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Abstract. We define a relative version of the logic NIL introduced by Orłowska, Pawlak and
Vakarelov and we show that satisfiability is not only decidable but also EXPTIME-complete. Such a
logic combines two ingredients that are seldom present simultaneously in information logics: frame
conditions involving more than one information relation and relative frames. The EXPTIME up-
per bound is obtained by designing a well-suited decision procedure based on the nonemptiness
problem of B̈uchi automata on infinite trees. The paper provides evidencethat Büchi automata on
infinite trees are crucial language acceptors even for relative information logics with multiple types
of relations.
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1. Introduction

Logics for information systems. A formal model of information systems was proposed in a series
of papers by Wiktor Marek and Zdzisław Pawlak ([16] and [17] published later as [18]) and next in the
papers [25] and [26] by Zdzisław Pawlak. In these papers a logic is considered obtained from the classical
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propositional calculus by assuming that atomic formulas have the form of what is called descriptors
which in the later papers have been identified with attribute-value pairs. An extension of this formalism
to first-order logic is presented in [19]. A modal approach toreasoning in information systems resulted in
various modal systems which are now called information logics. The first logics of that family are defined
in [20] published later as [21], and in [22] and [24]. We referthe reader to [23, 7] for a comprehensive
survey of information logics and to [32, 1, 12, 33, 30, 2] for some more recent examples of these logics.
Due to their modal character information logics provide a formal specification language for expressing
properties of relations among the objects from informationsystems.

In this paper we employ automata-theoretic decision procedures to prove complexity results for the
very expressive information logic RNIL that is introduced in the paper. Aninformation systemS can be
viewed as a structureS = 〈OB,AT 〉 such thatOB is a non-empty set ofobjects, AT is a non-empty
set ofattributes, and every attributea ∈ AT is a mappinga : OB → P(V ALa) \ {∅}, whereV ALa

is a non-empty set ofvaluesandP(·) denotes the powerset operator. For every objectx and for every
attributea, a(x) can be read as the set of possible values of the attributea for the objectx. In that setting,
various derived relations between objects can be defined. Werecall below some standard relations (see
e.g. [23]). For allx1, x2 ∈ OB, for everyA ⊆ AT ,

(I) 〈x1, x2〉 ∈ indA iff for every a ∈ A, a(x1) = a(x2) (indiscernibility),

(II) 〈x1, x2〉 ∈ finA iff for every a ∈ A, a(x1) ⊆ a(x2) (forward inclusion),

(III) 〈x1, x2〉 ∈ binA iff for every a ∈ A, a(x2) ⊆ a(x1) (backward inclusion),

(IV) 〈x1, x2〉 ∈ simA iff for every a ∈ A, a(x1) ∩ a(x2) 6= ∅ (similarity).

Given an information systemS = 〈OB,AT 〉, we can define a structure〈OB, (RA)A⊆AT 〉, where
(RA)A⊆AT is a family of relations derived fromS. In a more abstract setting, aninformation frame
is a pair〈W, (RP )P⊆PAR〉 such thatW andPAR are non-empty sets and(RP )P⊆PAR is a family
of binary relations indexed by subsets ofPAR. More generally, an information frame can be defined
as a set equipped with families of (non necessarily binary) relations. An information logic is usually
defined as a multi-modal logic characterised by a class of information frames. Since the relations derived
from information systems are constrained between each other, the information frames generally satisfy
additional conditions. For example, for everyR ∈ {ind, fin, bin, sim}, we have

RP∪Q = RP ∩RQ for all P,Q ⊆ PAR, and (1)

R∅ = W ×W. (2)

Moreover, every relationRP satisfies certain local conditions: for instance, the forward inclusion rela-
tions are reflexive and transitive, and the similarity relations are reflexive and symmetric.

The logic NIL. The information logic NIL (introduced in [24]) is one of the information logics pro-
posed for reasoning with incomplete information. In 1987 Vakarelov [31] provides the first result about
first-order characterization of structures derived from information systems. This has been done in the
case of the semantical structures of NIL. The NIL semanticalstructures contain forward and backward
inclusions and the similarity relation. More precisely, the NIL frames are all the structures

〈OB, fin(AT ), bin(AT ), sim(AT )〉
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derived from some information system〈OB,AT 〉. In [31], it has been shown that in order to appropri-
ately characterize the relationships between these relations an additional condition (not present in [24])
between forward inclusion and similarity needs to be taken into account (the forthcoming condition
(N4)). In [4], NIL satisfiability is shown PSPACE-complete by designing a Ladner-like algorithm [14]
and it can be viewed as a well-identified fragment of PDL [7, Section 11.4].

Our contribution. In this paper, we introduce and study the relative version ofNIL, called RNIL, and
we show that the satisfiability problem for the logic RNIL is not only decidable but also EXPTIME-
complete. RNIL extends NIL by allowing families of information relations instead of a single relation
per family. This substantial extension leads to technical difficulties. However, as a gain, the logical
formalism can express more complex properties about information systems. The EXPTIME lower
bound is a consequence of more general results, since RNIL contains a universal modal connective
with a family of modal connectives of logic B (see e.g., [29, 3, 11]). The EXPTIME upper bound is
established by an exponential reduction into the nonemptiness problem for B̈uchi automata on infinite
trees that is known to be in PTIME (see e.g., [34, 9]). This technique is nowadays standard for logics
of programs, and it has been applied once before to information logics in [8]. Hence, this paper follows
the automata-based approach introduced in [8] for information logics and applies it to an information
logic with information frames equipped with more than one family of relations. Moreover, we believe
that the proof techniques presented in the paper can be reused for other information logics with different
families of relative frames. That is why, we plan to explain the technical developments in full details to
facilitate further extensions. The complexity jump from PSPACE-completeness of NIL to EXPTIME-
completeness of its relative extension RNIL is the best we can hope for, since RNIL contains universal
modality with B modal connectives.

