
HAL Id: hal-03190032
https://hal.science/hal-03190032v1

Submitted on 5 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Batch-Incremental Classification Using UMAP
for Evolving Data Streams

Maroua Bahri, Bernhard Pfahringer, Albert Bifet, Silviu Maniu

To cite this version:
Maroua Bahri, Bernhard Pfahringer, Albert Bifet, Silviu Maniu. Efficient Batch-Incremental Clas-
sification Using UMAP for Evolving Data Streams. IDA 2020 - 18th International Symposium on
Intelligent Data Analysis, Apr 2020, Konstanz / Virtual, Germany. pp.40-53, �10.1007/978-3-030-
44584-3_4�. �hal-03190032�

https://hal.science/hal-03190032v1
https://hal.archives-ouvertes.fr


Efficient Batch-Incremental Classification Using
UMAP for Evolving Data Streams?

Maroua Bahri1,3, Bernhard Pfahringer2, Albert Bifet1,2, and Silviu Maniu3,4,5

1 LTCI, Télécom Paris, IP-Paris, Paris, France
{maroua.bahri,albert.bifet}@telecom-paris.fr

2 University of Waikato, Hamilton, New Zealand bernhard@waikato.ac.nz
3 Université Paris-Saclay, LRI, CNRS, Orsay, France

silviu.maniu@lri.fr
4 Inria, Paris, France

5 ENS DI, CNRS, École Normale Supérieure, Université PSL, Paris, France

Abstract. Learning from potentially infinite and high-dimensional data
streams poses significant challenges in the classification task. For instance,
k-Nearest Neighbors (kNN) is one of the most often used algorithms in the
data stream mining area that proved to be very resource-intensive when
dealing with high-dimensional spaces. Uniform Manifold Approximation
and Projection (UMAP) is a novel manifold technique and one of the
most promising dimension reduction and visualization techniques in the
non-streaming setting because of its high performance in comparison
with competitors. However, there is no version of UMAP that copes with
the challenging context of streams. To overcome these restrictions, we
propose a batch-incremental approach that pre-processes data streams
using UMAP, by producing successive embeddings on a stream of disjoint
batches in order to support an incremental kNN classification. Experi-
ments conducted on publicly available synthetic and real-world datasets
demonstrate the substantial gains that can be achieved with our proposal
compared to state-of-the-art techniques.

Keywords: Data stream · k-Nearest Neighbors · dimension reduction · UMAP.

1 Introduction

With the evolution of technology, several kinds of devices and applications are
continuously generating large amounts of data in a fast-paced way as streams.
Hence, the data stream mining area has become indispensable and ubiquitous in
many real-world applications that require real-time –or near real-time– processing,
e.g., social networks, weather forecast, spam filters, and more. Unlike traditional
datasets, the dynamic environment and the tremendous volume of data streams
make them impossible to store or to scan multiple times [12].

? This work was done in the context of IoTA AAP Emergence DigiCosme Project and
was funded by Labex DigiCosme.



2 M. Bahri et al.

Classification is an active area of research in data stream mining field where
several researchers are paying attention to develop new – or improve existing–
algorithms [14]. However, the dynamic nature of data streams has outpaced
the capability of traditional classification algorithms to process data streams.
In this context, a multitude of supervised algorithms for static datasets that
have been widely studied in the offline processing, and proved to be of limited
effectiveness on large data, have been extended to work within a streaming
framework [3,5,11,18]. Data stream mining approaches can be divided into two
main types [23]: (i) instance-incremental approaches which update the model
with each instance as soon as it arrives, such as Self-Adjusting Memory kNN
(samkNN) [18], and Hoeffding Adaptive Tree (HAT) [4]; and (ii) batch-incremental
approaches which make no change/increment to their model until a batch is
completed, e.g., support vector machines [10], and batch-incremental ensemble
of decision trees [15]. Nevertheless, the high dimensionality of data complicates
the classification task for some algorithms and increases their computational
resources, most notably the k-Nearest Neighbors (kNN) because it needs the
entire dataset to predict the labels for test instances [23]. To cope with this
issue, a promising approach is feature transformation which transforms the input
features into a new set of features, containing the most relevant components, in
some lower-dimensional space.

