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Abstract. We define a relative version of the logic NIL introduced by dwtka, Pawlak and
Vakarelov and we show that satisfiability is not only declddiut also EXPTIME-complete. Such a
logic combines two ingredients that are seldom presentlsamepusly in information logics: frame
conditions involving more than one information relatiordarlative frames. The EXPTIME up-
per bound is obtained by designing a well-suited decisiatgaure based on the nonemptiness
problem of Bichi automata on infinite trees. The paper provides evid#rateBlichi automata on
infinite trees are crucial language acceptors even forivelatformation logics with multiple types
of relations.

Keywords: information logic, relative frame, computational comptexBuchi tree automaton

1. Introduction

Logics for information systems. A formal model of information systems was proposed in a serie
of papers by Wiktor Marek and Zdzistaw Pawlak ([16] and [1@blished later as [18]) and next in the
papers [25] and [26] by Zdzistaw Pawlak. In these papersia Iesgonsidered obtained from the classical
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propositional calculus by assuming that atomic formulagehte form of what is called descriptors
which in the later papers have been identified with attrituatiere pairs. An extension of this formalism
to first-order logic is presented in [19]. A modal approactetasoning in information systems resulted in
various modal systems which are now called informationdsgt he first logics of that family are defined
in [20] published later as [21], and in [22] and [24]. We retiee reader to [23, 7] for a comprehensive
survey of information logics and to [32, 1, 12, 33, 30, 2] forree more recent examples of these logics.
Due to their modal character information logics provide @arfal specification language for expressing
properties of relations among the objects from informasigstems.

In this paper we employ automata-theoretic decision proesito prove complexity results for the
very expressive information logic RNIL that is introducedie paper. Arinformation systen$ can be
viewed as a structur€ = (OB, AT) such thatD B is a non-empty set adbjects AT is a non-empty
set ofattributes and every attribute € AT is a mapping: : OB — P(VAL,) \ {0}, whereV AL,
is a non-empty set ofaluesandP(-) denotes the powerset operator. For every objeand for every
attributea, a(x) can be read as the set of possible values of the attribiatethe objectr. In that setting,
various derived relations between objects can be defined.eédl below some standard relations (see
e.g. [23]). For allzy, 22 € OB, for everyA C AT,

() (z1,z2) € indy iff foreverya € A, a(z1) = a(x2) (indiscernibility),
(1) (z1,z2) € fingy iff foreverya € A, a(z1) C a(x2) (forward inclusion),
(M) (x1,z2) € biny iff for everya € A, a(x2) C a(zy) (backward inclusion),
(IV) (x1,29) € simy iff foreverya € A, a(z1) Na(xa) # 0 (similarity).

Given an information systeri = (OB, AT'), we can define a structuf® B, (Ra) acar), Where
(Ra)acar is a family of relations derived frons. In a more abstract setting, amformation frame
is a pair(W, (Rp)pcrar) such thatiV and PAR are non-empty sets arlR p) pcpar is a family
of binary relations indexed by subsets®#R. More generally, an information frame can be defined
as a set equipped with families of (non necessarily binagigtions. An information logic is usually
defined as a multi-modal logic characterised by a class ofimdtion frames. Since the relations derived
from information systems are constrained between each, dtfeeinformation frames generally satisfy
additional conditions. For example, for eveRye {ind, fin, bin, sim}, we have

Rpug = RpNRg forall P,Q C PAR, and (2)
Rop=W x W. (2)

Moreover, every relatiofR p satisfies certain local conditions: for instance, the fodyaclusion rela-
tions are reflexive and transitive, and the similarity rielag are reflexive and symmetric.

The logic NIL. The information logic NIL (introduced in [24]) is one of theformation logics pro-
posed for reasoning with incomplete information. In 198karfelov [31] provides the first result about
first-order characterization of structures derived froffeimation systems. This has been done in the
case of the semantical structures of NIL. The NIL semanstraictures contain forward and backward
inclusions and the similarity relation. More preciselye tiIL frames are all the structures

(OB, fin(AT), bin(AT), sim(AT))
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derived from some information systef@® B, AT'). In [31], it has been shown that in order to appropri-
ately characterize the relationships between thesegrkatin additional condition (not present in [24])
between forward inclusion and similarity needs to be tak#a account (the forthcoming condition
(N4)). In [4], NIL satisfiability is shown PSPACE-completg designing a Ladner-like algorithm [14]
and it can be viewed as a well-identified fragment of PDL [&tlea 11.4].

