solid systems
are ubiquitous in engineering. One of their most classi-
cal illustrations is probably the coupled-mode flutter of
aircraft wings at high speed1,2. This phenomenon des-
ignates vibrations that develop around a steady angle of
attack close to zero, through the flow-induced coupling
of at least two natural modes of the wing (e.g. flexion
and torsion). When the steady angle of attack is in-
creased, the flow tends to stall3,4, leading to a different
type of flutter, usually involving one natural solid mode
only and referred to as stall flutter5–7. When the flow is
fully separated at post-stall angles of attack, the airfoil
can be viewed as a bluff body. The well-known vortex-
shedding flow-instability may then interact with a natu-
ral mode of the solid with similar frequency, leading to
the so-called vortex-induced vibrations8 (VIV). Histori-
cally, these different types of vibrations were mostly ob-
served on large-scale objects surrounded by high-speed
flows — plane wings, helicopter blades, tall buildings,
bridges, etc — where they put at risk the integrity of
the structure. In the recent years however, several new
and smaller-scale applications have been proposed that
take advantage of flow-induced vibrations for energy har-
vesting purposes9 or for improving the performance of
small-scale mixers10,11 and heat exchangers12,13. For
these applications, the objective is generally to design
the system so as to maximize the vibrations. This can
be done either experimentally14–20 or numerically by run-
ning multiple simulations of the coupled fluid-solid non-
linear equations18,21–26. In order to minimize the exper-
imental or computational effort, it is however interesting
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to first delimit the regions of the parameter space where
flow-induced vibrations will occur, using linear stability
analysis21,22.

As coupled-mode flutter, stall flutter or vortex-induced
vibrations originate from different physical mechanisms,
their respective description usually involves separate flow
models.
For coupled-mode flutter, a classical choice is to resort
to potential flow theories15,21,22, such as the Theodorsen
model27, that have encountered a great success for the
computation of aeroelastic stability of aircraft28. How-
ever, in contrast to aircraft applications that naturally
yield high-Reynolds-number flows, energy harvesting
or micro-scale mixing typically involve low-to-moderate
Reynolds numbers10,11,18,21–26, ranging from Re = 101

to Re = 105. For these Reynolds numbers, the validity
of the potential flow assumption must be questioned, as
shown by Bruno and Fransos 29 or Brunton and Rowley 30

for the case of thin plates forced in heaving or pitching
motions. As these studies were primarily interested in
accurately predicting the aerodynamic forces consecutive
to forced motions, the question of the impact of low-to-
moderate Reynolds numbers on the self-sustained flutter
instability was not investigated. This naturally motivates
a study discussing coupled-mode flutter in viscous flows.
Such an interest is further justified from the perspective
of modern flying devices, like nano- and micro- aerial
vehicles that also operate at low-to-moderate Reynolds
numbers31.
In the case of stall flutter and vortex-induced vibrations,
large regions of flow separation are involved, thus im-
plying that flow models based on potential theories are
unsuitable. For the particular case of a stall flutter in-
volving only a transverse motion of the structure, and
where vibrations are slow enough, so-called quasi-steady
flow models may be used32. The advantage of the lat-
ter is that they only require knowing the steady aerody-
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namic loads at various angles of attack. For all situations
where the quasi-steady approaches cannot be used — e.g.
vortex-induced vibrations — one may either develop tai-
lored semi-empirical reduced-order models33,34 or rather
retain the full complexity of the time-dependent nonlin-
ear Navier–Stokes equations23–25,35, but at the cost of an
intensive computational effort.

When linear stability is the primary interest, a path
of intermediate cost may be taken where a full Navier–
Stokes flow model is retained, but in a linearized form.
This approach, often referred to as global stability analy-
sis, was originally used to investigate the linear stability
of flows around fixed objects by computing the leading
eigenvalues of the Navier–Stokes Jacobian matrix36,37.
This framework was first extended to fluid-solid inter-
action problems to investigate the vortex-induced vibra-
tions of spring-mounted rigid cylinders in low-Reynolds-
number flows38–41. More recently, it was used to pre-
dict the transonic shock buffeting instability of spring-
mounted airfoils42,43. Other possible applications are the
study of path instabilities of freely falling or rising rigid
objects44–46 or of the onset of pitch-oscillations on airfoils
at transitional Reynolds numbers47. These analyses were
recently extended to account for deformable structures
governed by elastic laws48–51 or to address the fluid-solid
stability analysis of self-propelled flapping foils52. To our
knowledge however, they have not been used to investi-
gate the instabilities occurring on spring-mounted slender
bodies that are typical of coupled-mode or stall flutter.

In the present study, we thus aim at investigating, in
low-Reynolds number flows, the flow-induced instabili-
ties that occur on a typical aeroelastic section2 consist-
ing in a heaving and pitching spring-mounted rigid plate.
Our goal is to demonstrate the use of global fluid-solid
linear stability analysis for providing a parametric explo-
ration of this configuration by varying the reduced veloc-
ity, the solid-to-fluid mass ratio, the Reynolds number
and the steady angle of attack. The paper is organized
as follows. In section II, we briefly introduce the spring-
mounted plate model and the global fluid-solid stability
approach. In section III, we exhibit the different types of
instabilities that appear at zero steady angle of attack,
depending on the reduced velocity and solid-to-fluid mass
ratio. We then explore the effect of the Reynolds number
and present a comparison of our results with a calibrated
version of the Theodorsen model. In section IV, we fi-
nally explore the effect of increasing the steady angle of
attack on the flutter instability.

II. PROBLEM SETTINGS AND METHODS

We investigate the dynamics of a rigid plate of chord
c̃, thickness ẽ and span s̃. The two-dimensional section
of the plate is almost rectangular with small rounded
corners of radius ẽ/10. Its chord-to thickness ratio is
c̃/ẽ = 20 similarly to previous investigations 14,19. The
mass of the plate and its moment of inertia at the center

G
c̃

ẽ
K̃θ, D̃θ

α = −θ

K̃h, D̃h
h

O

Ũ∞, ρ̃, µ̃

ex

ey

θ > 0

FIG. 1. “Typical section” model.

of mass G are denoted m̃ and ĨG, respectively. This plate
is immersed in a fluid of density ρ̃ and dynamic viscosity
µ̃, with a uniform upstream velocity Ũ∞. Assuming
the span is much larger than the chord, i.e. s̃ >> c̃,
the dynamics of the plate may be modelled by the
typical aeroelastic section2 sketched in fig. 1. Heaving
and pitching springs of stiffness (resp. damping) K̃h

(resp. D̃h) and K̃θ (resp. D̃θ) are attached to the two-
dimensional section at the so-called elastic center. In the
present study, the latter is identical to the center of mass
G and we refer, for example, to Peng and Zhu 21 for an
investigation of the effect of its position on the dynamics.

All quantities presented above and noted with the sym-
bol ·̃ are dimensional variables. In this work however,
we will rather use non-dimensional variables, that we
note without this symbol. The non-dimensionalization
is performed using c̃ as a characteristic length, c̃/Ũ∞ as
a characteristic time and ρ̃c̃2 as a characteristic mass
(per unit span). The seven non-dimensional parame-
ters listed in table I then govern the dynamics of the
typical section interacting with the surrounding incom-
pressible flow. Some of them involve only fluid (resp.
solid) dimensional quantities and are thus labelled as
fluid (resp. solid) non-dimensional parameters. Others
involve both fluid and solid quantities and are thus re-
ferred to as coupling parameters. The only fluid param-
eter is the Reynolds number defined as Re = ρ̃Ũ∞c̃/µ̃.
Four solid parameters describe the spring-mounted plate:
Ω = ω̃0,h/ω̃0,θ is the ratio between the natural heaving
and pitching frequencies of the plate, respectively defined

as ω̃0,h =
√
K̃h/m̃ and ω̃0,θ =

√
K̃h/ĨG; ζh and ζθ are

the non-dimensional heaving and pitching damping ra-

tios; rθ =
√
ĨG/(m̃c̃2) is the non-dimensional radius of

gyration. Finally, two parameters control the fluid-solid
coupling: the solid-to-fluid mass ratio m = m̃/(0.5ρ̃c̃2s̃)

and the reduced velocity U∗ = Ũ∞/(c̃ω̃θ) that is also
equal to the inverse the non-dimensional pitching fre-
quency U∗ = 1/ωθ.

