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Abstract

A tangent linear approximation is developed to estimate the sensitivity of the ignition delay time with
respect to individual rate parameters in a detailed chemical mechanism. Attention is focused on a gas
mixture reacting under adiabatic, constant-volume conditions. The uncertainty in the rates of elementary
reactions is described in terms of uncertainty factors, and are parametrized using independent canonical
random variables. The approach is based on integrating the linearized system of equations governing the
evolution of the partial derivatives of the state vector with respect to individual random variables, and a
linearized approximation is developed to relate the ignition delay sensitivity to the scaled partial derivatives
of temperature. The efficiency of the approach is demonstrated through applications to chemical mechanisms
of different sizes. In particular, the computations indicate that for detailed reaction mechanisms the TLA
leads to robust local sensitivity predictions at a computational cost that is order-of-magnitude smaller than
that incurred by finite-difference approaches based on one-at-a-time rate perturbations.
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1. Introduction

The ignition delay time of a mixture reacting adiabatically at constant volume is an important quantity
of interest (QoI) used to characterize the reactivity of fuels and fuel blends, and to assess the suitability of
comprehensive reaction models (e.g. [1–7]). A key aspect of such analyses concerns the dependencies of the
ignition delay time on uncertainties in rate parameters. These dependencies have received much interest
in the literature, and have motivated the development of uncertainty quantification (UQ) techniques and
their application to conduct global sensitivity analyses, and parameter calibration, reduction strategies, and
experimental design (e.g. [7–17]).

Local sensitivity analyses have been effectively used to analyze the dependence of the ignition delay
time on rate parameters [18–22], traditionally as a means to rank important reactions. The availability
of local sensitivity estimates for a sufficiently large sample of the uncertain reaction rates can also be
exploited to identify active subspaces [23–26], and subsequently construct suitable reduced dimensionality
surrogates. As active subspace methods require the estimation of local sensitivities for each realization of
uncertain reaction rates, application of conventional finite-difference methodologies (e.g. [27–33]) would be
prohibitively expensive. This is the case because in the finite-difference approach the reaction rates are
individually perturbed, and the response of the system is computed by applying the solver (e.g. [34–36])
for each perturbation. For a random input parameter vector of dimension d, this approach requires d
independent applications of the solver. When uncertainty in all elementary reactions are considered, the
dimensionality d typically coincides with the number of reactions, Nr. Consequently, one must resort to
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alternative means of estimating local sensitivities, particularly defeating the O(d) cost of the brute force
approach.

Several approaches have been suggested in the literature that offer to achieve such objective. In particular,
tangent linear approximation (TLA) methodologies have been proposed (e.g. [18, 37]) that rely on integrating
the evolution equations of the perturbed system. These methods yield the linearized time response of the
state vector to individual perturbations of the parameters. The TLA approach has been combined in [38]
with a logarithmic differentiation scheme, namely to relate the perturbed ignition delay time to the state
vector perturbation, and consequently estimate the local sensitivity of the ignition delay time to individual
perturbations of rate parameters. Recently, alternatives to the direct differentiation approach have also
been proposed. Specifically, an adjoint based methodology was proposed in [39] to compute the evolution of
the perturbed system, and was reported to yield dramatic improvement over the finite-difference approach.
An optimization-based approach was proposed in [40] to estimate the local sensitivity of the ignition delay
time to perturbations in reaction parameters. The approach is based on recasting the system as a boundary
value problem (BVP) whose solution yields the ignition delay time perturbations. Experiences reported
in [40] indicate that the BVP approach can result in order-of-magnitude reduction in computational time
compared to the brute force approach.

In this work, we explore the application of a TLA approach to estimate the local sensitivity of the
ignition delay time with respect to reaction parameters, at a dramatically smaller cost than that associated
with the finite-difference technique as d becomes large. Here, we restrict our attention to reaction rate
parameters, and leave to follow on work the task of addressing sensitivities to variations in thermodynamic
properties. Following a methodology to that proposed in [18, 37], we derive a dynamical system of equations
that govern the evolution of infinitesimal perturbations of the state vector. We rely on a framework in which
the uncertain rates are described by uncertainty factors, and parametrized using independent uniformly-
distributed canonical random variables. We focus on the evolution of perturbations in the vector of canonical
random variables, starting from a vanishing initial condition. In the resulting linearized system, the evolution
of the perturbations takes the form of a path integral involving the Jacobian of the unperturbed solution,
and the local derivatives of the unperturbed source term. Because the ignition delay is an implicit function
of the solution, one needs to relate local sensitivities of the ignition delay time to the partial derivatives
of the state vector, which can be obtained by integrating the linearized system. With the ignition delay
time defined as the time needed for the temperature of the mixture to increase by a user-defined amount, a
linearized approximation is introduced, providing an explicit relationship between the desired ignition delay
time sensitivities and scaled temperature perturbations at the unperturbed ignition delay time. Briefly, our
objectives are to (i) formulate a stochastic tangent linear approximation of local sensitivities of the solution
of a gas mixture reacting adiabatically at constant volume, and (ii) explore whether the state sensitivities
obtained by integrating the linearized system can be suitably exploited to estimate local sensitivities of the
ignition delay time.

The paper is organized as follows. Key features of the proposed approach are introduced in section 2.
We start by summarizing the governing equations for the non-linear system (section 2.1) and then highlight
the setup used to describe and parametrize the uncertain rates (section 2.2). In section 2.3, we state the
equations of motion of the linearized system that govern the evolution of the partial derivatives of the
state vector with respect to individual components of the uncertainty germ. A linearized approximation is
then introduced in section 2.4 to relate local sensitivities of the ignition delay time to partial derivatives of
temperature. In section 2.5 an analytical identity is derived that is later exploited to test or refine computed
results. In section 3, we describe our approach used to integrate the TLA. Results of numerical experiments
and performance assessments are reported in section 4. Major conclusions are highlighted in section 5.