In attempt to improve the performance of kNN, we incorporate a batch-
incremental feature transformation strategy to tackle potentially high-dimensional
and possibly infinite batches of evolving data streams while ensuring effectiveness
and quality of learning (e.g. accuracy). This is achieved via a new manifold
technique that has attracted a lot of attention recently: Uniform Manifold
Approximation and Projection (UMAP) [21], built upon rigorous mathematical
foundations, namely Riemannian geometry. To the best of our knowledge, no
incremental version of UMAP exists which makes it not applicable on large
datasets. The main contributions are summarized as follows:

– Batch-Incremental UMAP : a new batch-incremental novel manifold learning
technique, based on extending the UMAP algorithm to data streams.

– UMAP-kNearest Neighbors (UMAP-kNN): a new batch-incremental kNN
algorithm for data streams classification using UMAP.

– Empirical experiments : we provide an experimental study, on various datasets,
that discusses the implication of parameters on the algorithms performance;

The paper is organized as follows. Section 2 reviews the prominent related
work. Section 3 provides the background of UMAP, followed by the description of
our approach. In Section 4 we present and discuss the results of experiments on
diverse datasets. Finally, we draw our conclusions and present future directions.

2 Related Work

Dimensionality reduction (DR) is a powerful tool in data science to look for
hidden structure in data and reduce the resources usage of learning algorithms.



Batch-Incremental Classification Using UMAP for Data Streams 3

The problem of dimensionality has been widely studied [25] and used throughout
different domains, such as image processing and face recognition. Dimensionality
reduction techniques facilitate the classification task, by removing redundancies
and extracting the most relevant features in the data, and permits a better data
visualization. A common taxonomy divides these approaches into two major
groups: matrix factorization and graph-based approaches.

Matrix factorization algorithms require matrix computation tools, such as
Principal Components Analysis (PCA) [16]. It is a well-known linear technique
that uses singular value decomposition and aims to find a lower-dimensional basis
by converting the data into features called principal components by computing
the eigenvalues and eigenvectors of a covariance matrix. This straightforward
technique is computationally cheap but ineffective with data streams since it
relies on the whole dataset. Therefore, some incremental versions of PCA have
been developed to handle streams of data [13,24,26].

Graph/Neighborhood-based techniques are leveraged in the context of dimen-
sion reduction and visualization by using the insight that similar instances in a
large space should be represented by close instances in a low-dimensional space,
whereas dissimilar instances should be well separated. t-distributed Stochastic
Neighbor Embedding (tSNE) [20] is one of the most prominent DR techniques in
the literature. It has been proposed to visualize high-dimensional data embedded
in a lower space (typically 2 or 3 dimensions). In addition to the fact that it
is computationally expensive, tSNE does not preserve distances between all
instances and can affect any density–or distance– based algorithm and hence
conserves more of the local structure than the global structure.

3 Batch-Incremental Classification

In the following, we assume a data stream S is a sequence of instances X1, . . . , XN ,
where N denotes the number of available observations so far. Each instance Xi

is composed of a vector of d attributes Xi = (x1
i , . . . , x

d
i ). The dimensionality

reduction of S comprises the process of finding a low-dimensional presentation
S′ = Y1, . . . , YN , where Yi = (y1i , . . . , y

p
i ) and p� d.

3.1 Prior Work

Unlike tSNE [20], UMAP has no restriction on the projected space size making
it useful not only for visualization but also as a general dimension reduction
technique for machine learning algorithms. It starts by constructing open balls over
all instances and building simplicial complexes. Dimension reduction is obtained
by finding a representation, in a lower space, that closely resembles the topological
structure in the original space. Given the new dimension, an equivalent fuzzy
topological representation is then constructed [21]. Then, UMAP optimizes it by
minimizing the cross-entropy between these two fuzzy topological representations.
UMAP offers better visualization quality than tSNE by preserving more of the
global structure in a shorter running time. To the best of our knowledge, none



4 M. Bahri et al.

of these techniques has a streaming version. Ultimately, both techniques are
essentially transductive6 and do not learn a mapping function from the input
space. Hence, they need to process all the data for each new unseen instance,
which prevents them from being usable in data streams classification models.