In the present study, the four solid parameters are kept
fixed to the values reported in table I. Though not strictly
equal, the values of Ω, ζh and ζθ are inspired from the
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set-up of Amandolese, Michelin, and Choquel 14 . The
radius of gyration is evaluated under the hypothesis of
a rectangular cross-section with homogeneous solid den-
sity, yielding rθ

2 = (1/12)(1 + (ẽ/c̃)2). The fluid and
coupling parameters are varied in the ranges reported in
table I. Low Reynolds numbers are explored in the range
101 ≤ Re ≤ 104, which contains the values used in sev-
eral previous works on energy harvesting devices18,21–25.
Our study however excludes the moderate Reynolds num-
ber range 104 ≤ Re ≤ 105 where transitional effects come
into play and trigger specific fluid-solid instabilities53–55.
This regime indeed requires the use of turbulence mod-
els with adequate transition prediction that are out of
the scope of the present work. For a plate made of a
given material, the mass ratio m may significantly vary
due to variation of the fluid density. For example, in
the experimental configuration by Amandolese, Miche-
lin, and Choquel 14 , a steel plate immersed in air flow
corresponds to m ∼ 1800, while a steel airfoil immersed
in water flow in the experimental set-up by Boudreau
et al. 20 now corresponds to m ∼ 1.7. Low values of
the mass ratio, typically of the order m ∼ 10, can be ob-
tained in air flows with very light materials, such as balsa
wood56. In order to explore these limit scenarios and the
transition between them, we consider a large range of
mass ratios, 100 ≤ m ≤ 104. Finally, the reduced ve-
locity varies roughly between 10−2 and 101 which allows
visiting both low-U∗ instabilities like vortex-induced vi-
brations and higher-U∗ instabilities like flutter and di-
vergence.

A. Mathematical models

The motion of the plate is described in the labora-
tory frame of reference (O, ex, ey) with two degrees of
freedom: the non-dimensional displacement h(t) (in the
direction ey) and the pitching angle θ(t) (oriented coun-
terclockwise, i.e. opposite to the angle of attack α, see
fig. 1). They are governed by the following coupled sys-
tem of linear equations:

d2h

dt2
+ 2ζh

(
Ω

U∗

)
dh

dt
+

(
Ω

U∗

)2

h =
1

m

(
CL(U, P, θ)

+ CFext

)
d2θ

dt2
+ 2ζθ

(
1

U∗

)
dθ

dt
+

(
1

U∗

)2

θ =
1

mrθ2

(
CM (U, P )

+ CMext

)
(1)

where the ratio Ω/U∗ is the (non-dimensional) nat-
ural heaving frequency ω̃0,h while 1/U∗ is the (non-
dimensional) natural pitching frequency ω̃0,θ. The above
equations are two damped harmonic oscillators forced by
the aerodynamic lift CL = L̃/(0.5ρ̃Ũ2

∞c̃s̃) (with L̃ the

lift force) and moment CM = M̃/(0.5ρ̃Ũ2
∞c̃

2s̃) (with M̃
the aerodynamic moment) coefficients that depend on

G eX

eY X

U

U
V

Γw

uG

−1

ḣ

U = 0

FIG. 2. Illustration of the quantities describing the (non-
dimensional) Navier–Stokes formalism by Mougin and Mag-
naudet 57 .

the flow velocity U and pressure P , as further detailed
in eq. (5). These aerodynamics coefficients are respon-
sible for the coupling between the heaving and pitching
components of the solid motion. In addition, a constant
external force CFext

and moment CMext
are taken into ac-

count, their use being specified in section II B.
The two-dimensional incompressible flow may be de-

scribed by the pressure field p(x(t), t) and the velocity
field vector u(x(t), t) = (u, v)T expressed in fixed lab-
oratory frame (O, ex, ey). These fields then satisfy the
incompressible Navier–Stokes equations in a spatial do-
main that depends on time due to the plate’s motion,
as emphasized by the time dependency of the spatial co-
ordinate x(t) = (x(t), y(t))T. In order to avoid the de-
formation of the fluid domain, we adopt the formalism
proposed by Mougin and Magnaudet 57 where the spa-
tial positions, denoted X = (X,Y ), are expressed in the
frame (G(t), eX(t), eY(t)) that is attached to the center
of mass G(t) and that rotates with the principal axes of
the plate (see fig. 2). Using these spatial coordinates, the
fluid domain becomes time-independent. The absolute
velocity vector written in the rotating axes (eX(t), eY(t))
is then denoted U(X, t) = (U, V )T and may be linked to
u by:

U(X, t) = R(θ(t))Tu(x(t), t)

where R(θ) =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
is the rotation matrix of angle θ. We also denote the
pressure field depending on X as P (X, t) = p(x(t), t).
With these specific choices, the incompressible Navier–
Stokes equations read57:

∂U

∂t
+ θ̇ ez ∧U +∇U

(
U−W

)
−∇ · σ(U, P ) = 0

(2a)

∇ ·U = 0
(2b)

where σ(U, P ) = −P I + Re−1
(
∇U +∇UT

)
is the

Cauchy stress tensor, and, with a slight abuse of no-
tation, ez ∧ U = (−V,U)T. Compared to the classical
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TABLE I. Non-dimensional parameters governing the typical aeroelastic section ordered as the fluid parameter (Re), solid
parameters (Ω, ζh, ζθ and rθ) and coupling parameters (m and U∗).

Parameter Re Ω ζh ζθ rθ m U∗

Definition
ρ̃Ũ∞c̃

µ̃

√
K̃h/m̃

K̃θ/ĨG

D̃h

2
√
m̃K̃h

D̃θ

2
√
ĨGK̃θ

√
ĨG
m̃c̃2

m̃

0.5ρ̃c̃2s̃

Ũ∞

c̃
√
K̃θ/ĨG

Values 101 − 104 0.8 0 0.05 0.29 100 − 104 10−2 − 101

formulation of the Navier–Stokes equations, we note the
Coriolis-like acceleration term that depends on the an-
gular velocity θ̇ = dθ/dt of the plate, as well as the
modification of the convective velocity by the so-called
grid velocity W, often introduced in the Arbitrary La-
grangian Eulerian framework58. In the rotating axes, this
grid velocity reads

W(θ, ḣ, θ̇;X) = R(θ)TuG + θ̇ (ez ∧X) (3)

with ḣ = dh/dt and where uG = (−1, ḣ)T is the (non-
dimensional) velocity of the center of mass G, written
in the fixed laboratory axes (ex, ey). In particular, the
plates moves at the velocity −1 along the direction ex
(see fig. 2). The second term in the above expression is
the angular velocity at point X. When evaluating this
grid velocity at points Xw on the plate Γw, we recover
the solid velocity expressed in the rotating axes. The
equality of the fluid and solid velocities at this interface
thus reads:

U(Xw) = W(θ, ḣ, θ̇;Xw) Xw ∈ Γw (4)

The far-field flow velocity is U(X, t) = 0. Finally, the
lift coefficient CL and moment coefficient CM evaluated
at point G, that appear in the right-hand side of the solid
equations (1) can now be explicitly written as:

CL(U, P, θ) = 2
{
R(θ)

∫
Γw

σ(U, P )N dXw

}
· ey (5a)

CM (U, P ) = 2

∫
Γw

{
Xw(σ(U, P )N)Y

− Yw(σ(U, P )N)X

}
dXw (5b)

where N is the (outward) unit vector normal to the
solid (written in the rotating axes). Note in particular
the term between curly brackets in eq. (5a) where the
fluid force evaluated in the rotating axes is projected back
onto the laboratory axes using the rotation matrix, before
extracting the ey component via the scalar product.

In the following, the equations (1) to (5) governing the
fluid-solid interaction are formally written as the first-
order-in-time evolution equation:(

Ms 0

0 Mf

)
∂

∂t

(
qs

qf

)
+

(
Rs(qs,qf)

Rf(qs,qf)

)
= 0 (6)

where qs = (h, θ, ḣ, θ̇)T and qf = (U, P )T gather the
solid and flow variables, respectively. The detailed ex-
pressions of the solid Ms and fluid Mf mass matrices,
as well as the solid Rs and fluid Rf residual vectors are
given in appendix A.

B. Global fluid-solid linear stability analysis

We investigate the linear stability of steady solutions,
denoted (q0

s ,q
0
f )T, that are time-independent solutions

of eq. (6), by superimposing unsteady perturbations as:(
qs(t)

qf(X, t)

)
=

(
q0

s

q0
f (X)

)
+ ε

(
q1

s (t)

q1
f (X, t)

)
ε� 1.

