
HAL Id: hal-03190205
https://hal.science/hal-03190205v1

Submitted on 7 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hybrid Scheduling Algorithm Based on Self-Timed
and Periodic Scheduling for Embedded Streaming

Applications
Amira Dkhil, Xuankhanh Do, Stéphane Louise, Christine Rochange

To cite this version:
Amira Dkhil, Xuankhanh Do, Stéphane Louise, Christine Rochange. A Hybrid Scheduling Algorithm
Based on Self-Timed and Periodic Scheduling for Embedded Streaming Applications. 23rd Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2015), Mar
2015, Turku, Finland. pp.711–715, �10.1109/PDP.2015.109�. �hal-03190205�

https://hal.science/hal-03190205v1
https://hal.archives-ouvertes.fr

A Hybrid Scheduling Algorithm based on Self-Timed and Periodic Scheduling for

Embedded Streaming Applications

Amira Dkhil, Xuan Khanh Do, Stéphane Louise

CEA, LIST

PC172, 91191 Gif-sur-Yvette, France

Email: first.last@cea.fr

Christine Rochange

IRIT, Université de Toulouse

118 route de Narbonne, Toulouse, France

Email: rochange@irit.fr

Abstract—In this paper, we consider the problem of multi-
processor scheduling for safety-critical streaming applications
modeled as acyclic data-flow graphs. To the best of our knowl-
edge, most existing works have proposed periodic scheduling
that ignore latency or can even have a negative impact on
it: the results are quite far from those obtained under Self-
Timed scheduling (STS). In this paper, we introduce a new
scheduling policy noted Self-Timed Periodic (STP), which is an
execution model combining self-timed scheduling with periodic
scheduling. The proposed framework shows that the use of both
strategies is possible and that they complement each other; STS
improves the performance metrics of the programs, while the
periodic model captures the timing aspects. We evaluate the
performance of our scheduling policy for a set of 10 real-life
streaming applications. We find that in most of the cases, our
approach gives a significant improvement in latency compared
to the Static Periodic Schedule (SPS), and results which are
close to the best case latency of STS.

I. INTRODUCTION

There is an increasing interest in developing applications

on multiprocessor platforms due to their broad availability

and the looming horizon of many-core chip, such as the

MPPA chip from Kalray (256 cores) [1] or the SThorm chip

from STMicroelectronics (64 cores). Given the scale of these

new massively parallel systems, programming languages

based on the data-flow model of computation have strong

assets in the race for productivity and scalability. Nonethe-

less, as streaming applications must ensure data-dependency

constraints, scheduling has serious impact on performance.

Hence, multiprocessor scheduling for data-flow languages

has been an active area and therefore many scheduling and

resource management solutions was suggested.

The Self Timed Scheduling (STS) strategy (a.k.a. as-soon-

as-possible) of a streaming application is a schedule where

actors are fired as soon as data-dependency is satisfied. For

a long time, this scheduling policy is considered as the

most appropriate for streaming applications modeled as data-

flow graphs [2] because it delivers the maximum achievable

throughput and the minimum achievable latency if comput-

ing resources are sufficient [3]. However, this result can only

be true if we ignore synchronization times [4]. Furthermore,

STS does not provide real-time guarantees on the availability

of a given result in conformance with time constraints.

Therefore, analysis and optimization of self-timed systems

under real-time constraints remains challenging. To cope

with this challenge, periodic scheduling is receiving more

attention for streaming applications [3], [5] with its good

properties (i.e., timing guarantees, temporal isolation and

low complexity of the schedulability test). It was shown

that interprocessor communication (IPC) overhead can be

defined as a monotonically increasing function of the num-

ber of conflicting memory accesses in a given period of the

schedule [5]. Moreover, periodic scheduling increases the

latency significantly for a class of graphs called unbalanced

graphs. A balanced graph is the one where the product of

actor execution time and repetition is the same for all actors

[6] but the most common case is unbalanced graph.

In this paper, we show that the Static Periodic Schedule

(SPS) model, firstly presented in [3], increases significantly

the latency of unbalanced graphs and that it is possible

to resolve this problem by using a new scheduling policy

noted Self-Timed Periodic (STP) schedule. STP is a hybrid

execution model based on mixing Self-Timed schedule and

periodic schedule while considering variable IPC times. To

illustrate the impact of the STP model on the performance,

we present the following motivational example.