Our contribution.  In this paper, we introduce and study the relative versiaNlaf called RNIL, and
we show that the satisfiability problem for the logic RNIL istronly decidable but also EXPTIME-
complete. RNIL extends NIL by allowing families of infornian relations instead of a single relation
per family. This substantial extension leads to technidfficdlties. However, as a gain, the logical
formalism can express more complex properties about irdtion systems. The EXPTIME lower
bound is a consequence of more general results, since RNitaios a universal modal connective
with a family of modal connectives of logic B (see e.g., [2913]). The EXPTIME upper bound is
established by an exponential reduction into the noneragsiproblem for Bchi automata on infinite
trees that is known to be in PTIME (see e.qg., [34, 9]). Thisitegue is nowadays standard for logics
of programs, and it has been applied once before to infoaméigics in [8]. Hence, this paper follows
the automata-based approach introduced in [8] for infoiondbgics and applies it to an information
logic with information frames equipped with more than onmifgt of relations. Moreover, we believe
that the proof techniques presented in the paper can bedrérsgther information logics with different
families of relative frames. That is why, we plan to expldie technical developments in full details to
facilitate further extensions. The complexity jump fromPSCE-completeness of NIL to EXPTIME-
completeness of its relative extension RNIL is the best wehmpe for, since RNIL contains universal
modality with B modal connectives.

Plan of the paper. The paper is structured as follows. Sect. 2 introduces thie RNIL and normal
forms for RNIL formulae. In Sects. 3 and 4 we provide a notiérHmtikka trees for RNIL-models
preparing the automata construction. The satisfiabiligbf@m for the logic RNIL is reduced to the
nonemptiness problem foriBhi automata on infinite trees in Sect. 5. Finally, we givesaoncluding
remarks in Sect. 6.

2. Relative Nondeterministic Information Logic RNIL

2.1. Syntax and Semantics

In this section, we introduce syntax and semantics of thie RYIL. The set of primitive symbols of the
language for RNIL is composed of
e a countably infinite SS{ARPROP = {py, pe, ...} of propositional variables

e a setP of parameter expressionsvhich is the smallest set containing a countably infinite se
PVAR = {Cy,Cy,...} of parameter variablesind is closed under the set-theoretical operators
n,U, —.

The sefOR(RNIL) of RNIL-formulae is defined by the grammar below:
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Pl =g [ ong | [sim(A)g | [fin(A)]g | [bin(A)]g.

wherep € VARPROP andA € P. Throughout the paper, we freely use standard abbrevatieor all
rin {sim, bin, fin} andA € P, an[r(A)]-formulais a formula of the formr(A)]¢. The following is an
example of a (valid) RNIL-formula:

[sim(Ca N —C2)]p = [fin(Cy)]p.

Moreover, for every syntactic obje€l, we write |O| to denote itdength (or sizg, that is the number
of symbol occurrences if viewed as a string. As usualyb(¢) denotes the set gfubformulaeof the
formula¢ (including ¢ itself). For everyX € {PVAR, P}, we writeX(¢) to denote the elements &f
occurring in the formula. Obviously,card(X(¢)) < |¢|. We writemd(¢) to denote thenodal degree
of the formulag, that is the maximum nesting of modal operatorg.in

Definition 2.1. Let PAR be a non-empty set. R-interpretationm is a mapm : P — P(PAR) such
that, for allA, A; € P,

° m(A1 N AQ) = m(Al) N m(AQ),

° m(A1 U AQ) = m(Al) U m(AQ),

[ ] m(—Al) = PAR \ m(Al)

PAR is referred to as a set of parameters, it is a counterparetsehof attributes in information

systems. Given parameter expressidnand B, we write A = B [resp. A C B] iff for every P-
interpretationn, we havemn(A) = m(B) [resp.m(A) C m(B)].

Definition 2.2. An RNIL-modelM is a structure
M = (W, (RE) pcpar, (REY) pcpar, (RE™) pcpar, m),

wherelV and PAR are non-empty sets (set of objects and set of parametepgatesly) and the three
families of binary relations o’ satisfy the conditions below:
(uni) R =W x W forr € {fin, bin, sim},
(inter) Rp,o =RpNRy forall P,Q € PAR andr € {fin, bin, sim},
(NIL) foreveryP C PAR,
(N1) Rin = (RYn)~L, thatisRI is the converse oRY™,
(N2) Rir is reflexive and transitive,
(N3) Rsi™ is reflexive and symmetric,
(N4) if (z,y) € RE™ and(y, z) € R, then(z, z) € R,

Moreover,m is a mappingn : VARPROP U P — P(W) U P(PAR) such thatn(p) C W for every
p € VARPROP, and the restriction ofz to P is aP-interpretation.
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A specific feature of RNIL-models is that the relations arastmined in two ways. For instance,
the binary relatiorR{} is related toRZ™ and RE)™, but R{} is also constrained with the relations in
(R pc par Via the condition(inter).