(a) (b) (c)

(d) (e) (f)

Fig. 1: Projection of CNAE dataset in 2-dimensional space. Offline: (a) UMAP,
(b) tSNE, and (c) PCA. Batch-incremental: (d) UMAP, (e) tSNE, and (f) PCA.

Figure 1 shows the projection of CNAE dataset (see Table 1) into 2-dimensions
in an offline/online fashions where each color represents a label. In Figure 1a, we
note that UMAP offers the most interesting visualization while separating classes
(9 classes). The overlap in the new space, for instance with tSNE in Figure 1b,
can potentially affect later classification task, notably distance-based algorithms,
since properties like global distances and density may be lost. On the other hand,
linear transformation, such as PCA, cannot discriminate between instances which
prevents them from being represented in the form of clusters (Figure 1c). To
motivate our choice, we project the same dataset using our batch-incremental
strategy (more details in Section 3.2). Figure 1d illustrates the change from the
offline UMAP representation; this is not as drastic as the ones engendered by
tSNE and PCA (Figures 1e and 1f, respectively) showing their limits on capturing
information from data that arrives in a batch-incremental manner.

6 Transductive learning consists on learning on a full given dataset (including unknown
label), but prediction is only made on the known set of unlabeled instances from the
same dataset. This is achieved by clustering data instances.



Batch-Incremental Classification Using UMAP for Data Streams 5

3.2 Algorithm Description

A very efficient and simple scheme in supervised learning is lazy learning [1].
Since lazy learning approaches are based on distances between every pair of
instances, they unfortunately have a low performance in terms of execution time.
The k-Nearest Neighbors (kNN) is a well-known lazy algorithm that does not
require any work during training, so it uses the entire dataset to predict labels for
test instances. However, it is impossible to store an evolving data stream which
is potentially infinite – nor to scan it multiple times – due to its tremendous
volume. To tackle this challenge, a basic incremental version of kNN has been
proposed which uses a fixed-length window that slides through the stream and
merges new arriving instances with the closest ones already in the window [23].

To predict the class label for an incoming instance, we take the majority
class labels of its nearest neighbors inside the window using a defined distance
metric (Equation 2). Since we keep the recent arrived instances inside the sliding
window for prediction, the search for the nearest neighbors is still costly in terms
of memory and time [3,7] and high-dimensional streams require further resources.

Given a window w, the distance between Xi and Xj is defined as follows:

DXj (Xi) =
√
‖Xi −Xj‖2. (1)

Similarly, the k-Nearest Neighbors distance is defined as follows:

Dw,k(Xi) = min
(w
k),Xj∈w

∑k

j=1
DXj

(Xi), (2)

where
(
w
k

)
denotes the subset of the kNN to Xi in w.

When dealing with high-dimensional data, a pre-processing phase before
applying a learning algorithm is imperative to avoid the curse of dimensionality
from a computational point of view. The latter may increase the resources usage
and decrease the performance of some algorithms, such as kNN. The main idea
to mitigate this curse consists of using an efficient strategy with consistent and
promising results such as UMAP.

