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Common ways of computing do not use physical space to perform a sin-

gle calculation[9]. However, in the physical world, and in particular in living

systems, space has a major influence in the outcome of computations. In this

chapter we will discuss DNA programs that take spatial inputs and compute

spatial outputs. We will focus on systems that perform these calculations by

reaction-diffusion, an important mechanism to describe the spatial behavior of

large groups of molecules. We will first introduce basic concepts such as spatial

1



and analog computing and energy consumption in molecular computing. We

will then briefly review the three current experimental implementations that

allow to do so with DNA programs: DNA strand displacement, genelets and

PEN DNA reactions. We will then discuss time-dependent spatial patterns

that have been demonstrated with these systems, such as edge detection and

traveling patterns. We will next make a survey of recent methods to control

the parameters that influence the computation, in particular reaction and dif-

fusion rates and boundary conditions. We will end by describing the design of

steady-state patterns such as band patterns, which are relevant in early embryo

development, and providing some perspectives for the future.

1.1. Introduction

1.1.1. What is spatial computing?

The majority of computations in everyday life are performed by microproces-

sors made of transistors. Within microprocessors, a computation is decomposed

in operations that are carried out sequentially in time, thanks to a central clock.

The spatial position of the input information or of the computing transistors

does not influence the result. The opposite is true in many natural systems. For

instance, groups of individual living agents use algorithms where the spatial

position plays a crucial role. This is the case of herds of animals –such as birds

or bees– where collective behaviors emerge from local interactions that are

regulated by the behavior of nearby individuals[6]. It is also observed in devel-

oping embryos, where the final shape of the organism, but also the biochemical

composition of each cell, depend on position. We thus define spatial computing
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as any form of computation that is influenced by spatial coordinates, in par-

ticular because the physical process that performs the computation depends

on space.

1.1.2. Digital vs. analog computing

Computing can be digital or analog. Digital computing works with discrete

signals while analog computing operate with continuous ones. Digital and ana-

log computing differ in two important points: the nature of the computing

primitives and the propagation of noise[47]. In digital computing the primi-

tives are based on the mathematics of boolean logic (AND, OR, etc.) and the

integration of a large number of these primitives into a complex program is a

science that can be rationalized and automated. In contrast, in analog comput-

ing the primitives are based on the physics of the computing system, such as

the charge and discharge of a capacitor or the kinetics of a chemical reaction.

Physical primitives have the advantage of being more efficient than boolean

ones to perform a given calculation. However, combining physical primitives

to perform complex calculations is an art difficult to rationalize and automate.

This is a problem for engineers, but not for natural systems that have spent

their evolutionary time trying out the most efficient ways to implement analog

computations that are useful for survival.

DNA computing can also be digital or analog. An example of digital imple-

mentation are logic gates based on DNA strand displacement (DSD) reactions[52,

42]. However, spatial computations have mainly involved analog implementa-

tions whose computing primitives are given by chemical kinetics, and we will

discuss them in section 1.2.
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1.1.3. Computing consumes energy

Because any computation implies the transformation of a physical system it

must consume energy. Energy supply is relatively straightforward in electron-

ics through the use of power supplies. In molecular systems, computations are

performed by chemical reactions and thus need ‘chemical supplies’ to run con-

tinuously. ‘Chemical supplies’ are ubiquitous in living systems —that is why

we eat and breath— but are difficult to engineer in synthetic systems. The

reason is that in electronics we have spatial separation through cables and we

can thus use a single power supply that provides high voltage electrons for all

the computing elements. In molecular systems, the computing reactions are

all mixed in solution: they are thus connected through similar reactivities and

isolated from each other using orthogonal reactivities.

Let’s consider a series of orthogonal reactions Ri → Pi that are thermody-

namically favorable (and thus their free energy change ∆iG < 0). A ‘chemical

supply’ is a process that provides enough free energy to drive the conversion

Pi → Ri. Ideally, this recycling process is a chemical reaction that turns fuel F

into waste W, F→W, with an associated free energy change ∆csG <
∑

i ∆iG.

We thus need a single reaction that shares reactivity with many reactions that

are orthogonal to each other, which is very hard to accomplish with the chem-

istry of small molecules. Nature solved this issue by evolving enzymes, large

molecules that bear two (or more) orthogonal reactivities: one that is specific

to a particular substrate and a second one that consumes a common fuel shared

by a large set of enzymes, typically adenosinetriphosphate (ATP).

In DNA computing several solutions to this problem exist:

1. One shot computations in a closed reactor: In most implemen-

tations the reactants are mixed in a closed reactor without ‘chemical
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supply’ and the solution can only perform a given computation once.

This is the case of DSD logic gates[52, 42], for instance.

2. Long transients in a closed reactor: In some instances, the closed

reactor contains a ‘chemical supply’. In the case of strand displacement

you cannot choose at the same time orthogonal sequences for the reac-

tants (called gates, see below) and shared sequences for the fuels. The

solution is thus to use as many fuel molecules as there are gates in

the reaction[54]. DNA/enzyme computing systems, such as genelets and

PEN reactions, use DNA hybridization to make orthogonal reactions and

DNA-dependent enzymatic reactions coupled to an ATP-like fuel to im-

plement a single ‘chemical supply’ that is orthogonal to the hybridization

chemistry. If the fuel is consumed slowly compared with the time-scale of

the computing reactions, such implementation can maintain the system

out of equilibrium in a closed reactor for long enough to perform complex

computations.

3. Long transients in an open reactor: Another way to implement a

‘chemical supply’ that recycles products back into reactants is to run

the reactions in an open reactor that exchanges matter with the external

world. An open reactor is physically connected to a source that flows in

fresh reactants and to a sink that takes away the reacted mixture. This

way, the reactor is constantly traversed by a free energy flow that keeps

the system out of equilibrium.
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1.1.4. Molecules compute in space through reaction-

diffusion primitives

In this chapter we will review recent examples of spatial computations per-

formed with DNA programs using reaction-diffusion primitives, because this

mechanism is pervasive to reacting molecules in solution[30]. We will not

discuss patterns created by DNA-programs in the absence of diffusion, such

as those driven by self-assembly processes in DNA nanostructures, or pat-

terned materials created from them, which are reviewed elsewhere[71, 22, 50],

nor reaction-diffusion patterns generated by protein[33, 84] or transcription-

translation networks[23, 57]. We further refer the interested reader to a recent

review on pattern generation with DNA programs[67].

In the absence of space (for instance if the reactor is well mixed), the prim-

itives of molecular computing are ruled by the kinetics of chemical reactions.

For instance, the reaction of two single-stranded DNA (ssDNA) A and B to

give the double strand C is written

A + B
k1


k2

C (1.1)

where k1 and k2 are the hybridization and dehybridization kinetic rate con-

stants, respectively. Supposing mass-action law kinetics, the temporal evolution

of the concentration of species C is given by

dC

dt
= k1A ·B − k2C (1.2)

where the concentration of a given species is noted in italics. Eq. 1.2, together

with similar equations for species A and B, are the computing primitives of a
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bimolecular reaction.