Consequently, two levels of interpretation are used to ddfie relations in the RNIL-models. On
the one hand, the parameter expressions are interpreteid Wie Boolean algebra

B = (P(PAR),U,Nn,—, PAR,0),

where the non-empty sétA R and the empty set are the unit element and zero elementcteghe On
the other hand, the conditions 6R p) pc par induce a semi-lattice structure 6f= ({Rp : P € B},N)
with the zero elementy x W. All these facts are well-known, see e.g. [7, 5].

Similarly, (Rf};n)PgPAR is an abstraction of the familyfin 1) ac ar derived from information sys-
tems. The adequacy between the class of RNIL-models andnatmon systems follows from the devel-
opments of [31].

Let M = (W, (R‘}n)pgpAR, (R}’}“)pgmg, (RSPi;m)P(;PAR,m> be a model. As usual, we say that
a formulag is satisfied byw € W in M (written M, w = ¢) if the following conditions are satisfied.

M,w Ep iff w € m(p) for p € VARPROP,

M,w | —¢ iff  not M,w = ¢,

MawEPANY iff  M,wkE¢andM,w 9,

M,w = [r(A)]¢ iff  foreveryw € W, if (w,w') € LSINT then M, w' = ¢,
wherer € {fin, bin, sim}.

A formula ¢ is true in a RNIL-model M (written M = ¢) iff for every w € W, M,w = ¢.

A formula ¢ is said to beRNIL-valid iff ¢ is true in every RNIL-model. A formul& is said to be
RNIL-satisfiablaff —¢ is not RNIL-valid. By way of example, for atb andA, the formulae below are
valid:

e [bin(A)][sim(A)][fin(A)]¢ < [sim(A)]o,
e [fin(A)][fin(A)]¢ < [fin(A)]¢,
e ¢ = [bin(A)]-[fin(A)]¢.

Observe that due to conditiginter), RNIL captures intersection of relations. Indeed, let ugenr
Ry for somean(A). Then, for all parameter expressioAsB, we haveRaug = Ra N Rg. By
contrast, complement and union cannot be expressed in Esfashion. Additionally, RNIL contains
the universal modality sincBan_a is precisely the produdt” x 1.

The logic NIL [24, 31] can be seen as a fragment of RNIL resddo formulae with the unique
parameter expressidry, U —C; (interpreted as the full set of parameters).

2.2. Normal Forms for Parameter Expressions

In this section, we recall the notion of a normal form for paeder expressions inspired by the canonical
disjunctive normal form for propositional logic. Such nainfiorms play a special role for the relative
information logics and they are introduced in [13]. Thisheicue has been also useful in showing
decidability of SIM [6] and, EXPTIME-completeness of SIM] [@d of some fragments of Boolean
modal logic BML [15, Sect. 5].
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Let X = {Cy,...,C,} be a set of distinct parameter variables for some 1. For every integer
k €{0,...,2" — 1}, we denote byB; the parameter expressi@h, £ A1 N---N A, where, for every
se{l,...,n}, As = C; if bits(k) = 0 andA; = —C; otherwise, whereit;(k) denotes theth bit
in the binary representation @fwith n bits. SoBs = C; N —Cs N —C3 with n = 3. Although not
essential, the use of binary representation will faciitédie presentation of technical developments. The
setComp(X) of X-componentds defined as follows:

Comp(X) £ {By | ke {0,...,2" — 1}}.

The setComp(X) of X-components enables us to partition every set of paramdteteed, for every
P-interpretationn : P — P(PAR), the family{m(A) | A € Comp(X)} is a partition of PAR [13].
As a consequence, we obtain the following property.

Lemma 2.1. Let A be a parameter expression built over the parameter vasiablg. Then eithelA =
—ANA orthereis aunique non-empty sub$at,, ..., A’} of Comp(X) such thatA = AjU---UA/,.

Lemma 2.1 enables us to define normal forms of parameter &sipress. LetA be a parameter
expression built from the resourcesin The normal form ofA, Nx(A), is defined as follows:

if A= (AN—A);

Nx(A) Z
X {Bkl,,Bku}lfAEBkIUUBku

Observe that there exists an effective procedure that cteapu (A) in exponential-time irA| + n.
Moreover, itis known that, for all parameter expressiaAnB built from the resources i, we haveA =

B iff Nx(A) = Nx(B). This normal form is not thought to be applied to all parametgressions in

a RNIL-formula to be tested for satisfiability (since thiswaobviously yield an exponential blow-up),
but it is used in the following section to decide the implioatrelation between parameter expressions,
as also done in [8]. Obviously, for all& {fin,bin,sim}, ¢ andA,B € P, A = B implies that
[r(A)]o < [r(B)]¢is valid.