A. Motivational Example

In Figure 1, we show a Cyclo-Static Dataflow (CSDF) [7]

graph of an MP3 application. CSDF graphs are directed

graphs where a set of nodes referred to as computation actors

are connected by a set of edges which are communication

FIFO channels. Each actor in the graph is executed through

a periodically repeated sequence of sub-tasks. Any CSDF

graph is characterized by two repetition vectors

q and

r .

q is the minimal set of sub-tasks firings returning the data-

flow graph to its initial state (all inputs are consumed)

(see Section III-A). For the example depicted in Figure 1,

r ✏ !1, 2, 2, 4, 4" and

q ✏ !3, 4, 4, 8, 8", respectively in

the order mp3, src1, src2, app, dac. To get qi, we multiply

ri by the length of the consumption and production rates

of ai. For example, if r1 ✏ 1 then q1 ✏ 3 because actor

mp3 contains 3 sub-tasks. The worst-case computation and

DOI 10.1109/PDP.2015.109

communication time of each actor is shown next to its

name after a comma (e.g., 4 for actor mp3). The graph is

an example of an unbalanced graph since the product of

actor execution time and repetition is not the same for all

actors (e.g., 3 4 4 9). The latency resulting from

scheduling the actors of this graph as static periodic tasks

is LSPS 192 while this result for STP I
qi

and STP I
ri

is

144 and 108, respectively. We see that the SPS model pays

a high price in terms of increased latency for the unbalanced

graph. Instead, if the actors are to be scheduled as self-timed

periodic tasks as introduced in this paper, then it is possible

to achieve 25% to 60% improvement in latency compared

to the SPS schedule.

mp3,4 dac,2app,3

src2,5

src1,9

[8,5,3]

[4,4]

[4,0,4]

[1,3]

[4,4]

[2,2]

[2,2]

[1,1]

[1,1] [1,1]

Figure 1. CSDF graph of the MP3 application

B. Paper Contributions

The contribution of this paper is two classes of STP sched-

ules based on two different granularities. The first schedule,

denoted STP I
qi

, are based on the repetition vector qi without

including the sub-tasks of actors. A remaining schedule,

denoted STP I
ri

, have a finer granularity by including the

sub-tasks of actors. It is based on the repetition vector ri.

For unbalanced graphs, we show that it is possible to signif-

icantly decrease the latency under the STP model for both

granularities. We evaluate the proposed STP representation

using a set of 10 real-life applications and show that it is

capable of achieving significant improvements in term of

latency (with a maximum of 96.6%) compared to the SPS

schedule.

The remainder of this paper is organized as follows. In

Section II, we represent a state of the art methods relative to

the scheduling policies of CSDF graphs on multiprocessor

systems. Section III introduces the background material

needed for understanding the contributions of this paper.

Section IV present our main contribution: the STP schedule.

Section V present our evaluation of the proposed scheduling

policy. Finally, Section VI ends the paper with conclusions.

II. RELATED WORK

Latency is an useful performance indicator for con-

current real-time applications. Minimizing or analyzing

latency of a stream program requires to find an effi-

cient scheduling policy which should be achieved by hid-

ing communication latencies whenever possible. Ghamar-

ian et al. propose a heuristic for optimizing latency

under a throughput constraint [8]. It gives optimal

latency and throughput results under a constraint of maximal

throughput for all DSP and multimedia models. However,

his approach uses Synchronous Data-flow (SDF) graphs

which are less expressive than CSDF graphs in that SDF

supports only a constant production/consumption rate on

edges, whereas CSDF supports varying (but predefined)

production/consumption rates. As a result, the analysis result

in [8] is not applicable to CSDF graphs. In [3], Bamakhrama

and Stefanov present a complete framework for computing

the periodic task parameters using an estimation of worst-

case execution time. They assume that each write or read

has constant execution time which is often not true. Our

approach is somewhat similar to [3] in using the periodic

task model which allows to apply a variety of proven

hard-real-time scheduling algorithms for multiprocessors.