Plan of the paper. The paper is structured as follows. Sect. 2 introduces the logic RNIL and normal
forms for RNIL formulae. In Sects. 3 and 4 we provide a notion of Hintikka trees for RNIL-models
preparing the automata construction. The satisfiability problem for the logic RNIL is reduced to the
nonemptiness problem for Büchi automata on infinite trees in Sect. 5. Finally, we give some concluding
remarks in Sect. 6.

2. Relative Nondeterministic Information Logic RNIL

2.1. Syntax and Semantics

In this section, we introduce syntax and semantics of the logic RNIL. The set of primitive symbols of the
language for RNIL is composed of

• a countably infinite setVARPROP = {p1, p2, . . .} of propositional variables,

• a setP of parameter expressions, which is the smallest set containing a countably infinite set
PVAR = {C1,C2, . . .} of parameter variablesand is closed under the set-theoretical operators
∩,∪,−.

The setFOR(RNIL) of RNIL-formulae is defined by the grammar below:
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p | ¬φ | φ ∧ φ | [sim(A)]φ | [fin(A)]φ | [bin(A)]φ.

wherep ∈ VARPROP andA ∈ P. Throughout the paper, we freely use standard abbreviations. For all
r in {sim, bin, fin} andA ∈ P, an[r(A)]-formula is a formula of the form[r(A)]φ. The following is an
example of a (valid) RNIL-formula:

[sim(C2 ∩ −C2)]p ⇒ [fin(C1)]p.

Moreover, for every syntactic objectO, we write |O| to denote itslength(or size), that is the number
of symbol occurrences inO viewed as a string. As usual,sub(φ) denotes the set ofsubformulaeof the
formulaφ (includingφ itself). For everyX ∈ {PVAR,P}, we writeX(φ) to denote the elements ofX
occurring in the formulaφ. Obviously,card(X(φ)) < |φ|. We writemd(φ) to denote themodal degree
of the formulaφ, that is the maximum nesting of modal operators inφ.

Definition 2.1. Let PAR be a non-empty set. AP-interpretationm is a mapm : P → P(PAR) such
that, for allA1,A2 ∈ P,

• m(A1 ∩ A2) = m(A1) ∩m(A2),

• m(A1 ∪ A2) = m(A1) ∪m(A2),

• m(−A1) = PAR \m(A1).

PAR is referred to as a set of parameters, it is a counterpart to the set of attributes in information
systems. Given parameter expressionsA andB, we write A ≡ B [resp. A v B] iff for every P-
interpretationm, we havem(A) = m(B) [resp.m(A) ⊆ m(B)].

Definition 2.2. An RNIL-modelM is a structure

M = 〈W, (Rfin
P )P⊆PAR, (R

bin
P )P⊆PAR, (R

sim
P )P⊆PAR,m〉,

whereW andPAR are non-empty sets (set of objects and set of parameters, respectively) and the three
families of binary relations onW satisfy the conditions below:

(uni) Rr
∅ = W ×W for r ∈ {fin, bin, sim},

(inter) Rr
P∪Q = Rr

P ∩Rr
Q for all P,Q ⊆ PAR andr ∈ {fin, bin, sim},

(NIL) for everyP ⊆ PAR,

(N1) Rfin
P = (Rbin

P )−1, that isRfin
P is the converse ofRbin

P ,

(N2) Rfin
P is reflexive and transitive,

(N3) Rsim
P is reflexive and symmetric,

(N4) if 〈x, y〉 ∈ Rsim
P and〈y, z〉 ∈ Rfin

P , then〈x, z〉 ∈ Rsim
P .

Moreover,m is a mappingm : VARPROP ∪ P → P(W ) ∪ P(PAR) such thatm(p) ⊆ W for every
p ∈ VARPROP, and the restriction ofm to P is aP-interpretation.
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A specific feature of RNIL-models is that the relations are constrained in two ways. For instance,
the binary relationRfin

Q is related toRbin
Q andRsim

Q , butRfin
Q is also constrained with the relations in

(Rfin
P )P⊆PAR via the condition(inter) .
Consequently, two levels of interpretation are used to define the relations in the RNIL-models. On

the one hand, the parameter expressions are interpreted within the Boolean algebra

B = 〈P(PAR),∪,∩,−, PAR, ∅〉,

where the non-empty setPAR and the empty set are the unit element and zero element, respectively. On
the other hand, the conditions on(RP )P⊆PAR induce a semi-lattice structure ofL = 〈{RP : P ∈ B},∩〉
with the zero elementW ×W . All these facts are well-known, see e.g. [7, 5].

Similarly, (Rfin
P )P⊆PAR is an abstraction of the family(finA)A⊆AT derived from information sys-

tems. The adequacy between the class of RNIL-models and information systems follows from the devel-
opments of [31].