3. Symbolic Representation of States

In this section, we define the notion of symbolic states whégtesent objects in RNIL-models. In Defi-
nition 3.1 below, we introduce a closure operator for seRMIL-formulae as it is done for Propositional
Dynamic Logic PDL by Fischer and Ladner in [10].

Definition 3.1. Given a setX of RNIL-formulae, letcl(X') be the smallest set of formulae such that:

(CL1) X C cl(X),

(CL2) if —¢ € cl(X), theng € cl(X),

(CL3) if ¢1 A @2 € cl(X), thengy, 2 € cl(X),

(CL4) if [r(A)]¢ € cl(X), theng € cl(X),

(CL5) if [sim(A)]¢ € cl(X) and¢ is not a[fin(A)]-formula, thenbin(A)][sim(A)][fin(A)]¢ € cl(X),
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(CL6) if [sim(A)][fin(A)]¢ € cl(X), then[bin(A)][sim(A)][fin(A)]¢ € cl(X).

Consequently, ifsim(A)]¢ € cl(X) and¢ is not a[fin(A)]-formula, then[fin(A)]¢ € cl(X). A
set X of formulae is said to belosediff cI(X) = X. For any finite setX of formulae, we have
md(cl(X)) < md(X) + 2.

Lemma 3.1. Let ¢ be a RNIL-formula. Thengard(cl({¢})) < 4 x |¢|.

E(re?;:b(@ be the set of subformulae of the formyglaObviously,sub(¢) C cl({¢}). Moreovercl({¢})
is the union of the following sets:

sub(¢),

- {[bin(A)][sim(A)][fin(A)]¢) : [sim(A)][fin(A)]¢ € sub(¢)},

- {[bin(A)][sim(A)][fin(A)]4) : [sim(A)]¢ € sub(¢), ¢ # [fin(A)]¢'},

- {lsim(A)][fin(A)]¢ : [sim(A)]¢ € sub(¢), ¢ # [fin(A)]y'},

- A{lfin(A)]¢ : [sim(A)]¢) € sub(¢), ¢ # [fin(A)]¢'}.

Each set above is of the cardinality at mestd(sub(¢)) and a formula irsub(¢) can generate at most
three other formulae inl({¢}). Socard(cl({¢})) < 4 x |¢], sincecard(sub(¢)) < || 0

g A W N P
0,

Only consistent subsets ol ¢) are useful for checking satisfiability. Definition 3.2 indeces local
consistency whose modal part is based on the valid form@bmsw(r € {sim, fin, bin}, v» andA € P):

o [r(A)]Y =1,

o [sim(A)]y = [bin(A)][sim(A)][fin(A)].
Definition 3.2. Let X be a subset ofl({¢}) for some formulap. The setX is said to bdocally RNIL-
consistentff each € sub(¢) satisfies the following conditions:
(LOC1) if ¢ = —p, thenp € X iff ¢ & X,
(LOC2) if 1 = @1 A 2, then{p1, p2} C X iff ¢ € X,
(LOC3) if v = [r(A)]p andy € X, thenp € X,
(LOC4) if ¢ = [sim(A)]p, ¢ # [fin(A)]¢" andy € X, then[bin(A)][sim(A)][fin(A)]e € X,
(LOCS) if ¢ = [sim(A)][fin(A)]e andy € X, then[bin(A)][sim(A)][fin(A)]e € X.

Definition 3.1 has been designed so that local consisteney dot require formulae outsid&{¢}).
The binary relation-$™ on subsets ofl({¢}) is defined as followsX ~5™ Y iff

1. foreverysim(B)]y € X withBC A, ¢ €Y,

2. foreverysim(B)]y e Y WithBC A, ¢ € X,

3. forevery[r(B)]y € cl({¢}) with Nx (B) =0, [r(B)]yp € X iff [¢(B)]p €Y.
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Clause 3. encodes thatB)] is a universal modality whereas clauses 1. and 2. are stimdar
order to deal with modal operators based on symmetricaioeta The binary relationi" is defined as
follows: X ~fin v iff

1. forall[fin(B)]y € X with B C A, [fin(B)Jy, ¢ € Y,
2. forall [bin(B)]y € Y with B T A, [bin(B)]y, ¢ € X,
3. forevery[r(B)]y € cl({¢}) with Nx(B) =0, [r(B)] € X iff [r(B)]¢ € Y.