The infinitesimal fluid-solid perturbation
(
q1

s ,q
1
f

)T
is fur-

ther decomposed in the form of global modes36:(
q1

s (t)

q1
f (X, t)

)
=

1

2

(
q̂s

q̂f(X)

)
eσ t + c.c.

where c.c. is the abbreviation for complex conjugate and
σ = λ+ iω is a complex number whose real (resp. imag-
inary) part is the growth rate (resp. frequency) of the
complex-valued fluid-solid mode (q̂s, q̂f)

T. Inserting the
above decomposition in (6) yields that (q0

s ,q
0
f )T is solu-

tion of the steady nonlinear problem:(
Rs(q

0
s ,q

0
f )

Rf(q
0
s ,q

0
f )

)
= 0 (7)

and that (σ, (q̂s, q̂f)
T) are eigenpairs of the following

eigenproblem:

σ

(
Ms 0

0 Mf

)(
q̂s

q̂f

)
+

(
Jss Jsf

Jfs Jff

)(
q̂s

q̂f

)
= 0 (8)

The operators Jαβ = ∂Rα/∂qβ |(q0
s ,q

0
f ), with α, β =

{s, f}, define by blocks the fluid-solid Jacobian operator.
They implicitly depend on the steady solution as speci-
fied in the detailed expressions provided in appendix A.
The long term stability of steady solutions is assessed
by scrutinizing the eigenvalue of largest real part. If all
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eigenvalues have negative real parts (λ < 0) the system
is stable in the sense that any infinitesimal perturbation
will eventually decay to zero. If at least one eigenvalue
has positive real part (λ > 0) then the system is unstable.
The case λ = 0 describes a situation where a perturba-
tion will neither be amplified nor damped, and is said
neutrally stable.

a. Method for computing steady fluid-solid solutions
In the steady solution (q0

s ,q
0
f )T of (7), the heaving h0

and pitching θ0 components are unknowns of the fluid-
solid problem. In this work however, we choose to impose
the value of h0 and θ0 as parameters in order to investi-
gate directly the effect of the steady angle of attack on
the fluid-solid instabilities. More precisely, we use h0 = 0
and θ0 = −α0 with α0 the steady angle of attack (ori-
ented positive clockwise). The solid part q0

s of the steady
solution is thus known in advance as q0

s = (0,−α0, 0, 0)T.
The fluid part q0

f of the steady solution is then obtained
by solving the purely fluid steady problem:

Rf(q
0
s ,q

0
f ) = 0 (9)

Note that the resulting fluid-solid solution (q0
s ,q

0
f )T is

a solution of the original steady problem (7) by oppor-
tunely choosing the exterior force and moment coeffi-
cients, CFext

and CMext
, so as to enforce the steady solid

momentum balance (1):

CFext
= −CL(U0, P 0,−α0)

CMext = mrθ
2

(
1

U∗

)2

(−α0)− CM (U0, P 0)

It is important to notice here that CFext and CMext are
constant exterior forces applied to eq. (1) as they depend
only on the steady solution and not on the unknown time-
dependent solution (qs(t),qf(X, t))

T. They thus play no
role in the linear stability analysis as can be seen in
the fluid-solid Jacobian expressions of appendix A where
they do not appear. Overall, by using such a procedure,
the steady solution is made independent on the solid
(Ω, ζh, ζθ, rθ) and coupling (U∗,m) non-dimensional pa-
rameters and only depends on the fluid non-dimensional
parameter — here the Reynolds number Re — and the
chosen steady angle of attack α0.

b. Method for determining neutral curves To de-
limit stable (λ < 0) from unstable (λ > 0) regions in
a parameter space, one could discretize the latter and
solve the eigenproblem (8) for each discrete point. A
more efficient method consists in considering the criti-
cal values of these parameters as unknowns of a problem
that incorporates the criticality condition λ = 0. For a
two-dimensional parameter space, for instance composed
of the mass ratio m and reduced velocity U∗ (see sec-
tion III C), the so-called neutral curve is defined as the
critical velocity U∗c as a function of the mass ratio m and
is obtained as follows. The growth rate being, by def-
inition, equal to zero on the neutral curve, the critical

eigenmode (q̂s
c, q̂f

c)T and frequency ωc satisfy:

iωc

(
Ms 0

0 Mf

)(
q̂s
c

q̂f
c

)
+

(
Jss(U

∗
c ) Jsf

Jfs Jff

)(
q̂s
c

q̂f
c

)
= 0

(10)
where we recall the dependency of the solid Jacobian ma-
trix on the critical velocity U∗c . The latter being here an
additional (real-valued) unknown of the problem instead
of a parameter, an additional (real-valued) scalar condi-
tion is imposed, formally written as:

C (q̂s
c, q̂f

c, ωc) = 0 (11)

In practice, we only introduce this additional condi-
tion for dynamic (ωc 6= 0) instabilities. The phase
of the critical eigenmode is fixed by imposing that the
real part of the heaving degree of freedom is zero, i.e.

C (q̂s
c, q̂f

c, ωc) = Re(ĥc) = 0. The arbitrary amplitude
of the critical eigenmode is finally imposed using the fol-
lowing normalization condition:

(
(q̂s

c)H, (q̂f
c)H
)(Ms 0

0 Mf

)(
q̂s
c

q̂f
c

)
− 1 = 0 (12)

The coupled system of equations (10), (11) and (12)
is nonlinear due to the dependence of the Jacobian op-
erator in U∗c and to the presence of ωc in front of the
mass matrix term in eq. (10). A Newton method is used
to solve iteratively this system of equations. Thus we
obtain the critical velocity U∗c (as well as the critical fre-
quency ωc and eigenmode q̂s

c, q̂f
c) for a fixed mass ratio

m (the remaining parameters being also imposed). From
this point of the neutral curve, we can efficiently deter-
mine the entire curve by implementing a continuation
algorithm, such as the pseudo-arclength method (see the
book by Govaerts 59). This method allows, in particular,
to follow the neutral curve around turning points (see for
instance fig. 8).

c. Numerical method The Navier–Stokes equations
are discretized in space with a SUPG-stabilized finite el-
ement method60, implemented using the FreeFEM lan-
guage61. A Newton method is then used to solve the
steady equation (9) and the shift-and-invert method is
used to compute the largest eigenvalues of the eigen-
problem (8). We refer to Moulin, Jolivet, and Mar-
quet 62 for a detailed description of these numerical
methods in a purely aerodynamic problem. They re-
quire to invert large sparse linear systems, which is
done here using the sparse LU solver MUMPS63. In
view of reproducibility, we make available at https:
//bitbucket.org/jmoulin/pof2021 the codes that en-
able to solve the steady-state problem (7) and eigenprob-
lem (8). We finally mention that our implementations
have been validated with respect to the well-documented
case of a heaving-spring-mounted circular cylinder un-
dergoing vortex-induced vibrations in laminar flows. The
results of this validation are reported in appendix B.
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III. FLOW-INDUCED INSTABILITIES AT ZERO ANGLE
OF ATTACK

In this section, we investigate the various flow-
induced instabilities that may emerge for spring-mounted
plates immersed in viscous flows when varying the non-
dimensional parameters at zero steady angle of attack,
α0 = 0. First, results of the fluid-solid stability analysis
are described in section III A for fixed values of all non-
dimensional parameters, allowing a detailed description
of the leading (i.e most unstable) modes: two coupled-
mode flutter (flutter and anti-flutter modes) and one
vortex-shedding mode. Secondly, the effect of the re-
duced velocity U∗ is investigated in section III B where
the transition from a vortex-induced vibration instability
to coupled-mode flutter and finally to a steady divergence
mode is analyzed. We finally investigate in section III D
the effect of the Reynolds number on coupled-mode flut-
ter and divergence. For coupled-mode flutter in particu-
lar, we compare our approach to the classical Theodorsen
model in order to show the magnitude of the viscous ef-
fects on this instability.

A. Coupled-mode flutter and vortex-shedding instabilities

We first investigate the case of a plate immersed in a
flow at Reynolds number Re = 2900 and without angle
of incidence, i.e. α0 = 0. The streamwise velocity (along
ex) of the steady solution is displayed in fig. 3(a) using
the absolute velocity. As explained in the description of
the fluid model (2), it is equal to zero away from the
plate and to −1, the (non-dimensional) velocity of the
plate, at the wall. This solution is clearly symmetric
with respect to the axis x = 0 so that the steady lift and
moment coefficients exerted on the plate are both equal
to zero. For that low Reynolds number, the steady flow
is mostly attached to the plate and, in particular, we do
not observe any flow separation around the leading edge.
A recirculation region, delimited by the black curve in
the figure, is visible at the blunt trailing edge. Further
downstream, the velocity profile is typical of a wake flow,
with a velocity defect that decreases when progressing
away from the plate.