2. Formulation

2.1. Governing Equations
In this section, we start by summarizing the governing equation for homogeneous combustion of a reacting

gas mixture under adiabatic, constant-volume conditions [36, 41]. We let Yi, i = 1, . . . , Ns denote the species
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mass fractions, Ns denote the number of reacting species, T denote the temperature, whereas t is time. For a
detailed chemical mechanism involving Nr elementary reactions, the evolution of the species mass fractions
and temperature is governed by the coupled system:

dYi
dt

= 1
ρ

Nr∑
j=1

ω̇ji , i = 1, . . . , Ns (1)

dT

dt
= − γ

ρcp

Ns∑
i=1

hi

 Nr∑
j=1

ω̇ji

+ (γ − 1)TW
ρ

Ns∑
i=1

1
Wi

 Nr∑
j=1

ω̇ji

 (2)

where ρ denotes the mixture density, cp is the heat capacity at constant pressure, cv is the heat capacity at
constant volume, γ ≡ cp/cv is the specific heat ratio, ω̇ji is rate of production of species i due to reaction j,
hi is the enthalpy of species i, Wi is the molecular weight of species i, whereas

W ≡

(
Ns∑
i=1

Yi
Wi

)−1

.

A perfect gas mixture assumption is used [36], whereas standard-state thermodynamic properties are com-
puted using NASA polynomials [42].

2.2. Setup
Our main objective is to estimate the sensitivity of the ignition delay time, τ , with respect to infinitesimal

perturbations in the stochastic germ parametrizing the uncertainty in individual reaction rates. Specifically,
the uncertainty in the elementary reaction rates is assumed to be specified using uncertainty factors, UFj ,
j = 1, . . . , Nr. The corresponding reaction rate uncertainties are parametrized according to [43, 44] :

Aj(ξj) = UFξj

j Āj (3)

where Aj is the pre-exponent of reaction j, the ξj are canonical random variables that are independent
and uniformly distributed over [−1, 1], and Āj is the “nominal” pre-exponential of reaction j, i.e. Āj =
Aj(ξj = 0). Further, we ignore uncertainties in thermodynamic parameters, and assume that variations of
the forward and reverse rates of the j-th reaction are perfectly correlated.

Note that from (3) it immediately follows that

∂Aj
∂ξj

= ln (UFj)Aj , (4)

and in light of the assumptions stated above this leads to

∂ω̇ji
∂ξj

= ln (UFj) ω̇ji (ξ), (5)

where ω̇ji (ξ) is the chemical production term obtained with the local pre-exponentials Aj(ξj) from Eq. (3).
In the present setup, our goal is to develop an efficient methodology that enables us to estimate the local

sensitivity of the ignition delay time, τ , with respect to infinitesimal perturbations of individual components
of the germ, ξ, i.e., to determine the partial derivatives ∂τ/∂ξj , and/or the local sensitivity indices:

Sτj ≡ Aj
1
∂Aj
∂ξj

1
τ

∂τ

∂ξj
. (6)

Substituting (4) into (6), we obtain
Sτj = ηj

1
τ

∂τ

∂ξj
, (7)
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where
ηj ≡

1
ln(UFj)

, j = 1, . . . , Nr. (8)

Remark 1. Note that, for the same infinitesimal change in the germ, a larger uncertainty factor will result
in a larger perturbation of the pre-exponential parameter. This can be readily appreciated from (4). Con-
sequently, the partial derivatives ∂τ/∂ξj will also depend on the uncertainty factors UFj . In the definition
of the local sensitivity indices (6), the effects of varying uncertainty factors are appropriately normalized.
This is reflected in the fact that (7) holds regardless of the selected values of the uncertainty factors.
Remark 2. The expression of the partial derivative of the chemical source term in (5) implies that Rj , the
rate of progress of reaction j, obeys Rj(ξj) = UFξj

j R0
j , where R0

j is the rate of progress for the nominal
reaction parameters. In the present analysis, we assume that this interpretation of the uncertainty factors
holds for all elementary reactions involved in the detailed mechanism.

Note that for reversible elementary reactions in which the reverse rate is specified using the reaction’s
equilibrium constant, the expression of the partial derivative of the chemical source term in (5) follows imme-
diately from (3) and (4). This is also the case for irreversible reactions. For other reaction types, additional
care must be exercised to ensure that (5) is indeed satisfied. Specifically, when Arrhenius parameters are
specified for the reverse reaction rate, we assume that both the forward and backward pre-exponential pa-
rameters are perturbed by the germ in the same fashion. For pressure-dependent reactions, we also assume
that the germ consistently perturbs all pre-exponential parameters. This assumption applies to pressure
fall-off reactions, and pressure-dependent reactions using the PLOG formulation, as in both types multiple
Arrhenius branches may be involved.

2.3. Tangent linear approximation of the solution
To estimate the sensitivity of the ignition delay time with respect to an infinitesimal germ perturbation,

we rely on the linearized governing equation. Note that the linearization needs to be performed at individual
realizations of the germ, ξ, but we shall drop the explicit dependence of ξ to simplify the notation.