Let M = 〈W, (Rfin
P )P⊆PAR, (R

bin
P )P⊆PAR, (R

sim
P )P⊆PAR,m〉 be a model. As usual, we say that

a formulaφ is satisfied byw ∈ W in M (writtenM, w |= φ) if the following conditions are satisfied.
M, w |= p iff w ∈ m(p) for p ∈ VARPROP,

M, w |= ¬φ iff not M, w |= φ,

M, w |= φ ∧ ψ iff M, w |= φ andM, w |= ψ,

M, w |= [r(A)]φ iff for everyw′ ∈W , if 〈w,w′〉 ∈ Rr
m(A), thenM, w′ |= φ,

wherer ∈ {fin, bin, sim}.
A formula φ is true in a RNIL-modelM (written M |= φ) iff for every w ∈ W, M, w |= φ.

A formula φ is said to beRNIL-valid iff φ is true in every RNIL-model. A formulaφ is said to be
RNIL-satisfiableiff ¬φ is not RNIL-valid. By way of example, for allφ andA, the formulae below are
valid:

• [bin(A)][sim(A)][fin(A)]φ⇔ [sim(A)]φ,

• [fin(A)][fin(A)]φ⇔ [fin(A)]φ,

• φ⇒ [bin(A)]¬[fin(A)]¬φ.

Observe that due to condition(inter) , RNIL captures intersection of relations. Indeed, let us write
RA for someRr

m(A). Then, for all parameter expressionsA,B, we haveRA∪B = RA ∩ RB. By
contrast, complement and union cannot be expressed in a similar fashion. Additionally, RNIL contains
the universal modality sinceRA∩−A is precisely the productW ×W .

The logic NIL [24, 31] can be seen as a fragment of RNIL restricted to formulae with the unique
parameter expressionC1 ∪ −C1 (interpreted as the full set of parameters).

2.2. Normal Forms for Parameter Expressions

In this section, we recall the notion of a normal form for parameter expressions inspired by the canonical
disjunctive normal form for propositional logic. Such normal forms play a special role for the relative
information logics and they are introduced in [13]. This technique has been also useful in showing
decidability of SIM [6] and, EXPTIME-completeness of SIM [8] and of some fragments of Boolean
modal logic BML [15, Sect. 5].
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Let X = {C1, . . . ,Cn} be a set of distinct parameter variables for somen ≥ 1. For every integer
k ∈ {0, . . . , 2n − 1}, we denote byBk the parameter expressionBk

def
= A1 ∩ · · · ∩ An where, for every

s ∈ {1, . . . , n}, As = Cs if bits(k) = 0 andAs = −Cs otherwise, wherebits(k) denotes thesth bit
in the binary representation ofk with n bits. SoB3 = C1 ∩ −C2 ∩ −C3 with n = 3. Although not
essential, the use of binary representation will facilitate the presentation of technical developments. The
setComp(X) of X-components, is defined as follows:

Comp(X)
def
= {Bk | k ∈ {0, . . . , 2n − 1}}.

The setComp(X) of X-components enables us to partition every set of parameters. Indeed, for every
P-interpretationm : P → P(PAR), the family{m(A) | A ∈ Comp(X)} is a partition ofPAR [13].
As a consequence, we obtain the following property.

Lemma 2.1. Let A be a parameter expression built over the parameter variables ofX. Then eitherA ≡
−A∩A or there is a unique non-empty subset{A′

1, . . . ,A
′
u} of Comp(X) such thatA ≡ A′

1∪· · ·∪A′
u.

Lemma 2.1 enables us to define normal forms of parameter expressions. LetA be a parameter
expression built from the resources inX. The normal form ofA, NX(A), is defined as follows:

NX(A)
def
=

{

∅ if A ≡ (A ∩ −A);

{Bk1
, . . . ,Bku

} if A ≡ Bk1
∪ . . . ∪ Bku

.

Observe that there exists an effective procedure that computesNX(A) in exponential-time in|A| + n.
Moreover, it is known that, for all parameter expressionsA,B built from the resources inX, we haveA ≡
B iff NX(A) = NX(B). This normal form is not thought to be applied to all parameter expressions in
a RNIL-formula to be tested for satisfiability (since this would obviously yield an exponential blow-up),
but it is used in the following section to decide the implication relation between parameter expressions,
as also done in [8]. Obviously, for all r∈ {fin, bin, sim}, φ and A,B ∈ P, A ≡ B implies that
[r(A)]φ⇔ [r(B)]φ is valid.

3. Symbolic Representation of States

In this section, we define the notion of symbolic states whichrepresent objects in RNIL-models. In Defi-
nition 3.1 below, we introduce a closure operator for sets ofRNIL-formulae as it is done for Propositional
Dynamic Logic PDL by Fischer and Ladner in [10].

Definition 3.1. Given a setX of RNIL-formulae, letcl(X) be the smallest set of formulae such that:

(CL1) X ⊆ cl(X),

(CL2) if ¬φ ∈ cl(X), thenφ ∈ cl(X),

(CL3) if φ1 ∧ φ2 ∈ cl(X), thenφ1, φ2 ∈ cl(X),

(CL4) if [r(A)]φ ∈ cl(X), thenφ ∈ cl(X),

(CL5) if [sim(A)]φ ∈ cl(X) andφ is not a[fin(A)]-formula, then[bin(A)][sim(A)][fin(A)]φ ∈ cl(X),
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(CL6) if [sim(A)][fin(A)]φ ∈ cl(X), then[bin(A)][sim(A)][fin(A)]φ ∈ cl(X).