The fluid-solid linear stability of that steady solution is
then analyzed by solving the eigenproblem eq. (8) for the
mass ratio m = 1000 and an arbitrary reduced velocity
of U∗ = 4.7, which has been chosen just high enough to
exhibit a coupled-mode flutter instability, as we will see.
The leading eigenvalues, i.e. the eigenvalues of largest
growth rate, are displayed in fig. 3(b) in the complex
plane (λ, ω), where λ is the growth rate and ω the fre-
quency. Note that only the eigenvalues of positive fre-
quencies are shown here, since the eigenvalue spectrum
is symmetric with respect to the real axis. Thus, all com-
plex eigenvalues (ω 6= 0) appear in fact by pairs of com-
plex conjugates. Most of the eigenvalues, marked with
black crosses in the figure, are strongly stable (λ < 0).

On the contrary, the three eigenvalues, highlighted with
colored circles, lie close to the neutral axis λ = 0. As
seen in the close-up view of the figure, one of them is un-
stable (red circle) while the other two (black and blue)
are stable. In the following, we discuss the eigenmodes
associated to these three eigenvalues.
The frequency of the unstable mode (red dot) ω = 0.17
is close to the natural heaving frequency of the plate
ω0,h = Ω/U∗ = 0.8/4.7 = 0.17. Its spatial structure
is shown in fig. 4(a). The instantaneous pressure pertur-
bation is depicted in the left figure with the blue-white
colormap. The orange arrows correspond to the instan-
taneous displacement field of the rigid plate. Both are
shown for the phase φ = ωt = 3π/4 of the temporal os-
cillation. In the right part of the figure, we represent the
oscillating part (i.e. neglecting the exponential growth)
of the perturbation generated by the mode for the heav-
ing h1(t) (solid line) and pitching θ1(t) (dashed line) com-
ponents. For the latter, we display the angle of attack
that is opposite to the pitching angle, i.e. −θ1(t). The
pressure flow field exhibits extreme values close to the
leading edge. The displacement field of the plate (or-
ange arrows) couples the heaving and pitching motions.
For that specific phase ωt = 3π/4, the angle of attack
is close to its minimal values while the heaving displace-
ment is close to its maximal value, as seen in the right
figure. The phase shift between the heaving and pitch-
ing motion is close to π. By comparing the minimums
of the heaving and pitching curves, we observe that the
pitching signal (dashed line) leads on the heaving signal
(solid line). This feature corresponds to a swimming-like
motion of the airfoil that is typical of the coupled-mode
flutter instability, as detailed in §6.6 of the book by Bis-
plinghoff and Ashley 64 or in §3.3.2 of the book by De
Langre 65 .
Let us now examine the stable mode depicted with the

black dot in fig. 3(b). Its frequency (ω = 0.15) is also
close to the natural heaving (ω0,h = Ω/U∗ = 0.17) and
pitching (ω0,θ = 1/U∗ = 0.21) frequencies. The corre-
sponding eigenmode shown in fig. 4(b) exhibits very sim-
ilar features to the flutter mode described above. How-
ever, the pressure field is of opposite sign for the same
phase ωt = 3π/4, as the angle of attack is now close to
its maximal value for that phase (see right figure). The
displacement field still couples the heaving and pitching
components but the latter is of larger amplitude, com-
pared to the flutter mode. More interestingly, the phase
shift between these two components is now close to π/2
and the pitching motion (dashed curve) lags behind the
heaving motion (solid). This mode is hereafter referred
to as anti-flutter mode, as opposed to the unstable flutter
mode described before. It should be noted here that both
the flutter and anti-flutter modes can be obtained using
simpler flow models such as a quasi-steady approach65,
though the second is rarely discussed because it is stable.

The flutter and anti-flutter modes described above
are only obtained when considering a fluid-solid stabil-
ity analysis, unlike all the other modes in the eigenvalue
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FIG. 3. Linear stability analysis of the spring-mounted plate at U∗ = 4.7, Re = 2900 and m = 1000. (a) Streamwise velocity
field of the steady solution and (b) eigenvalue spectrum of the fluid-solid stability problem with (right) a close-up view around
the three modes of largest real part, highlighted with colored circles. The eigenvalues corresponding to the coupled-mode
flutter instability are highlighted with red (flutter) and black (anti-flutter) dots while the eigenvalue corresponding to the wake
instability is marked with the blue dot. The spatial structure of the corresponding eigenmodes is depicted in fig. 4.

spectrum of fig. 3(b) that can also be obtained with a
purely-hydrodynamic stability analysis. The latter con-
sists in computing the leading eigenvalues of the fluid Ja-
cobian matrix Jff. Most of these eigenvalues are strongly
damped, but for the one highlighted with the blue dot.
Its negative growth rate is very close to zero and its fre-
quency (ω = 11.2) is much higher than the natural heav-
ing and pitching frequencies. The spatial structure of this
high-frequency mode, shown in fig. 4(c), exhibits very
different features compared to the flutter and anti-flutter
modes. The solid perturbation (heaving and pitching)
seen in the right figure is negligible because the flow per-
turbation associated to this mode does not induce sig-
nificant lift or moment on the plate. Indeed, the pres-
sure fluctuation is negligible close to the plate and large
amplitude fluctuations are only observed in its wake,
where the spatial pattern oscillates in the stream-wise
direction. This is a typical feature of vortex-shedding
modes that get unstable in the wake of bluff bodies66–68

where the steady solution exhibits a recirculation region.
In the case of the fixed plate, the purely-hydrodynamic
mode gets unstable around Rec,wake ' 2925 and its
Strouhal number based on the thickness ẽ of the plate
is Stẽ = (ẽ/c̃)ω/(2π) ' 0.09. It is difficult to dis-
cuss precisely this value in regards of previous works69–71

since the latter often focused on higher Reynolds num-
bers where nonlinear effects involving both leading and
trailing edge vortex shedding come into play.

B. Effect of the reduced velocity

Keeping the mass ratio to m = 1000, we now vary the
reduced velocity in the range 0.05 ≤ U∗ ≤ 8 (or similarly
the natural pitching frequency in the range 20 ≥ ω0

θ ≥
0.125) and investigate the effect on the three eigenvalues
identified in the previous section. Figure 5 shows the
path of these eigenvalues in the complex plane. The case
U∗ = 4.7 explored in the previous section is marked with
dots of colors identical to fig. 3(b), while small circles
correspond to the eigenvalues obtained for other values of
U∗, with a varying step size. The right figures are close-
up views around high (top) and low (bottom) frequencies.
The dashed lines materialize the paths of the natural
heaving (red) and pitching (black) modes.

Let us first examine the path of the red eigenvalue
that corresponds to the flutter mode at U∗ = 4.7. When
increasing the reduced velocity further above 4.7, this
unstable flutter mode tends to restabilize. We will see
later in fig. 8 that it is even stable again for very high
U∗. When decreasing U∗, the flutter mode stabilizes
at U∗ = 4.5. Its path (red solid curve) then closely
follows the locus of the neutrally stable (λ = 0) natu-
ral heaving mode (red dashed line). The light damping
of the red branch in comparison to the natural heav-
ing mode is due to the interaction with the flow. How-
ever, when the frequency of the heaving mode gets close
to the frequency of the vortex-shedding mode (blue) for
small U∗, the modes interact leading to a destabiliza-
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FIG. 4. Eigenmodes corresponding to the three eigenvalues of fig. 3(b) marked with colored dots: (a) red, unstable flutter
mode; (b) black, stable anti-flutter mode; (c) blue, stable vortex-shedding mode. The left figures display a snapshot of the
eigenmode at phase ωt = 3π/4 of the oscillation. The colormap depicts the pressure flow field, while the vectors represent the
displacement field of the plate. The right figures show the vertical displacement (solid line) and instantaneous angle of attack
(dashed line) as a function of the phase ωt.