However, it is different from [3] in: 1) in our model, actors

will no longer be strictly periodic but self-timed assigned to

periodic levels, and 2) we treat the case variable execution

time of actors due to synchronization and contention in

shared resources.

III. BACKGROUND

We introduce in this section the timed graph, system

model and schedulability of a CSDF graph which are

important points for understanding our contribution.

A. Timed Graph

The timed graph is a more accurate representation of the

CSDF graph [7], that associates to each sub-task or in-

stance of an actor a computation time and a communication

overhead. We consider the Timed graph G A,E, ω, ϕ ,

where A is a set of actors, E A A is a set of

communication channels, ω gives the worst-case computa-

tion time of each actor and ϕ is its communication time

according to a scheduling policy. The set of actors is denoted

by A a1, a2, ..., an , where each actor represent one

function that transform the input data streams into output

data streams. The communication channels carry streams of

data and work as a FIFO queue with unbounded capacity.

An atomic piece of data carried out by a channel is called a

token. A timed graph G is characterized by a repetition

vector q q1, q2, ..., qn
T , where qj 0 represents

the number of invocations of an actor aj in a valid static

schedule for G. This repetition vector is given by [7]:

q P r , with P Pjk

τj , if j k

0 , otherwise
(1)

And, r r1, r2, ..., rn
T , where ri N , is a solution of

the balance equation:
Γ r 0, (2)

where Γ is the topology matrix of G.

B. System’s model and Schedulability

A system Π consists of a set π ✏ !π1, π2, ..., πm✉ of

m homogeneous processors. The processors execute a level

set V ✏ !V1,V2, ...,Vα✉ of α periodic levels. A periodic

level Vi # V is defined by a 4-tuple Vi ✏ ♣Si,
❫

ωi,
❫

ϕi, Di%,

where Si ➙ 0 is the start time of Vi,
❫

ωi is the worst-

case computation time (where
❫

ωi ✏ max
k✏1"βi

ωk with βi

representing the number of actors in level Vi),
❫

ϕi ➙ 0 is the

worst-case communication time of Vi under STP schedule

and Di is the relative deadline of Vi where Di ✏ max
k✏1"βi

Dk.

A periodic level Vi is invoked at time t ✏ Si ' kφ, where

φ ➙
❫

ωi '
❫

ϕi is the level period, and has to finish execution

before time t ✏ Si ' kφ '
❫

ωi '
❫

ϕi. If Di ✏ φ, then Vi is

said to have implicit-deadline. If Di ➔ φ, then Vi is said to

have constrained-deadline. In this article, only the first case

will be discussed.

Authors in [2] introduced a theorem that states the

sufficient and necessary conditions for a valid schedule.

However, this result was established for Synchronous Data-

flow graphs where actors have constant execution times. The

test in [4] is a novel contribution which allows the timing of

firing to respect the firing rules of actors in a CSDF graph.

IV. SELF-TIMED PERIODIC MODEL

The effect of Self-timed Periodic (STP) scheduling can be

modeled by replacing the period of the actor in each level by

its worst-case execution time under periodic scheduling. The

worst-case execution time is the total time of computation

and communication parts of each actor. The period of each

level i is the maximum time it needs to fire each actor aj #

Vi, when resource arbitration and synchronization effects

are taken into account. This is counted from the moment

the actor meets its enabling conditions to the moment the

firing is completed. There are 2 types of STP scheduling that

we are interested in this article: coarse-grained schedule

STP I
qi

by using)*q as the repetition vector and fine-grained

schedule STP I
ri

by using)*r as the repetition vector.

A. Definitions

Definition 1: An actor workload is defined as:

Wi ✏ vi ✂ ωi, (3)

where vi is the ith component of the repetition vector

used for STP schedule. For STPqi , vi ✏ qi and for

STPri , vi ✏ ri. The maximum workload of level Vj is
❫

W j ✏ maxai#Vj
!Wi✉.

Definition 2: Let pa z = !♣aa, ab%, . . . , ♣ay, az%✉ be an

output path in a graph G. The latency of pa z under periodic

input streams, denoted by L(pa z), is the elapsed time

between the start of the first firing of aa which produces

data to ♣aa, ab% and the finish of the first firing of az which

consumes data from ♣ay, az%.

