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Abstract
Deep learning contributes to reaching higher levels of artificial
intelligence. Due to its pervasive adoption, however, growing
concerns on the environmental impact of this technology have
been raised. In particular, the energy consumed at training and
inference time by modern neural networks is far from being
negligible and will increase even further due to the deployment
of ever larger models.

This work investigates for the first time the carbon cost of
end-to-end automatic speech recognition (ASR). First, it quan-
tifies the amount of CO2 emitted while training state-of-the-art
(SOTA) ASR systems on a university-scale cluster. Then, it
shows that a tiny performance improvement comes at an ex-
tremely high carbon cost. For instance, the conducted experi-
ments reveal that a SOTA Transformer emits 50% of its total
training released CO2 solely to achieve a final decrease of 0.3
of the word error rate. With this study, we hope to raise aware-
ness on this crucial topic and we provide guidelines, insights,
and estimates enabling researchers to better assess the environ-
mental impact of training speech technologies.
Index Terms: carbon footprint, end-to-end speech recognition.

1. Introduction
Atmospheric concentrations of carbon dioxide, methane, and
nitrous oxide are at alarming levels [1]. Together with other an-
thropogenic factors, they most likely led us to a climate crisis
involving drastic changes in our ecosystem [2, 3]. Alongside a
growing interest in using artificial intelligence (AI) to tackle cli-
mate change [4], numerous concerns involving the carbon foot-
print of deep learning (DL) started to emerge [5–9]. Its world-
wide adoption, the deployment of larger neural models, the in-
crease in available data, the potential inefficiency of considered
computational resources, and the slow uptake of renewable en-
ergies in numerous countries are all concomitant factors that
will likely result in important environmental costs [6, 7, 10].

Deep learning architectures are commonly trained for
dozens, hundreds, or sometimes thousands of hours on special-
ized hardware accelerators in data centers, that are known to
be extremely energy-consuming [11]. According to [12], such
a trend is not going to end soon as the demand for AI com-
puting has grown by more than 300, 000× from 2012 to 2018.
In this context, recent studies have been conducted to highlight
the carbon emissions of very large-scale experiments [6, 7, 10].
Nevertheless, such studies are often disconnected from the ex-
periments routinely performed by researchers. Extremely large
models such as GPT-3 [13] or switch Transformers [14] that
contain billions or trillions of parameters are not related to the
environments commonly employed within the community.

Table 1: Estimated CO2 from training a single French (Com-
monVoice) or English (LibriSpeech) state-of-the-art end-to-end
speech recognizer on Nvidia Tesla V100 GPUs.

Models CO2 kg
French with training in France (avg) 2.8
French with training in Australia (avg) 34.7
English with training in France (avg) 9.4
English with training in Australia (avg) 118

Examples
Driving a car for 100 km (EU avg) 12.2
CO2 per capita in 1 year (EU avg) 6700

Furthermore, the precise carbon cost of popular deep learn-
ing applications, such as automatic speech recognition (ASR)
remains largely unexplored. Such in-domain carbon estimates
are essential to enable researchers to quantify the carbon foot-
print of their daily experiments. In a standard development pro-
cess, an optimal ASR model often comes from numerous iter-
ative or concurrent training runs due to the need for hyperpa-
rameter tuning, support of multiple languages, or simply to be
competitive with the state-of-the-art performance. Hence, it be-
comes crucial to quantify the CO2 emitted while training these
models and assess the trade-off between their carbon footprint
and performance.

This work aims at assessing and analyzing the carbon foot-
print induced by training medium-scale ASR models that are
prevalent within the recent literature. Example estimates are
given in Table 1. More precisely, we focus on SOTA end-to-
end (E2E) systems, that rely on popular architectures including
Transformers [15], deep convolutional neural networks [16] or
recurrent sequence transducers [17]. The contributions of this
work are three-fold:

1. Provide precise CO2 emissions estimates of three SOTA
E2E ASR systems on two well-known tasks (Lib-
riSpeech and CommonVoice French). These estimates
are obtained by considering the energy efficiency of a
medium-scale university cluster equipped with popular
GPUs (Nvidia Tesla V100 and Nvidia RTX 2080 Ti).

