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Abstract. We propose a formal model for situated and reactive multi-
agent systems based on correlated discrete random walks. In order to
study this model, we construct a continuous approximation ending up
on the Fokker-Planck equation. This result allows us to determine an
optimal parameterization for the agents, with respect to the system’s
objective. Numerical simulations confirm the approach from two points
of view, the validity of the continuous model and the optimality of the
agents’ parameterization.
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1 Introduction

Multi-agent systems offer an interesting approach for solving distributed prob-
lems. These problems can be industrial, like the optimal control of a heat engine
[4] or resource management [2]. They can also be more academic, like constraint
satisfaction problems [21] or constrained optimization of mathematical functions
[18,15].

Although multi-agent solutions have proven to be efficient on difficult prob-
lems and may be methodically implemented1, their formal validation is an impor-
tant obstacle that has yet to be overcome. The main reason is that a multi-agent
system can have a complex behaviour, meaning that it cannot be easily deduced
from the agents’ individual behaviour.

As a result, upon creation of a multi-agent system it is difficult to know
if it turns out “functional”, meaning that it fulfills its role. Furthermore the
influence of the agents’ parameters on the system’s behaviour may be difficult to
understand, and thus difficult to adjust if the system’s performance is insufficient.

For these reasons, validating desired properties of the system and adjusting
the agents’ parameters are often done by experimentation. This step can be
time-costly and offers only partial answers, of statistical order.

1 By methods like TROPOS [6] or ADELFE [25].



In this article we focus on the formal establishment of basic dynamic proper-
ties of a restricted class of systems. We concentrate on systems of identical and
situated agents. The objective we set for the agents is to have a desired distri-
bution at equilibrium, given by a time-invariant function, that will be referred
to as resource. Each individual moves randomly, according to some probabilities
that depend on its local perceptions. The aim of our approach is to define and
parameterize the agent’s behaviour so that they position themselves, after some
time, according to the target distribution.

This type of problem can be encountered in entomology, when an insect colony
tries to harvest scattered food (if we ignore food repatriation), or in swarm
robotics, when a group of medical robots needs to deploy in a critical situation
where human victims are scattered in space.

We study long-term behaviours of such systems, and address two main ques-
tions:

1. Can we locally parameterize the agents so that the system achieves the
objective?

2. Given some agent behaviour rule, can we predict their dynamics and measure
their accomplishment?

Since discrete approaches have shown to be of limited use (see mentioned work
in section 2) in the study of large complex systems, we study these questions by
means of continuous approximations inspired by statistical physics.

Therefore, we approximate the system by two successive limits: the first (mean
field) is valid when the number of agents goes to infinity, the second (continu-
ity) is valid when the elementary time and space step tend to zero. The re-
sulting approximated system is then studied using PDE results. The combina-
tion of these three steps provides satisfactory quantitative answers to questions
1 and 2.

After a brief presentation of related work (section 2), we propose a generic
model for situated reactive multi-agent systems (section 3). We show that, under
some specific hypotheses, the mathematical model can be approximated by an
equation of which we can study some formal properties (section 4). Using this
approximation, we manage to parameterize the agents’ behaviour so that they
collectively achieve the system’s goal (section 5). Numerical simulations validate
our approach (section 6). The article ends with a discussion of the stated results,
and opens on some possible working directions (section 7).

2 Related Work

A vast literature focuses on the study of complex systems. Since multi-agent
systems are endowed with some underlying objective, we divide related work in
two classes: purely descriptive models, focused on the study of a given system,
and control-type models, equipped with some utility function and the implicit
task to maximize its value. These two classes of models are appropriate for
question 2 and 1 respectively.



2.1 Descriptive Approaches

Interacting particle systems [20] model complex systems as a set of coupled
random processes. The special case of Cellular automata and their application
to multi-agent systems is studied in [29]. However, it is generally difficult to
prove properties of these models.

A traditional population-based approach is to describe a system by the frac-
tion of agents in each state, and its evolution by exchanges between those
fractions. Well-known examples are the chemical rate equations and the Lotka-
Volterra equation. Application to multi-agent systems without any formal deriva-
tions are found in [14,19]. In contrast, [17,1] provide general methods to derive
these models from systems of individuals with “mean interaction”.

Continuous spatial models close to the one used of this article are used in
ecology to study social animal behaviours [26,16,7].