Algorithm 1 GRAPH-LEVELS-STP-Ri(S)

Require: Timed graph G ✏ ①A,E, ω, ϕ②

1: counti . 0

2: j . 1

3: S . !a1✉

4: if counti ✏ qi ❅ai # A then

5: break

6: else

7: Vj . !ak # S : there are enough tokens in all

input edges of ak✉

8: j . j + 1

9: for all ai # S do

10: counti . counti + ri
11: if counti ➔ qi then

12: S ✏ S
➈

succ♣ai%

13: GRAPH-LEVELS-STP-Ri(S)

14: else

15: if counti ✏ qi then

16: S . S③!ai✉

17: end if

18: end if

19: end for

20: end if

21: α✶ . j - 1

22: return α✶ disjoint sets V1, V2, . . . , Vα✶

B. Latency Analysis under STP Schedule

A self-timed schedule does not impose any extra latency

on the actors. This leads us to the following result:

Definition 3: (Periods of Levels in STPqi) For a graph G,

a period φ, where φ # Z
%, represents the period, measured

in time-units, of the levels in G. If we consider
"

q as the

basic repetition vector of G in Definition 1, then φ is given

by the solution to:

φ ➙ max
j✏1"α

♣

❫

W j '
❫

ϕj% (4)

Definition 3 defines the level period φ as the maximum

execution time of all levels. Similarly, we define the schedule

function for the finer granularity of CSDF characterized

by the repetition vector
"

r if we consider
"

r as the basic

repetition vector of G in Equation 4.

For STPqi , we use the algorithm proposed in [3] to find

the levels of G. For STPri , Algorithm 1 is used because

this scheduling policy has a finer granularity and requires an

algorithm which depends also on the precedence constraints

of actors. In this case, each actor could only be fired if there

are enough tokens in all of their input edges.

An actor ai # Vj is said to be a level-j actor. For STPqi ,

let φ denote the level period as defined in Definition 3, and

let a1 denote the level-1 actor. a1 will complete one iteration

when it fires q1 times. Assume that a1 starts executing at

time t ✏ 0. Then, by time t ✏ φ ➙ q1ω1 as defined in

Definition 3, a1 is guaranteed to finish one iteration in a

self-timed mode and generate enough data such that every

actor ak V2 can execute qk times (i.e. one iteration). By

repeating this over all the α levels, a schedule Sα (shown

in Figure 2) is constructed in which all actors ai Vj are

started at start time, denoted si,j , given by:

si,j ✏ ♣j ✁ 1$φ (5)

time [0,φ) [φ,2φ) [2φ,3φ) . . . [♣α✁ 1$φ,αφ)

level V1♣1$ V2♣1$ V3♣1$. . . Vα♣1$

V1♣2$ V2♣2$. . . Vα✁1♣2$

V1♣3$. . . Vα✁2♣3$

. . . Vα✁3♣4$

.

V1♣α$

Figure 2. Schedule Sα

According to Definition 2, latency is defined as the

maximum time elapsed between the first firing of source

actor src in level V1 and the finish of the first firing of sink

actor snk in level Vα. Then, the graph latency L♣G$ is given

by:

LSTP I
qi④ri

✏ ♣ssnk,α % φ$ ✁ ssrc,1 ✏ α✂ φ (6)

Example 1: We illustrate in Figure 3 different scheduling

policies applied for the MP3 application shown in Figure 1.

���

����

����

	��

	�

� �� �� ��� ���

� �� �	 ��� ���

� �� ��
� �	 �� ��� �	� ��� ��	 ���

���

��

��

��

���

����

����

	��

	�

���

����

����

	��

	�

Figure 3. Illustration of latency path for the the MP3 application: (a) SPS
(b) STP I

qi
(c) STP I

ri
. The number of levels for STP I

qi
is α ✏ 4 and the

number of levels for STP I
ri

is α ✏ 6. We use Equation 4 to find the period

of levels φ ✏ 36 for STP I
qi

and φ ✏ 18 for STP I
ri

. Using Equation 6,

we have LSTP I
qi

✏ 144 and LSTP I
ri

✏ 108. An improvement of 25%

to 60% in latency could be achieved by the STP I
qi

and STP I
ri

schedules
compared to the SPS schedule

V. EVALUATION RESULTS

We evaluate our proposed scheduling policy in Section IV

by performing an experiment on a set of 10 real-life stream-

ing applications.