Since UMAP is a transductive technique, an instance-incremental learning
approach that includes UMAP does not work because the entire stream needs to
be processed for each new incoming instance. By doing it this way, the process
will be costly and will not respond to the streaming requirements. To alleviate
the processing cost considering the framework within which several challenges
shall be respected, including the memory constraint and the incremental behavior
of data, we adopt a batch-incremental strategy. In the following, we introduce
the procedure of our novel approach, batch-incremental UMAP-kNN.
Step 1: Partition of the stream. During this step, we assume that data arrive
in batches – or chunks – by dividing the stream into disjoint partitions S1, S2, . . .
of size s. The first part of Figure 2 shows a stream of instances divided into
batches, so instead of having instances available one at a time, they will arrive
as a group of instances simultaneously, S1, . . . , Sq, where Sq is the qth chunk. A



6 M. Bahri et al.

X1 X2X3 X4 X5X6X7X8 X9X10X11X12
... Xr Xr+1Xr+2Xr+3 ∊ℝd

Y1 Y2Y3 Y4 Y5Y6Y7Y8 Y9Y10Y11Y12
... Yr Yr+1Yr+2Yr+3 ∊ℝp

T1 T2 T3 Tq

Y1 Y2

Y1 Y2Y3

Y1 Y2Y3 Y4

Y1 Y2Y3 Y4 Y5Y6

Y1 Y2Y3 Y4 Y5Y6Y7

Y8
Y1 Y2Y3 Y4 Y5Y6Y7 ...

Y8
Y1 Y2Y3 Y4 Y5Y6Y7 Y9Y10Y11Y12 ... Yr Yr+1Yr+2Yr+3

kNN

Fig. 2: Batch-incremental UMAP-kNN scheme

simple example of data stream is a video sequence where at each instant we have
a succession of images.

Step 2: Data pre-processing. We aim to construct a low-dimensional Yi ∈ p,
from an infinite stream of high-dimensional data Xi ∈ d, where p � d. As
mentioned before, UMAP is unable to compress data incrementally and needs to
transform more than one observation at a time because it builds a neighborhood-
graph on a set of instances and then lays it out in a lower dimensional space [21].
Thus, our proposed approach operates on batches of the stream where a single
batch Si of data is processed at a time Ti. The two first steps in Figure 2 depict
the application of UMAP on the disjoint batches. Once a batch is complete,
throughout the second step, we apply UMAP on it independently from the
chunks that have been already processed, so each Si ∈ Rd will be transformed
and represented by Si

′ ∈ Rp. This new representation is very likely devoid
of redundancies, irrelevant attributes, and is obtained by finding potentially
useful non-linear combinations of existing attributes, i.e. by repacking relevant
information of the larger feature space and encoding it more compactly.

For UMAP to learn when moving from a batch to another, we seed each
chunk’s embedding with the outcome of the previous one, i.e., match the prior
initial coordinates for instances in the current embedding to the final coordinates
in the preceding one. This will help to avoid losing the topological information of
the stream and to keep stability in successive embeddings as we transition from
one batch to its successor. Afterwards, we use the compressed representation
of the high-dimensional chunk for the next step that consists in supporting the
incremental kNN classification algorithm.

Step 3: kNN classification. UMAP-kNN aims to decrease the computational
costs of kNN on high-dimensional data stream by reducing the input space size
using the dimension reducing UMAP, in a batch-incremental way. In addition to



Batch-Incremental Classification Using UMAP for Data Streams 7

the prediction phase of the kNN algorithm that, based on the neighborhood7,
UMAP operates on a k-nearest graph (topological representation) as well and
optimizes the low-dimensional representation of the data using gradient descent.
One nice takeaway is that UMAP, because of its solid theoretical backing as
a manifold technique, keeps properties such as density and pairwise distances.
Thus, it does not bias the neighborhood-based kNN performance.

This step consists of classifying the evolving data stream, where the learning
task occurs on consecutive batches, i.e. we train incrementally kNN with instances
becoming successively available in chunk buffers after pre-processing. Figure 2
shows the underlying batch-incremental learning scheme used which is built
upon the divide-and-conquer strategy. Since UMAP is independently applied to
batches, so once a chunk is complete and has been transformed in Rp, we feed
the half of the batch to the sliding window and we predict incrementally the class
label for the second half (the rest of instances).