tion of the red eigenvalue between U∗V1 = 0.0712 and
U∗V2 = 0.0725, as emphasized in the close-up view (high-
frequency). The interaction between these two modes
is revealed by the shape of the eigenmode correspond-
ing to the red eigenvalue. The pressure field, shown in
fig. 6(a), is very similar to that of the vortex-shedding
mode, already shown in fig. 4(c). In particular, the lift
force exerted on the plate is small. However, the pertur-
bation of the plate motion is significantly different since
the heaving component is not negligible anymore (unlike
the pitching component that remains negligible). This
is characteristic of a resonance-like phenomena where a
small lift force may induce a large heaving displacement.
A similar resonance effect has been reported and de-
scribed on spring-mounted circular cylinder flows, based
on stability analysis38,40,72 and nonlinear temporal sim-
ulations35,39,40. More recently similar phenomena were
highlighted for spring-mounted airfoils undergoing tran-

sonic buffet flow conditions42,43.
Let us now examine the black eigenvalue whose path

in the complex plane closely follows that of the natural
pitching mode (black dashed line) when it is stable at
low reduced velocity. As U∗ increases, the growth rate
increases and the frequency ω suddenly deviates from the
natural pitching frequency to reach zero. Then it gets un-
stable as shown in the close-up view (low frequency) in
fig. 5. The mode corresponding to this eigenvalue is pre-
sented in fig. 6(b). This destabilization of the pitching
mode by a static instability (ω = 0) is an example of
the classical divergence instability1. Note that here, the
divergence mode includes both heaving and pitching dis-
placements. However, it is well-known that divergence
is possible with only the pitching degree of freedom, for
example in the thin airfoil theory limit.

To better analyze the flutter and divergence instabil-
ities, we display in fig. 7 the evolution of their growth
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rate (top) and frequency (bottom) as a function of the re-
duced velocity U∗, which is here varied in the range 0.5 ≤
U∗ ≤ 8. The lower bound being larger than the range
for vortex-induced vibrations 0.0712 ≤ U∗ ≤ 0.0725 (top
right part of fig. 5), the latter are not observed. The
growth rate λ and frequency ω of the eigenvalues are
both normalized by the natural pitching frequency ω0,θ.
With this new scaling, we avoid the large variation of
frequency observed in fig. 5, the latter remaining close to
unity. It is clear in fig. 7 that for U∗ → 0, the red and
black modes respectively tend towards the solid natural
eigenmodes:

λh + iωh
ω0,θ

= (−Ωζh + iΩ

√
1− ζh2) = 0 + 0.8× i

λθ + iωθ
ω0,θ

= (−ζθ + i

√
1− ζθ2) = −0.05 + 0.999× i

As U∗ increases, the frequencies of the branches first ap-
proach each other while growth rates slightly decrease.
Around U∗ = 4, both branches have equal frequency and
a brutal increase of the growth rate of the heaving branch

is observed so that the heaving branch goes unstable at
the critical flutter velocity, U∗F = 4.5. As a consequence,
flutter is linked to the heaving and pitching frequencies
approaching each other. For even higher U∗, the pitch-
ing branch finally gets unstable through the static diver-
gence mode (fig. 6(b)), at a critical divergence velocity of
U∗D = 7.4. Let us finally mention that in the particular
case studied here, it is the heaving branch that gets un-
stable via the flutter instability. However, by changing
the damping parameters ζh and ζθ, we could observe dif-
ferent scenarios where it is the pitching branch that gives
rise to flutter.

C. Effect of the mass ratio

In the previous sections, we identified the critical ve-
locities U∗D, U∗F and U∗V for the destabilization of the di-
vergence, flutter and vortex-induced vibrations modes at
Reynolds number Re = 2900 and mass m = 1000. Keep-
ing the Reynolds number fixed, we now vary the mass
ratio and use the continuation method introduced in sec-
tion II B to determine, in the parameter space (m,U∗),
the neutral curves corresponding to each instability.

The neutral curves U∗D(m), U∗F (m) and U∗V(m) cor-
responding to the divergence, flutter and vortex-induced
vibrations instabilities are shown in fig. 8 in a log-log plot
with grey, red and blue curves, respectively. The instabil-
ity regions being shaded with the corresponding colors,
the white area is the stable region. In this figure, we do
not display the frequency of the corresponding critical
eigenmode, but we stress that its order of magnitude is
that of the natural solid modes, represented on the right
vertical axis by the pitching frequency ω0,θ = 1/U∗. We
clearly identify two regions of instabilities: (i) the high-
reduced-velocity region (upper part of the figure) where
flutter and divergence occur with low or zero frequency
and (ii) the low-reduced-velocity region (lower part of the
figure) where the vortex-induced vibration instability oc-
curs in a narrow range of high frequencies.

Let us first consider the neutral curves for flutter (red)
and divergence (grey). At high mass ratio, the flutter
instability occurs at critical reduced velocities smaller
than for the divergence instability. When decreasing the
mass ratio, the critical reduced velocity decreases in both
cases, with a slope close to 1/2 in the log-log plot. The
neutral curve of the divergence instability is in fact a
straight line that is in good agreement with the theoret-
ical expression U∗D(m) =

√
rθ2/(π/2)m obtained under

the hypothesis of pure pitching motion and thin airfoil
theory modelling the aerodynamics2. When decreasing
the mass ratio, the slope of the flutter neutral curve
tends to decrease, while the flutter frequency increases.
For instance, the critical frequency is ωc ∼ O(0.1) for
m ∼ 103 and ωc ∼ O(1) for m ∼ 10. As m further de-
creases, the critical flutter velocity reaches its minimal
value around m ' 20 before increasing and crossing the
neutral curve for divergence instability at m ' 11. For
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FIG. 6. Eigenmodes corresponding to (a) the (heaving) VIV instability (U∗ = 0.0716) and (b) the divergence instability
(U∗D = 7.4) observed in fig. 5. Color codes and legends are identical to fig. 4.

lower mass ratio, the divergence instability thus occurs
prior to the flutter instability that may not even occur
for m ≤ 7. Indeed, we observe a turning point in the
neutral curve of flutter. As a consequence, for m > 7,
there exists a reduced velocity higher than U∗F for which
the flutter mode restabilizes. To our best knowledge, this
“second” neutral curve for which the flutter mode resta-
bilizes at high reduced velocity is reported here for the
first time. This effect and the underlying physical mech-
anism are further discussed in the next subsection when
investigating the effect of viscosity. At the intersection of
the flutter and divergence neutral curves, a codimension-
two point can be identified for a particular mass ratio
mII ' 11 and U∗ ' 0.9. At this point, both the flut-
ter and divergence modes are neutrally stable and could
be involved in the nonlinear dynamics. Typically, the si-
multaneous presence of these two modes may explain the
occurrence of so-called “dynamic divergence”73,74 where
a combination of oscillations and mean deviation of the
wing/plate is observed in the nonlinear regime. These
studies were performed at higher Reynolds numbers than
ours (Re ' 106), on a different 2D section (NACA0016
airfoil) and with different structural parameters. How-
ever, the range of dynamic divergence reported there is
roughly m ∈ [1.6, 6.3], which is the same order of magni-
tude as the values found in the present work.

Finally, we consider the region of vortex-induced-
vibration instability depicted in blue in fig. 8. What-
ever the mass ratio, this instability occurs at much lower
values of U∗ compared to the flutter and divergence in-
stabilities. Its typical frequency ωc ∼ 10 barely de-

pends of the mass ratio, unlike the shape of the neutral
curve. For high m, the vortex-induced vibration mode
is unstable in a very narrow range of reduced velocity
around U∗ ' 0.07. It is associated to a resonance be-
tween the solid heaving mode and the vortex-shedding
mode, that occurs when their frequency coincide, i.e.
ω0,h = Ω/U∗ ' ωwake, as indicated in the figure with the
lower dashed line. For intermediate m, a second region
of instability appears for slightly larger reduced veloc-
ity U∗ ' 0.09. It is then associated to the resonance of
the vortex-shedding mode with the pitching mode when
ω0,θ = 1/U∗ ' ωwake (upper dashed line). The exis-
tence of two separated instability regions at intermediate
mass ratio is thus clearly related to the resonance of the
vortex-shedding mode with the two (heaving and pitch-
ing) solid modes at different U∗. When decreasing m,
these two instability regions widen in U∗, as for the case
of a spring-mounted cylinder40, until they merge around
m = 8. For lower mass ratio, vortex-induced vibrations
may thus occur far enough from the resonance conditions
marked by the thin horizontal dashed lines.