Our approach can be related to all the above works. Starting with a discrete
system of random walkers with a given task, we derive some continuous model
using a mean field result. However, our model also involves a global reward
function that we want to maximize.

2.2 Control-Type Approaches

Markov Decision Processes [23] model stochastic systems equipped with some
reward function that is to be maximized over time. This formalism is closely
related to game theory [28] and its application to multi-agent systems is studied
in [13,27]. However it seems difficult to use these methods for large systems, as
the computational complexity increases rapidly with the number of agents [3].

Mean field methods have been used to solve optimal control problems on sys-
tems of identical individuals with global control [10,11,5] on small state spaces.
Mean field games [12] can be seen as an extension of these methods to spatial
systems.

In contrast to [10,11,5], we favour local control, and unlike mean field games
we mainly focus on cooperative systems (where agents share identical interests)
at equilibrium.

3 Formal Model

In this section we define the formal model that is used to study the class of prob-
lems we focus on. This model includes discrete time and state spaces. Agents
are randomly distributed at the start, and follow discrete memoryless random
walks from then on. Randomness of these movements has multiple motivations.
Since agents are completely identical, a deterministic decision rule would lead
to gregarious collective behaviour: all agents sharing identical information (e.g.
global knowledge) move likewise, which is clearly a suboptimal behaviour. Fur-
thermore, space exploration is often related to diffusion processes, which are
mainly modeled by random walks.



3.1 System Description

The agents’ state space is the unit circle C, evenly divided in np positions (Fig.
1) and denoted

Cδ =

{

2kπ

np

}

k∈{0,...,np−1}

= {kδ}k∈{0,...,np−1}

where δ = 2π
np

is the spatial step, which will tend to 0 later, so that Cδ → C (in

the sense of Hausdorff’s set convergence [22]).

Fig. 1. Agents’ positions

The periodic topology and compactness of this domain offer some theoretic ad-
vantages for the theorems of this article. Possible extensions are discussed in
section 7.

Since agents are assumed to be identical, the system’s state is completely
described by the number of agents at each position. Let (Xn(t))

N
n=1 stand for

the positions of the N agents at time t. The system’s state is described by the
occupation density vector uN (t) =

(

uN (x, t)
)

x∈Cδ
, where

uN (x, t) =
1

N

N
∑

n=1

1Xn(t)=xwith 1Xn(t)=x =

{

1 if Xn(t) = x

0 else
.

Coordinate u(x, t) is the proportion of agents located at position x. During a
time interval τ , each agent may

– move by −δ with probability pNδ,τ(x, u),

– move by +δ with probability qNδ,τ (x, u),

– stay in place with probability 1− pNδ,τ (x, u)− qNδ,τ (x, u).



These probabilities depend on the agent’s current position and the density vector
(Fig. 2).
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Fig. 2. Agents’ movements

At this stage we have defined a generic formal model describing the random
movements of a set of agents2. The probabilities of the agents’ movements have
yet to be chosen. They will act as control parameters, and will be adjusted
according to some objective function defined in the next paragraph.

3.2 Reward Function

In order to fit the system’s goal in our model, we add a reward function r

evaluating the system’s success in its task (moving towards the resource).
Let f be the periodic function standing for the resource quantity at each point.

This function is assumed to be time invariant, strictly positive and normalized
so that

∫

C f(x)dx = 1. Reward function r defined by

r : (x, u) �→ u(x) e1−
u(x)
f(x)

gives a local representation of the system’s accomplishment in each length unit
[x, x+ δ[ (Fig. 3).

2 4 6 8 10

0.5

1.0

1.5

2.0

L
o

ca
l 

S
at

is
fa

ct
io

n

Local Density

f(x)

f(x)

Fig. 3. Agents’ reward function

The agents’ presence at resources is increasingly rewarded, but overcrowding is
punished exponentially. The system’s global reward at time t is

Rδ(t) =
∑

x∈Cδ

r(x, u(x, t)) δ.

2 Which is not limited to global dependence, since the probability pNδ,τ (x, u) may de-
pend only on the density of agents located at x.



Global reward R is bounded by the total amount of resources
∑

x∈Cδ
f(x) δ.

Hence, the agents’ optimal distribution is exactly the resource distribution.