2. Analyze the trade-off between CO2 emissions and word
error rate performance during training.

3. Release all pre-trained models to the community through
SpeechBrain1 and HuggingFace [18] to facilitate replica-
bility and encourage further experiments.

1https://speechbrain.github.io/



The conducted experiments suggest that CO2 emissions of
SOTA end-to-end speech recognizers are far from being negli-
gible, especially considering that such models are often trained
multiple times within the speech community. As expected, the
obtained CO2 estimates vary significantly from country to coun-
try. For instance, training a Transformer ASR on LibriSpeech
in France emits 9.7 kg of CO2 compared to 118 kg in Australia.

Furthermore, the experiments also highlight a non-linear
relationship between CO2 emissions and the word error rate
(WER) obtained with the considered model. The employed
Transformer ASR produces half of its total emissions to solely
reduce its WER by 0.3. Such a difference in WER, however, is
necessary to achieve SOTA performance. This naturally leads
to the following question: is a tiny performance improvement
worth doubling the carbon footprint?

2. Quantifying CO2 emissions
The process of estimating the amount of CO2 released dur-
ing the training of deep learning models can be summarized
in two steps. First, it is necessary to compute the total energy
consumed by the hardware and the infrastructure (Section 2.1).
Then, this amount is converted to CO2 emissions based on the
geographical location of the resources (Section 2.2).

2.1. Energy Consumption

At training time, the vast majority of the energy consumption
comes from GPUs and CPUs [6]. A first approach could be to
estimate the consumption based on the hardware power spec-
ification assuming a full GPU/CPU usage. However, such a
scenario is not realistic as the hardware is usually partially used
during training. To alleviate this issue, we repeatedly query sys-
tem information to obtain the instantaneous consumption of the
devices as proposed in the CarbonTracker tool [7].

The second largest source of energy used in datacenters
comes from cooling (e.g up to 40% [19]). Estimating this quan-
tity properly is challenging as it strongly depends on the dat-
acenter infrastructure. A common approach is to consider the
Power Usage Effectiveness (PUE). The PUE is the ratio be-
tween the total amount of energy used by the facility (pfacility)
and the energy delivered to compute nodes (pcompute):

PUE =
pfacility
pcompute

. (1)

As reported in the 2020 Data Center Industry Survey Re-
sults [20], the world average PUE for the year 2020 was 1.59.
As expected, the PUE strongly depends on the actual comput-
ing infrastructure. For instance, Google declares a comprehen-
sive trailing twelve-month PUE ratio of 1.11 [21] compared to
1.2 and 1.125 for Amazon [22] and Microsoft [23], respectively.
Unfortunately, such low PUE are not representatives of the aca-
demic field that mainly relies on smaller servers or clusters. In
this work, we use the PUE ratio that we computed on the Avi-
gnon University (AU) cluster (PUEAU = 1.55). This cluster is
a medium-size computing infrastructure composed of four com-
putational bays, which we think is representative of university
clusters. It is important to note that other hardware components
may be responsible for energy consumption, such as RAM or
HDD. According to [24], one may expect a variation of around
10% while considering these parameters. However, they are
also highly dependent on the infrastructure and therefore dis-
carded in our analysis. Finally, the amount of energy consumed
during a training of duration d is given by:

etotal = PUE

∫ d

0

(pg + pc), (2)

with pg and pc the instantaneous power consumption of all
GPU and CPU devices.