In the absence of mixing, the transport of each species by diffusion must

be taken into account. For instance, in a one-dimensional (1D) reactor the

spatiotemporal evolution of C involved reaction 1.2 is given by

∂C

∂t
= k1A ·B − k2C +DC

∂2C

∂x2
(1.3)

where DC is the diffusion coefficient of species C and x the spatial coordi-

nate. Eq. 1.3, together with the corresponding equations for A and B, are the

primitives for the reaction-diffusion dynamics of a bimolecular reaction.

In the general case where n reactive species form a reaction network char-

acterized by the reaction matrix F , reaction-diffusion dynamics are given by

∂ui
∂t

= Fi(u1, . . . , un) +Di
∂2ui
∂x2

, i = 1, . . . , n, (1.4)

where ui is the concentration of species i and Di its diffusion coefficient. The

term reaction-diffusion was coined by Alan Turing in his seminal work The

chemical basis of morphogenesis[61]. The interest of reaction-diffusion (RD)

systems is that they make emerge a spatial distance λ =
√
D/k, where k is a

first order rate constant characteristic of the reaction kinetics and D a diffu-

sion coefficient[39]. Reaction-diffusion is thus a convenient way of computing

distances that depend on chemical inputs and that provide chemical outputs.

Under some circumstances[13, 39], a system obeying Eq. 1.4 generates spatial

structures of wavelength λ, namely

• edge detectors;

• traveling fronts, waves and spirals;

• Turing patterns; and
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• stationary fronts and band patterns.

All these patterns have been observed and investigated, principally be-

tween 1970 and 2000, with reactions based on the redox chemistry of small

molecules, of which an archetypal example is the Belousov-Zhabotinsky (BZ)

oscillator[14]. However, redox chemistry is not programmable and its harsh

acidic conditions make it incompatible with biological materials. Engineering

RD patterns with DNA programs solves these two issues. In sections 1.3 to 1.4

we will see how these patterns —except Turing ones— have been engineered

with DNA programs.

1.2. Experimental implementation of DNA

analog circuits

In this section we discuss the three DNA-based experimental systems that can

currently perform analog computations coupled to a ‘chemical supply’ and that

are thus amenable to non-trivial reaction-diffusion computing: DNA strand

displacement, genelets and PEN reactions. We review them by showing how to

implement a cornerstone of non-equilibrium dynamics: a chemical oscillator.

1.2.1. DNA strand displacement oscillators

Toehold-mediated DNA strand displacement was developed by Yurke, Turber-

field and collaborators as a way to use ssDNA as a catalyst to fuel DNA-based

nanomachines[73, 59]. Their simple and powerful idea was to control the kinet-

ics of dsDNA dehybridization through a hybridization event: if the partially
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Figure 1.1: Principle of DNA strand displacement (DSD) reactions (a-b) and
oscillations in a DSD circuit in a closed reactor (c-d). a-b) DSD implementation
of the reaction kinetics A+C→ B. The reaction needs the reaction gates RACIB

and RIBB that act as fuels and are converted into waste WACIB and WIBB

(a). b) Detailed mechanism of the reaction in (a): ssDNA are noted as arrows,
the 3’ end being at the tip of the arrow. Sequence domains are indicated by
numbers and an asterisk ∗ denotes their complementary sequence. Toeholds
are represented as dashed lines. c) Formal reaction mechanism of the DSD
rock-paper-scissors oscillator. d) Experimental results showing oscillations of
the network in panel (c) in a closed reactor (solid lines: experimental data,
dashed lines: model fits). Panels (c-d) adapted with permission from ref. 56
(see also ref. 55).

double-stranded complex t:b carries a dangling end on the bottom strand b,

then the dissociation of the top strand t is significantly faster in the pres-

ence of strand b∗, fully complementary to b, because b∗ may hybridize to the

dangling end of t:b, called toehold, and eject t by strand displacement. This

strategy introduces two new features compared to standard DNA hybridization

between fully complementary sequences: i) one can quantitatively control the

rate of production of species t by up to six orders of magnitude by changing

the length or the position of the toehold[81, 19], and ii) every DNA strand

displacement (DSD) reaction can be used to generate a new toehold that may

subsequently react, thus opening the path to using ssDNA as a building block
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of chemical reaction networks.

Although DSD reactions were first applied to digital computing by Winfree

and collaborators[52, 42, 82] they can also be used in analog computations.

This was first proposed theoretically in 2010[54] and recently demonstrated

experimentally by synthesizing a DSD oscillator[55]. To design DSD analog

computations, one first chooses a suitable formal mechanism. As an example,

let’s consider the bimolecular reaction A + C → B. Species A, C and B are

encoded with ssDNA strands composed of a species-specific and a reaction-

specific domain (respectively colored and black in Fig. 1.1a). The reaction

is implemented in two steps with two gates RACIB and RIBB (Figure 1.1a),

which are DNA complexes composed of two or more partially-hybridized DNA

strands bearing reactive toeholds. First, the step A + C→ IB is implemented

by RACIB that is an AND gate that produces intermediate IB in the presence

of both A and C. A second gate RIBB takes the released species IB as an input

and produces B.

Autocatalytic reactions of the type A + B → 2A can be experimentally

implemented by using a gate that takes two different inputs and generates

two identical outputs[55]. The leak inherent to any autocatalytic reaction may

be efficiently suppressed by adding a thresholding module that suppresses the

output that detaches from the gate in the absence of the input. By connect-

ing three of these autocatalytic modules that repressed each other, Srinivas,

Soloveichick and collaborators[55] succeeded the tour-de-force of synthesizing a

DSD oscillator in a closed reactor, thus proving for the first time that complex

analog networks with feedbacks can be built and kept out of equilibrium with

DSD reactions (Figure 1.1b).

10



1.2.2. DNA/enzyme oscillators

DSD networks have the advantage of being fully programmable, however up to

7 DNA species are needed to implement a single autocatalytic node[55], 4 of

them being fuel molecules, which increases the number of control parameters to

be optimized to obtain the desired dynamics. A way to circumvent this problem

is to use enzymes that catalyse the conversion of an input into an output strand

and that use a common fuel that is orthogonal to DNA hybridization chemistry.

In this regard, a powerful idea is to emulate what happens in gene regulatory

networks, where genes produce protein transcription factors, TFs, that increase

or reduce the rate of production of other TFs, all being degraded by a specific

enzyme.

This idea was first implemented in 2006 by Kim and Winfree[27], who built

a bistable network and later an oscillator[28]. To do so, they combined DNA

and RNA strand displacement reactions with transcription and RNA degra-

dation assisted by two enzymes, RNA polymerase and RNAse. This reaction

framework receives the name of genelet. A similar idea was implemented in a

different manner by Rondelez and co-workers who built a three-node relaxation

oscillator[37] and later a predator-prey oscillator[17] and two bistables[40, 38].

