
HAL Id: hal-03190106
https://hal.science/hal-03190106v1

Submitted on 6 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Not Elimination and Witness Generation for JSON
Schema (short version)

Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani,
Stefanie Scherzinger

To cite this version:
Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, Stefanie Scherzinger. Not
Elimination and Witness Generation for JSON Schema (short version). 36ème Conférence sur la
Gestion de Données – Principes, Technologies et Applications., Oct 2020, Paris, France. �hal-03190106�

https://hal.science/hal-03190106v1
https://hal.archives-ouvertes.fr

Not Elimination and Witness Generation for JSON Schema
(short version)

Mohamed-Amine Baazizi
Sorbonne Université, LIP6 UMR 7606

baazizi@ia.lip6.fr

Dario Colazzo
Université Paris-Dauphine, PSL

Research University
dario.colazzo@dauphine.fr

Giorgio Ghelli
Dipartimento di Informatica,

Università di Pisa
ghelli@di.unipi.it

Carlo Sartiani
DIMIE, Università della Basilicata

carlo.sartiani@unibas.it

Stefanie Scherzinger
Universität Passau

stefanie.scherzinger@uni-passau.de

ABSTRACT
JSON Schema is an evolving standard for the description of families
of JSON documents. JSON Schema is a logical language, based on a
set of assertions that describe features of the JSON value under anal-
ysis and on logical or structural combinators for these assertions. As
for any logical language, problems like satisfaction, not-elimination,
schema satisfiability, schema inclusion and equivalence, as well as
witness generation, have both theoretical and practical interest.
While satisfaction is trivial, all other problems are quite difficult,
due to the combined presence of negation, recursion, and complex
assertions in JSON Schema. To make things even more complex
and interesting, JSON Schema is not algebraic, since we have both
syntactic and semantic interactions between different keywords in
the same schema object.

With such motivations, we present in this paper an algebraic
characterization of JSON Schema, obtained by adding opportune
operators, and by mirroring existing ones. We present then algebra-
based approaches for dealing with not-elimination and witness
generation problems, which play a central role as they lead to
solutions for the other mentioned complex problems.

KEYWORDS
JSON Schema, negation, witness generation

1 INTRODUCTION
JSON Schema [2] is an evolving standard for the description of
families of JSON documents. It is maintained by the Internet Engi-
neering Task Force IETF [1]. Its latest version has been produced
on 2019-09 [9] but is not widely used compared to the intermediate
Draft-06.

JSON Schema uses the JSON syntax. Each construct is defined
using a JSON object with a set of fields describing assertions relevant
for the values being described. Some assertions can be applied to
any JSON value type (e.g., type), while others are more specific (e.g.,
multipleOf that applies to numeric values only). The syntax and
semantics of JSON Schema have been formalized in [8] following the

© 2020, Copyright is with the authors. Published in the Proceedings of the BDA
2020 Conference (October 27-29, 2020, En ligne, France). Distribution of this paper is
permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0.
© 2020, Droits restant aux auteurs. Publié dans les actes de la conférence BDA 2020
(27-29 octobre 2020, En ligne, France). Redistribution de cet article autorisée selon les
termes de la licence Creative Commons CC-by-nc-nd 4.0.

specification of Draft-04. We limit ourself to an informal discussion
revealing the possible constraints associated to each kind of type:

• when defining a string, it is possible to restrict its length by
specifying the minLength and maxLength constraints and to
define the pattern that the string should match;

• when defining a number, it is possible to define its range
of values by specifying any combination of minimum / ex-
clusiveMinimum and maximum / exclusiveMaximum, and to
define whether it should be multipleOf a given number;

• when defining an object, it is possible to define its properties,
the type of its additionalProperties and the type of the prop-
erties matching a given pattern (i.e. patternProperties). It is
also possible to restrict the minimum and maximum number
of properties using minProperties and maxProperties, and to
indicate which properties are required;

• when defining an array, it is possible to define the type of
its items and the type of the additionalItems which were not
already defined by items, and to restrict the minimum and
maximum size of the array; moreover, it is also possible to
enforce unicity of the items using uniqueItems.