Given that kNN is adaptive, the main novelty of UMAP-kNN is in how it
merges the current batch to previous ones. This is done by adding it to the
instances from previous chunks inside the kNN window. Even if past chunks
have been discarded, only some of them have been stored and maintained while
the adaptive window scrolls. Thereafter, instances kept temporarily inside the
window are going to be used to define the neighborhood and predict the class
labels for later incoming instances. As presented in Figure 2, the intuitive idea to
combine results from different batches is to use the half of each batch for training
and the second half for prediction. In general, due to the possibility of having
often very different successive embeddings, one would expect that this may affect
the global performance of our approach. Thus, we adopt this scheme to maintain
a stability over an adaptive batch-incremental manifold classification approach.

4 Experiments

In this section, we present a series of experiments carried out on various datasets
based on three main results: the accuracy, the memory (MB), and the time (Sec).

4.1 Datasets

We use 3 synthetic and 6 real-world datasets from different scenarios that have
been thoroughly used in the literature to evaluate the performance of data streams
classifiers. Table 1 presents a short description of each dataset, and further details
are provided in what follows.

Tweets. The dataset was created using the tweets text data generator pro-
vided by MOA [6] that simulates sentiment analysis on tweets, where messages
can be classified depending on whether they convey positive or negative feelings.
Tweets1,2,3 produce instances of 500, 1,000 and 1,500 attributes respectively.

7 The distances between the new incoming instance and the instances already available
inside the adaptive window are computed in order to assign it to a particular class.



8 M. Bahri et al.

Har . Human Activity Recognition dataset [2] built from several subjects
performing daily living activities, such as walking, sitting, standing and laying,
while wearing a waist-mounted smartphone equipped with sensors. The sensor
signals were pre-processed using noise filters and attributes were normalized.

CNAE . CNAE is the national classification of economic activities dataset [9].
Instances represent descriptions of Brazilian companies categorized into 9 classes.
The original texts were pre-processed to obtain the current highly sparse data.

Enron . The Enron corpus dataset is a large set of email messages that was
made public during the legal investigation concerning the Enron corporation [17].
This cleaned version of Enron consists of 1, 702 instances and 1, 000 attributes.

Table 1: Overview of the datasets
Dataset #Instances #Attributes #Classes Type
Tweets1 1,000,000 500 2 Synthetic
Tweets2 1,000,000 1,000 2 Synthetic
Tweets3 1,000,000 1,500 2 Synthetic
Har 10,299 561 6 Real
CNAE 1,080 856 9 Real
Enron 1,702 1,000 2 Real
IMDB 120,919 1,001 2 Real
Nomao 34,465 119 2 Real
Covt 581,012 54 7 Real

IMDB . IMDB movie reviews dataset was proposed for sentiment analysis [19],
where each review is encoded as a sequence of word indexes (integers).

Nomao. Nomao dataset [8] was provided by Nomao Labs where data come
from several sources on the web about places (name, address, localization, etc).

Covt . The forest covertype dataset obtained from US forest service resource
information system data where each class label presents a different cover type.

4.2 Results and Discussions

We compare our proposed classifier, UMAP-kNN, to various commonly-used base-
line methods in dimensionality reduction and machine learning areas. PCA [24],
tSNE (fixing the perplexity to 30, which is the best value as reported in [20]),
SAM-kNN (SkNN) [18]. We use HAT, a classifier with a different structure based
on trees [4], to assess its performance with the neighborhood-based UMAP. For
fair comparison, we compare the performance of UMAP-kNN approach with a
competitor using UMAP as well in the same batch-incremental manner. Actually,
incremental kNN has two crucial parameters: (i) the number of neighbors k fixed
to 5; and (ii) the window size w, that maintains the low-dimensional data, fixed
to 1000. According to previous studies such as [7], a bigger window will increase
the resources usage and smaller size will impact the accuracy.

The experiments were conducted on a machine equipped with an Intel Core
i5 CPU and 4 GB of RAM. All experiments were implemented and evaluated in
Python by extending the Scikit-multiflow framework8 [22].