For this they used short DNA strands and three enzymes, a polymerase, an

exonuclease and a nicking enzyme, in a reaction framework called PEN DNA

toolbox (PEN stands for the first letters of the three enzymes involved).

1.2.2.1. Genelets

Genelets are constituted of three types of nucleic acid species (Figure 1.2a).

Nodes, Oi, are RNA strands that are created and degraded, and thus play the

role of TFs. Switches, Sij , are partially dsDNA species that may create nodes

11
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Figure 1.2: Mechanism of the genelet reaction system (a) and network oscil-
lating in a closed reactor (b). Harpoon arrows denote ssDNA, curly arrows
refer to RNA, colors indicate sequence domains, similar colors indicating com-
plementary sequences. RNAP stands for RNA polymerase. Adapted from ref.
28.

by transcription depending on their activity state, and are thus equivalent to

genes. Effectors, Ai and I, are ssDNA species that make the link between nodes

and switches. To construct networks with genelets, one needs to modulate

the activity of switches Sij with input nodes Oi, which is performed by a

combination of strand displacement and transcription reactions.

In its off state, noted SOFF
ij , a switch carries an incomplete RNA polymerase

(RNAP) promoter sequence, and is thus inactive for transcription. SOFF
ij is

activated in the presence of Ai that binds to SOFF
ij and completes the RNAP

promoter sequence, generating species SON
ij . In Figure 1.2, inhibition of SON

21

by O2 is directly made by the hybridization of O2 with strand A2 on SON
21 ,

generating SOFF
21 and making the partial DNA duplex O2:A2. Activation of

SOFF
12 by O1 is made through the intermediary of complex A1:I. O1 reacts

with A1:I and liberates A1 that activates SOFF
12 . In the presence of RNAseH,
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which specifically degrades RNA hybridized to DNA, species O1:I and O2:A2

continuously regenerate I and A2 and destroy the nodes Oi. The production

of RNA by consuming nucleotidetriphosphates, NTPs, and its degradation

through RNAse ensure that the network is kept out of equilibrium for 10-15

hours in a closed reactor. Genelets have been used to construct bistable[27, 51]

and oscillatory networks[28, 16].

1.2.2.2. PEN reactions
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Figure 1.3: Mechanism of the PEN DNA toolbox reaction system (a) and net-
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quences. b) PEN toolbox predator-prey oscillator. Topology of the reaction
network (top) and experimental data (dots) and fits to a 2-variable model
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ref. 17.

PEN reaction networks are assembled with two types of species (Figure 1.3a).

Templates, Tij are ssDNA species that carry the information about the topol-

ogy of the network and their concentrations do not change over time; they
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are equivalent to genes. Nodes (A, B, I) are shorter ssDNA strands that are

processed and created by the templates, they are both produced and degraded

over time; they play the role to TFs. These two species, together with 3 en-

zymes, can perform five types of reactions in the presence of dNTPs: activation,

inhibition, degradation, repression and predation.

Template TAB catalyses the activation reaction A→ A + B, where A and

B are nodes. TAB is typically 20-25 nt-long and it carries two sequence do-

mains, the input domain, of sequence A∗, and the output domain, noted B∗,

respectively complementary to A and B. Nodes are typically 10-15 nt-long.

During activation, A binds to the input site of TAB to form species A:TAB,

which is extended by a DNA polymerase, pol, into dsDNA species T∗AB:TAB

(T∗AB has the sequence A–B). A nicking enzyme, nick, recognizes a 5 or 6 nt-

long sequence on T∗AB:TAB and cuts the upper strand T∗AB between domains

A and B, which dehybridizes into species A, B and TAB. The temperature

is chosen in the range 37–45o such that the complex A:TAB is close to the

melting temperature but T∗AB:TAB is stable. Autocatalysis can be encoded in

an activation template TAA whose input and output domains are identical.

Note that, as it happens with any autocatalytic reaction, PEN autocataly-

sis ‘leaks’, i.e. it starts in the absence of input A, because the polymerase is

able to synthesize A in the absence of template[86]. In standard conditions

this leak happens within 100 min, but it can be simply reduced in the pres-

ence of high concentrations of nicking enzyme to reach 10 h, and even totally

suppressed in the presence of repression (see below), which turns the monos-

table autocatalytic node into a bistable one[38]. A second side-reaction of PEN

autocatalysis is the generation of autocatalytic parasites, which result from un-

templated autocatalysis[86]. This reaction generates mixtures of DNA strands
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spanning ten to several thousands nucleotides that ultimately break the de-

signed dynamics of PEN networks at long times. Depending on the conditions,

parasites emerge after 5 to 50 h. However, these parasites may be suppressed

from functional PEN networks by adopting a three-letter encoding[63].

Inhibition of TAB is performed by strand I, typically 15 nt-long, that par-

tially hybridizes to domains A∗ and B∗ on T, forming I:T. A single-stranded

overhang on the 3’ end of I bound to TAB precludes the polymerase to extend

it, and a careful choice of its sequence, prevents nick from cutting it. Degra-

dation of nodes is performed by a single-stranded DNA exonuclease that does

not degrade templates because they are chemically modified on their 5’ end.

Repression of an autocatalytic node can be implemented by adding a template

RA that takes A as an input and adds a short sequence to its 3’ end, converting

it into a waste product, WA, unable to react with the template TAA. In this

configuration, when RA is a degradable node with palindromic sequence, noted

P, a predation reaction of the type A+P→ 2P can be implement. To construct

a network, activating and inhibiting links are selected such that the sequence of

output B is, respectively, the input or the inhibitor of a downstream template.

The continuous production and degradation of node strands, which consumes

deoxynucleotidetriphosphates, dNTPs, keeps the network out of equilibrium in

a closed reactor.

The PEN toolbox has produced so far oscillators that are significantly more

robust than those reported using genelets (Figures 1.2b and 1.3b). The two-

and three-node genelet oscillators[28, 16] oscillate for 6 periods during 20 h

and for 3 periods during 15h, respectively. In contrast, the two-node predator-

prey[17] and the three-node oligator[37] PEN oscillators oscillate for 26 periods

for 32 h and for 18 periods during 30 h, respectively. Unpublished results with
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Table 1.1: Principal characteristics of the three experimental systems
capable of reaction-diffusion computations with DNA. Programmable and
non-programmable sizes refer to the number of bases of the elements that
can be designed or not in the different implementations (non-programmable
corresponds to enzymes), extracted from [55]. The time-scale and the life-
time correspond to the typical period and duration of the oscillations in
a closed reactor. Types of temporal and spatial patterns experimentally
implemented with each system. Numbers in brackets point to references.