As expected, the third binary relati@rgi“ is defined as the conversereﬁ“. The relation~5™ [resp.
Nf)g‘] is the abstract counterpart of the reIat@@?A) [resp.R‘Zf(A)] in RNIL-models.

We are now ready to define symbolic states. Each such stataigeinformation on the relation
between the associated node and its (unique) predecessgmBolic state for is either L or a pair
g = (r(A), X) such that(A) occurs ing andA € P(¢), X is a locally RNIL-consistent set (subset of
cl(¢)). Ing = (r(A), X), r(A) refers to the reIatiorRin(A) which relates;’s (unique) predecessor o
X is the set of formulae satisfied lgy We writey) € ¢ = (r(A), X) whenever) € X. The “dummy”
value_L is used for those nodes in a tree not representing objeatsyarcall a symbolic state dummy
if ¢ =L. We useSYMB(¢) to denote the set of symbolic statesjof

Since each conditioLOCi) in Definition 3.2 is quite easy to check, we can establish dllewing
result.

Lemma 3.2. Deciding whether a subset off(¢) is locally RNIL-consistent can be done in polynomial
time.

4. Tree Model Property

We are now ready to introduce Hintikka trees for RNIL. Suaetrare abstractions of RNIL-models that
allow a further treatment with Bchi automata on infinite trees (see Section 5). We will sHmat €ach
RNIL-model can be unravelled into a Hintikka tree, and thums/p a tree model property for RNIL. This
is the key property to use then automata accepting trees.

Given an RNIL-formulag, a Hintikka-tree forg is labelled with symbolic states. We recall that,
given K > 1 and a finite alphabét, an infiniteX, K-tree7 is a mappind/ : {1,..., K}* — X where,
as usual, for a seX’, X* denotes the family of all the finite sequences with the elésiaken inX. Let
¢ be a RNIL-formula withK" = |cl({¢})], andPVAR(¢) the set of parameter variables occurringsin
with n = card(PVAR(¢)) > 1.

Definition 4.1. A SYMB(¢), K-tree7 is aHintikka tree for¢ iff

(H1) ¢ € T (¢) wheree is the empty sequence,

(H2) if 7(s) is dummy, therZ (s -1),...,7 (s - K) are also dummy,

(H3) if 7(s) = ('(A), X) is not dummy andr(B)]¢y € sub(¢) \ X, then thereig € {1,..., K} with
T(s-i) = (x(B),X’), 7 (s-1i)is notdummy, and> ¢ X',

(H4) foreveryi € {1,...,K}, ifboth7T(s) = (r(A), X) and7 (s - ¢) = ('(B), X’) are not dummy,
thenX ~% X'
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The preliminary developments presented so far yield Lemrhddlow.

Lemma 4.1. For every RNIL-formulap, (1) ¢ is RNIL-satisfiable iff (II)¢ has a Hintikka tree.

Lemma 4.1 is the main technical lemma of the paper and itsfpaes advantage of all preliminary
definitions and properties. The main difficulty is in the doastion of an RNIL-model from an Hin-
tikka tree. Indeed, one needs to build from a tree structureetfamilies of relations with interacting
constraints.

Proof:
(1) — (). Let 7 be a Hintikka tree for.

The construction of M.

We construct an RNIL-modeM = (W, (R%n)pgpAR, (R‘;}n)pgpAR, (st:i)m>PQPAR,m> of ¢ as
follows:

W= {se{l,...,K}*: T(s)is not dummy}.

PAR¥{0,...,2" —1}. Observe thaP AR is finite.

For everyi € {1,...,n}, m(C;) £ {k € {0,...,2" — 1} | bit;(k) = 0}. This guarantees that
m(Bg) = {k} whereBj, € Comp(P(¢)).

For everys € W, for everyp € VARPROP, s € m(p) iff p € 7 (s).

For everyA € P(¢), and r in{fin, bin, sim}, let S% be the binary relatiof(s,s - i) € W? | s €
{1,...,K}*, i e{1,....,K},T(s-i) = (r(A),X)}. We writeS}{1 to denote the converse of
S’- These relations are the building blocks to define the fasilhM.

Foreveryi € {0,...,2" — 1},

- R?;?} is the reflexive and transitive closure(gf{ Sf», Sk | A € P(¢), i € m(A)},

- R?;‘}l is the converse OR??},
sim bin sim fin sim ; sim gsim ™!
- Ry |§ Ry oSGy o Ryjy whereSpit is the reflexive closure dfJ{S3™, Sy | A €
P(¢), i € m(A)}.