Let Z denote the state vector, concatenating the species mass fractions and temperature:

Zi =
{
Yi i = 1, . . . , Ns
T i = Ns+1

(9)

and let Z(t) denote the solution obtained at a given realization of the germ. Following a similar methodology
as in [37], we estimate the local sensitivity of the state around Z(t), with respect to variations in ξj ,
j = 1, . . . , Nr, by integrating the linearized system:

dZ,j
dt

= J(t)Z,j + Sj j = 1, . . . , Nr (10)

with initial condition Z,j(0) = 0. Here Z,j(t) ≡ ∂Z/∂ξj denotes the partial derivative of the state at Z(t),
J(t) is the Jacobian of the right-hand side of (1) and (2) at Z(t), Sj is the vector whose components, Sijare
given by:

Sij(t) =


1
ρ
qji (t) i = 1, . . . , Ns

− γ

ρcp

Ns∑
i=1

hiq
j
i (t) + (γ − 1)TW

ρ

Ns∑
i=1

1
Wi

qji (t) i = Ns + 1
(11)

whereas qji (t) is the UF-scaled reaction source term at the unperturbed solution,

qji (t) ≡ ln (UFj) ω̇ji (Z(t)), 1 ≤ i ≤ Ns + 1, 1 ≤ j ≤ Nr. (12)

Remark 3. It is advantageous to exploit the linearity of the system, namely by defining the scaled sensitivities

Ẑ,j ≡
Z,j

ln (UFj)
, j = 1, . . . , Nr. (13)
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This scaling enables us to define the canonical system,

dẐ,j
dt

= J(t)Ẑ,j + Ŝj , Ẑ,j(0) = 0 , j = 1, . . . , Nr, (14)

where Ŝj is the vector with components Ŝij given by:

Ŝij(t) =


1
ρ
ω̇ji (Z(t)) i = 1, . . . , Ns

− γ

ρcp

Ns∑
i=1

hiω̇
j
i (Z(t)) + (γ − 1)TW

ρ

Ns∑
i=1

1
Wi

ω̇ji (Z(t)) i = Ns + 1
(15)

The advantage of this system is that it is independent of the uncertainty factors, and depends only on
elementary reaction rates of the unperturbed state. It is consequently convenient to integrate (14) and then
recover the desired estimates of Z,j using (13).

2.4. Linearized approximation of ignition delay time sensitivity
One of the challenges in estimating the local sensitivities of the ignition delay time is that τ is implicitly

defined. Consequently, the local sensitivities of the state vector do not immediately yield the sensitivities of
τ . In this work, we rely on a linearized approximation to overcome this difficulty, specifically for the case
where the ignition delay time is defined as the time argument at which the temperature of the mixture first
reaches a specified threshold, i.e. T (τ) = T0 + ∆T , where T0 is the initial mixture temperature, and ∆T is
a user-specified temperature increase.

In the present context, we seek to estimate the time, τ + δτ , at which the perturbed temperature reaches
the threshold T0 + ∆T . In other words, we seek to estimate the increment δτj for a perturbation δξj ; we
have:

T (τ + δτ) + δT

δξj
(τ + δτ)δξj = T0 + ∆T. (16)

Linearizing the above equation, we get:

dT

dt
(τ)δτ + δT

δξj
(τ)δξj ≈ 0 (17)

which in the limit yields

∂τ

∂ξj
≈ −

∂T

∂ξj
(τ)

dT

dt
(τ)

(18)

In the computational experiments below, we will verify the suitability of the linearized approximation by
comparing the estimates (18) with finite-difference approximations based on independent (nonlinear) eval-
uations of the solution at perturbed values of the components of ξ.
Remark 4. The gradient estimate in Eq. (18) leads to a sensitivity expression that is similar to Eq. (6) in [38]
and identical to Eq. (10) in [40]. The present construction, however, differs slightly from the approach in [38].
Specifically, we arrived at Eq. (18) as a direct linearization of a functional of the solution, which enables us
to offer the following perspective on its validity. To this end, we first note that for the linearization to be
valid, the solution must remain differentiable with respect to the parameters throughout the time interval
of interest; in particular, this rules out the occurrence of bifurcation phenomena. Second, for Eq. (18) to
be useful, one must ensure that the temperature rate of change, dT/dt(τ), (i.e. the denominator) does not
vanish. For exothermic systems, this condition is naturally met in a neighborhood of τ , where dT/dt achieves
its peak value.
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Remark 5. In the development above, we have focused on the case where the uncertain rate parameters,
kj , follow log-uniform distributions. Of course, the methodology may be readily extended to other smooth
distributions, e.g. when the rates are described in terms of Gaussian random variables. One should also note
that the present methodology may be applied to other functionals of the solution, provided of course that
these exhibit a smooth dependence on the parameters. Specifically, one may define the ignition delay time
as the time needed by the system to reach a certain pressure, or a certain radical concentration. This would
facilitate comparison with common experimental diagnostics such as pressure traces or OH concentration
profiles. In section 4, we briefly illustrate such generalization for the case where τ is defined as the time
needed to reach a certain pressure. In this case, one can follow a similar procedure as that outlined above
to arrive at:

∂τ

∂ξj
≈ −

∂P

∂ξj
(τ)

dP

dt
(τ)

, (19)

where P is the thermodynamic pressure. Differentiating the equation of state,

P = ρ<

(
Ns∑
i=1

Yi
Wi

)
T, (20)

where < is the universal gas constant, and using the fact that ρ is independent of t and of ξ, this readily
yields

dP

dt
(τ) = ρ<T (τ)

Ns∑
i=1

1
Wi

dYi
dt

(τ) + ρ<

(
Ns∑
i=1

Yi(τ)
Wi

)
dT

dt
(τ), (21)

and

∂P

∂ξj
(τ) = ρ<T (τ)

Ns∑
i=1

1
Wi

∂Yi
∂ξj

(τ) + ρ<

(
Ns∑
i=1

Yi(τ)
Wi

)
∂T

∂ξj
(τ). (22)

Substituting (21) and (22) into (19) we get:

∂τ

∂ξj
≈ −

T (τ)
Ns∑
i=1

1
Wi

∂Yi
∂ξj

(τ) +
(
Ns∑
i=1

Yi(τ)
Wi

)
∂T

∂ξj
(τ)

T (τ)
Ns∑
i=1

1
Wi

dYi
dt

(τ) +
(
Ns∑
i=1

Yi(τ)
Wi

)
dT

dt
(τ)

, (23)

which may be readily applied once the state sensitivities are estimated.
Alternatively, the functional may be defined based on the fuel consumption, which would enable the

methodology to be extended to isothermal systems. We finally note that the machinery may also be extended
to other systems, such as oxidation at constant pressure, and to address sensitivities to other parameters,
such as thermodynamic parameters. As mentioned earlier, this would be our focus in a follow up study.