DSD Genelets PEN toolbox

Programmable
size (nt)

1386 469 71

Non-
programmable
size (bp)

0 ∼ 4000 ∼ 7700

Time-scale (h) 20[55] 3[28] 1.5[17]

Life-time (h) 50[55] 20[28] 80[18]

Temporal pat-
tern

Autocatalyst[83],
oscillator[55]

Bistable[27, 51],
oscillator[16, 28]

Autocatalyst[37],
bistable[40, 38],
oscillator[37, 17],
chaos[17],
excitable[38]

Spatial pat-
tern

Edge-detection[8],
linear gradient[80],
band pattern[80]

Traveling
front[53],
pulse[12]

Traveling
front[75, 78], wave[41]

and spiral[41]; go-
fetch front[20]; band
pattern[76, 62]; french
flag pattern[76],
colony formation[20]

the predator-prey oscillator demonstrate more than 100 periods for more than

130 h. The reason of this greater robustness may be attributed to a cleaner

degradation mechanism in the PEN system; while RNAse H only partially

degrades RNA strands, the DNA exonuclease used in PEN reactions transforms

the nodes into single nucleotides, reducing inhibition by degradation products.

Table 1.1 recapitulates the properties of the three analog implementations

reviewed here and summarizes, to the best of our knowledge, the temporal

and spatial patterns obtained with them.

16



1.3. Time-dependent spatial patterns

In this section we review experimental realizations of spatial calculations which

output is a spatial concentration pattern that depends on time. We will first

see how an incoherent feed forward loop network performs edge detection and

how an autocatalytic program generates propagating concentration fronts. We

will then describe go-fetch fronts that are able to interrogate the presence of a

particular DNA sequence at a distance, and traveling waves and spirals based

on DNA oscillators. Finally, we will review methods to control the diffusion

coefficient and the geometry of the environment where the spatial pattern

evolves.

1.3.1. Edge detection

Reaction-diffusion programs can perform some image-processing algorithms

where the input and output are images encoded as concentration patterns. This

was first demonstrated using the Belousov-Zhabotinsky reaction in 1989[31]. In

2013, Chen, Ellington and co-workers engineered DNA reaction networks that

detected the edge of an input image (Figure 1.4)[8]. The computation was

performed by a reaction network where the input I comes in the form of light,

and A, B and C are DNA strands. On the one side, I activates A and triggers

the cascade A → B → C. On the other side, I inhibits B and thus inhibits de

cascade B → C. Because I activates and inhibits C, such network is called an

incoherent feed forward loop (IFFL). In addition, A needs to diffuse faster than

B and C. Let’s now consider that we illuminate the medium with a pattern

with a border between light and no light (1/0, Figure 1.4a). The illuminated

zone will produce A and destroy B, and thus no output C will be observed in
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this zone. The dark zone will not produce A nor B, but A will diffuse across the

border from the illuminated zone and react with B, producing C at the border

between the two zones. The low diffusion of B and C makes the generated

concentration profile of C sharper.

a) b)

3 mm

Figure 1.4: Reaction-diffusion edge-detection pattern engineered with DNA
strand displacement circuits. a) Mechanism of the incoherent feed-forward loop
(IFFL) DNA network. Light is denoted as the input species I and the only fast-
diffusing species is A. A and B are photoresponsive DNA strands that, upon
illumination, break into two strands, inactive B uncapable of producing C in
the illuminated area, and active A that diffuses into the non-illuminated area
and activates B and fluorescent product C, creating the highlighted edge. b)
Fluorescent pattern obtained when flashing light with a triangular shape in a
gel filled with an IFFL DNA network. Reprinted by permission from Springer
Nature, Nature Chemistry, [8], Copyright 2013.

The authors implemented this program by converting the input light pat-

tern into DNA concentration through caged DNA strands containing a photo-

cleavable nitrophenyl amide spacer. The network was based on the catalysed

hairpin assembly (CHA) reaction[72], that is related to DSD but implements

gates using hairpins, instead of duplexes. For instance, A was an unreactive

hairpin that was cleaved by UV light and formed a reactive ssDNA. In con-

trast, B was a reactive hairpin whose toehold was cleaved by light, yielding an

unreactive species. Figure 1.4b shows the experimental output pattern in red.

Note that, because there is no ‘chemical supply’ in this implementation, the
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output pattern is transient and will fade away by diffusion after some time. To

our knowledge, this was the first experimental demonstration of RD patterns

programmed with DNA.

Complementary to edge detection, Abe et al. demonstrated the computa-

tion of a line segment equidistant from two source points[1]. These experiments

were also performed in a gel matrix. A DNA logic AND gate was anchored ev-

erywhere in the gel, and two holes made in the gel were filled with the gate

inputs. Both inputs diffused through the matrix, and activated the AND gate

only at the equidistant region from the source points; thus producing a Voronoi

pattern. More complex patterns were observed when multiple source points

were involved.

1.3.2. Traveling patterns

In the absence of reaction, the diffusion of a chemical species is quite boring:

a concentration profile will fade away until reaching a spatially homogeneous

final state, following Fick’s diffusion law. In contrast, in the presence of an

autocatalytic reaction, which is a transformation where the product cataly-

ses its own production, an inhomogeneous concentration profile will generate

concentration patterns that propagate, often with constant velocity. Traveling

patterns are an efficient way to convey chemical information across distances

where diffusion is too slow.

1.3.2.1. Fronts

The simplest traveling pattern is the front (a structure with a single low-to-high

concentration transition) that just needs a single autocatalytic loop, which we
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can simply write

A
k→ 2A (1.5)

where k is the reaction rate. The first observation of a traveling front of con-

centration was reported by Luther in 1906[35] (translated in [36]), in a redox

reaction. Luther proposed an expression for the velocity v of propagation of

the front that is still valid,

v = a
√
kD, (1.6)

where a is “a constant between 2 and 10”, k the rate constant of the auto-

catalytic reaction and D the diffusion coefficient of the autocatalyst. Luther’s

formula may be obtained by an order of magnitude argument. Let’s consider

an autocatalytic species A initially distributed along a 1-dimensional reactor

with a front concentration profile. Let’s define the characteristic time of the

autocatalytic reaction τchem = 1/k. The distance traveled by diffusion during

this time is ldiff = 2
√
Dτchem. For times shorter that τchem, A at the tip of

the front diffuses and does not react. For times longer than τchem, the autocat-

alytic reaction amplifies A until saturating all the regions where A has diffused,

regenerating an identical front ahead of the initial one. The velocity of such

a front is thus v ∼ ldiff/τchem = 2
√
kD. The grounds for the theory of trav-

eling fronts were independently developed by Fisher[15] and by Kolmogorov,

Petrovsky and Piscounov[29] in 1937. In particular, v = 2
√
kD is exact for

a single-variable RD system following Eq. 1.4 with a reaction function F (u)

that is monostable and verifies F (u)/u < F ′(u)[65]. Such systems are called

Fisher-KPP fronts. The interested reader may refer to refs. 39, 64, 44, 65.