2.2. CO2 Conversion

The CO2 conversion rate crate is defined as the CO2 (in grams)
emitted for each kWh of energy consumed. This factor largely
varies across countries and is strongly linked to the production
nature of electricity (e.g nuclear vs gaz) [10, 24]. Fortunately,
it is common for governments to release this coefficient in their
official statistics on environmental policies assessment [25,26].
For instance, France has a Crate of 52 gCO2/kWh [25] com-
pared to 417 gCO2/kWh for the USA [26] or 656g CO2/kWh in
Australia [27]. The carbon rate is then integrated with Eq. 2 to
compute the total amount of CO2 emitted as:

Tcarbon = crateetotal. (3)

Carbon emissions may be compensated by carbon offset-
ting or with the purchases of Renewable Energy Credits (RECs,
in the USA) or Tradable Green Certificates (TGCs, in the
EU). Carbon offsetting allows polluting actions to be compen-
sated directly via different investments in environment-friendly
projects, such as renewable energies or massive tree planting
[28]. RECs and TGCs [29], on the other hand, guarantee that a
specific volume of electricity of their owner is generated from
renewable energy sources. More precisely, RECs and TGCs
purchasing aims to create more renewable energy in the long-
term according to the additionality principle, by creating an in-
creased demand for these energy sources. In the specific context
of CO2 estimates, RECs and TGCs enable institutions and com-
panies to voluntarily decrease their individual Crate. However,
in our analysis, carbon rates are obtained at country level and do
not integrate industry level carbon offsetting schemes or RECs.

3. E2E ASR Models and Protocol
To provide impactful estimates, this study analyzes popular
setups that are common within the speech community. First,
it is important to note that all considered ASR models were
trained prior to the estimation process. Therefore, and to
limit the carbon footprint of our analysis, measurements are
performed across 3 training epochs mirroring the original
hyperparameters of the considered model to alleviate any
variation in the results. Obtained values are then averaged and
multiplied by the number of epochs needed by the original
ASR system to reach the final performance. The latter setup
enables us to quickly compute precise estimates from different
hardware and experimental environments.

Hardware and estimation parameters. We consider two
GPUs commonly used by deep learning researchers and
engineers: the Nvidia Tesla V100 32GB (i.e high-end) and
Nvidia RTX 2080 Ti (i.e mid-tier). Two Intel Xeon Silver
4210R and two Intel Xeon E5-2698 v4 CPUs are attached
to Tesla and RTX GPUs respectively. The PUE of 1.55
computed for the Avignon Université cluster is used across all
experiments combined with French and Australia conversion
rates (Section 2.2). Power draw measurements are obtained
every five seconds and then averaged within CarbonTracker [7].



Table 2: CO2 and energy consumption estimates for popular E2E ASR models trained with computational resources located in France
or in Australia (Au.). The Word Error Rates (WER) on CommonVoice (CV) FR and LibriSpeech (LS) are obtained on the “test” and
“test-clean” sets of CV and LS respectively. The (x,y) given with model name indicates the number of GPUs used for (CV,LS).

,

CommonVoice LibriSpeech

Tesla V100 kWh
per epoch Epochs CO2

France (kg)
CO2

Au. (kg) WER % kWh
per epoch Epochs CO2

France (kg)
CO2

Au. (kg) WER %

CRDNN (1,1) 2.11 25 2.77 34.66 17.70 3.78 25 4.92 62.04 2.90
Transformer (1,1) 0.92 40 1.92 24.20 20.57 1.49 121 9.38 118.4 2.55
RNN-T (1,3) 2.00 30 3.12 39.35 20.18 6.58 30 10.26 129.5 5.23
RTX 2080 Ti
CRDNN (3,3) 5.28 25 6.87 86.63 17.70 5.40 25 7.01 88.45 2.90
Transformer (3,8) 2.98 40 6.19 78.13 20.57 1.72 121 10.87 137.1 2.55
RNN-T (3,6) 4.37 30 6.83 86.16 20.18 8.37 30 13.06 164.7 5.23

Speech recognition datasets. Two datasets with different
complexity and size are used as benchmarks. First, we trained
our models on the 960 hours of LibriSpeech and evaluated
them on the official “dev-clean” and “test-clean” subsets [30].
Then, we considered the French corpus of CommonVoice [31]
(version 6.1) composed of 438 hours of read speech for
training. CommonVoice is challenging as it contains realistic
recording conditions that vary significantly across speakers.
The official validation and test splits are used for evaluation.