2.5. Balanced stretching eigenvector
Note that when the germ, ξ, is perturbed along the direction of the eigenvector η whose components are

defined in (8), an analytical solution is available for the (nonlinearly) perturbed problem. Specifically, it is
readily verified that once an unperturbed solution Z(t; ξ) is determined, perturbed solutions for germs of
the form ξ + λη with λ ∈ R, can be obtained from

Z(exp(λ)t; ξ + λη) = Z(t; ξ). (24)

6



Consequently, if one considers vanishingly small perturbations along η, one can readily exploit (24) to
estimate the Gâteaux derivative,

Z,η(t) ≡ ∇ξZ(t; ξ) · η = t
dZ(t; ξ))

dt
. (25)

In the numerical experiments below, we explore the possibility of exploiting the analytical relationships in
(25) to correct results of the numerical integration of (10). Specifically, we consider an “amplitude correction”
approach based on stretching the estimated values of the local derivatives so that (25) is satisfied. Letting Z
denote a generic component of the state vector Z, and Z,j(t) the partial derivatives of Z at time t, estimated
by numerically integrating (10), or alternatively (14). The amplitude correction amounts to expressing the
corrected vector according to

Zac,j (t) = αZ,j(t) (26)
and selecting α so that Zac,j satisfies (25). This leads to:

α =
t
dZ

dt∑
j

Z,j(t)ηj
(27)

In section 4, we assess the suitability of this approach to obtain refined sensitivity estimates.
Remark 6. From the transformation in (24) it readily follows that

τ (ξ + λη) = exp(−λ)τ (ξ) , (28)

which in turn leads to

τ,η(ξ) =
Nr∑
j=1

∂τ

∂ξj
ηj = −τ (ξ) . (29)

The analytical result above is in fact consistent with the linearized estimates of the ignition delay time
sensitivities. To verify this claim, we simply evaluate the τ,η using the linearized estimates of the partial
derivatives in (18). We get

τ,η =
Nr∑
j=1

∂τ

∂ξj
ηj

≈ −
Nr∑
j=1

1
dT

dt
(τ)

∂T

∂ξj
(τ)ηj [using (18)]

= −τ, [using (25)]

which coincides with the result in (29). This establishes the claim.
Remark 7. The analytical expression of the directional derivative, τ,η can also be used to obtain a relationship
between the sensitivity indices in (6). Specifically, summing the sensitivity indices as expressed in (7), we
have

Nr∑
j=1

Sτj =
Nr∑
j=1

ηj
1
τ

∂τ

∂ξj
= 1
τ
τ,η.

Substituting the result from (29) leads to
Nr∑
j=1

Sτj = −1. (30)

This identity can also be exploited to assess the accuracy of computational estimates obtained by integrating
the linearized dynamics.
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3. Numerical Scheme

3.1. Framework
To assess different approaches for numerically integrating (10), we restrict ourselves to an “asynchronous”

simulation framework in which the unperturbed numerical solution, Z(t), is computed in a preliminary stage,
and recorded on fine time grid. Given that the solution Z(t) is computed using a stiff integration with an
adaptive time step (see section 4), we assume that the state vector is stored on an irregular grid with step size

∆ti > 0, i = 1, . . . , N , corresponding to a finite partition of the interval [0, τ ]. In other words,
N∑
i=1

∆ti = τ ,

and the partition has grid points specified by t0 = 0, whereas

tj =
j∑
i=1

∆ti for 1 ≤ j ≤ N .

Because τ is a priori unknown, and because the solution changes slowly at early stages and rapidly
as t approaches τ , it is generally impossible to specify a suitable time grid to record the solution before
running the simulation. Practically, we overcome this hurdle by relying on a hybrid approach combining
frequency-based and tolerance-based output strategies. The frequency-based strategy consists of recording
the state using a fixed (predetermined) step size, whereas in the tolerance-based approach the solution is
recorded whenever the temperature changes by a fixed threshold, which we fixed as 1 K.

3.2. Integration approach
Using a given discrete history of the state vector, Zn, n = 0, . . . , N , we explored different means of

integrating (10) and consequently determining the partial derivatives on the corresponding grid, namely
Zn,j , j = 1, . . . , Nr, n = 1, . . . , N , where the superscript denotes the time level. In our assessment below, we
rely on a second-order implicit treatment based on the Crack-Nicolson scheme,

Zn+1
,j =

(
I− 1

2∆tn+1J
n+1
)−1 [

Zn,j + 1
2∆tn+1

(
JnZn,j + Sn+1

j + Snj
)]

n = 0, . . . , N − 1, (31)

where I is the (Ns + 1)× (Ns + 1) identity matrix.

4. Results

In this section, we assess the effectiveness of the methodology introduced in the previous sections in
providing suitable estimates of local sensitivities of the ignition delay time to variations in the rate param-
eters. As outlined in section 2, attention is focused on variabilities specified in terms of uncertainty factors,
affecting the rate of progress of elementary reactions. In this context, we consider mechanisms of different
size, involving the oxidation of hydrogen (section 4.1), iso-octane (section 4.2), and n-butanol (section 4.3),
in air, adiabatically and at constant volume.