Consequently, if[sim(A)]φ ∈ cl(X) andφ is not a[fin(A)]-formula, then[fin(A)]φ ∈ cl(X). A
setX of formulae is said to beclosediff cl(X) = X. For any finite setX of formulae, we have
md(cl(X)) ≤ md(X) + 2.

Lemma 3.1. Let φ be a RNIL-formula. Then,card(cl({φ})) < 4 × |φ|.

Proof:
Let sub(φ) be the set of subformulae of the formulaφ. Obviously,sub(φ) ⊆ cl({φ}). Moreover,cl({φ})
is the union of the following sets:

1. sub(φ),

2. {[bin(A)][sim(A)][fin(A)]ψ : [sim(A)][fin(A)]ψ ∈ sub(φ)},

3. {[bin(A)][sim(A)][fin(A)]ψ : [sim(A)]ψ ∈ sub(φ), ψ 6= [fin(A)]ψ′},

4. {[sim(A)][fin(A)]ψ : [sim(A)]ψ ∈ sub(φ), ψ 6= [fin(A)]ψ′},

5. {[fin(A)]ψ : [sim(A)]ψ ∈ sub(φ), ψ 6= [fin(A)]ψ′}.

Each set above is of the cardinality at mostcard(sub(φ)) and a formula insub(φ) can generate at most
three other formulae incl({φ}). Socard(cl({φ})) < 4 × |φ|, sincecard(sub(φ)) < |φ|. ut

Only consistent subsets ofcl(φ) are useful for checking satisfiability. Definition 3.2 introduces local
consistency whose modal part is based on the valid formulae below (r∈ {sim, fin, bin}, ψ andA ∈ P):

• [r(A)]ψ ⇒ ψ,

• [sim(A)]ψ ⇒ [bin(A)][sim(A)][fin(A)]ψ.

Definition 3.2. LetX be a subset ofcl({φ}) for some formulaφ. The setX is said to belocally RNIL-
consistentiff eachψ ∈ sub(φ) satisfies the following conditions:

(LOC1) if ψ = ¬ϕ, thenϕ ∈ X iff ψ 6∈ X,

(LOC2) if ψ = ϕ1 ∧ ϕ2, then{ϕ1, ϕ2} ⊆ X iff ψ ∈ X,

(LOC3) if ψ = [r(A)]ϕ andψ ∈ X, thenϕ ∈ X,

(LOC4) if ψ = [sim(A)]ϕ, ϕ 6= [fin(A)]ϕ′ andψ ∈ X, then[bin(A)][sim(A)][fin(A)]ϕ ∈ X,

(LOC5) if ψ = [sim(A)][fin(A)]ϕ andψ ∈ X, then[bin(A)][sim(A)][fin(A)]ϕ ∈ X.

Definition 3.1 has been designed so that local consistency does not require formulae outsidecl({φ}).
The binary relation∼sim

A on subsets ofcl({φ}) is defined as follows:X ∼sim
A Y iff

1. for every[sim(B)]ψ ∈ X with B v A, ψ ∈ Y ,

2. for every[sim(B)]ψ ∈ Y with B v A, ψ ∈ X,

3. for every[r(B)]ψ ∈ cl({φ}) with NX(B) = ∅, [r(B)]ψ ∈ X iff [r(B)]ψ ∈ Y .
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Clause 3. encodes that[r(B)] is a universal modality whereas clauses 1. and 2. are standard in
order to deal with modal operators based on symmetrical relations. The binary relation∼fin

A is defined as
follows: X ∼fin

A Y iff

1. for all [fin(B)]ψ ∈ X with B v A, [fin(B)]ψ, ψ ∈ Y ,

2. for all [bin(B)]ψ ∈ Y with B v A, [bin(B)]ψ, ψ ∈ X,

3. for every[r(B)]ψ ∈ cl({φ}) with NX(B) = ∅, [r(B)]ψ ∈ X iff [r(B)]ψ ∈ Y .

As expected, the third binary relation∼bin
A is defined as the converse of∼fin

A . The relation∼sim
A [resp.

∼fin
A ] is the abstract counterpart of the relationRsim

m(A) [resp.Rfin
m(A)] in RNIL-models.

We are now ready to define symbolic states. Each such state contains information on the relation
between the associated node and its (unique) predecessor, Asymbolic state forφ is either⊥ or a pair
q = 〈r(A), X〉 such thatr(A) occurs inφ andA ∈ P(φ), X is a locally RNIL-consistent set (subset of
cl(φ)). In q = 〈r(A), X〉, r(A) refers to the relationRr

m(A) which relatesq’s (unique) predecessor toq,
X is the set of formulae satisfied byq. We writeψ ∈ q = 〈r(A), X〉 wheneverψ ∈ X. The “dummy”
value⊥ is used for those nodes in a tree not representing objects, and we call a symbolic stateq dummy
if q =⊥. We useSYMB(φ) to denote the set of symbolic states ofφ.