End-to-end ASR models. We considered three very popular
E2E ASR systems able to reach state-of-the-art performance:

1. CTC-Attention based Transformers [15]: a model based
on a CNN-Transformer encoder with a Transformer de-
coder jointly trained with the CTC loss.

2. CTC-Attention based CRDNN [32]: an encoder-decoder
ASR system. The encoder is composed of three dis-
tinct parts: a VGG-like features extractor, a bidirectional
LSTM, and a deep dense neural network. This is com-
bined with a location-aware attentive recurrent (GRU)
decoder jointly trained with the CTC loss.

3. RNN-Transducers [33]: The encoder is a CRDNN while
the prediction network is a GRU network. The joint non-
linear layer takes as input the concatenation of the output
from both networks. The entire system is trained follow-
ing the transducer loss.

LibriSpeech experiments rely on an external language
model (LM) trained with the LibriSpeech language modeling
resources2. The LM is coupled with the acoustic probabilities
using beam search and shallow fusion [34]. The LM training is
removed from the estimation process. Indeed, it is well-known
that neural LMs are extremely energy demanding [6], and it is
hence common to use pre-trained models as in our experiments.
No LM is used with CommonVoice.

Hyperparameters, and neural architectures vary across the
different datasets and are extensively described in the corre-
sponding SpeechBrain recipes [32] (commit hash 30e4663).
Pre-trained models are available on HuggingFace3.

4. Energy and CO2 Estimates
In this section, we first estimate the energy consumption and
CO2 emissions with the experimental setup described in Sec.
3. Then, we analyze the trade-off between performance and
carbon cost.

2https://www.openslr.org/11/
3https://huggingface.co/speechbrain

Figure 1: Global heat map of emitted CO2 (in kg) to train the
best Transformer model on LibriSpeech in different countries.
Carbon rates are obtained from governmental sources or [27].
Estimates do not account for varying PUE (PUE = 1.55).

4.1. Training E2E ASR pollutes

The estimates of the energy consumption per iteration and the
amount of released CO2 are reported in Table 2. First, it is
important to remark that the obtained WERs are SOTA or com-
petitive with the literature. Indeed, the CRDNN achieves a test
WER of 17.70%. To the best of our knowledge, this represents
the lowest WER reached so far without self-supervision or
pre-training on the CommonVoice-FR dataset. Then, the given
LibriSpeech “dev-clean” and “test-clean” results (2.90% and
2.55%) are also comparable with similar systems [35].

As for energy consumption and CO2 emissions, the main
insights that emerge from Table 2 are the following:

• Geographic location matters. As shown in numerous
studies [6,8], the geographical location has a massive im-
pact on the amount of CO2 induced by training all ASR
models (Figure 1). While France estimates never reach
more than 15 kg of CO2 per model, the same computa-
tions in Australia easily emit more than 100 kg.

• GPU type matters. It is worth noting the importance of
being equipped with recent GPUs. Due to the size of our
models, it is often necessary to combine multiple 2080 Ti
to match a single Tesla V100. Hence, experiments con-
ducted on CommonVoice with RTX GPUs consumed 2.5
times more energy per epoch compared to Tesla devices.