3.3 Expression of the Addressed Problem

The objective is to find an agent behaviour (functions pδ,τ (x, u) and qδ,τ (x, u))
yielding maximum global reward. In this paper we restrict the objective to some
long-term reward R(T ) (with a large value for T )

max
pδ,τ ,qδ,τ

E (Rδ(T )) ,

where E stands for mathematical expectation over the possible system states.
It is a simple task to simulate the system for a given pair of functions (pδ,τ , qδ,τ),

andmeasure its reward.Formal study is however abitmore tricky, since theMarkov
chain

(

(Xn(t))
N
n=1

)

t
(or even (un(t))t) describing the system’s evolutionhas a state

space that increases quickly with the number of agents. To mitigate this difficulty,
we suggest a continuous approximation of this discrete model in the next section.

4 Approximation of the Discrete Model

The derivation of the continuous approximation is done according to the two
steps described in section 1, and ends up in a partial differential equation known
as the Fokker-Planck equation. We provide some interesting properties of this
equation in a special case.

4.1 Derivation of the Continuous Model

The discrete system defined at section 3 has three characteristic dimensions:

– the number of agents N ,
– the spatial step δ,
– the time step τ .

In this section we will make these values tend to some extreme values in order
to obtain a limit model.

Statistical Limit. At first, we let the number of agents N tend to infinity. The
idea behind this limit is the following: as the number of agents grows larger, the
influence of each individual on the density becomes insignificant. As a conse-
quence statistical fluctuations caused by the randomness of the movements have
no impact on the system, which tends to behave in a deterministic way. In other
words, agents observing the densities are interacting with a macroscopic (and
deterministic) quantity on which they have no influence. This approach is known
as mean field theory [17], and formalized by the following result:



Theorem 1 (Statistical Limit). Suppose that, when N → ∞ the initial dis-
tributions uN (0) converge almost surely to some limit u(0), and that the prob-
abilities pNδ,τ (x, u) , qNδ,τ (x, u) converge uniformly in u to continuous functions

u �→ pδ,τ (x, u) , u �→ qδ,τ (x, u). Then, for each t, the function uN(t) converges
almost surely to the vector u(t) recursively defined by u(x, 0) = u0(x) and

u(x, t+ τ) = u(x, t)(1 − pδ,τ (x, u)− qδ,τ (x, u))

+ u(x− δ, t)qδ,τ(x − δ, u) + u(x+ δ, t)pδ,τ(x+ δ, u) (1)

Relation (1) can be seen as a balance equation: agents located at x may

– come from the x− δ, with probability qδ,τ (x− δ, u),
– come from the x+ δ, with probability pδ,τ(x + δ, u),
– have been immobile, with probability 1− pδ,τ (x, u)− qδ,τ(x, u).

The macroscopic quantity u(t), called mean field, is ruled by as many equations
as positions (i.e. np) and may be difficult to study if np is large.This is why we
carry out another approximation in the next section.

Spatiotemporal Limit. Consider a sufficiently smooth solution to (1), at least
twice differentiable in t and once in x. A Taylor expansion of order 2 in δ, and
of order 1 in t in (1) leaves, after simplification:

τ
∂

∂t
u(x, t) + o(τ) = −δ

∂

∂x
((pδ,τ (x) − qδ,τ (x))u(x, t))

+
δ2

2

∂2

∂x2
((pδ,τ (x) + qδ,τ (x))u(x, t)) + o(δ2)

If both members are divided by τ and if δ, τ → 0, so that δ2

τ
is bounded

(0 < a < δ2

τ
< b < ∞), and if the limits below exist

c(x, u) = lim
δ,τ

(

pδ,τ (x, u)− qδ,τ (x, u)

τ
δ

)

(2)

d(x, u) = lim
δ,τ

(

pδ,τ (x, u) + qδ,τ (x, u)

2τ
δ2
)

, (3)

we obtain the limit equation:

∂u

∂t
(x, t) = −

∂

∂x
(c(x, u)u(x, t)) +

∂2

∂x2
(d(x, u)u(x, t)) (4)

known as the Fokker-Planck equation [24]. Its convection term
− ∂

∂x
(c(x, u)u(x, t)) accounts for macroscopic displacement, whereas the

diffusion term ∂2

∂x2 (d(x, u)u(x, t)) accounts for dispersion.
In a similar way, the convection coefficient c may be understood as the mean

speed of individuals located at position x whereas the diffusion coefficient d

quantifies the local tendency to leave position x.