Since each condition(LOCi) in Definition 3.2 is quite easy to check, we can establish the following
result.

Lemma 3.2. Deciding whether a subset ofcl(φ) is locally RNIL-consistent can be done in polynomial
time.

4. Tree Model Property

We are now ready to introduce Hintikka trees for RNIL. Such trees are abstractions of RNIL-models that
allow a further treatment with B̈uchi automata on infinite trees (see Section 5). We will show that each
RNIL-model can be unravelled into a Hintikka tree, and thus prove a tree model property for RNIL. This
is the key property to use then automata accepting trees.

Given an RNIL-formulaφ, a Hintikka-tree forφ is labelled with symbolic states. We recall that,
givenK ≥ 1 and a finite alphabetΣ, an infiniteΣ,K-treeT is a mappingT : {1, . . . ,K}∗ → Σ where,
as usual, for a setX,X∗ denotes the family of all the finite sequences with the elements taken inX. Let
φ be a RNIL-formula withK = |cl({φ})|, andPVAR(φ) the set of parameter variables occurring inφ
with n = card(PVAR(φ)) ≥ 1.

Definition 4.1. A SYMB(φ),K-treeT is aHintikka tree forφ iff

(H1) φ ∈ T (ε) whereε is the empty sequence,

(H2) if T (s) is dummy, thenT (s · 1), . . . , T (s ·K) are also dummy,

(H3) if T (s) = 〈r′(A), X〉 is not dummy and[r(B)]ψ ∈ sub(φ) \X, then there isi ∈ {1, . . . ,K} with
T (s · i) = 〈r(B), X ′〉, T (s · i) is not dummy, andψ 6∈ X ′,

(H4) for everyi ∈ {1, . . . ,K}, if both T (s) = 〈r(A), X〉 andT (s · i) = 〈r′(B), X ′〉 are not dummy,
thenX ∼r′

B X
′.
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The preliminary developments presented so far yield Lemma 4.1 below.

Lemma 4.1. For every RNIL-formulaφ, (I) φ is RNIL-satisfiable iff (II)φ has a Hintikka tree.

Lemma 4.1 is the main technical lemma of the paper and its proof takes advantage of all preliminary
definitions and properties. The main difficulty is in the construction of an RNIL-model from an Hin-
tikka tree. Indeed, one needs to build from a tree structure three families of relations with interacting
constraints.

Proof:
(II) → (I). Let T be a Hintikka tree forφ.

The construction ofM.

We construct an RNIL-modelM = 〈W, (Rfin
P )P⊆PAR, (R

bin
P )P⊆PAR, (R

sim
P )P⊆PAR,m〉 of φ as

follows:

• W
def
= {s ∈ {1, . . . ,K}∗ : T (s) is not dummy}.

• PAR
def
= {0, . . . , 2n − 1}. Observe thatPAR is finite.

• For everyi ∈ {1, . . . , n}, m(Ci)
def
= {k ∈ {0, . . . , 2n − 1} | biti(k) = 0}. This guarantees that

m(Bk) = {k} whereBk ∈ Comp(P(φ)).

• For everys ∈W , for everyp ∈ VARPROP, s ∈ m(p) iff p ∈ T (s).

• For everyA ∈ P(φ), and r in{fin, bin, sim}, letSr
A be the binary relation{〈s, s · i〉 ∈ W 2 | s ∈

{1, . . . ,K}∗, i ∈ {1, . . . ,K}, T (s · i) = 〈r(A), X〉}. We writeSr−1

A to denote the converse of
Sr

A. These relations are the building blocks to define the families inM.

• For everyi ∈ {0, . . . , 2n − 1},

– Rfin
{i} is the reflexive and transitive closure of

⋃

{Sfin
A , Sbin−1

A | A ∈ P(φ), i ∈ m(A)},

– Rbin
{i} is the converse ofRfin

{i},

– Rsim
{i} is Rbin

{i} ◦ Ssim
{i} ◦ Rfin

{i} whereSsim
{i} is the reflexive closure of

⋃

{Ssim
A , Ssim−1

A | A ∈

P(φ), i ∈ m(A)}.

Reflexivity and transitivity are obtained by closure. Symmetry is guaranteed thanks to converse
relations.

• For allP ⊆ PAR such thatcard(P ) ≥ 2 and r in{fin, bin, sim}, Rr
P

def
=

⋂

i∈P Rr
{i}.

• For every r in{fin, bin, sim}, Rr
∅

def
= W ×W .

Basic properties ofM. In order to establish thatM is a RNIL-model and to complete the proof by
induction, we can show the properties below.

1. For everyk ∈ {0, . . . , 2n − 1},m(Bk) = {k}.
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2. For every paths0S
r1
A1
s1S

r2
A2
. . . S

rN
AN
sN such that{r1, . . . , rN} ⊆ {fin, bin−1} and fori > 0, ri =

bin−1 impliesri−1 6= fin, there is no other path betweens0 andsN satisfying these properties.

3. For every paths0S
r1
A1
s1S

r2
A2
. . . S

rN
AN
sN such that{r1, . . . , rN} ⊆ {bin, fin−1} and fori > 0, ri =

fin−1 impliesri−1 6= bin, there is no other path betweens0 andsN satisfying these properties.