8 https://scikit-multiflow.github.io/



Batch-Incremental Classification Using UMAP for Data Streams 9

100 200 300 400 500
Chunk size

30

40

50

60

70

80

90

100

A
cc

ur
ac

y

(a)

10 15 20 25 30
Number of neighbors

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y

(b)

Fig. 3: (a) Varying the chunk size. (b) Varying the neighborhood size for UMAP.

Figure 3a depicts the influence of the chunk size on the accuracy using UMAP-
kNN with some datasets. Generally, fixing the chunk size imposes the following
dilemma: choosing a small size so that we obtain an accurate reflection of the
current data or choosing a large size that may increase the accuracy since more
data are available. The ideal would be to use a batch with the maximum of
instances to represent as possible the whole stream. In practice, the chunk size
needs to be small enough to fit in the main memory otherwise the running time
of the approach will increase. Since UMAP is relatively slow, we choose small
chunk sizes to overcome this issue with UMAP-kNN. Based on the obtained
results, we fix the chunk size to 400 for the best trade-off accuracy-memory.

We investigate the behavior of a crucial parameter that controls UMAP,
number of neighbors, via the classification performance of our approach. Based
on the size of the neighborhood, UMAP constructs the manifold and focuses on
preserving local and global structures. Figure 3b shows the accuracy when the
number of neighbors is varied on diverse datasets. We notice that for all datasets,
the accuracy is consistently the same with no large differences, e.g. Har. Since a
large neighborhood leads to a slower learning process, in the following we fix the
neighborhood size to 15.

Tweet
1
Tweet

2
Tweet

3
Har CNAE Enron IMDB Nomao Covt

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y

(a)

Tweet 1Tweet 2Tweet 3 Har CNAE Enron IMDB Nomao Covt
0

1000

2000

3000

4000

5000

6000

7000

8000

M
em

or
y

(b)

Tweet
1
Tweet

2
Tweet

3
Har CNAE Enron IMDB Nomao Covt

10 0

10 1

10 2

10 3

10 4

10 5

10 6

T
im

e

(c)

Fig. 4: Comparison of UMAP-kNN, tSNE-kNN, PCA-kNN, and kNN (with the
entire datasets) while projecting into 3-dimensions: (a) Accuracy. (b) Memory.



10 M. Bahri et al.

tSNE is a visualization technique, so we are limited to project high-dimensional
data into 2 or 3 dimensions. In order to evaluate the performance of our proposal
in a fair comparison against each of tSNE-kNN and PCA-kNN, we project data
into 3-dimensional space. We illustrate in Figure 4a that UMAP-kNN makes
significantly more accurate predictions beating consistently the best performing
baselines (tSNE-kNN and PCA-kNN) notably with CNAE and the tweets datasets.
Figure 4b depicts the quantity of memory needed by the three algorithms which
is practically the same for some datasets. Compared to kNN that uses the whole
data without projection, we notice that UMAP-kNN consumes much less memory
whilst sacrificing a bit in accuracy because we are removing many attributes.
Figure 4c shows that our approach is consistently faster than tSNE-kNN because
tSNE computes the distances between every pair of instances to project. But
PCA-kNN is a bit faster thanks to the simplicity of PCA. But with this trade-off
our approach performs good on almost all datasets.

Table 2: Comparison of UMAP-kNN, PCA-kNN, UMAP-SkNN, and UMAP-
HAT.

Accuracy (%)
Dataset UMAP-kNN PCA-kNN UMAP-SkNN UMAP-HAT
Tweets1 75.71 69.89 75.37 66.47
Tweets2 75.16 69.21 74.40 61.27
Tweets3 71.01 70.81 70.47 66.98
Har 75.30 70.50 64.09 84.89
CNAE 76.67 67.41 75.18 40.18
Enron 92.24 93.41 91.89 91.77
IMDB 67.38 67.28 67.43 64.52
Nomao 91.92 91.13 91.63 83.75
Covt 61.29 66.73 53.08 55.43