JSON Schema is a logical language allowing for combining asser-
tions using standard boolean connectives: not for negation, allOf
for conjunction, anyOf for disjunction, and oneOf for exclusive
disjunction. As for any logical language, the following problems
have a theoretical and practical interest:

• satisfaction 𝐽 ⊨ 𝑆 : does a JSON document 𝐽 satisfy schema 𝑆?
• not-elimination: is it possible to rewrite a schema to an equiv-
alent form without negation?

• satisfiability of a schema: does a document 𝐽 exist such that
𝐽 ⊨ 𝑆?

• schema inclusion 𝑆 ⊆ 𝑆 ′: does, for each document 𝐽 , 𝐽 ⊨
𝑆 ⇒ 𝐽 ⊨ 𝑆 ′?

• schema equivalence 𝑆 ≡ 𝑆 ′: does, for each document 𝐽 , 𝐽 ⊨
𝑆 ⇔ 𝐽 ⊨ 𝑆 ′?

• witness generation: is there an algorithm to generate one
element 𝐽 for any non-empty schema 𝑆?

While satisfaction is trivial, all other problems are quite difficult,
due to the combined presence of negation, recursion, and complex
assertions.

A second aspect that makes the task difficult is the non-algebraic
nature of JSON Schema. A language is “algebraic” when the ap-
plicability and the semantics of its operators only depends on the

BDA ’20, October 2020, Paris Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger

semantics of their operands. In this sense, JSON Schema is not
algebraic, since we have both syntactic and semantic interactions
between different keywords in the same schema object, such as the
prohibition to repeat a keyword inside a schema object, or the inter-
actions between the “properties” and “additionalProperties”
keywords. For instance, the following schema1 demands that any
properties other than foo and bar must have boolean values.

{ "properties": {"foo": {}, "bar": {}},
"additionalProperties": {"type": "boolean"} }

Such features complicate the tasks of reasoning about the lan-
guage and of writing code for its manipulation.

2 SUMMARY OF CONTRIBUTIONS
JSON Algebra. We define a core algebra, which features a subset
of JSON Schema assertions. This algebra is minimal, that is, no
operator can be defined starting from the others.

Not elimination. We show that negation cannot be eliminated from
JSON Schema, since there are some assertions whose complement
cannot be expressed without negation such as uniqueItems or
multipleOf. We enrich the core algebra with primitive operators
to express those missing complementary operators, and we present
a not elimination algorithm for the enriched algebra. To our knowl-
edge, this is the first paper where not elimination is completely
defined, with particular regard to the treatment of negation and
recursion.

Witness generation. We define an approach for witness generation
for the complete JSON Schema language, with the only exception
of the uniqueItems operator, hence solving the satisfiability and
inclusion problems for this sublanguage.

For space reasons, many details and formal aspects presented
in the complete report [4] are not reported here, including the ex-
tension to uniqueItems for witness generations. The presentation
of several steps (especially for witness generation) is driven/based
by/on examples.

Also, we would like to stress that results presented in this paper
takes part of research activities [4] that are still in progress. So our
main aim here is to present existing results, mainly at the definition
and formalisation level of algorithms.

3 RELATEDWORK
The first effort to formalize the semantics of JSON Schema as by
Pezoa et al. in [8] whose goal was to lay the foundations of the JSON
schema proposal by studying its expressive power and the complex-
ity of the validation problem. Along the lines of this work, Bouhris
et al. [6] characterized the expressivity of the JSON Schema lan-
guage and investigated the complexity of the satisfiability problem
which turns out to be 2EXPTIME in the general case and EXPSPACE
when disallowing uniqueItems. None of the above works study the
problem of generating an instance of a JSON Schema. The only
attempt to solve this problem was investigated by Earle et. al [5]
in the context of testing REST API calls but the presented solution,
which is based on translating JSON Schema definitions into an
Erlang expression, is not formally defined and restricted to atomic
values, objects and to some form of boolean expressions.
1Example available at [3].