In 2015, Zadorin and collaborators demonstrated that programmable trav-

eling fronts could be obtained with PEN autocatalysers[75]. The autocatalytic
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behavior of node A growing on template TAA is demonstrated in Figure 1.5a,

where the concentration of A:TAA is measured by fluorescence in the presence

of a DNA intercalator and plotted vs. time. At short time (and thus low A) the

system behaves as A = A(0)ekt, where k is the rate constant of autocatalysis.
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Figure 1.5: PEN autocatalysers generate programmable concentration fronts
that travel at constant velocity. a) Temporal dynamics of a simple PEN auto-
catalyser. The log-lin plot shows DNA intercalator fluorescence proportional
to the concentration of A, the initial linear slope indicates exponential growth.
b) Sketch of the experimental setup to observe fronts. c-e) Kymographs of
the fluorescence signal for different autocatalytic networks show a single front
(c) and two counter-propagating fronts that either do not interact (d) or that
strongly inhibit each other (e). Panels b and d reprinted with permission from
[75] Copyright 2015 by the American Physical Society.

In a one-dimensional reactor such as the one depicted in Figure 1.5b —

filled homogeneously with a solution containing an TAA, pol, nick and dNTPs,

and containing an excess of autocatalytic node A on the left-hand-side— a

front propagating with uniform velocity, typically 60 µm min−1, was observed

through time-lapse fluorescence microscopy (Figure 1.5c). To check if the front

followed Luther’s equation 1.6, the velocity of the front was measured for dif-
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ferent reaction rates k and different effective diffusion coefficients D. The rates

were controlled by changing the concentration of the template T0 (in a cer-

tain concentration range, k ∼ T0 in PEN reactions), while D was reduced

by attaching a hydrodynamic drag to the template strand (see below). In all

these cases, the measured velocities followed Luther’s scaling v = a
√
kD with

a = 2.6, both for k and D.

The programmability of this approach was illustrated by designing different

networks containing autocatalysis that resulted in controlled spatio-temporal

dynamics. Two autocatalysts with orthogonal sequences generated fronts that

cross-propagated with little interaction (Figure 1.5d). In contrast, two auto-

catalysts that cross-inhibited themselves created repelling cross-propagating

fronts (Figure 1.5e).

Note that traveling fronts have not yet been demonstrated with DSD net-

works even if autocatalytic networks exist[83, 72]. A possible reason is that it

is more difficult to control the leak of DSD autocatalysts compared to PEN

ones. Indeed if the autocatalytic reaction leaks, the area ahead of the front will

get triggered before the front arrives and homogeneous amplification will be

observed. However, considering that CHA autocatalysts may remain untrig-

gered for 3 h[72] and recent DSD autocatalysts are stable for tens of hours[55],

DNA-only traveling fronts may soon be observed. Finally, autocatalytic fronts

have also been observed in genelet networks[53], although it remains to be

tested that they verify Luther’s formula.

1.3.2.2. Go-fetch fronts

The above-mentioned spatiotemporal reaction networks operate with species

that freely diffuse in solution. It may also be possible to localize the reaction by
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grafting the catalysts on different positions of a substrate. For instance, Gines

et al. used particle-bound DNA strands to spatialize the chemical reactions

in a fluidic chamber[20]. Here, the DNA templates were grafted via a biotin-

streptavidin linkage onto micrometric hydrogel particles, which results in the

localized production of output strands on the particles, while the degradation

happens in the whole reservoir.

Particles bearing a PEN autocatalyser generated a traveling front of con-

stant velocity. In addition, the authors reported a ‘go-fetch’ chemical system

that computes the distance between two specific DNA sequences through two

orthogonal traveling fronts (Figure 1.6a). This experimental implementation

uses 4 populations of DNA-programmed particles. The sender (SA) initiates

the production of strand A on the left side of the channel using a —leaky—

monostable autocatalytic loop. A first relay population (RA), grafted with

a bistable switch that amplifies A, transmits the signal across the chamber.

When the signal A comes across the receiver particle (CAB), placed on the

right side of the channel, it activates the production of strand B. This reaction

is catalysed by an activation template TAB that converts A into B. B finally

propagates through the second relay population (RB) until reaching SA, which

in turn exhibits a fluorescent signal. This system is programmed to compute

the distance between SA and CAB, which correlates with the time it takes to

the SA particles to fluoresce upon receiving the B strand. Interestingly, RD

enables long-distance communication (∼ 1cm), which is at least 3 orders of

magnitude larger than the particle size (∼ 10 µm). A limitation of this proto-

col is that the particles are randomly distributed in a microchamber, with a

poor control on the localization of the reactants. It would be interesting in the

future to implement the precise disposition of particles programmed with dif-
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ferent sensing networks and build on these organized arrays to create tissue-like

systems.
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Figure 1.6: ‘Go-fetch’ fronts (a) and waves and spirals with PEN reactions
(b-d). a) A ‘go-fetch’ program is implemented when PEN template strands
are attached to microparticles distributed in 4 populations: SA = sender par-
ticle, RA and RB = relay particles, CAB = converter particles. When the
signal A transported by RA reaches CAB, it is converted to B that travels
back transported by RB to the initial position (top). The bottom kymograph
represents the go front in red and the reply front in green. b) Topology of
the PEN predator-prey (PP) network. c) Kymograph of prey fluorescence in
a 1-dimensional reactor. Oblique white lines correspond to traveling waves. d)
Time-lapse fluorescent images of a prey (N) spiral turning around the black dot
(false color). Panel (a) reprinted by permission from Springer Nature, Nature
Nanotechnology, [20], Copyright 2017. Panels (c,d) adapted with permission
from [41]. Copyright (2013) American Chemical Society.

1.3.2.3. Waves and spirals

An autocatalytic loop coupled to a delayed inhibition makes an oscillator that,

in the presence of diffusion, creates chemical waves and spirals that travel at

constant velocity[13]. Such patterns have been observed in the BZ oscillator in

the early 70s [77, 68] but have only recently been observed in DNA systems
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with the PEN predator-prey (PP) oscillator[41].

The mechanism of the PP oscillator is simple and produces robust oscilla-

tions[17] (Figure 1.3b). Species N, the prey, grows autocatalytically on template

TNN . The trick is that species P, the predator, is both palindromic, i.e. it is

self-complementary, and contains the sequence of N (Figure 1.3a). When P and

N bind together, the polymerase extends N, yielding two P, and thus P grows

autocatalytically consuming the prey (N + P→ 2P). In addition N and P are

both degraded, mimicking the natural decay of preys and predators.