Reflexivity and transitivity are obtained by closure. Synmyés guaranteed thanks to converse
relations.
For all P C PAR such thatard(P) > 2 and r in{fin, bin, sim}, R}, = Nicp Ry
For every r in{fin, bin, sim}, Ry W< WL

Basic properties of M. In order to establish that1 is a RNIL-model and to complete the proof by
induction, we can show the properties below.

1.

For everyk € {0,...,2" — 1}, m(By) = {k}.
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2. Forevery patBo Sy 515y, ... Sy sy suchthafry,...,rn} C {fin,bin"'} and fori > 0, r; =
bin~! impliesr;_; # fin, there is no other path betweenandsy satisfying these properties.
3. For every patferS};llslk‘ﬂ?2 . SRNNSN such that{ry,...,ry} C {bin,fin"!} and fori > 0, r; =

fin~! impliesr;_; # bin, there is no other path betweenandsy satisfying these properties.
4. Foralls, s, if (s,s') € S% for somer € {sim,sim™'} andA € P, thenr andA are unique.
5. For everyP C PAR such thatard(P) > 2, R{™ = Rb1 o S5im o RID,
6. If (s,5') € Rin(a) and[r(A)]y € 7 (s), theny € T(s').

A nice consequence of the point (1) is that reasoning abauhttmal form ofA can be reduced to
reasoning on the elementsin(A). Point (5) combined with the fact that reflexivity, symme#md
transitivity are closed under intersection, guaranteasAt is an RNIL-model. The points (2)—(4) are
direct consequences of the fact tHahas a tree structure. Let us start by showing Property (6).
Case 1r=fin.

Suppos€s, s') € RE;;(A) and[fin(A)]y € 7 (s). If m(A) = 0, then for alls’, s” that are not dummy in
7, [fin(A)]y € T(¢)iff [fin(A)]y € T(s”). Hence,[fin(A)]y € T(s') and since7 (s') is RNIL-
consistent, by(LOC3), we havey € 7(s’). Now suppose that:(A) is non-empty and equal to
{i1,...,ix}. By Property (2) and sincés, s’) € RE;?A), there existssoSy 515y, - .. Sy sn with
so = s, sy = s,andforl <1< N,r € {fin,bin"'} and{iy,...,ir} € m(A;). Hence for every
I, A T A;. By definition ofw‘jfln, Nf}; and by RNIL-consistency of non dummy nodes7of we get
e T(s).

Case 2r = bin.
Similar to the above case.

Case 3r=sim.

Suppos€(s, §') € R%TA) and[sim(A)Jy € T (s). We treat below the case whenis not affin(A)]-

formula, otherwise the arguments are analogous. We knowthoseal withm(A) = (0 from the
previous cases. Suppose thatA) is non-empty and is equal t1,...,i;}. By slightly extending
Properties (2)—(4) and singe, s') € Rjjj?A), there exist two paths

o 505y 515, .. S sy with {ry,...,rn} C {bin, in™1},
. 3652,15’1522,2 . 'SZR’LSIM with {s1,...,sp7} C {fin,bin"'},
such that

1. sg=s,8),=5¢,

2. eithersy = s, or sy S5Ms(, or s(.S5Msy,

3. foralll, /', we have(iy, ..., i;} € m(A;) Nm(A}) Nm(A').
By definition ofw‘jfl“, Ngr; and sinceT (s) is locally RNIL-consistent (se@OC4)) [sim(A)]y € T (s)
implies [sim(A)][fin(A)]y € T (sy). By definition of ~37" and by(LOC3) (if sy = s0), [fin(A)]y €
7 (s(,). By definition of~f, we obtainy € T ().
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It remains to prove Property (5). L&t C PAR such thatcard(P) > 2. By definition, R$™ =
ﬂz‘ePR?ﬁl- First supposés,s’) € RE™ with P = {iy,...,i;}. By definition ofR?;?, for every
j e {l,...,k}, there exist two paths

ot G oor ) , ; ; _
J QM1 ] g2 N ; J J H 1
© 55,5515, - SAN;‘ sys With {r{, ..., r;} C {bin, fin""},
1 2
: : j
/. J 1 J Shr. /7 - . .
Jgs1 7652 Mp I J J .
® 55 SA,jsl SA/J. . SA/J. sy With {sq, ..., 57} C {fin,bin™"},
1 2 MI
such that
'3

1. s =s, Si, = s,
i Jo_ J qsim'J 'j gsim J
2. eithersyy = s; or sy ST7lsg Or sy ST sy
. , ,
3. foralll, /', we havei; € m(A]) Nm(A;]) Nnm(AY).