Equations (2), (3) are commonly called scaling conditions. They show how the
system’s endogenous parameters need to scale with its characteristic dimensions
if we want (4) to be a valid approximation.

Formulation of the Continuous Problem. The discrete model defined at
section 3.2 has been approximated by the partial differential equation (4), which
is parameterized by the coefficients c and d. By means of the scaling equations
(2), (3) we translate3 the optimal choice of the agents probabilities pδ,τ and qδ,τ
into a continuous problem on c and d:

max
c,d

∫

C

r (x, u(x, T )) dx

under the constraint given by equation (4). However it is not completely obvious
that this formulation has really simplified our problem. Equation (4) may be
difficult to solve according to the coefficients c and d, and may have solutions
that have no physical sense4. The next section is devoted to a simple case where
these difficulties do not appear.

4.2 Properties of the Linear Fokker-Planck Equation

A well-mastered special case of (4) is when the functions c and d depend only
on x5. The corresponding Fokker-Planck equation is

∂u

∂t
= −

∂

∂x
(c(x)u) +

∂2

∂x2
(d(x)u) , (5)

and is equipped with a boundary condition constraining solutions to be periodic.
In order to show that equation (5) is a “good” representation of our system, we
show that it has sufficiently regular solutions6 that are density functions.

Theorem 2 (Well-Posedness of the Equation)

(i) Suppose the coefficients c, d and the initial distribution u0 infinitely differ-
entiable, and d bounded from below: d(x) ≥ ǫ > 0.
Then equation (5) has a unique solution that is infinitely differentiable.

(ii) If we suppose, in addition to the previous assumptions, that u0 is positive
and

∫

C u0(x)dx = 1, then the solution of (5) is positive and

∫

C

u(x, t)dx = 1, ∀t ≥ 0.

Dynamics of the solutions of (5) are resumed by the following two theorems:

3 In a non-bijective way: multiple probabilities pδ,τ , qδ,τ may result in the same c, d.
4 Theseweak solutions are purelymathematical objects with no concrete interpretation.
5 In a situation where the agents only observe their position x.
6 In particular, bounded and without discontinuities.



Theorem 3 (Existence of a Unique Stationary Distribution). The sta-
tionary Fokker-Planck equation

−
∂

∂x
(c(x)u∞(x)) +

∂2

∂x2
(d(x)u∞(x)) = 0

has a unique periodic solution u∞ so that
∫

C
u∞(x)dx = 1, which is positive.

Thus, for each pair of coefficients c, d there is a unique stable distribution7.

Theorem 4 (Convergence of Solutions). Let u be a periodic solution of (5).
There are two positive constants A and B such that

∫

C

|u(x, t)− u∞(x)|dx ≤ A e−Bt

This provides a complete characterization of the solutions’ dynamics: either the
systems starts at the invariant distribution u∞ and remains so indefinitely, or it
starts at another distribution in which case it converges to u∞ at exponential
speed.

For now, we have made very few assumptions on the coefficients c and d. In
the following section, we adjust them to maximize the system’s performance.

5 Optimal Strategies

In this section, we establish two strategies with optimal long-term behaviour,
with respect to the continuous formulation of the problem defined at section 3.
Each of these strategies consists in a judicious choice of the coefficients c and d,
and is interpreted in terms of agent behaviour.

5.1 A Resource-Dependent Strategy

We start off with the linear case (sect. 4.2). A simple way to maximize the sys-
tem’s global satisfaction is to identify the stationary solution u∞ to the optimal
distribution f . The results of the previous section then guarantee exponential
convergence to the optimal distribution.

Replacing u∞ by f in the stationary equation, we obtain

−
d

dx
(c(x)f(x)) +

d2

dx2
(d(x)f(x)) = 0.

This equation has an obvious solution:

c(x) =
f ′(x)

f(x)
=

d

dx
ln(f(x)), d(x) = 1,

where c is well defined, since f is assumed to be strictly positive.

7 This does not imply that the agents are motionless, since movements may keep the
global distribution unchanged.



This solution has an interesting meaning. Coefficients c and d correspond to
a movement oriented towards the logarithmic gradient of resources. This fact
can be related to the Weber-Fechner law [9] in psychophysics: The intensity of a
sensation varies as the logarithm of the stimulus, translated in our case by: the
agents move with an average speed proportional to the logarithmic derivative of
their perception (the quantity of surrounding resources).