When a spatial reactor was filled with the PP mixture and the initial con-

centrations of N and P were homogeneous, traveling concentration waves of

prey, followed by predator waves were observed[41] (Figure 1.6c). The wave

velocities were in the range 80 − 400 µm min−1 and were in fair agreement

with a 2-variable model related with Eq. 1.6. When the initial condition of

prey was inhomogeneous, spirals were observed (Figure 1.6d). This was the

first report of traveling waves in a chemical reaction network built from the

bottom up. It was also the first observation of predator-prey waves in the

laboratory.

1.3.3. Controlling spatio-temporal patterns

We have seen in section 1.1.4 that the output of a reaction-diffusion computa-

tion is given by the solution to the system of partial differential equations in

Eq. 1.4. Such solution depends on four important features:

1. the topology of the reaction network, i.e. the function F in Eq. 1.4,

2. the reaction rates,

3. the diffusion coefficients,
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4. the initial and boundary conditions.

We have just discussed some network topologies that provide different out-

puts: an incoherent feed forward loop (IFFL) that makes an edge detector or

an autocatalytic node that generates a traveling front, for instance. We have

also seen that reaction rates can be changed in DSD reactions by changing

the length of the toehold and in PEN reactions by tuning the concentration

of the template strands. Here we further discuss strategies to control diffusion

coefficients and initial and boundary conditions.

1.3.3.1. Controlling diffusion coefficients

The first strategy for reducing D is to increase the viscosity of the solution by

adding a viscous solute such as glycerol or polyethyleneglycol. The drawback

is that this method is not specific and all DNA species will be slowed down

by a similar factor. The second strategy is to perform the reaction inside a

sieving matrix, like a hydrogel, such that large DNA species will be trapped

and small ones will diffuse freely. This method was successfully used in the

edge detection network discussed above[8]. In this case the fast-diffusing strand

A was shorter than the other reagents (8 vs. 64 nt. long) and reactions were

performed in 20% crosslinked polyacrylamide gel, resulting in a striking 10-fold

difference in diffusion coefficient. The last strategy is to specifically change D

for a given species, which can be performed by attaching a DNA strand to a

hydrodynamic drag. This method was employed to modify the diffusion of PEN

autocatalysers, the drag being a triton micelle of ∼ 5 nm radius to which a

cholesteryl-modified template TAA was attached (Figure 1.7a). Autocatalyser

A needed to bind to TAA to grow and, depending on the molar fraction of

cholesteryl template, D was reduced up to 2.7-fold[75]. Importantly, not only
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the effective diffusion of a passive solution was controlled but also the one of A

involved in a reaction-diffusion front, which was demonstrated by measuring

the velocity of the front.

An improved hydrodynamic drag was demonstrated by Rodjanapanyakul

et al. by using a linear copolymer of polyacrylamide and strand T [43], reaching

a reduction of D of 5-fold in DSD reactions, an approach also modeled by Allen

et al.[3]. With this stratefy the effective diffusion of freely-diffusing strand A,

complementary to T, could be modulated by changing the concentration of

a competitor strand C that also bound to T (Figure 1.7a,b)[43]. A similar

strategy was used to control the electrophoretic mobility of DNA involved in

DSD programs[2]. Recently, the copolymerization of DNA with polyacrylamide

was used to stablize PEN static RD patterns for more than 60 hours[62].

1.3.3.2. Initial and boundary conditions

In the aforementioned examples, the initial condition, or input signal, was in-

troduced either by adding a droplet of solution containing the input species,

which results in poor spatial resolution, or by using a light pattern, with high

spatial resolution. Other ways of controlling the initial condition include mi-

crofluidic injection using PDMS monolithic pumps[78] and electric switches[32].

In this last example, Kurylo et al. grafted an oligonucleotide on gold electrodes

embedded in microfluidic channels. They took advantage of the electrochemical

properties of the thiol-gold bond to release specific DNA localized in space and

time through a voltage pulse. In particular, the DNA release was able to trig-

ger PEN autocatalytic fronts. Without involving delicate liquid handling, this

method offers the possibility to control and interact in real time with running

DNA-based molecular systems.
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Figure 1.7: Strategies to control the diffusion and geometry of RD patterns.
a) Two methods to tune the diffusion of strand A proposed in [75] (top) and
[43] (bottom). b) Diffusion coefficient of species A measured for the competitor
strategy in panel (a), bottom, for different competitor concentrations. The col-
ors refer to different lengths of the toehold where A binds on T:C. Reprinted
figure with permission from [43] Copyright 2018 by the American Physical
Society. c) An incoherent feed forward loop genelet network (top) processes
information from DFHBI green fluorophore, D, present in the red droplet (bot-
tom) across a square array of droplets bearing protein nanopores and generates
a diffusion pulse (from the red droplet on the top left corner to the bottom
right corner droplet). Reprinted by permission from Springer Nature, Nature
Chemistry, [12], Copyright 2019.

The simplest way to control boundary conditions in a reaction-diffusion

process is to change the geometry of the reactor where the process takes place.

This can be performed with standard microfabrication methods, although one

has to take care to choose a material that limits evaporation, which is par-

ticularly important for PEN reactions that occur in the temperature range

37-45oC. To this end, NOA microfluidic devices[4] were used to investigate the

effect of curvature in the propagation dynamics of PEN autocatalysers and to

demonstrate that DNA-based pulses can compute the optimal path within a

maze[78].
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An interesting alternative for controlling the geometry of RD patterns was

proposed by Dupin and Simmel[12] (Figure 1.7d). They distributed a genelet

reaction network inside a 2-dimensional array of microdroplets that were in-

terconnected by protein nanopores. These nanopores allowed the droplets to

exchange DFHBI, a small molecule that fluoresces when bound to the spinach

RNA aptamer, but hindered the DNA-program from leaving the DNA-imper-

meable droplets. By constructing an IFFL reaction network that takes DFHBI

as an input and produces the spinach aptamer as output, a transient pulse of

fluorescence across an array of droplets was observed in the presence of a seed

droplet with high concentration of DFHBI; which was reported both in 1 and

2 dimensions. With this clever idea, the authors obtained compartments that

displayed a certain degree of autonomy, and at the same time the capability to

exchange and process specific chemical information, mimicking cell-cell com-

munication in living tissues. For the moment, the messaging molecule, DFHBI,

cannot be amplified autocatalytically, and thus the propagation velocity v of

the fluorescent pulse was not constant, as in Luther’s formula, but is rather

expected to follow a diffusive scaling v ∼ 1/
√
t. We thus anticipate that devel-

oping strategies to transfer DNA-rich information across membrane droplets

will be an important question in the near future.

1.4. Steady-state spatial patterns

In the above we have discussed RD computations which output is time-dependent.

However, in many instances a time-independent output is desirable. This is

very challenging because diffusion will continuously dilute the output, so that

reaction needs to balance diffusion to create a steady-state pattern. Steady-
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state RD patterns are observed during early embryo development, where a

robust output is needed. In addition, they can be useful to create synthetic

morphogenetic materials with a chemically-defined final shape.