• Hyperparameter search is not sustainable. ASR mod-
els are rarely the result of a single training process. For
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Figure 2: CO2 emitted in kg (in France) by different E2E ASR models with respect to the word error rate (WER) on the dev sets of
LibriSpeech and CommonVoice. The curves exhibit an exponential trend as most of the training time is devoted to slightly reduce the
WER. The black and red dots indicates the WER obtained with 50% and 100% of the emitted CO2. On LibriSpeech, 50% of the carbon
emissions have been dedicated to reach SOTA results with an improvement of 0.37%.

instance, if we had to run at least 15 experiments be-
fore finding a hyperparameter configuration that works
reasonably well. This would bring the total amount
of CO2 emitted to 141 kg in the best case and 2055
kg in the worst case (i.e., Transformers trained on Lib-
riSpeech). Such findings are in line with previous obser-
vations [10,36,37] advocating for better hyperparameters
tuning strategies.

• All models pollute. None of the SOTA E2E solutions
is really greener than the others. For instance, Trans-
formers process long sequences in parallel due to self-
attention resulting in faster epochs. However, Trans-
formers also need larger batch size that slows down the
convergence of the system. As a result, Transformer
models tend to consume less energy per epoch (0.92
kWh per epoch against 2.00 kWh for RNN-T), but they
also require more time to converge to SOTA results
hence reducing the gap in terms of CO2 with the others.

According to the average CO2 cost of driving a car reported
by the European Environment Agency [38], the amount of CO2

needed to train a single Transformer on LibriSpeech is equiva-
lent to a car trip of 77 km (in the best case) or 1, 122 km (in the
worst case) and increase up to 1, 155 km and 16, 830 km with a
potential hyperparameters search included (15 runs). Training
our greener Transformer also emits as much CO2 as the entire
production and consumption chains of 9.16 kg of bananas [39].

4.2. The unreasonable cost of state-of-the-art performance

Approaching SOTA results is often required to get a novel
model accepted by the community. For ASR systems, it be-
comes crucial to achieve the lowest word error rate possible.
Hence, it is important to analyze the trade-off between perfor-
mance and carbon footprint. Figure 2 depicts the evolution of
the WER while training our models versus the corresponding
CO2 emissions.

The curves exhibit an exponential trend, where the amount
of CO2 emissions required to obtain small WER improvements
grow very rapidly. Even though this trend was expected, it is
important to see how impactful the race for a state-of-the-art
model is on the total amount of carbon released. On Common-
Voice and with Tesla V100 GPUs, the CRDNN model achieves
a WER of 18.64% on the dev set with half of the CO2 bud-

get. However, doubling this budget only allows the CRDNN
to reach a WER of 15.97% on the same set. This represents a
gain of 2.67 for a carbon footprint twice larger. This tendency
gets even worse on LibriSpeech, a highly competitive bench-
mark within the speech recognition community. In this context,
the Transformer uses 50% of CO2 emissions to achieve a WER
of 3.75% on the dev-clean, and the other 50% of the CO2 bud-
get to reach the final 3.38%. A gain of 0.37 of WER doubles
the carbon bill of the model (4.83 vs 9.66 kg of CO2). Such
a difference certainly does not affect the user perception of the
obtained transcription, but it can make the model competitive or
not with the SOTA.

These experiments highlight that WER should not be the
only metric considered when comparing different ASR models.
A more comprehensive evaluation protocol should report WER
and energy efficiency.

5. Conclusions

Deep learning might play an increasing role in the climate
change tragedy. Fortunately, recent studies started to analyze its
environmental cost. In this paper, we extended previous works
by estimating CO2 emissions of SOTA speech recognizers on
common benchmarks. We found that the CO2 emissions gener-
ated by these models are far from being negligible. The carbon
footprint largely depends on the geographic location, the type
of GPU adopted, and increases significantly while performing
hyperparameter tuning. Finally, we showed that very minor im-
provements may be obtained at an extremely high carbon price.
Our findings offer a starting point to stimulate the debate around
the environmental impact of our research efforts. Moreover, ob-
tained results highlight the need for reducing the practice of ac-
cepting or rejecting novel ideas based on the raw performance
metric only.
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