By the unicity property of a slight extension of Properti&s(4), for allj # j' andi,l’, N; = Ny,

Mj = My, sl = s/, s] = s, . Hence, by definition oRYY, for everyj € {1,...,k}, there exist two
paths
(1) soSy s15%, ... S¥ sy with {r1,...,rx} C {bin,fin""},
(1 565’21/ S’ISZQ, LS s with {sq, ..., sa} € {fin,bin '},
1 2 M
such that

1. s :s,s/M =g,
2. eithersy = s{, or sy.S5"s; or sE)SSAi}“SN,
3. foralll,l’, we haveP C m(A;) Nm(A},) Nm(A").

By (1), (s0, sn) € RE™, by 2. (sn, sh) € Sim and by (1), (s), sh,) € R So(s,s’) € REM 0 S§im o
Rin,

For the converse, suppose tHats’) € R*;,in o Sim o Rﬁ,n. There aresy, s1, 2, s3 With sg = s,
s3 = &, (s0,51) € RY", (s1,s0) € RI™ and (s2,s3) € R So by definition, for every € P,
(s0,51) € RYA, (s1,52) € R{M and(s, s3) € Ry This means that

/ bin sim fin
(s,8') € [Y R o ST o Ry
jEP

Hence(s, s') € M;ep RYY = RE™
The induction. Since7 is a Hintikka treeg € 7 (¢). In order to show that, i = ¢ (and therefore
M is a model forg), we prove by structural induction that, for evepyc sub(¢), for everys € W, we
havey € 7(s) iff M,s |= 1. The base case with propositional variables and the inoluctieps for
conjunction and negation are by an easy verification (seditons (LOC1) and(LOC2)). Let us treat
in detail the remaining case. Lp{A)]y be a subformula of and assume that(A)]y € 7 (s). As we
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have seen above, by Property (6) this implies that, for eyery) € Rfﬂ(A), we havey € 7 (s'). By
the induction hypothesis, we have, s’ = ¢. So,M, s |= [r(A)]4.

Now let[r(A)]y be a subformula of and assume thatt, s |= [r(A)]y and thatlr(A)]y & 7 (s).
Due to(H3), v ¢ T (s - i) for somei € {1,...,K} and7 (s - ) is not dummy. By the induction
hypothesisM, s - i [~ 1. However, one can show thét, ) € Rin(a)- ConsequentiyM, s K [r(A)]y
which leads to a contradiction.

(|) — (||) Let M = <VV, (Rf]ign)pgpAR, (Rgn)pgpAR, (R%m)pgpAR,m> be a RNIL-model and
wop € W such thatM, wy |= ¢. We define a Hintikka tre@ for ¢. In the construction of , we use an
auxiliary mappingr : {1, ..., K}* — W U{.L} which is defined inductively together with as follows
(this is quite standard). Indeetlcan be viewed as a tree skeleton/df.

Let [r1(Aq)]4, ..., [r3(Ap)]Ys be all box formulae ircl(¢). For everyw € W, we write X, to
denote the sefty) € cl(¢) | M, w = ¢}. As usualT is obtained by unravellingt. We definer and7
as follows.

o 7(c) EwyandT (e) € (r(A), Xy, ) for some arbitrary(A) occurring in¢.
e Foreverys ¢ {1,...,K}+,

— foreveryie {f+1,...,K},7(s-i) £L andT (s - i) €1,

— if 7(s) =L, thenforeveryi € {1,...,8}, 7(s-i) £L andT (s - i) €L,

— otherwise, iffr;(A;)]vi & T (s) forsomei € {1,..., 5}, thenthereis’ € W\{wi,...,ws}
such that{r(s),w’) € R;(Ai) and M, w’ [~ ;. In that caser(s - i) £ w' and7 (s - i) £
(ri(Ai), Xur).

If [ri(As)]eb; € T (s) for somei € {1,...,3}, thenr(s-i) €L and7 (s -i) £L.

We can easily check th&t is a Hintikka tree forp. O

5. Tree Automata for RNIL Formulae

In this section, we will exploit the tree model property fakR and describe a decision procedure based
on automata on infinite trees, so-callgdchi tree automataFor a given RNIL-formulap, we construct
a Blchi tree automatoul 4 that accepts exactly all Hintikka trees for

A Biuchi tree automatotd = (X, Q, 0, I, F) for ¥, K-trees is an operational model whepeis a
non-empty, finite set of stateX,is a finite alphabetj C Q x £ x Q¥ is a transition relation] andF are
non-empty subsets @, the set of initial states and the set of terminal statepaes/ely. Arunr on a
¥, K-treeT is aQ, K-tree such that, for everye {1,..., K}*, (r(s),7(s),r(s-1),...,7(s-K)) € 6.
ArunronT isacceptingff for every path in7 there is a state i’ that occurs infinitely often. Deciding
whether a Bichi tree automaton fot, K -trees has an accepting run can be done in polynomial-tidie [3
(see also [28, 9]).