D. Effect of viscosity

In the previous sections we explored the linear behav-
ior of the spring-mounted plate by varying some classi-
cal aeroelastic parameters that are the reduced velocity
and the mass ratio. We now exploit the full potential
of a global stability approach by studying how viscosity
affects flutter and divergence. Its effect on the VIV in-
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TABLE II. Effect of the Reynolds number on the steady lift
and moment slopes at α0 = 0. The last column recalls the
potential flow values from thin airfoil theory.

Re 10 110 500 2900 ∞
dCstatL
d(−θ) 3.22 4.07 4.88 5.88 2π

d(−CstatM )

d(−θ) 0.89 1.04 1.23 1.52 π/2

stability is left aside and we refer the interested reader
to dedicated works40,72.

1. Flutter and divergence thresholds for different
Reynolds numbers

In fig. 9, we show the flutter (red) and divergence
(gray) neutral curves for three different Reynolds num-
bers spanning three orders of magnitude: Re = 10 (a),
Re = 110 (b) andRe = 2900 (c). First, by looking for ex-
ample at the value of U∗D at m = 1, one can observe that
the divergence curve is shifted towards lower U∗ as Re
increases. This trend is linked to the increase in the slope
of the steady lift Cstat

L and moment Cstat
M coefficients asRe

increases (see table II), which naturally leads to lower di-
vergence velocities according to the classical formula for

torsional divergence: U∗D(m) =
√
rθ2/(dCstat

M /dθ|θ0)m.

For the flutter threshold, a similar trend is observed in
the high-m limit. For lower mass ratios, we note a large
change in the position of the folding point point that
drops from m ∼ 300 to m ∼ 20 when increasing the
Reynolds number from Re = 10 to Re = 110. Between
Re = 110 and the baseline case at Re = 2900, further
shift is observed but in less important proportions. In
addition, it is observed that the high-U∗ boundary of the
flutter curve varies significantly more with Re than the
low-U∗ boundary. It indicates that the high-U∗ resta-
bilization of the flutter mode is strongly dependent on
viscous effects and tends to explain why it was never re-
ported before, in high-Re flows. More insights on that
aspect are provided in the next paragraph where we com-
pare the present approach with the classical Theodorsen
theory.
Due to the wide variations of the high-U∗ limit of the flut-
ter region, two scenarios are possible depending on Re.
At high-enough Re (c), a classical scenario is observed
where, as one increases U∗, the flutter mode destabi-
lizes first, remains unstable and then the divergence mode
destabilizes. On the contrary, at low Reynolds (a), the
flutter mode destabilizes first, then restabilizes — leav-
ing the system stable on some narrow range of U∗ — and
finally divergence is triggered.
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2. A comparison of viscous flutter thresholds to the
Theodorsen model

In this section, we compare the flutter stability results
from the global stability approach with the ones obtained
using a statically calibrated version of the Theodorsen 27

theory. Indeed, if the original Theodorsen model makes
the hypothesis of potential flows, it is of common use14

to empirically extend its range of application to viscous
flows by calibrating it using the steady viscous lift and
moment slopes from table II instead of the original values
from thin airfoil theory. In the following, we will use
this simple-enough calibration strategy as we believe it
offers a fairer comparison of the present computational
approach with an analytical Theodorsen(-like) approach.
Details of this static calibration procedure are reported
in appendix C.

The flutter neutral curves obtained with the global
stability approach (solid) and the calibrated Theodorsen
model (dashed) are reported in fig. 10(a) for the three
Reynolds numbers Re = 10 (brown), Re = 100 (gray)
and Re = 2900 (black). First, in the limit of high m, the
Theodorsen curves tend towards the viscous curves. This
is shown more quantitatively in fig. 10(b) where the rel-
ative error between both approaches for the low-U∗ flut-
ter boundary is presented. Focusing temporarily on the
case Re = 2900 (black), we observe that the Theodorsen
model remains fairly close (less than 10% deviation) to
the Navier–Stokes prediction as the mass ratio decreases
down to m ' 102. For lower values, the critical velocity
is increasingly overestimated by Theodorsen, of as much
as 35% at m = 10. For Re = 110, similar observations
can be made. For the lowest Reynolds, Re = 10 (brown),
the Theodorsen model fails in predicting the rapid shift
of the turning point to higher mass ratios. As a conse-
quence, it predicts the occurence of flutter for mass ratios
10 ≤ m ≤ 200 where it cannot appear according to global
stability.
For all three Reynolds numbers, the Theodorsen model
predicts a vertical asymptote of the neutral curve for
mass ratios between 5 and 10. This is clearly different

from the global stability results that indicate a turning
point and subsequent high-U∗ restabilization of the flut-
ter mode, as described in the previous section. Some
intuition about this observation may be gained by think-
ing of the Theodorsen model as an asymptotic limit of
the global stability approach for large Reynolds numbers.
Indeed, if the high-U∗ flutter restabilization tends to de-
lay as Re increases, then it is expected to never occur
for Re → ∞. This corresponds to the asymptotic be-
haviour of the Theodorsen model. Overall, the afore-
mentioned discrepancies between the statically calibrated
Theodorsen model and the global stability results suggest
that significant unsteady viscous effects — that cannot
be captured with a static calibration of a potential model
— come into play at the Reynolds numbers considered
here.

IV. EFFECT OF THE STEADY ANGLE OF ATTACK

We end this study by investigating the effect of the
steady angle of attack α0 of the plate on the flutter in-
stability. As this parameter modifies the steady solu-
tions around which the fluid-solid perturbations develop,
we first describe the evolution of this steady solution.
Results are displayed in fig. 11 for the Reynolds num-
ber Re = 500. For low angles of attack, the lift and
moment coefficients shown in fig. 11(a) evolve linearly.
The steady flow, depicted in fig. 11(b) with the stream-
wise velocity, is attached to the plate until α0 = 6◦

(except for the small recirculation region visible at the
trailing edge). When increasing the angle of attack in
6◦ < α0 < 10◦, a flow separation first occurs at the trail-
ing edge and then progressively moves towards the lead-
ing edge. The slope of the lift and moment coefficients
then diminishes. When they reach their maximal values
slightly below α0 = 10◦, the flow is fully separated, as
seen in fig. 11(b). The recirculation region in the wake of
the plate keeps growing when further increasing the an-
gle, leading to a slight decrease of the magnitude of the
lift and moment coefficients. This behaviour is similar
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FIG. 10. (a) Comparison of the statically calibrated Theodorsen model (dashed) and the global stability approach (solid) for
the prediction of flutter neutral curves at different Reynolds numbers: Re = 10 (brown), Re = 110 (gray), Re = 2900 (black).
For a clear identification of the stable/unstable regions, the reader is reported to fig. 8. (b) Relative error for the prediction of
the low-U∗ flutter threshold between the global stability and calibrated Theodorsen approaches.

to the stall of airfoils that occurs for turbulent flows at
higher Reynolds number3,4, but the lift drop is much less
pronounced. Such a light stall is a known feature of low-
to-moderate Reynolds flows around plates14 or airfoils75.
A purely-hydrodynamic stability analysis of these steady
solutions reveals the destabilization of a unsteady mode
for α0 ≥ 9.8◦. This is a vortex-shedding mode whose fre-
quency ωwake ' 4 can be rescaled with the frontal length
sin(α0) yielding the Strouhal number St = 0.68. The
steady flow is thus unstable for α0 ≥ 9.8◦, as emphasized
with the dashed line in fig. 11(a). The steady lift and
moment coefficients reported for such high angles should
then be interpreted with caution, when comparing with
time-averaged results of temporal simulations or experi-
ments. Indeed, the flow unsteadiness is likely to modify
the steady flow, so that the mean lift value progressively
drift away from the steady lift reported here. To avoid
such effects, the subsequent discussion on the flutter in-
stability is restricted to 0◦ ≤ α0 ≤ 10◦.