1.4.1. Colony formation

Inter-cellular communication is a critical parameter to precisely orchestrate

tissue development and differentiation. In an attempt to emulate very prim-

itively these communication channels between different objects, Gines et al.

used DNA-programmed particles (cf. section 1.3.2.2) that exhibit synergism

and cooperativity (Figure 1.8). The system uses two types of particles, PAB

and PBA, that produce the output strand B from A, and conversely, using

PEN reactions. The particules are dispersed in a solution containing the PEN

exonuclease that degrades A and B, such that, when the particles are far from

each other, homogeneous degradation is stronger than local particle produc-

tion and no strand production is detected. However, when both particle types

are present in close proximity, their cross-activation outcompetes degradation

and both A and B are produced autocatalytically. The system evolves toward

a steady-state where sharp concentration profiles are drawn around clusters

of synergic particles, creating colony-like patterns in a large population of

thousands of particles, which last for over dozens of hours. Interestingly, these

colonies became more active as their density increased, suggesting long-distance

interactions between the colonies that reinforce each other, in addition to the

local synergic particle activation mechanism. Particle-based systems coupled

to RD thus enable to easily control the topography of the reactions to start

building large networks that display steady-state patterns. Although the par-
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ticles used in this study were too big to remain suspended, Brownian particles

would enable the exploration of 3D pattern formation.

Figure 1.8: Steady-state ‘colony’ formation in a population of synergic parti-
cles functionalized with DNA templates. a) Red particles PBA produce strand
A in the presence of B and green particles PAB produce B in the presence of
A, through PEN reactions. b) When a red particle (circled in red) is present
in close proximity to green particles, the emergent autocatalytic network out-
competes homogeneous degradation and forms a colony of high concentration
of A and B (high fluorescence) at steady state. c) Large scale view of a small
population of red particles dispersed among a large population of green parti-
cles. Colonies appear as clusters of green dots. Reprinted by permission from
Springer Nature, Nature Nanotechnology, [20], Copyright 2017.

1.4.2. Patterns with positional information

The development of a living embryo is a fascinating process of spatial com-

putation. Its early phase is called pattern formation and it is characterized

by the generation of spatially-defined chemical concentration patterns. The

principles underlying embryo pattern formation are still under debate[24], and

they are largely dependent on the organism, the region and the developmen-

tal stage[69]. Nevertheless, two major conceptual frameworks have dominated

our understanding of this process for the last 50 years[21]: Turing instability

and positional information. The first one, developed by Turing in 1952[61, 60],
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demonstrated that reaction-diffusion processes can form patterns. The second,

introduced by Wolpert in 1969[70], proposed a simple way to explain how cells

may compute their position within the embryo in the presence of a concen-

tration gradient. The principal difference between the two is that the Turing

instability is a symmetry-breaking mechanism that generates a heterogeneous

concentration state from a homogeneous one, while positional information is

a sharpening mechanism that amplifies a concentration heterogeneity from an

initial state where the symmetry has already been broken. While patterns of po-

sitional information have recently been engineered with DNA networks[76, 80],

DNA Turing patterns have yet to be demonstrated[79].
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Figure 1.9: Illustration of Wolpert’s concept of positional information as a
solution of the ‘French flag problem’ in the presence of a shallow gradient of
morphogen concentration in a 1-dimensional embryo.

The idea of positional information was introduced by Wolpert to explain

how an embryo with a single break of symmetry could be further split into

several distinct regions[70]. He coined the term ‘French flag problem’ to illus-

trate the challenge —fundamental because it is pervasive in the development

of virtually all complex organisms— of creating three distinct regions of space

with sharp borders from an amorphous mass and a shallow concentration gra-
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dient. The idea of Wolpert is simple. Let’s consider a model embryo formed

by a 1-dimensional array of cells along the x axis submitted to an initial,

monotonously decreasing, gradient of morphogen M(x) (Figure 1.9). We sup-

pose, for instance, that the cells on the left will become the head, those on

the central part the thorax and those on the right the abdomen. In this situa-

tion, to know its position, each cell ‘just’ needs to read out the concentration

of the morphogen along the gradient. Cells reading a concentration above a

certain threshold M(x) > M1 will express the blue protein, those below a sec-

ond threshold M(x) < M2 will express the red protein and those in between,

the white protein (Figure 1.9). We say that the gradient provides positional

information to the cells. Patterns generated by positional information were

first observed in the Drosophila fly embryo [11, 10, 25]. They were engineered

for the first time in vitro in a transcription-translation system by Isalan et

al.[23]. In the following we will discuss recent DSD and PEN implementations

of positional information patterns.

Zenk, Schulman and co-workers experimentally engineered static positional

information patterns using DSD reactions[80]. In particular, they obtained

linear and hill-shaped concentration patterns at steady state in an open gel

reactor (Figure 1.10). To do so, a reaction network was designed to maintain

the concentration of output strand O at steady state by a combination of rapid

creation and slow degradation, as follows:

S + I
k1→ O + W1 (1.7)

Rec + O
k2→ W2 + W3 (1.8)

where S and O are ssDNA and I and Rec are DSD gates with fast and slow
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toeholds, respectively (i.e. k1 � k2). The reaction-diffusion pattern evolved in

an open reactor composed of an agarose gel pad, about 1-cm long, connected

on each side to a liquid reservoir in a linear geometry: reservoir/gel/reservoir.

When the initial concentrations of both O and Rec where homogeneous in the

three zones of the reactor but I and S were only present respectively in the

left and right reservoirs, stable linear gradients of I and S appeared in the

agarose pad, together with a stable hill-shaped profile of O. These patterns

took about 30 h to form and lasted for about 70 h. Importantly, they could

also be observed in 2D. Note that, due to the lack of a chemical sink, the

liquid reservoirs needed to be replenished every 24 h to keep the system out of

equilibrium. Finally, the authors demonstrated the programmability of their

approach by engineering a second network, orthogonal with the initial one,

that generated a second hill-shaped pattern. A related strategy was recently

demonstrated by Chen and Seelig, obtaining more complex band patterns[7].

However, in this last case the patterns were generated in a closed reactor and

thus they were not static.

A complementary approach to engineer static positional information pat-

terns was demonstrated by Zadorin et al. using PEN reactions[76]. In particu-

lar, they obtained immobile RD fronts that could be assembled into a French

flag pattern that produced three bands with distinct compositions. Their im-

plementation is based on spatial bistability[46]: a bistable reaction network

in the presence of a gradient of a species acting as a bifurcation parameter

generates an immobile RD front.