4. For alls, s′, if 〈s, s′〉 ∈ Sr
A for somer ∈ {sim, sim−1} andA ∈ P, thenr andA are unique.

5. For everyP ⊆ PAR such thatcard(P ) ≥ 2, Rsim
P = Rbin

P ◦ Ssim
P ◦ Rfin

P .

6. If 〈s, s′〉 ∈ Rr
m(A) and[r(A)]ψ ∈ T (s), thenψ ∈ T (s′).

A nice consequence of the point (1) is that reasoning about the normal form ofA can be reduced to
reasoning on the elements inm(A). Point (5) combined with the fact that reflexivity, symmetryand
transitivity are closed under intersection, guarantees thatM is an RNIL-model. The points (2)–(4) are
direct consequences of the fact thatT has a tree structure. Let us start by showing Property (6).
Case 1: r = fin.
Suppose〈s, s′〉 ∈ Rfin

m(A) and[fin(A)]ψ ∈ T (s). If m(A) = ∅, then for alls′, s′′ that are not dummy in
T , [fin(A)]ψ ∈ T (s′) iff [fin(A)]ψ ∈ T (s′′). Hence,[fin(A)]ψ ∈ T (s′) and sinceT (s′) is RNIL-
consistent, by(LOC3), we haveψ ∈ T (s′). Now suppose thatm(A) is non-empty and equal to
{i1, . . . , ik}. By Property (2) and since〈s, s′〉 ∈ Rbin

m(A), there existss0S
r1
A1
s1S

r2
A2
. . . S

rN
AN
sN with

s0 = s, sN = s′, and for1 ≤ l ≤ N , rl ∈ {fin, bin−1} and{i1, . . . , ik} ⊆ m(Al). Hence for every
l, A v Al. By definition of∼bin

Al
, ∼fin

Al
and by RNIL-consistency of non dummy nodes ofT , we get

ψ ∈ T (s′).

Case 2: r = bin.
Similar to the above case.

Case 3: r = sim.
Suppose〈s, s′〉 ∈ Rsim

m(A) and [sim(A)]ψ ∈ T (s). We treat below the case whenψ is not a[fin(A)]-
formula, otherwise the arguments are analogous. We know howto deal withm(A) = ∅ from the
previous cases. Suppose thatm(A) is non-empty and is equal to{i1, . . . , ik}. By slightly extending
Properties (2)–(4) and since〈s, s′〉 ∈ Rsim

m(A), there exist two paths

• s0S
r1
A1
s1S

r2
A2
. . . S

rN
AN
sN with {r1, . . . , rN} ⊆ {bin, fin−1} ,

• s′0S
s1
A′

1
s′1S

s2
A′

2
. . . S

sM
A′

M

s′M with {s1, . . . , sM} ⊆ {fin, bin−1} ,

such that

1. s0 = s, s′M = s′,

2. eithersN = s′0 or sNS
sim
A′ s

′
0 or s′0S

sim
A′ sN ,

3. for all l, l′, we have{i1, . . . , ik} ⊆ m(Al) ∩m(A′
l′) ∩m(A′).

By definition of∼bin
Al

, ∼fin
Al

and sinceT (s) is locally RNIL-consistent (see(LOC4)) [sim(A)]ψ ∈ T (s)

implies [sim(A)][fin(A)]ψ ∈ T (sN ). By definition of∼sim
Al

and by(LOC3) (if sN = s′0), [fin(A)]ψ ∈

T (s′0). By definition of∼fin
Al

, we obtainψ ∈ T (s′).



10 S. Demri, E. Orłowska / Relative Nondeterministic Information Logic is EXPTIME-complete

It remains to prove Property (5). LetP ⊆ PAR such thatcard(P ) ≥ 2. By definition,Rsim
P =

⋂

i∈P Rsim
{i} . First suppose〈s, s′〉 ∈ Rsim

P with P = {i1, . . . , ik}. By definition ofRsim
{i} , for every

j ∈ {1, . . . , k}, there exist two paths

• s
j
0S

rj1
Aj

1

s
j
1S

rj2
Aj

2

. . . S
rj
N

A
Nj
sNj with {rj

1, . . . , r
j

Nj} ⊆ {bin, fin−1},

• s
′j
0 S

sj1

A
′j
1

s
′j
1 S

sj2

A
′j
2

. . . S
sj
Mj

A
′j

Mj

s
′j

Mj with {sj
1, . . . , s

j

Mj} ⊆ {fin, bin−1},

such that

1. sj
0 = s, s

′j
Mj

= s′,

2. eithersj
N = s

′j
0 or sj

NS
sim
A′j
s
′j
0 or s

′j
0 S

sim
A′j
s
j
N ,

3. for all l, l′, we haveij ∈ m(Aj
l ) ∩m(A

′j
l′ ) ∩m(A

′j).

By the unicity property of a slight extension of Properties (2)–(4), for all j 6= j′ and l, l′, Nj = Nj′ ,

Mj = Mj′ , s
j
l = s

j′

l , s
′j
l′ = s

′j′

l′ . Hence, by definition ofRsim
{i} , for everyj ∈ {1, . . . , k}, there exist two

paths

(I) s0S
r1
A1
s1S

r2
A2
. . . S

rN
AN
sN with {r1, . . . , rN} ⊆ {bin, fin−1},

(II) s
′

0S
s1
A

′

1

s′1S
s2
A

′

2

. . . S
sM
A′

M

s′M with {s1, . . . , sM} ⊆ {fin, bin−1},

such that

1. s0 = s, s
′

M = s′,

2. eithersN = s′0 or sNS
sim
A′ s

′
0 or s

′

0S
sim
A′ sN ,

3. for all l, l′, we haveP ⊆ m(Al) ∩m(A
′

l′) ∩m(A
′

).