In fig. 12(a), we present the evolution of the heaving
(red curves) and pitching (black curves) eigenvalues as
a function of the reduced velocity for different values of
the steady angle of attack. The case α0 = 0◦ (dashed
curves) corresponds to the typical coupled-mode flutter
(CMF) scenario already described in section III B. When
increasing the reduced velocity, the frequencies of the two
modes (bottom figure) approach each other leading to the
destabilization of the heaving mode (red dashed curve in
top figure). When increasing the angle up to α0 = 6◦

(dash-dotted curve), a coupled-mode flutter scenario is
also observed but with slight differences. Indeed, the
frequency of the two modes gets close to each other for
higher reduced velocity, thus delaying the occurence of
flutter. Moreover, increasing the reduced velocity tends
to stabilize the heaving mode (red) and to destabilize
the pitching mode (black). Thus, it is the pitching mode,

rather than the heaving mode, that gets unstable for that
angle. Therefore, as the angle increases in 0◦ ≤ α0 ≤ 6◦,
there is a smooth transition from a heaving coupled-mode
flutter to a pitching coupled-mode flutter. The critical
reduced velocity U∗F , shown in fig. 12(b), progressively
increases with the angle of attack.
For α0 ≥ 7, the coupled-mode flutter scenario is not
observed anymore. The destabilization of the pitching
mode (black dotted curve, α0 = 8◦) still occurs although
the heaving and pitching frequencies remain well sepa-
rated. This is referred to as a pitching Single-Mode Flut-
ter scenario (pSMF). Instead of a coupled heaving an
pitching motion, the critical mode for pSMF mainly oscil-
lates along the pitching degree of freedom, as illustrated
in fig. 13(a). As seen in fig. 12(b), a strong decrease of
the critical reduced velocity is observed after the tran-
sition from CMF to pSMF around α0 ∼ 7◦. It is in-
teresting to note that the features reported above have
been observed experimentally, for example by Razak, An-
drianne, and Dimitriadis 6 , where the flutter instability
on a heaving and pitching NACA0012 profile was shown
to transition from CMF to pSMF as the static angle of
attack is increased. However, the higher Reynolds num-
ber (Re ' 105) and different airfoil profile used in their
study does not allow a quantitative comparison with our
results.

For α0 = 10◦, we notice in fig. 12(a) that, in addi-
tion to the pitching mode (solid black line) becoming

unstable around U∗F
pSMF = 4.8, the heaving mode (solid

red line) is also very close to unstable. It actually does

become slightly unstable around U∗F
hSMF = 5.2, giving

rise to a secondary heaving Single-Mode Flutter (hSMF),
where the eigenmode mainly oscillates along the heaving
degree of freedom (see fig. 13(b)). The frequency at crit-
icity is close to the one of the natural heaving mode, i.e.
ωc

hSMF = Ω/U∗F
hSMF ∼ 0.15. This low-frequency indi-
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FIG. 11. Characteristics of the steady flow around the fixed plate at Re = 500 and for different angles of attack. (a)
Aerodynamic coefficients as a function of the angle of attack α0. Stable and unstable solutions are shown with solid and dashed
curves, respectively. (b) Streamwise velocity field shown for different angles of attack indicated in the figures and reported in
(a) with vertical dashed lines. Black curves delimit the regions of flow recirculation.

cates that hSMF is another aeroelastic instability, well-
separated from the high-frequency wake-mode (ωwake = 4
at α0 = 10◦). The critical velocity for hSMF is material-
ized in fig. 12(b) by the red disk. We should mention that
hSMF could have been anticipated already by observing
the negative slope of the lift curve fig. 11(a) at α0 = 10◦.
Indeed, using quasi-steady arguments, it is well-known
that a negative steady lift slope may induce negative
aerodynamic damping on an only-heaving body, provided
the Glauert–Den Hartog criterion is met32, which we ver-
ified (not shown) it is here for α0 = 10◦.

V. CONCLUSION

In this paper, we revisited the linear stability of a typ-
ical aeroelastic section with an incompressible Navier–
Stokes flow model. The linear stability of the fluid-solid
system was assessed using a global stability approach

which consists in scrutinizing the eigenvalue spectrum
of the fluid-solid Jacobian matrix. The latter was ob-
tained by analytically deriving the linearized equations
and space-discretizing the Navier–Stokes model with fi-
nite elements.

Using this approach, one can capture, with one uni-
form flow model, various types of fluid-solid instabilities.
First, a classical coupled-mode flutter occurred at high-
enough reduced velocity due to the convergence of the
heaving and pitching frequencies. For even higher veloc-
ity, a static divergence instability was found. For low
reduced velocities, vortex induced vibrations instabilities
occur, as the hydrodynamic wake mode interacts with the
natural heaving or pitching mode. By varying the angle
of attack of the steady solution, we showed how the flut-
ter instability progressively transitions from a coupled-
mode flutter involving both heaving and pitching motions
to a single-mode flutter involving only the pitching mode.
This transition is concomitant with the appearance of a
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FIG. 13. Critical eigenmodes for (a) pSMF (U∗F = 4.8) and (b) hSMF (U∗F = 5.2) at (Re = 500,m = 103, α0 = 10◦). Color
codes and legends are identical to fig. 4.

large recirculation region on the plate suction side.

Having identified these different instabilities, neutral
curves were presented in the (m,U∗) plane for the case
of zero steady angle of attack. For all mass ratios, vortex-
induced vibrations occurred on a range of reduced veloc-
ities centered around two well-defined values that corre-
spond to the coincidence of the pitching (resp. heaving)

frequencies with the hydrodynamic wake instability fre-
quency. Decreasing the mass ratio tends to widen the
range of reduced velocity where vortex-induced vibra-
tions occur. At a particular, low, mass ratio mII (about
mII ∼ 10 at Re = 2900) a codimension-two point is
found where both flutter and divergence occur at the
same critical reduced velocity. For mass ratios higher
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than mII , flutter occurs prior to divergence whereas di-
vergence precedes flutter for mass ratios below mII . In
addition, it was shown that for low mass ratios, slightly
below mII , the flutter neutral curve features a turning
point. The latter implies the existence of a high-U∗

flutter boundary above which the flutter mode resta-
bilizes. A study of the effect of the Reynolds number
showed that this high-U∗ restabilization of the flutter
mode is delayed by increasing Re, thus leading us to
suggest this unexpected behavior is due to viscosity ef-
fects. The exact mechanism at play however remains to
be precised. The flutter neutral curves obtained from a
calibrated version of the Theodorsen model, using vis-
cous steady lift and moment slopes, were compared to
the ones obtained with our fully viscous analysis. In
the limit of large mass ratios, where the critical flut-
ter frequency is typically low, the calibrated Theodorsen
model well predicts the low-U∗ flutter threshold. How-
ever, as the mass ratio decreases, such a model increas-
ingly overestimates the threshold, typically of about 35%
at m = 10 and Re = 2900. In addition, the Theodorsen
model is not able to predict the turning of the flutter
neutral curve and the consecutive high-U∗ restabiliza-
tion observed with global fluid-solid stability. This result
further seems to indicate that the high-U∗ restabilization
is linked to unsteady viscous effects, not taken into by a
statically calibrated Theodorsen model.

ACKNOWLEDGMENTS

This project has received funding from the European
Research Council (ERC) under the European Union
Horizon2020 research and innovation program (grant
agreement 638307).

DATA AVAILABILITY

The data corresponding to the figures and tables of
this manuscript are available on request from the author.
In addition, the FreeFEM codes used to compute steady
solutions, eq. (7) and solve the fluid-solid stability prob-
lem, eq. (8) are available at https://bitbucket.org/
jmoulin/pof2021 .

Appendix A: Definition of the fluid and solid operators in
the compact formulations

In this appendix, we provide the detailed expressions of
the fluid and solid operators used in the compact formula-
tion of the evolution equation (6), the steady state equa-
tion (7) and the eigenproblem (8), for the solid variable

qs = (h, θ, ḣ, θ̇)T and the fluid variable qf = (U, P )T.

The mass matrices are defined as

Ms =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 and Mf =

(
1 0

0 0

)
.