Memory (MB)
Dataset UMAP-kNN PCA-kNN UMAP-SkNN UMAP-HAT
Tweets1 1366.71 1354.24 1373.15 2738.32
Tweets2 2530.30 2518.76 2532.95 4891.23
Tweets3 3706.99 3706.55 3722.68 7144.77
Har 311.58 310.48 312.84 381.49
CNAE 254.17 246.94 260.29 262.52
Enron 269.00 267.31 271.56 288.74
IMDB 3012.85 3013.28 3018.04 7471.64
Nomao 289.81 285.50 290.60 508.50
Covt 700.69 689.97 704.46 3788.54

Time (Sec)
Dataset UMAP-kNN PCA-kNN UMAP-SkNN UMAP-HAT
Tweets1 558.56 217.44 1396.32 2163.14
Tweets2 616.50 350.63 908.59 3453.21
Tweets3 667.43 400.62 1066.98 6273.19
Har 75.20 24.37 77.99 82.47
CNAE 8.89 4.81 13.17 19.78
Enron 12.80 9.52 17.26 32.84
IMDB 715.68 407.60 1038.77 4691.07
Nomao 248.79 20.46 327.36 228.00
Covt 2311.21 137.62 3756.41 2297.01

In addition to its good classification performance in comparison with competi-
tors, the batch-incremental UMAP-kNN did a better job of preserving density
by capturing both of global and local structures, as shown in Figure 1d. The
fact that UMAP and kNN are both neighborhood-based methods arises as a
key element in achieving a good accuracy. UMAP has not only the power of



Batch-Incremental Classification Using UMAP for Data Streams 11

visualization but also the ability to reduce the dimensionality of data efficiently
which makes it useful as pre-processing technique for machine learning.

Table 2 reports the comparison of UMAP-kNN against state-of-the-art classi-
fiers. We highlight that our approach performs better on almost all datasets. It
achieves similar accuracies to UMAP-SkNN on several datasets but in terms of
resources, the latter is slower because of its drift detection mechanism. UMAP-
kNN has a better performance than PCA-kNN, e.g. the Tweets datasets at the
cost of being slower. We also observe the UMAP-HAT failed to overcome our
approach (in terms of accuracy, memory, and time) due to the integration of a
neighborhood-based technique (UMAP) to a tree structure (HAT).

Figure 5 reports detailed results for Tweet1 dataset with five output dimen-
sions. Figure 5a exhibits the accuracy of our approach which is consistently above
competitors whilst ensuring stability for different manifolds. Figures 5b and 5c
show that kNN-based classifiers use much less resources than the tree-based
UMAP-HAT. We see that UMAP-kNN requires less time than UMAP-HAT
and UMAP-SkNN to execute the stream but PCA-kNN is fastest thanks to its
simplicity. Still, the gain in accuracy with UMAP-kNN is more significant.

10 20 30 40 50
Dimension

58

60

62

64

66

68

70

72

74

76

78

80

A
cc

ur
ac

y

(a)

10 20 30 40 50
Dimension

1400

1600

1800

2000

2200

2400

2600

2800

3000

M
em

or
y

(b)

10 20 30 40 50
Dimension

0

500

1000

1500

2000

2500

3000

T
im

e

(c)

Fig. 5: Comparison of UMAP-kNN, PCA-kNN, UMAP-SkNN, and UMAP-HAT
over different output dimensions on Tweet1: (a) Accuracy. (b) Memory. (c) Time.

5 Concluding Remarks and Future Work

In this paper, we presented a novel batch-incremental approach for mining data
streams using the kNN algorithm. UMAP-kNN combines the simplicity of kNN
and the high performance of UMAP which is used as an internal pre-processing
step to reduce the feature space of data streams. We showed that UMAP is capable
of embedding efficiently data streams within a batch-incremental strategy in an
extensive evaluation with well-known state-of-the-art algorithms using various
datasets. We further demonstrated that the batch-incremental approach is just
as effective as the offline approach in visualization and its accuracy outperforms
reputed baselines while using reasonable resources.