By (I), 〈s0, sN 〉 ∈ Rbin
P , by 2. 〈sN , s

′
0〉 ∈ Ssim

P and by (II),〈s′0, s
′
M 〉 ∈ Rfin

P . So〈s, s′〉 ∈ Rbin
P ◦ Ssim

P ◦
Rfin

P .
For the converse, suppose that〈s, s′〉 ∈ Rbin

P ◦ Ssim
P ◦ Rfin

P . There ares0, s1, s2, s3 with s0 = s,
s3 = s′, 〈s0, s1〉 ∈ Rbin

P , 〈s1, s2〉 ∈ Rsim
P and 〈s2, s3〉 ∈ Rfin

P . So by definition, for everyj ∈ P ,
〈s0, s1〉 ∈ Rbin

{j}, 〈s1, s2〉 ∈ Rsim
{j} and〈s2, s3〉 ∈ Rfin

{j}. This means that

〈s, s′〉 ∈
⋂

j∈P

Rbin
{j} ◦ S

sim
{j} ◦ Rfin

{j}.

Hence,〈s, s′〉 ∈
⋂

j∈P Rsim
{j} = Rsim

P .

The induction. SinceT is a Hintikka tree,φ ∈ T (ε). In order to show thatM, i |= φ (and therefore
M is a model forφ), we prove by structural induction that, for everyψ ∈ sub(φ), for everys ∈ W , we
haveψ ∈ T (s) iff M, s |= ψ. The base case with propositional variables and the induction steps for
conjunction and negation are by an easy verification (see conditions(LOC1) and(LOC2)). Let us treat
in detail the remaining case. Let[r(A)]ψ be a subformula ofφ and assume that[r(A)]ψ ∈ T (s). As we
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have seen above, by Property (6) this implies that, for every〈s, s′〉 ∈ Rr
m(A), we haveψ ∈ T (s′). By

the induction hypothesis, we haveM, s′ |= ψ. So,M, s |= [r(A)]ψ.
Now let [r(A)]ψ be a subformula ofφ and assume thatM, s |= [r(A)]ψ and that[r(A)]ψ 6∈ T (s).

Due to (H3), ψ 6∈ T (s · i) for somei ∈ {1, . . . ,K} andT (s · i) is not dummy. By the induction
hypothesis,M, s · i 6|= ψ. However, one can show that〈s, s′〉 ∈ Rr

m(A). Consequently,M, s 6|= [r(A)]ψ
which leads to a contradiction.

(I) → (II) Let M = 〈W, (Rfin
P )P⊆PAR, (R

bin
P )P⊆PAR, (R

sim
P )P⊆PAR,m〉 be a RNIL-model and

w0 ∈ W such thatM, w0 |= φ. We define a Hintikka treeT for φ. In the construction ofT , we use an
auxiliary mappingτ : {1, . . . ,K}∗ →W ∪{⊥} which is defined inductively together withT as follows
(this is quite standard). Indeed,τ can be viewed as a tree skeleton ofM.

Let [r1(A1)]ψ1, . . . , [rβ(Aβ)]ψβ be all box formulae incl(φ). For everyw ∈ W , we writeXw to
denote the set{ψ ∈ cl(φ) | M, w |= ψ}. As usual,T is obtained by unravellingM. We defineτ andT
as follows.

• τ(ε)
def
= w0 andT (ε)

def
= 〈r(A), Xw0

〉 for some arbitraryr(A) occurring inφ.

• For everys ∈ {1, . . . ,K}+,

– for everyi ∈ {β + 1, . . . ,K}, τ(s · i)
def
=⊥ andT (s · i)

def
=⊥,

– if τ(s) =⊥, then for everyi ∈ {1, . . . , β}, τ(s · i)
def
=⊥ andT (s · i)

def
=⊥,

– otherwise, if[ri(Ai)]ψi 6∈ T (s) for somei ∈ {1, . . . , β}, then there isw′ ∈W\{w1, . . . , wα}

such that〈τ(s), w′〉 ∈ Rri

m(Ai)
andM, w′ 6|= ψi. In that caseτ(s · i)

def
= w′ andT (s · i)

def
=

〈ri(Ai), Xw′〉.

If [ri(Ai)]ψi ∈ T (s) for somei ∈ {1, . . . , β}, thenτ(s · i)
def
=⊥ andT (s · i)

def
=⊥.

We can easily check thatT is a Hintikka tree forφ. ut

5. Tree Automata for RNIL Formulae

In this section, we will exploit the tree model property for RNIL and describe a decision procedure based
on automata on infinite trees, so-calledBüchi tree automata. For a given RNIL-formulaφ, we construct
a Büchi tree automatonAφ that accepts exactly all Hintikka trees forφ.