A. Benchmarks

We used benchmarks from different domains (e.g., signal

processing, video processing, mathematics, etc.) and differ-

ent sources to check the efficiency of this scheduling in

different architectures. The first source is the ΣC benchmark

(CSDF based extension of C language [11]) which con-

tributes 4 streaming applications. The second source is the

SDF3 benchmark which contributes 5 streaming applications

[10]. The last source is the StreamIt benchmark [9]. In

total, 10 applications are considered as shown in Table I.

The graphs are a mixture of CSDF (ΣC’s applications) and

SDF (StreamIt and SDF3 benchmark) graphs. The use of

synchronous data-flow (SDF) models does not affect our

scheduling policy because SDF, with static firing rules of

actors, is a special case of CSDF model [7], [12]. The second

column (N) shows the number of actors in each application,

the third column (Q) shows the least-common-multiple of

the repetition vector elements (i.e., Q ✏ lcm♣q1, q2, . . . , qn$)

and the fourth column is the maximum of the product qiωi

used to calculate the end-to-end latency by Formula (3), (4)

and (6). The actors execution times of the ΣC benchmark

are measured in clock cycles on the MPPA 256 cores [1],

while the actors execution times of the SDF3 benchmark

are specified by its authors for ARM architecture. For the

StreamIt benchmark, the actors execution times are specified

in clock cycles measured on MIT RAW architecture.

B. Experiment: Latency comparison

In this experiment, we compare the end-to-end latency

resulting from our STP approach to the minimum achiev-

able latency of a streaming application obtained via self-

timed scheduling and the one achieved under static periodic

scheduling. Table I shows the latency obtained under STS,

SPS, STP I
qi

, STP I
ri

schedules as well as the improvement

of these policies compared to the SPS model. We report the

graph maximum latency according to Formula (6). For SPS

schedule, we used the minimum period given in [3]. For STP

chedule, we used the level period given by Definition 3.

We see that the calculation of the STP schedule is not

complicated because the graph is consistent and an automatic

tool could be implemented to find this schedule.

For the STP I
qi

, we see that it delivers an average improve-

ment of 39.4% (with a maximum of 96.6%) compared to the

SPS model for all the applications. In addition, we clearly

see that our STP I
qi

provides at least 25% of improvement for

7 out of 10 applications. Only three applications (Filterbank,

Beamformer and H.263 Encoder) have lower performance

under our STP I
qi

. To understand the impact of the results, we

use the concept of balanced graph. According to [6], peri-

odic models increase the latency significantly for unbalanced

Table I
BENCHMARKS USED FOR EVALUATION

Application N Q max(qiωi) STS SPS STP I
qi

EffSTP I
qi

(%) STP I
ri

EffSTP I
ri

(%) Source

DCT 4 12 1800 2500 7200 5400 38.3 4500 57.5
CEA LISTFFT 4 6 900 23000 36000 27000 69.2 32000 30.8

Beamformer 4 12 7800 9500 25200 23400 11.5 30000 -30.6
Filterbank 17 600 113430 124792 1254000 1247730 0.6 1247730 0.6 [9]
MP3 5 24 36 48 192 144 33.3 108 58.3 CEA LIST
Sample-rate 6 23520 960 1000 141120 5760 96.6 5760 96.6

[10]
H.263 Encoder 5 33 382000 664000 1584000 1528000 6.1 1528000 6.1
H.263 Decoder 4 2376 10000 23506 47520 40000 31.3 40000 31.3
Bipartite 4 144 252 293 576 504 25.4 504 25.4
Satellite 22 5280 1056 1314 58080 11616 81.9 11616 81.9

graphs. For our approach, Definition 3 and Formula (6)

indicate that if the product qiωi is too different between

actors, so the period of levels φ and the latency L become

higher. For actors where this product is much smaller, wasted

time in each level increases the final value of latency. This

main reason prompt us to reduce these bad effects by using

the constrained-deadline self-timed periodic schedule STPC
qi

and STPC
ri

. We also see that the mis✁matched I/O rates

applications (i.e. with large Q such as Sample-rate, Satellite

and Filterbank in Table I) have higher latency under static

periodic scheduling. This result could be explained using an

interesting finding reported in [9]: Neighboring actors often

have matched I/O rates. This reduces the opportunity and

impact of advanced scheduling strategies proposed in the

literature. This issue can be resolved by using our approach.