We would like to pursue our promising approach further to enhance its run-
time performance by applying a fast dimension reduction before using of UMAP.
Another area for future work could be the use of a different mechanism, such as
the application of UMAP for each incoming data inside a sliding window. We
believe that this may be slow but will be suited for instance-incremental learning.



12 M. Bahri et al.

References

1. Aha, D.W.: Lazy learning. Springer (2013)
2. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity

recognition on smartphones using a multiclass hardware-friendly support vector
machine. In: IWAAL. pp. 216–223. Springer (2012)

3. Bahri, M., Maniu, S., Bifet, A.: A sketch-based naive bayes algorithms for evolving
data streams. In: International Conference on Big Data. pp. 604–613. IEEE (2018)

4. Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Interna-
tional Symposium on Intelligent Data Analysis. pp. 249–260. Springer (2009)

5. Bifet, A., Gavaldà, R., Holmes, G., Pfahringer, B.: Machine Learning for Data
Streams: with Practical Examples in MOA. MIT Press (2018)

6. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa: Massive online analysis.
JMLR 11(May), 1601–1604 (2010)

7. Bifet, A., Pfahringer, B., Read, J., Holmes, G.: Efficient data stream classification
via probabilistic adaptive windows. In: SIGAPP. pp. 801–806. ACM (2013)

8. Candillier, L., Lemaire, V.: Design and analysis of the nomao challenge active
learning in the real-world. In: ALRA, Workshop ECML-PKDD. sn (2012)

9. Ciarelli, P.M., Oliveira, E.: Agglomeration and elimination of terms for dimension-
ality reduction. In: ISDA. pp. 547–552. IEEE (2009)

10. Cortes, C., Vapnik, V.: Support-vector networks. ML 20(3), 273–297 (1995)
11. Domingos, P., Hulten, G.: Mining high-speed data streams. In: SIGKDD. pp. 71–80.

ACM (2000)
12. Gama, J., Sebastião, R., Rodrigues, P.P.: Issues in evaluation of stream learning

algorithms. In: SIGKDD. pp. 329–338. ACM (2009)
13. Günter, S., Schraudolph, N.N., Vishwanathan, S.: Fast iterative kernel principal

component analysis. JMLR 8(8), 1893–1918 (2007)
14. Hand, D.J., Mannila, H., Smyth, P.: Principles of data mining. MIT press (2001)
15. Holmes, G., Kirkby, R.B., Bainbridge, D.: Batch-incremental learning for mining

data streams (2004)
16. Hotelling, H.: Analysis of a complex of statistical variables into principal components.

Journal of Educational Psychology 24(6), 417 (1933)
17. Klimt, B., Yang, Y.: The enron corpus: A new dataset for email classification

research. In: ECML. pp. 217–226. Springer (2004)
18. Losing, V., Hammer, B., Wersing, H.: Knn classifier with self adjusting memory for

heterogeneous concept drift. In: ICDM. pp. 291–300. IEEE (2016)
19. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning

word vectors for sentiment analysis. In: ACL-HLT. pp. 142–150. Association for
Computational Linguistics (2011)

20. Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. JMLR 9, 2579–2605 (2008)
21. McInnes, L., Healy, J., Melville, J.: Umap: Uniform manifold approximation and

projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)
22. Montiel, J., Read, J., Bifet, A., Abdessalem, T.: Scikit-multiflow: a multi-output

streaming framework. JMLR 19(1), 2915–2914 (2018)
23. Read, J., Bifet, A., Pfahringer, B., Holmes, G.: Batch-incremental versus instance-

incremental learning in dynamic and evolving data. In: IDA. pp. 313–323 (2012)
24. Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual

tracking. IJCV 77(1-3), 125–141 (2008)
25. Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction

techniques. arXiv preprint arXiv:1403.2877 (2014)
26. Weng, J., Zhang, Y., Hwang, W.S.: Candid covariance-free incremental principal

component analysis. TPAMI 25(8), 1034–1040 (2003)