Even though this strategy is interesting, it has two flaws: agents only consider
the amount of surrounding resources, and completely ignore each other, and local
knowledge of the target distribution (the resource in this case) and its variations
is required. This is why we suggest another strategy in the next section, based
only on local and partial information.

5.2 A Strategy Based on Local Rewards

An interesting strategy, inspired by the previous one, is given by:

c(x, u) =
∂

∂x
ln
(

r(x, u(x, t))
)

, d(x, u) = 1

with the reward function r(x, u) = u(x)e1−
u(x)
f(x) defined at section 3.2. This means

the agents move towards locations where local satisfaction is high. In agreement
with Weber-Fechner’s law, the intensity of these movements is given by the
logarithmic derivative of the perception (i.e. local reward).

The corresponding Fokker-Planck equation is nonlinear, and the results of
section 4.2 are of no use. We can however simplify its expression:

Proposition 1 (Simplification). The nonlinear Fokker-Planck equation

∂u

∂t
= −

∂

∂x

(

u
∂

∂x
ln

(

r(x, u(x, t))
)

)

+
∂2u

∂x2

reduces to
∂u

∂t
=

∂

∂x

[

u
∂

∂x

(

u

f

)]

(6)

and show that this reduced equation has similar properties to the linear case.
These properties are summed up by the following theorem:

Theorem 5. Suppose that f is a strictly positive, periodic and regular function
such that

∫

C
f(x)dx = 1.

(i) (Existence of regular solutions) If the initial condition u0 is infinitely dif-
ferentiable and strictly positive, equation (6) has a solution that is infinitely
differentiable and strictly positive.

(ii) (Population size conservation) If the initial condition u0 satisfies
∫

C u0(x)dx = 1, then for any regular solution u of (6):

∫

C

u(x, t)dx = 1, ∀t ≥ 0



(iii) (Existence of a unique stationary solution) The stationary equation

∂

∂x

[

u∞
∂

∂x

(

u∞

f

)]

= 0

has a unique positive periodic solution u∞ so that
∫

C u∞(x)dx = 1 and this
solution is f .

(iv) (Convergence of solutions) Let u be a regular, positive and periodic solution
of equation (6) so that

∫

C
u(x, t)dx = 1, ∀t ≥ 0. There are two positive

constants A and B such that
∫

C

|u(x, t)− f(x)|dx ≤ A e−Bt.

Assertions (i) and (ii) show that equation (6) provides a satisfactory represen-
tation of our system. Assertions (iii) and (iv) show that solutions of equation
(6) have desired long-term behaviour: they converge to the target distribution f

at exponential speed.
We stress the fact that this section’s strategy is only based on local satisfaction

(and its spatial variations) and, in contrast to section 5.1, it involves agent
interaction (through the local reward function).

6 Numerical Validation

In this section we validate the above theoretical results by numeric simulations,
highlighting two main aspects: validity of the continuous approximation (section
4.1) and long-term optimality of the strategies (section 5).

6.1 Validation of the Continuous Model

We simulate all three models (discrete, mean field, continuous) for a given set of
parameters and characteristic dimensions, and focus on the resource-dependent
case (section 5.1).

For all the following simulations, the resource is distributed according to the

function f proportional to cos
(

x−π
2

)10
+0.01 and normalized so that

∫

C f(x)dx =
1. It is displayed in hashed marks on every figure to show the objective.

The discrete system is shown on Fig. 4. The circle is evenly divided in np =
20 positions with spatial step δ = 2π

20 ≃ 0, 3. Time step τ is set to τ = 0, 1. The
system contains N = 500 agents that are initialized according to independent
uniform distributions on Cδ. Their movement probabilities are

pδ,τ (x) =
τ

2δ2

(

2 +
f(x+ δ)− f(x− δ)

2f(x)

)

qδ,τ (x) =
τ

2δ2

(

2−
f(x+ δ)− f(x− δ)

2f(x)

)

(7)



Discrete system at times t = 0, t = 0.05, t = 0.5 and t = 2.5 Global reward

Fig. 4. Dynamics of the discrete system

The mean field, shown on Fig. 5, is initialized according to the discrete uni-
form distribution u0 = ( 1

20 , . . . ,
1
20 ) and evolves according to induction (1) in

Theorem 1.