From the point of view of schema normalization, the closest work
to ours is the one in [7] which studies schema inclusion for JSON
Schema. To cope with the high expressivity of the JSON Schema
language, a pre-requisite step is needed to rewrite the schemas into
a Disjunctive Normal Form which has some similarities with the
preparation phase of our work. However, compared to our work,
the schema normalization in [7] lacks the ability of eliminating
negation for all kinds constraints, does not deal with recursive
definitions and is not able to decide schema satisfiability which
is captured by the inhabited() predicate whose specification is
only informally discussed. This has been confirmed in practice
by experimenting the tool developed in [7] for parsing real world
schemas described in [4]: the tool raised an issue for 21,859 out of
23,480 input schemas. The dominating error is related to constructs
not being supported, but many other errors due to the inability to
parse recursive schemas or to navigate references are present.

4 CONCLUSION
JSON Schema is an evolving standard for the description of fam-
ilies of JSON documents, and is widely used in data-centric ap-
plications. Despite the recent interest in the research community
related to this schema language, crucial problems like schema equiv-
alence/inclusion and consistency have either been partially dealt
with or not explored at all. In this work we present our approach in
order to solve these problems, based on our algebraic specification
of JSON Schema. We are currently finalizing a Java implementation
of the presented algorithm, and studying optimisation techniques,
by analysing a large repository of JSON Schemas allowing us for
determining how often mechanisms that are critical for execution
times are used. We are also investigating witness generation tech-
niques able to generate several instances meant be used for testing
queries and programs manipulating valid JSON data.

ACKNOWLEDGEMENTS
The research has been partially supported by theMIUR project PRIN
2017FTXR7S “IT-MaTTerS” (Methods and Tools for Trustworthy
Smart Systems).

REFERENCES
[1] Internet engineering task force, 2020. Available at https://www.ietf.org.
[2] Json schema, 2020. Available at https://json-schema.org.
[3] Json schema test suite, 2020. https://github.com/json-schema-org/JSON-Schema-

Test-Suite/blob/master/tests/draft6/additionalProperties.json.
[4] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Ste-

fanie Scherzinger. Not elimination and witness generation for json schema. 2020.
Available at https://webia.lip6.fr/~baazizi/rs/js/dism/witnessgen.pdf.

[5] Clara Benac Earle, Lars-Åke Fredlund, Ángel Herranz, and Julio Mariño. Jsongen:
a quickcheck based library for testing json web services. In Proceedings of the
Thirteenth ACM SIGPLAN workshop on Erlang, pages 33–41, 2014.

[6] Pierre Bourhis, Juan L. Reutter, Fernando Suárez, and Domagoj Vrgoc. JSON: data
model, query languages and schema specification. In Emanuel Sallinger, Jan Van
den Bussche, and Floris Geerts, editors, PODS, pages 123–135. ACM, 2017.

[7] Andrew Habib, Avraham Shinnar, Martin Hirzel, and Michael Pradel. Type safety
with json subschema, 2019.

[8] Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Martín Ugarte, and Domagoj Vrgoč.
Foundations of json schema. In WWW ’16, pages 263–273, 2016.

[9] A. Wright, H. Andrews, and B. Hutton. JSON Schema validation: A vocabulary for
structural validation of json - draft-handrews-json-schema-validation-02. Techni-
cal report, Internet Engineering Task Force, sep 2019.

https://www.ietf.org
https://json-schema.org
https://github.com/json-schema-org/JSON-Schema-Test-Suite/blob/master/tests/draft6/additionalProperties.json
https://github.com/json-schema-org/JSON-Schema-Test-Suite/blob/master/tests/draft6/additionalProperties.json
https://webia.lip6.fr/~baazizi/rs/js/dism/witnessgen.pdf

	Abstract
	1 Introduction
	2 Summary of Contributions
	3 Related Work
	4 Conclusion
	References