A Büchi tree automatonA = 〈Σ, Q, δ, I, F 〉 for Σ,K-trees is an operational model whereQ is a
non-empty, finite set of states,Σ is a finite alphabet,δ ⊆ Q×Σ×QK is a transition relation,I andF are
non-empty subsets ofQ, the set of initial states and the set of terminal states, respectively. Arun r on a
Σ,K-treeT is aQ,K-tree such that, for everys ∈ {1, . . . ,K}∗, 〈r(s), T (s), r(s ·1), . . . , r(s ·K)〉 ∈ δ.
A run r onT is acceptingiff for every path inT there is a state inF that occurs infinitely often. Deciding
whether a B̈uchi tree automaton forΣ,K-trees has an accepting run can be done in polynomial-time [34]
(see also [28, 9]).

5.1. The Construction

Before giving the formal definition ofAφ, we give an intuitive description of it and the conditions it
imposes on the trees it accepts.
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• Each state consists of a symbolic state.

• If a node is labelled with⊥, then so are all its descendants.

• Successors of a nodes satisfy conditions imposed by the box formulae ins’s label.

• Diamond formulae in a nodes’s label (i.e., box formulae not ins’s label) are witnessed by one of
s’s successors.

The above conditions are all local and can thus be “encoded” in the transition function of a tree automa-
ton. Let us now give the formal definition forAφ whenφ is a RNIL-formula satisfying the hypotheses
at the beginning of Sect. 4.Aφ is the B̈uchi tree automaton〈Σ, Q, δ, I,Q〉 defined as follows.

1. Σ
def
= SYMB(φ).

2. Q
def
= Σ.

3. I
def
= {〈r(A), X〉 : φ ∈ X},

4. 〈q′, a, q′1, . . . , q
′
K〉 ∈ δ iff either

(H2′) q′ = a = q′1 = . . . = q′K =⊥, or

(witnesses)q′ = a, q′ is of the form〈r(A), X〉 and, for everyi ∈ {1, . . . ,K}, q′i = 〈ri(Ai), Xi〉
and the following conditions are satisfied:

(H3′) if [r(B)]ψ ∈ cl(φ) \ q, then there isi ∈ {1, . . . ,K} such thatqi = 〈r(B), X ′〉 is not
dummy andψ 6∈ qi;

(H4′) for everyi ∈ {1, . . . ,K}, if qi is not dummy, thenX ∼ri

Ai
Xi.

The conditions(Hi′) are the obvious counterparts of the conditions(Hi).

Lemma 5.1. A SYMB(φ),K-treeT is a Hintikka tree forφ iff Aφ has an accepting run onT .

Proof:
Let T be a Hintikka tree forφ andr : {1, . . . ,K}∗ → Q be theQ,K-tree such that for everys ∈
{1, . . . ,K}∗, r(s) = T (s). One can check easily thatr is an accepting run forT .

For the converse, letT be an infinite tree accepted byAφ. By construction,T is a Hintikka tree for
φ. ut

We are now in the position to establish the main result of the paper which extends EXPTIME-
completeness of the logic FORIN in [8] and PSPACE-completeness of NIL in [4].

Theorem 5.1. The satisfiability problem for the logic RNIL is EXPTIME-complete.

Proof:
The arguments below are standard (see e.g., [8]) but we recall them for the sake of completeness. The
lower bound is by an easy verification from the results in [3] and [11, Theorem 5.1]. The EXPTIME-
complete bimodal logic with B modality2 and universal modality[U ] can be translated into RNIL by
replacing2 by [sim(C1 ∪ −C1)] and[U ] by [sim(C1 ∩ −C1)]. Let us establish the EXPTIME upper
bound. Lemma 4.1 and Lemma 5.1 imply that every RNIL-formulaφ is RNIL-satisfiable iffAφ accepts
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at least one tree. Sincecard(SYMB(φ)) ≤ |φ| × 24|φ|, Aφ has2O(|φ|) states. Moreover,card(δ) is in
2O(|φ|2) and checking whether〈q, a, q1, . . . , qK〉 ∈ δ can be done in time2O(|φ|) (using Lemma 3.2).
Consequently, computingAφ requires time in2O(|φ|4). Since the nonemptiness problem for Büchi tree
automata of the formAφ can be checked in timeO(|δ|2), RNIL-satisfiability can be checked in time
2O(|φ|4). ut

EXPTIME-hardness of RNIL holds even for its restriction with a unique parameter variable and
modalities[sim(C1 ∪ −C1)] and[sim(C1 ∩ −C1)].

6. Concluding remarks

On the basis of existing automata-theoretic techniques forlogical problems, we have shown that the
newly introduced logic RNIL, the relative version of the logic NIL introduced by Orłowska, Pawlak and
Vakarelov has an EXPTIME-complete satisfiability problem.This new logic combines two ingredients
that are rarely present in information logics: its semanticstructures include several families of relations
parameterized by the subsets of attributes and, moreover, both local constraints (i.e., the constraints on
individual relations) and global constraints (the constraints on the subfamilies of a family of relations) are
assumed for their relations. The proof is by a reduction to the nonemptiness problem for Büchi automata
on infinite trees combining advantageously the distinct proof techniques developed in [4, 8]. By contrast,
the decidability status of RNIL augmented with object nominals is a challenging open question.

Acknowledgments. We thank the anonymous referee for helpful suggestions thatlead us to simplify
some technical developments.
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