The solid Rs and fluid Rf residual vectors in the nonlin-
ear equations (6) and (7) read:

Rs(qs,qf) =
−ḣ
−θ̇

2ζh
Ω
U∗ ḣ+ Ω2

U∗2 h−m−1(CL(U, P, θ) + CFext
)

2ζθ
1
U∗ θ̇ + 1

U∗2 θ −m−1rθ
−2(CM (U, P ) + CMext

)

 ,

Rf(qs,qf) =(
θ̇ ez ∧U +∇U

(
U−W(θ, ḣ, θ̇)

)
−∇ · σ(U, P )

∇ ·U

)
.

where σ is the classical Cauchy stress tensor. For conve-
nience, we recall here the definitions of the lift coefficient
CL, the moment coefficient CM computed at the center
of mass G located at X = (0, 0) and of the grid velocity
W:

CL(U, P, θ) = 2
{
R(θ)

∫
Γw

σ(U, P )N dXw

}
· ey

CM (U, P ) = 2

∫
Γw

{
Xw(σ(U, P )N)Y

− Yw(σ(U, P )N)X

}
dXw

W(θ, ḣ, θ̇;X) = R(θ)T(−1, ḣ)T + θ̇ (ez ∧X)

The submatrices in the eigenproblem (8) are obtained
by linearization of the solid and fluid residual vectors
around the solid q0

s and fluid q0
f steady states. For the

solid equations, they read:

Jss(q
0
s ,q

0
f ) =


0 0 −1 0

0 0 0 −1

Ω2U∗−2 −Lθ 2ζhΩU∗−1 0

0 U∗−2 0 2ζθU
∗−1



Jsf(q
0
s ,q

0
f ) =


0 0

0 0

−LU −LP

−MU −MP


where the terms Lθ, LU and LP are the derivatives of
the lift coefficient CL defined as:

Lθ = m−1 ∂CL
∂θ

, LU = m−1 ∂CL
∂U

, LP = m−1 ∂CL
∂P

while MU and MP are the derivatives of the moment
coefficient CM defined as:

MU = m−1rθ
−2 ∂CM

∂U
, MP = m−1rθ

−2 ∂CM
∂P
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The submatrices for the fluid equations are defined as:

Jfs(q
0
s ,q

0
f ) =

(
0 Dθ Dḣ Dθ̇

0 0 0 0

)

Jff(q0
s ,q

0
f ) =

(
A ∇•
∇ · • 0

)
.

where A is a short notation for the derivative of the
Navier–Stokes momentum equation with respect to the
fluid velocity U:

A = ∇(•)
(
U0 −W(0, θ0, 0)

)
+∇U0•

−Re−1∇ ·
(
∇ •+∇•T

)
The terms Dθ, Dḣ and Dθ̇ are the so-called shape deriva-
tives, i.e. the derivatives of the Navier–Stokes equations
with respect to the solid motion:

Dθ = −∇U0 ∂W

∂θ
, Dḣ = −∇U0 ∂W

∂ḣ

Dθ̇ = −∇U0 ∂W

∂θ̇
+ ez ∧U0

where the derivatives of the grid velocity W to the solid
variables are straightforward to obtain.

Appendix B: Validation: spring-mounted cylinder case

For validation purposes, our linear stability solver was
tested on the configuration consisting in the flow around
a circular cylinder mounted on a heaving spring, which
has been largely documented in the literature38,40,41. To
this end, we adapt our set of non-dimensional numbers
to the conventions used by Navrose and Mittal 40 , Sabino
et al. 41 , yielding:

U∗ =
2πŨ∞

D̃
√
K̃h/m̃

, m =
4m̃

πρ̃D̃2s̃
, CL =

L̃

0.5ρ̃Ũ2∞D̃s̃

which gives the following variant of the heaving equation:

d2h

dt2
+

(
2π

U∗

)2

h =
2

πm
CL

The pitching spring, for its part, is kept infinitely rigid.
For a particular Reynolds number Re = 60 and mass
ratio m = 20, we show in fig. 14 the variations of the
so-called40 fluid (blue) and solid (red) modes as a func-
tion of U∗. Our results, marked by open circles, per-
fectly match the previous work by Sabino et al. 41 (dashed
lines). In addition, we verify that in the limit of an in-
finitely rigid heaving spring (U∗ → 0), the fluid mode
(blue mode) tends towards the vortex shedding mode
classically obtained66,76–78 for a fixed cylinder (horizontal
blue lines). These results validate our computational ap-
proach by showing it accurately reproduces the classical
results for a heaving spring-mounted cylinder undergoing
vortex-induced vibrations.

Appendix C: Static calibration of the Theodorsen model

In the original work by Theodorsen 27 , analytical ex-
pressions where derived for the fluid lift and moment ap-
plied by a potential flow on an infinitely thin flat plate
forced to oscillate in pitch and plunge. Using the particu-
lar sign and non-dimensionalization conventions adopted
in the present work, these read:

CL = −π
2

[
θ̇ + ḧ− aθ̈

]
+ C(k)

dCstat
L

dθ

∣∣∣∣
θ0

[
θ + ḣ+

(
1

4
− a
)
θ̇

]
CM =

π

4

[
aḧ−

(
1

16
+ 2a2

)
θ̈

]
+
π

4

(
2a− 1

2

)
θ̇

+ C(k)
dCstat

M

dθ

∣∣∣∣
θ0

[
θ + ḣ+

(
1

4
− a
)
θ̇

]
(C1)

where a is the nondimensional distance between the elas-
tic axis and the mid-chord (counted positively when the
elastic axis is downstream of the mid-chord) — here a = 0
—, and where C(k = ω/2) is the Theodorsen function,
which can be analytically expressed using Hankel’s func-
tions. In particular, the rightmost terms in eq. (C1)
involve the steady lift and moment slopes at a steady
pitching angle θ0, dCstat

L /dθ|θ0 and dCstat
M /dθ|θ0 . In the

original theory, the thin airfoil theory values are naturally
substituted for the lift and moment slopes:

dCstat
L

dθ

∣∣∣∣
θ0

= −2π
dCstat

M

dθ

∣∣∣∣
θ0

=
π

2
(1 + 4a)

In the present work, we use instead a simple calibration
strategy which consists in replacing the above by their
viscous counterparts that can be either obtained exper-
imentally14 or, in our case, computed numerically. In-
deed, by differentiating the lift and moment coefficients,
eq. (5), with respect to θ, we obtain:

dCstat
L

dθ

∣∣∣∣
θ0

=
∂CL
∂θ

∣∣∣∣
0

+
∂CL
∂U

∣∣∣∣
0

∂U0

∂θ
+
∂CL
∂P

∣∣∣∣
0

∂P 0

∂θ

dCstat
M

dθ

∣∣∣∣
θ0

= 0 +
∂CM
∂U

∣∣∣∣
0

∂U0

∂θ
+
∂CM
∂P

∣∣∣∣
0

∂P 0

∂θ
(C2)

The only unknown quantities in (C2) are the steady fluid
velocity and pressure increments, ∂U0/∂θ and ∂P 0/∂θ,
due to an unit variation in θ. A linear problem govern-
ing these quantities can be derived by differentiating the
steady-state Navier–Stokes equations with respect to θ,
which yields:(

A ∇•
∇ · • 0

)(
∂U0/∂θ

∂P 0/∂θ

)
=

(
−Dθ

0

)
where the operators A and Dθ have been previously de-
fined in appendix A. As a consequence, the steady slopes
of the lift and moment coefficients at θ0 can be obtained
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FIG. 14. Validation of the linear stability analysis solver on the spring-mounted cylinder flow (Re = 60,m = 20). The variation
with U∗ of the growth rate (a) and frequency (b) of the so-called40 fluid (blue circles) and solid (red circles) modes are compared
with the results of Sabino et al. 41 (dashed). The thin horizontal blue lines materialize the vortex shedding mode of the fixed
cylinder case.

from the steady-state solution at θ0 at the (only) addi-
tional cost of solving the above linear problem.

For a range of Reynolds numbers between 10 and 104

we show in fig. 15 the values of the lift (a) an moment
(b) slopes obtained through eq. (C2), showing significant
variations away from the thin airfoil theory values ma-
terialized by the thin horizontal lines. Two additional
remarks must be made. First, it is remarkable that here
the thin airfoil theory turns out to fairly predict the flow
at a Reynolds close to the critical Reynolds for the wake
instability on the fixed plate, Rec,wake (vertical dashed
line). It would be interesting to investigate whether
this is pure coincidence, or a more broadly observed fea-
ture. Second, one must take the large slopes obtained for
Re > Rec,wake with caution as we remind that they are
computed from steady Navier–Stokes solutions which are
unstable at those high Reynolds numbers.
In fig. 15(c) we compare the critical flutter velocity pre-
dicted by the global stability approach (solid line) and the
calibrated Theodorsen model (dashed line with square
symbols) for 10 ≤ Re ≤ 104 and a mass ratio m = 104.
For such a large mass ratio, the calibration yields a good
agreement between both the Theodorsen model and the
global stability results. In contrast, the non-calibrated
Theodorsen theory (thin horizontal line) is only valid for
the particular Reynolds number, that happens to present
steady slopes close to the thin airfoil theory predictions.
As a consequence, for a large mass ratio such as m = 104,
calibrating the Theodorsen model with steady viscous
slopes is well-adapted to capture the variation of the crit-
ical velocity due to varying the Reynolds number. This
not true anymore for lower mass ratios, as seen in fig. 10.
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