The evolution of the state vector is simulated using TCHEM [36]. This library incorporates a stiff integra-
tion scheme [45, 46], with adaptive time stepping designed to maintain integration errors within user-specified
tolerances. Because the ignition delay time is not known a priori, a sufficiently large simulation time is spec-
ified, so as to ensure that the ignition event occurs within the specified window. The output frequency is
controlled by specifying two parameters (a) ∆tmax, which directly limits the largest time elapsed between
consecutive writes, and (b) ∆Tmax, which indirectly controls the output frequency by ensuring that the
temperature change between two consecutive records of the state vector is less than ∆Tmax. In other words,
using the notations of section 3, the time difference ∆ti between the output times ti and ti−1 satisfies the
following conditions: (a) ∆ti ≤ ∆tmax, and (b) |Ti − Ti−1| ≤ ∆Tmax. Condition (b) is used in order to en-
sure that the rapid temperature rise during the ignition event is appropriately captured, without specifying
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tiny values of ∆tmax. This methodology results in a time history of the state vector Z on an irregular time
grid, as considered in section 3.

Our evaluation of TLA of ignition delay time sensitivities is conducted by post-processing the stored
mixture state histories. This feature emphasizes the broad applicability of the approach, which can be
applied to existing simulation databases, at the expense of potential efficiencies that may be gained by
simultaneously simulating the evolution of the system and of its TLA.

Application of the TLA schemes outlined earlier is thus based on exploiting the available history of
state vector, Z(t), to integrate system in (14). This task requires the evaluation of the Jacobian, J , and
source terms Ŝj defined in (15), corresponding to the instances of Z specified on the time grid. For this
purpose, we rely on the Jacobian capabilities of TCHEM, and adapt the TCHEM chemical source term functions
to compute the required source terms Ŝj . Finally, we rely on Eigen library [47] to perform matrix inversion
and exponentiation.
Remark 8. As outlined in [36], TCHEM provides utility functions that estimate the Jacobian of the source
either numerically or analytically. In the former case, a finite-difference methodology is used, using suitably
small perturbations of the state vector needed to ensure accurate Jacobian estimates. In the latter case,
analytical expressions are derived, applying as needed the chain rule to differentiate all terms appearing
in the rate expressions. In the TCHEM release presently used, exact analytical expressions are available
for all relevant reaction types, except for PLOG reactions. In this case, the analytical expressions are only
approximate, as they ignore the pressure dependence of the Arrhenius parameters. Consequently, we explore
the use of both the numerical and analytical Jacobian in all cases considered, with the understanding that
the analytical Jacobian is approximate in the n-butanol case.

4.1. H2 oxidation
In this section, the TLA schemes are applied in a simple setting, in which we consider hydrogen oxidation

in air at stoichiometric conditions (φ = 1) with initial temperature, T0 = 1000 K, and initial pressure,
p0 = 1 bar. The chemical mechanism from [48] is adopted for this purpose. This mechanism involves
Ns = 9 species, and Nr = 19 reversible elementary reactions that do not exhibit pressure dependence. The
computations are performed using TCHEM, with output frequency controlled by setting ∆Tmax = 0.01 K and
considering two different values of ∆tmax, namely ∆tmax = 10−7 s or ∆tmax = 10−6 s. A time grid with
41834 intervals is obtained in the former case, whereas 40157 intervals are obtained in the latter.

We first assess the validity of the linearization approximation presented in the right-hand side of Eq. 18.
Hence, we plot in Fig. 1 the partial derivative ∂τ/∂ξj versus reaction index j, contrasting estimates obtained
using finite differences and using the linearized approximation. As can be seen in Fig. 1, the results are
in excellent agreement thus indicating that, inthis example, the linearized approximation yields accurate
estimates of the local sensitivities of ignition delay time. Specifically, the rms deviation between the local
sensitivity vectors, normalized by the norm of the finite-difference vector, is 7.61× 10−6.

Next, we exploit the TLA schemes to estimate ∂T/∂ξj, and consequently determine the local sensitivity
indices Sτj , for j = 1, . . . , Nr. Figure 2 shows ∂T/∂ξj versus reaction index j. Plotted are TLA results
obtained using the analytical Jacobian before and after correction, as well as predictions obtained using the
numerical Jacobian. In all cases, a time grid obtained using ∆tmax = 10−6 s are used. As can be seen, the
TLA results obtained using the analytical and numerical Jacobian are in close agreement. More importantly,
the predictions are also in close agreement with the brute-force finite-difference estimates.

Local sensitivity results obtained using TLA are analyzed in Fig. 3. Plotted are predictions obtained
using ∆tmax = 10−6 s before and after correction, and ∆tmax = 10−7 s without correction. Consistent
with the results obtained for ∂T/∂ξj, the sensitivity predictions are in close agreement with finite-difference
results. In addition, for the present case the TLA results are weakly sensitive to ∆tmax.

A quantitative analysis of the TLA errors is conducted by contrasting the TLA estimates to the finite
difference results. Specifically, letting gj denote the TLA estimates of T,j or S,j , and ĝj their finite-difference
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Figure 1: ∂τ/∂ξj (s) versus reaction index j for H2 oxidation. Plotted are estimates obtained using finite differences (blue dots)
and the linearized approximation in Eq. 18 (orange circles).
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Figure 2: ∂T/∂ξj (K) versus reaction index j for H2 oxidation. Shown are results obtained using finite differences and TLA. For
the analytical Jacobian case, the corrected predictions are also shown.

counterparts, we first estimate the root mean square (rms) error,

E =
(

1
Nr

Nr∑
j=1

(gj − ĝj)2

)1/2

, (32)

and using the finite-difference results as reference to define the normalized errors,

E2 = E
‖ĝ‖2

and E = E
maxi |ĝi|

, (33)

where ‖ĝ‖2 denotes the L2-norm of the vector ĝ having components ĝj .
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Figure 3: Sensitivity indices, Sτ , of the dominant reactions in the H2 oxidation case (a cutoff of 0.0375 was used). Plotted are
results obtained using finite differences, and TLA approximations using the analytical Jacobian, and time grids obtained with
∆tmax = 10−7 s and ∆tmax = 10−6 s. For the coarser time grid, the corrected predictions are also shown.