PEN reactions may be assembled in a bistable network either by using two

autocatalysts that cross-inhibit each other[40] (see Figures 1.3a and 1.5e) or one

autocatalyst that is repressed by a saturable pathway[38]. In the last case the
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Figure 1.10: Static pattern of positional information engineered with DNA
strand displacement circuits. a) Reaction mechanism of the DSD network used
to maintain a steady-state concentration of strand O. b) Open gel reactor with
liquid reservoirs on each side. The pattern is observed inside the gel pad. c)
Dynamics of the hill-shaped pattern of species O obtained inside the gel reactor
when the left reservoir contained species I, the right reservoir contained species
S and Rec was distributed homogeneously. Adapted with permission from ref.
80. Published by The Royal Society of Chemistry.

network is composed of the autocatalytic production of A by its template TAA

(as in Fig. 1.5a), the degradation of A by the exonuclease and its repression

by RA that converts it into waste (see Figures 1.3a and 1.11a). This system is

bistable because at low A, autocatalysis is slower than repression but at high

A (typically A > RA), the repression reaction saturates and shuts off. As a

result the concentration of RA acts as a bifurcation parameter.

Because PEN networks can be kept out of equilibrium for tens of hours in

a closed reactor, implementing positional information is relatively straightfor-

ward: one just needs to fill a channel with a bistable network and generate a

gradient of RA along the channel (Figure 1.11b). The authors used a 5 cm-long

glass capillary where a gradient of morphogen RA was generated using Tay-

lor dispersion[58, 62]. This way, the gradient was set up within minutes but

remained stable for tens of hours, because diffusion over centimeter scales is

very slow. With such an experimental setting, several multistable PEN net-
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Figure 1.11: Static patterns of positional information can be engineered with
PEN reactors and coupled to a simple material. a) Tetrastable network with
autocatalytic nodes A, B and repressor RA-RB used to create a three band
French flag pattern. Enclosed in dashed lines the bistable network that creates
a two-band pattern. b) Photograph of the closed reactor where the patterns
where obtained: a glass channel with a stable gradient of RA-RB (in blue). c)
A tetrastable network in panel a forms a French flag pattern with three zones
of different composition in the presence of a gradient of the corresponding
repressor. The top image represents the stable underlying gradient concentra-
tion profile (in blue) and a kymograph of DNA fluorescence inside the channel.
When the channel is initially filled with a homogeneous dispersion of DNA-
decorated colloids, the reaction-network can be designed to specifically control
the aggregation of the beads (bottom images). Reprinted by permission from
Springer Nature, Nature Chemistry, [76], Copyright 2017.

works were tested with different repressor gradients, and a variety of steady-

state band patterns were observed: an immobile front, two immobile fronts

that repel each other and two immobile fronts that form a French flag pat-

tern (Figure 1.11c). All the patterns self-organized in the same way: first a

reaction-only phase generated a mobile front on the side of the channel where

activation was stronger than repression, then the front(s) traveled through a

reaction-diffusion mechanism towards the repression side, slowing down until a
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RD steady-state was obtained. In addition, the borders of the bands were one

order of magnitude sharper than the initial gradients (typically 1 mm com-

pared with 1 cm). However, PEN autocatalytic parasites (see section 1.2.2.2)

broke down the steady-state pattern after 10 h. This problem has recently

been solved by constructing parasite-robust PEN networks[63] that are able to

generate steady-state patterns that last for several days[62].

Pattern formation in the embryo is used for spatially-controlling subsequent

developmental steps, such as cell differentiation. If we consider the embryo as

a complex material and development as a self-fabrication process, the pattern

would be the self-fabricated blueprint. Zadorin et al. emulated this idea in a

very simple artificial system by coupling their PEN French flag pattern with

the conditional aggregation of DNA-decorated colloids[76]. As a result, the

DNA reaction-diffusion patterns just evoked differentiated an initially homo-

geneous material —a suspension of 1 µm colloids— into different zones with

different microscopic structures (Figure 1.11c). Recently, Urtel et al. were able

to maintain these band patterns at steady-state inside an autonomous hy-

drogel material[62], opening the way to building self-patterning autonomous

materials.

1.5. Conclusion and perspectives

We have seen in this chapter that DNA circuits are well-suited to perform ba-

sic spatial computations. We have focused on computations that use reaction-

diffusion primitives, which are the most natural operations that molecules per-

form in solution and, in particular, in illustrating their experimental implemen-

tations. The majority of DNA spatial computations involve analog circuits and
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we have briefly discussed three of them: DNA strand displacement networks,

genelets and PEN DNA reactions, all capable of generating oscillations in a

closed reactor. DSD circuits have the advantage of being fully programmable

because there are tools to predict the thermodynamics and kinetics of DNA

hybridization reactions[85, 74, 34]. However, engineering ‘chemical supplies’

that maintain DSD networks out of equilibrium in a closed reactor is difficult.

In this regard, DNA/enzyme networks, such as genelets and PEN reactions,

are complementary to DSD: one needs to integrate the non-programmability of

enzymes in the design process but, in exchange, maintaining the system out of

equilibrium in a closed reactor is greatly facilitated. Although both DSD and

DNA/enzyme approaches are both expected to be biocompatible (they run in

aqueous buffer at pH 7 and 37 oC), the absence of enzymes in DSD networks

may make them more widely compatible with biological systems containing

biomolecules or living cells.

Autocatalytic nodes are a basic element of RD pattern formation because

the exponential growth from autocatalysis balances the dilution arising from

diffusion, creating traveling patterns. Autocatalysis can be easily implemented

in PEN circuits and this has been used to demonstrate a series of non-trivial

traveling patterns that are constructed around the principle of a traveling

front[41, 75, 78, 76, 62]. Autocatalysis has been demonstrated in DSD cir-

cuits, but not for generating patterns, probably due to undesired leak reac-

tions. However, recent strategies have succeeded in dramatically reducing leak

in DSD reactions[55, 66], and thus autocatalytic DSD patterns may soon be

observed. Instead, DSD patterns have explored other important network ele-

ments, such as incoherent feed forward loops[8] and steady-state generators[80].

In addition, the design of more complex DSD patterns[49] and of RD cellular
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automata[48] has been illustrated through simulations, and we may soon see

these realizations in experiments.

Now that the engineering of RD patterns with DNA programs has been

thoroughly demonstrated, we see three interesting directions for future work.

Firstly, to push forward the complexity of the engineered patterns. In this re-

gard, an important objective is the engineering of Turing patterns, for which

diffusion-control strategies[75, 43] evoked above are essential, and multi-phasic

approaches[12] may also be advantageous. Secondly, the investigation of the

fundamental mechanisms of molecular self-organization with DNA patterning

systems. In particular, engineered patterns of positional information could help

to ask questions about how developing embryos form patterns[21]. To succeed,

this challenging approach will need a strong collaboration between DNA molec-

ular programmers and developmental biologists. Finally, coupled to responsive

DNA-materials[45, 16, 26, 5], DNA patterning systems could create a new gen-

eration of life-like materials capable of self-construction, communication and

healing.
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