In fact, for nearly balanced graphs (i.e., graphs where the

product qiωi is not too different between actors) such as

Sample-rate and Satellite, we have an improvement of 96.6%

and 81.9%, relatively, for the end-to-end latency of each

benchmark. For the remaining applications, the SPS model

increases the latency on average by 2.5✂ compared to the

STS latency while this rate for STP I
qi

is 2✂.

For the STP I
ri

approach, we have an average improve-

ment of 35.8% compared to the SPS model for all the

applications. For 8 out of 10 benchmarks, this scheduling

policy give at least the result given by STP I
qi

. Only two

applications (Beamformer and FFT) have lower performance

when using this scheduling policy. The main reason is that

the STP I
ri

give a finer granularity based on the repetition

vector ri. This means that if r is too close to

1 , the sum

of wasted time in each level will significantly increases the

end-to-end latency.

VI. CONCLUSIONS

We prove that the actors of a streaming application mod-

eled as CSDF graph, can be scheduled as self-timed periodic

tasks. As a result, we conserve the properties of a periodic

scheduling and in the same time improve its performance.

We also show how the different granularities offered by

CSDF model can be explored to decrease latency. We

present an analytical framework for computing the periodic

task parameters while taking into account inter-processor

communication and synchronization overhead. Based on

empirical evaluations, we show that our STP approach gives

a significant improvement in latency compared to the SPS

model and a slight degradation compared to the maximum

latency achieved under the STS model. As a future work, we

want to compute the throughput delivered by the STP model

and improve our scheduling policy by using the constrained

deadline which requires different schedulability analysis.

REFERENCES

[1] B. D. de Dinechin, P. G. de Massas, G. Lager, C. Léger,
B. Orgogozo, J. Reybert, and T. Strudel, “A distributed
run-time environment for the kalray mppa-256 integrated
manycore processor,” Procedia Computer Science, 2013.

[2] O. Moreira, “Temporal analysis and scheduling of hard real-
time radios running on a multi-processor,” ser. PHD Thesis,
Technische Universiteit Eindhoven, 2012.

[3] M. A. Bamakhrama and T. Stefanov, “On the hard-real-
time scheduling of embedded streaming applications,” Design
Automation for Embedded Systems, 2012.

[4] A. Dkhil, X. Do, S. Louise, and C. Rochange, “Self-timed
periodic scheduling for cyclo-static dataflow model,” in ICCS,
ser. Procedia Computer Science, vol. to be published, 2014.

[5] A. Dkhil, S. Louise, and C. Rochange, “Worst-Case Com-
munication Overhead in a Many-Core based Shared-Memory
Model,” in JRWRTC, 2013.

[6] M. A. Bamakhrama and T. Stefanov, “Managing latency
in embedded streaming applications under hard-real-time
scheduling,” in CODES+ISSS, 2012, pp. 83–92.

[7] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete,
“Cyclo-static data flow,” in ICASSP, May 1995, pp. 3255–
3258 vol.5.

[8] A. H. Ghamarian, S. Stuijk, T. Basten, M. C. W. Geilen,
and B. D. Theelen, “Latency minimization for synchronous
data flow graphs,” in Proceedings of DSD. IEEE Computer
Society, 2007, pp. 189–196.

[9] W. Thies and S. Amarasinghe, “An empirical characterization
of stream programs and its implications for language and
compiler design,” in Proc. of PACT, 2010, pp. 365–376.

[10] S. Stuijk, M. Geilen, and T. Basten, “Sdf3: Sdf for free,” in
Proceedings of ACSD, 2006, pp. 276–278.

[11] T. Goubier, R. Sirdey, S. Louise, and V. David, “ΣC: A
programming model and language for embedded manycores,”
in Proceedings of ICA3PP, 2011, pp. 385–394.

[12] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,”
in Proceedings of the IEEE, vol. 75, no. 9,, September 1987,
pp. 1235–1245.