Table 1 shows the normalized errors for the TLA estimates of T,j . We report normalized errors computed
before and after amplitude correction. For the fine time grid, the errors are very small, indicating that
accurate predictions are obtained with the TLA methodology. The normalized errors are larger when
integration is performed on the coarser grid, but the normalized errors drop appreciably when the amplitude
correction scheme is applied. Also note that in the present case the estimates obtained using analytical and
numerical Jacobians are essentially identical, as anticipated. In addition, the computed normalized rms error
for T,j and S,j (not shown) are nearly identical. This is not surprising because the linearized approximation
of the ignition delay sensitivity is highly accurate, so that errors in the TLA approximation of the ignition
delay time sensitivities (S,j) are dominated by the integration errors occurring in the computation of the
local sensitivities of temperature (T,j).

∆tmax = 10−7

Anal Jac Num Jac
No Correction Correction No Correction Correction

E2 1.4371e-05 5.0941e-06 1.4409e-05 5.1101e-06
E 1.2319e-05 4.3669e-06 1.2352e-05 4.3806e-06

∆tmax = 10−6

Anal Jac Num Jac
No Correction Correction No Correction Correction

E2 5.8910e-04 9.2439e-05 5.8913e-04 9.2389e-05
E 6.8720e-04 1.0783e-04 6.8724e-04 1.0778e-04

Table 1: Normalized rms error for T,j for the H2 oxidation case. Top table: integration is performed a time grid obtained with
∆tmax = 10−7 s. Bottom table: integration is performed on time grid obtained with ∆tmax = 10−6 s. Errors estimated before
and after amplitude correction are reported, using results obtained with the analytical and numerical Jacobians.

We have also explored the possibility of defining the ignition delay time using the history of the pressure
signal. To facilitate comparison with the temperature-based analysis, we have defined the ignition pressure
to be value at which the mixture temperature reaches T0 + 400 K. This ensures that the ignition delay
time in both approaches is identical. We have assessed the sensitivities ∂τ/∂ξj using (i) the brute-force
finite-difference approach, (ii) the linearized approximation using the independent realizations involved in
the finite-difference analysis, as well as (iii) the TLA-based state sensitivities in conjunction with (23).
Results from all three approaches (not shown) were in excellent agreement with each other, and essentially
indistinguishable from the temperature-based results depicted in Fig. 1. This illustrates the flexibility of
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using TLA-based sensitivities in a broad class of linearized solution functionals.

4.2. Iso-octane oxidation
In this section, we consider a more elaborate example consisting of the combustion of a stoichiometric

(φ = 1) iso-octane air mixture, adiabatically at constant volume, starting from an initial temperature
T0 = 850 K and an initial pressure p0 = 20 bar. The combustion of iso-octane is described using the detailed
chemical mechanism from [49–51], which involves Ns = 874 species, and Nr = 3796 elementary reactions.
The reactions include both reversible and irreversible reactions, as well as pressure-dependent reactions.
The computations are performed using TCHEM, with output frequency controlled using ∆Tmax = 1 K and
∆tmax = 10−5 s. This yields a discrete sequence of state vectors specified at the boundaries of 2569 irregularly
spaced sub-intervals, forming a partition of the interval [0, τ ]. The (nominal) ignition delay time is computed
to be τ = 0.0231 s.

As in the case of H2 above, we start by assessing the validity of the linearized approximation of the
ignition delay time sensitivities. To this end, we contrast in Fig. 4 the estimates of ∂τ/∂ξj for the finite
difference approach and the linearized approximation. The figure depicts the results for indices j selected
according to the finite difference results’ highest absolute values. The normalized rms difference between
the two full vectors of sensitivities is 7.7 × 10−5. The small relative rms value provides confidence in the
quality of the linearized approximation of ∂τ/∂ξj.

16  3375 15  3382 3373 3381 3383 3376 1210 14  1214 3516 3528 3384 1209 3548 3535 3431 3374 3430

Reaction Number

-10

-8

-6

-4

-2

0

2

4

6

8

/

10
-3

finite difference

Eq (18) rhs

Figure 4: ∂τ/∂ξj (s) versus reaction index j for iso-octane oxidation. Plotted are estimates obtained using finite differences
(blue dots) and the linearized approximation, Eq. 18 (orange circles). The reaction indices shown correspond to the largest
absolute values of the finite difference estimates of ∂τ/∂ξj , and are sorted in descending order.

Figures 5 and 6 predictions of the TLA approximation of Tj and S,j , respectively. Plotted in Fig. 5 are
the TLA predictions of Tj , for the same indices j selected in Fig. 4. Finite-difference results are plotted for
comparison, and corrected predictions for the analytical Jacobian case are also depicted. As can be seen from
Fig. 6, the correction scheme may lead to appreciable refinement of the TLA integration results. Similarly,
Fig. 6 contrasts finite-difference results with the corresponding TLA estimates. The results indicate that
the TLA predictions are in very good agreement with finite-difference results.

A quantitative assessment of TLA approximation errors was conducted. Specifically, normalized rms
errors are estimated using Eq. (33) for the Nr-dimensional sensitivities T,j and S,j . As in the case H2, the
results for T,j and S,j are nearly identical, and so only results for T,j are reported in Table 2. As can be seen,
the normalized errors are very small in all cases. Thus, the TLA is effective for this detailed mechanism
involving hundreds of species and thousands of elementary reactions.

4.3. n-butanol oxidation
In this section, we consider combustion of a stoichiometric n-butanol air mixture with initial temperature,

T0 = 800 K, and initial pressure, p0 = 40 bar. We rely on the n-butanol mechanism of Sarathy et al. [52],
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Figure 5: ∂T/∂ξj (K) versus reaction index j for iso-octane oxidation. Shown are results obtained using finite differences, and
TLA using analytical Jacobian (before and after correction) and numerical Jacobian (without correction). The integration is
performed on time grid obtained with ∆tmax = 10−5 s, comprising 2569 intervals.
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Figure 6: Sensitivity indices, Sτ , for individual reactions in the iso-octane oxidation case. Plotted are results obtained using
finite differences, and TLA approximations shown in Fig. 5. The reactions are arranged from bottom to top using the same
sequence of reaction indices shown on the axis of Fig. 4.