Mean field at times t = 0, t = 0.05, t = 0.5 and t = 2.5 Global reward

Fig. 5. Mean field dynamics

The continuous system, shown on figure 6, evolves according to the Fokker-
Planck equation (4) with

c(x, u) =
d

dx
ln (f(x)) and d(x, u) = 1

and is initialized as the uniform distribution on C. Note that these coefficients c, d
verify scaling conditions (2), (3) with the probabilities of the discrete system (7).
We show numerical approximations obtained by the Crank-Nicholsonmethod [8].

System state at times t = 0, t = 0.05, t = 0.5 and t = 2.5 Global reward

Fig. 6. Dynamics of the continuous system

Figures 4, 5, 6 show all three systems have similar dynamics and rewards. This
confirms the validity of our approximation.



6.2 Validation of the Optimal Strategies

In order to show the optimality of the coefficients c and d found at section 5, we
focus on the continuous system. The resource is distributed according to the
function f defined at 6.1 and the agents’ initial distribution u0 is proportional

to cos
(

x−3π
2

)20
and normalized so that

∫

C u0(x)dx = 1. The functions f and u0

are shown on each simulation in hashed lines.
The resource-based strategy, studied at paragraph 5.1 and displayed on

Fig. 7, parameterizes the agents’ movements as

c(x) =
d

dx
ln (f(x)) , d(x) = 1.

System state at times t = 0, t = 0.1, t = 0.5, t = 1 and t = 3

Global reward

Fig. 7. Dynamics and reward of the system for the resource-based strategy

The reward-based strategy, established at part 5.2 and displayed on Fig. 8,
corresponds to the coefficients

c(u, x) =
∂

∂x
ln
(

r(x, u(x, t))
)

, d(u, x) = 1.



System state at times t = 0, t = 0.02, t = 0.2, t = 0.3 and t = 1

Global reward

Fig. 8. Dynamics and reward of the system for the reward-based strategy

Figures 7, 8 show that both suggested strategies have the anticipated dynam-
ics, and converge to the optimal distribution. This fact is highlighted by the
optimal reward that increases to its maximal value 1. Furthermore the reward-
based strategy appears to converge faster, even though this might not be true
in general.

The density curves of figures 7, 8 show that the this strategy favours convec-
tion, in particular at early stages, whereas the first strategy is more diffusive.

7 Conclusion and Perspectives

In this article we suggest a method to model and parameterize a situated reac-
tive system of agents that we wish to move towards a given goal distribution.
A continuous approximation leads to two strategies with optimal long-term be-
haviour:

– the first is based on local knowledge of the target distribution, and requires
global control,

– the second is autonomous, and relies on local and individual perception of
the reward function.

Numerical simulations validate our approach from two points of view: correctness
of the approximation (section 6.1) and long-term optimality of the strategies
(section 6.2).

Though the setting is very simple, the reasoning we used is easily extended to
other types of domains. In this case it is necessary to ensure well-posedness of
the limit equations with appropriate boundary conditions [24]. It is also possible
to consider dynamic resources that move in space, exhaust over time or resources



that are consumed by the agents. The explicit convergence bounds in theorems
4 and 7 allow a partial extension of our results to such situations if the resources
evolve “slowly”8.

Finally, another possible extension is to consider multiple agent populations,
with mean field (density-dependent) interactions. In that case we obtain a system
of coupled Fokker-Planck equations, with possible exchange terms between the
populations. Examples found in literature [7,26,16], never involve objectives.
Studying such systems with shared or diverging interests for each population is
an interesting scope we plan to study in future work.

In regard to the optimal parameterizations, we limited this article to long-
term global objectives. When facing cumulative rewards, it is necessary to study
the limit of the corresponding MDP. The statistical limit towards some mean
field MDP has been established by [10,5]. We expect the spatio-temporal limit
to converge to a mean field game [12], whose connections to multi-agent systems
have not yet been established.
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Appendix: References to Mathematical Proofs

Due to spatial constraints, this article cannot contain the proofs of the mentioned
results. A document containing these proofs is provided at ftp://ftp.irit.fr/
IRIT/SMAC/DOCUMENTS/PUBLIS/PRIMA2014 Stuker Proofs.pdf.