5.1. The Construction

Before giving the formal definition of4,, we give an intuitive description of it and the conditions it
imposes on the trees it accepts.
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Each state consists of a symbolic state.
If a node is labelled withL, then so are all its descendants.

Successors of a nodesatisfy conditions imposed by the box formulaesilabel.

Diamond formulae in a nodgs label (i.e., box formulae not ig's label) are witnessed by one of
s'S successors.

The above conditions are all local and can thus be “encodetfid transition function of a tree automa-
ton. Let us now give the formal definition fot, when¢ is a RNIL-formula satisfying the hypotheses
at the beginning of Sect. 44, is the Hichi tree automato(¥®, @, 6, I, Q) defined as follows.

def

1. ¥ € SYMB(¢).

def

2.Q%y.
3. I1E{(x(A),X): ¢ e X},
4. (¢, a,q4,...,q)) € ¢ iff either

H2) ¢ =a=¢q¢i=...=q=1,0r
(witnesses)q’ = a, ¢ is of the form(r(A), X) and, for everyi € {1,..., K}, ¢ = (ri(A;), X;)
and the following conditions are satisfied:
(H3) if (B)]y € cl(¢) \ ¢, thenthereis € {1,..., K} such thayy; = (r(B), X’) is not
dummy andy ¢ ¢;;
(H4) foreveryi € {1,..., K}, if g; is not dummy, therX' ~¢ = X;.

The conditiongH1’) are the obvious counterparts of the conditi@ids).

Lemma 5.1. A SYMB(¢), K-tree7 is a Hintikka tree fow iff A, has an accepting run dh.

Proof:
Let 7 be a Hintikka tree foky andr : {1,..., K}* — @ be the@, K-tree such that for every €
{1,...,K}*,r(s) = T (s). One can check easily thais an accepting run faor .

For the converse, |&f be an infinite tree accepted by;,. By constructiony is a Hintikka tree for

¢. O

We are now in the position to establish the main result of theep which extends EXPTIME-
completeness of the logic FORIN in [8] and PSPACE-complegsrof NIL in [4].

Theorem 5.1. The satisfiability problem for the logic RNIL is EXPTIME-cqitete.

Proof:

The arguments below are standard (see e.g., [8]) but wel theah for the sake of completeness. The
lower bound is by an easy verification from the results in 8 §11, Theorem 5.1]. The EXPTIME-
complete bimodal logic with B modalitys and universal modalityU] can be translated into RNIL by
replacingd by [sim(C; U —C;)] and[U] by [sim(C; N —Cy)]. Let us establish the EXPTIME upper
bound. Lemma 4.1 and Lemma 5.1 imply that every RNIL-formula RNIL-satisfiable iff.4, accepts



S. Demri, E. Ortowska/ Relative Nondeterministic Inforimatogic is EXPTIME-complete 13

at least one tree. Sineard(SYMB(¢)) < |¢| x 249l, A, has2©(?) states. Moreoverard(d) is in
20(9") and checking whethely, a, q1, ..., qx) € 6 can be done in time®(¢) (using Lemma 3.2).
Consequently, computing.; requires time ir2®(¢), Since the nonemptiness problem faiidi tree
automata of the fornd,, can be checked in timé(|5]?), RNIL-satisfiability can be checked in time
90l .

EXPTIME-hardness of RNIL holds even for its restriction hwd unique parameter variable and
modalities[sim(C; U —Cy)] and[sim(Cy; N —Cy)].

6. Concluding remarks

On the basis of existing automata-theoretic techniquesofgical problems, we have shown that the
newly introduced logic RNIL, the relative version of the iof\IL introduced by Ortowska, Pawlak and
Vakarelov has an EXPTIME-complete satisfiability probléFhis new logic combines two ingredients
that are rarely present in information logics: its semastiiactures include several families of relations
parameterized by the subsets of attributes and, moreavtr |dcal constraints (i.e., the constraints on
individual relations) and global constraints (the coristsaon the subfamilies of a family of relations) are
assumed for their relations. The proof is by a reductionéainemptiness problem foiBhi automata
on infinite trees combining advantageously the distincoprechniques developed in [4, 8]. By contrast,
the decidability status of RNIL augmented with object noafsris a challenging open question.

Acknowledgments. We thank the anonymous referee for helpful suggestiondehdtus to simplify
some technical developments.
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