Anal Jac Num Jac
No Correction Correction No Correction Correction

E2 8.1067e-04 8.6531e-05 7.6540e-05 7.8317e-05
E 1.7780e-03 1.8979e-04 1.6787e-04 1.7177e-04

Table 2: Normalized rms error for T,j for the iso-octane oxidation case. Error estimates obtained before and after amplitude
correction are reported using analytical and numerical Jacobians.

which involves Ns = 687 species and Nr = 3435 reactions. For the finite-difference sensitivities, we restrict
our attention to reactions involved in the rate rules, i.e. perturbations in the rates of elementary reactions ap-
pearing in the “base mechanism” are ignored. This simplification leads us to consider 30 reaction classes [7],
comprising a total of N ′r = 518 reactions that involve higher hydrocarbons (C5 and larger). Various reaction
types involved in the detailed n-butanol mechanism, including reversible, irreversible, pressure falloff, and
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pressure-dependent reaction using the PLOG formulation. Note, however, that when the TLA schemes are
applied, we may readily consider the local sensitivities of all reactions, because the cost of the integration
is primarily dominated by Jacobian inversion. To perform the integration, we rely on the history of state
vectors obtained from TCHEM simulations, performed by setting ∆Tmax = 1 K, and ∆tmax = 10−6 s. Ignition
occurs at τ = 0.0052 s. With the selected output control parameters, the discrete states are recorded at the
nodes of an irregular time grid having 5366 intervals.

Figure 7 shows the estimates of ∂τ/∂ξj as obtained from finite differences and from the linearized ap-
proximation. As in the previous examples, the results are in excellent agreement, highlighting the accuracy
of the TLA estimates. In Fig. 8, we present estimates of ∂T/∂ξj using finite differences and TLA; plotted
are results obtained using the approximate analytical Jacobian (with and without correction) and the nu-
merical Jacobian. As can be seen, the uncorrected results obtained using the numerical Jacobian are in
close agreement with the finite-difference results, but the corresponding predictions obtained using the ap-
proximate analytical Jacobian exhibit significant discrepancies. This is not surprising because, in this case,
the analytical expressions used are only approximate. Note, however, that when the correction scheme is
applied the analytical Jacobian results are once again consistent with the finite-difference predictions. Thus,
the correction scheme enables us to overcome amplitude errors resulting from the Jacobian approximation.
Similar trends are observed in the corresponding sensitivity results reported in Fig. 9.
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Figure 7: ∂τ/∂ξj (s) versus reaction index j for n-butanol oxidation. Plotted are estimates obtained using finite differences (blue
dots) and the linearized approximation, Eq. 18 (orange circles). The reaction indices shown correspond to the largest absolute
values of the finite difference estimates of ∂τ/∂ξj , and are sorted in descending order. The normalized rms deviation between
the local sensitivity vectors is 5.56e-04.

In the order to preform a quantitative error analysis, we adapt the definition of the rms error as follows:

E′ =

 1
N′r

N′
r∑

j=1
(gj − ĝj)2

1/2

(34)

where the summation is performed over the N ′r = 518 indices j of the reactions belonging to the 30 reaction
classes. As discussed earlier, the vector gj is used to denote the local sensitivities T,j or S,j determined
using the TLA, whereas ĝj is used to denote the corresponding finite-difference estimates. Using the finite-
difference results as reference, we define the normalized errors

E ′2 = E′

‖ĝ‖2
and E′ = E′

maxj |ĝj |
, (35)
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Figure 8: ∂T/∂ξj (K) versus reaction index j for n-butanol oxidation. Shown are results obtained using finite differences, and
TLA approximations as indicated. The integration is performed on time grid obtained with ∆tmax = 10−6 s, comprising 5366
intervals.
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Figure 9: Sensitivity indices, Sτ , for individual reactions in the n-butanol oxidation case. Plotted are results obtained using
finite differences, and TLA approximations as indicated. The reactions are arranged from bottom to top using the same
sequence of reaction indices shown on the axis of Fig. 7.

where ‖ĝ‖2 denotes the L2-norm of the N ′r-dimensional vector ĝ having components ĝj .
The normalized rms errors defined by (35) are reported in Table 3. Similar to H2 and iso-octane cases,

the results show very small errors.

4.4. Performance
This section analyzes the computational efficiency of the TLA approach by contrasting its performance

with the finite-difference approach.
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Anal Jac Num Jac
No Correction Correction No Correction Correction

E2 7.3740e-03 7.6611e-05 9.6957e-05 1.1328e-04
E 1.3746e-02 1.4282e-04 1.8075e-04 2.1118e-04

Table 3: Normalized rms error for T,j in the n-butanol oxidation case. Results are shown for STLA based on Crank-Nicolson
(CN) integration. Error estimates obtained before and after amplitude correction are reported using both analytical and
numerical Jacobians.

Because the finite-difference approach is based on perturbing rates individually for each elementary
reaction and performing a forward simulation for each perturbation, the overall cost incurred essentially
amounts to the cost of a single simulation multiplied by the total number of reaction sensitivities sought.
Thus, if for each mechanism one uses the cost of a single simulation as a normalizing factor, then the
normalized CPU time required by the finite-difference approach is Nr for the H2 and iso-octane examples.
On the other hand, the normalized CPU cost in the n-butanol example is N ′r, because the rate perturbations
were restricted to reactions associated with the rate rules.

H2 n-butanol iso-octane
∆tmax 10−6 10−7 10−6 10−5

FD 19 19 518 3796
Anal Jac 1.97 2.5 5.57 2.52
Num Jac 1.64 2.075 4.92 2.09

Table 4: Computational cost of various approaches, normalized by the CPU time of a single forward simulation. Reported are
CPU cost the finite-difference (FD) approach, of the TLA using analytical and numerical Jacobians.

Normalizing the CPU cost incurred in the TLA applications in the same manner as in finite differences,
we can readily assess the performance of the TLA. As can be seen from Table 4, in the H2 case a remarkable
speed-up is achieved by the TLA, which requires a CPU more than 7 times smaller than the finite-difference
approach. In the iso-octane and n-butanol examples involving large detailed mechanisms, the TLA methods
are faster by an order of magnitude. These savings occur even when the finite-difference perturbations are
restricted to reaction classes, as in the n-butanol example.

4.5. Discussion
We conclude with a brief discussion of the fidelity of the linearized approximation of the ignition de-

lay time as provided in (18) and of the resulting sensitivity estimates obtained via TLA, as well as the
performance of the TLA scheme.

In the present analysis, we have performed a step-wise error analysis, in which we first tested Eq. (18)
using non-linear estimates obtained using the brute-force approach. Briefly, our experiences in all cases
considered point to the validity of Eq. (18) as insignificant discrepancies were found. This inherently relied
on care exercised in (i) accurately estimating the solution, namely by selecting sufficiently small tolerances for
the stiff integration, (ii) using a time grid that is sufficiently fine to minimize numerical errors in estimating
τ [38], which is presently achieved by interpolating between grid points that bracket the selected temperature
value, and (iii) selection of very small perturbation parameters, so that accurate finite-difference estimates
can be consequently obtained [53].

Concerning the fidelity of the TLA sensitivity estimates, our experiences indicate that very small error
levels can indeed be achieved, appreciably smaller than those reported in [38] and [40] using the direct differ-
entiation approach. Similar to experiences obtained with alternatives afforded by BVP [40] and adjoint [39]
methodology, it appears that TLA and direct sensitivity results can be obtained that are sharp enough to
enable robust determination of active subspaces. This will be explored in follow up work.
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Concerning performance, it was noted in [38] that the direct approach would lead to speed up factors
that are proportional to the number of reactions in the chemical mechanism, though actual performance
estimates are not reported. This implies an O(1) complexity, with actual costs that are approximately equal
to or smaller than the cost of a single forward simulation. Though not explored in the present simulations,
this may be achieved through an optimization exercise based on saving the state, the source term, the
Jacobian and its factorization on a suitable time grid as they are computed in the forward calculation, or
alternatively integrating the original system and direct sensitivity equations simultaneously as suggested
in [37].

Finally, we contrast the present performance estimates with those reported in [39] using the adjoint
methodology, and in [40] using BVP. Specifically, for the GRI3.0 mechanism (Nr = 325), speed up factors
of about 2-3 were reported in [39], which can be further improved to exceed one order of magnitude. For
the Aramco mechanism (Nr = 2716) reported CPU times in [40] imply a speed up factor of about 43. Our
present performance experiences compare favorably with those reported in [39] and [40]. In particular, for
the iso-octane mechanism (Nr = 3796), speed up factors for the TLA exceeding 1000 are achieved.

5. Conclusions

A tangent linear approximation is developed to estimate the local sensitivity of the ignition delay time
with respect to uncertainty in individual rate parameters. Attention is focused on a gas mixture reacting
adiabatically at constant volume. The uncertainty in the rates of elementary reactions is described by uncer-
tainty factors, and parametrized using independent canonical random variables. Specifically, the formulation
assumes a log-uniform dependence of the rate of progress of individual reactions on the associated random
variables.

The framework developed is based on a combination of two key ingredients. The first consists in deriving
of a canonical tangent linear system governing the evolution of the sensitivities of the state vector to
individual components of the germ. The second consists in developing of a linearized approximation that
relates the ignition delay time sensitivity to the sensitivities of the state vector.

The proposed framework was evaluated by applying the machinery in a post-processing mode, using as
input a discrete sequence of state vectors specified on an irregular time mesh. With this information, the
tangent linear system is integrated in time, yielding the sensitivities the state vector. An amplitude correction
strategy was also investigated, capitalizing on an analytical transformation that holds for perturbations taken
defined along the balanced stretching eigenvector.

The effectiveness of the proposed methodology was assessed based on simulations of the combustion of
hydrogen, n-butanol, and iso-octane in air at intermediate pressures and temperatures. For the purpose
of verifying the results and quantifying performance gains, a brute-force sensitivity analysis was applied,
based on perturbing the rates of individual reactions one at a time, and conducting independent ignition
simulations for each of the perturbed rates. In particular, the analysis of simulation results revealed that:

1. For all cases considered, the linearized approximation of the local sensitivity of the ignition delay
time led to results that are in very close agreement with finite-difference estimates. This provides a
well-established foundation for local sensitivities obtained via TLA.

2. For all mechanisms considered, the TLA results obtained were in good agreement with finite-difference
results. Furthermore, TLA estimates could be improved through the application of an amplitude
correction scheme. This provides an effective means of obtaining robust sensitivity estimates, even
when derived from a sequence of state vectors specified on relatively coarse, irregular time grids.

3. The performance analysis showed that for the relatively small H2 oxidation mechanism, the TLA is
computationally competitive with the finite-difference approach. For large detailed mechanisms, the
TLA can offer order-of-magnitude enhancement in computational efficiency, even when finite-difference
perturbations are restricted to a subset of reactions associated with rate rules. Specifically, the TLA
achieves a speed-up factor of 7.6 for the case of H2 ignition, 93 for the n-butanol mechanism, and 1506
for iso-octane.
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In future work, we plan to consider the extension of the present TLA framework to address local sensi-
tivity of the ignition delay time due to variation in thermodynamic parameters. We also plan to rely on the
resulting capabilities to explore the application of active subspace methodologies in high dimension.
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