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Abstract. -For every prime number p ě 3 and every integer m ě 1, we prove the existence of a continuous Galois representation ρ : G Q Ñ Gl m pZ p q which has open image and is unramified outside tp, 8u (resp. outside t2, p, 8u) when p " 3 mod 4 (resp. p " 1 mod 4).

Let K be a number field having r 2 non-real embeddings, let p be a prime number and let G be a finitely generated pro-p group of p-rank at most r 2 `1. When the field K is prational (see §1.2 for the full definition and background), the Galois group of the maximal p-extension of K unramified outside p is a free pro-p group of rank r 2 `1. Hence the group G can be realized as the Galois group of an extension over K unramified outside p, thanks to the universal property of free groups. In the context of Galois representations, Greenberg in [START_REF] Greenberg | Galois representations with open image[END_REF] developed this approach to realize continuous Galois representations ρ : G Q Ñ Gl m pZ p q of the absolute Galois G Q of Q, with open image and such that ρ is unramified outside tp, 8u, under the hypotheses that p is a regular prime and m satisfies 1 `4rm{2s ď p. The regularity of p is important because for the cyclotomic field K " Qpζ p q, it is equivalent to the p-rationality of K.

A few years later this method was extended by Cornut and J. Ray [START_REF] Cornut | Generators of the pro-p Iwahori and Galois representations[END_REF] for more general linear groups, but always under the assumption that p is regular and that all large m are excluded when p is fixed.

In fact, it is possible to relax the condition on p-rationality to realize Galois representations with big image: this has been recently done by A. Ray in [START_REF] Ray | Constructing Galois representations ramified at one prime[END_REF]. For example, when p ě 2 m` 2`2ep , where e p is the index of irregularity of p, A. Ray shows the existence of continuous Galois representations ρ : G Q Ñ Gl m pZ p q unramified outside tp, 8u with open image. But as in [START_REF] Greenberg | Galois representations with open image[END_REF] and [START_REF] Cornut | Generators of the pro-p Iwahori and Galois representations[END_REF], the dimension of the representations is bounded for fixed p.

By a different approach, Katz in [START_REF] Katz | A note on Galois representations with big image[END_REF] constructs geometric Galois representations over cyclotomic extensions, and by descent he gets finitely ramified continuous Galois representations of G Q with open image in Gl m pZ p q, for p " 1 mod 3 or p " 1 mod 4 for every even m ě 6. In particular, for such primes p, the result of Katz shows the existence of Galois representations with open image for large m. We note that the representations constructed by Katz are motivic but are ramified at sets consisting of primes of potentially many different residue characteristics, whereas the earlier approach yields representations unramified outside tp, 8u which are, by contrast, what Katz calls "spectacularly non-motivic".

In this work, by extending the arithmetical approaches of [START_REF] Greenberg | Galois representations with open image[END_REF], [START_REF] Cornut | Generators of the pro-p Iwahori and Galois representations[END_REF] and [START_REF] Ray | Constructing Galois representations ramified at one prime[END_REF], we are able to prove (Corollary 4.4):

Theorem A.
-Given a prime number p ě 3, and an integer m ě 1, there exist continuous Galois representations ρ : G Q Ñ Gl m pZ p q with open image satisfying: piq ρ is unramified ouside tp, 8u if p " ´1 mod 4, piiq ρ is unramified ouside t2, p, 8u if p " 1 mod 4.

Remark.

-For m " 1 the existence of such representations is a consequence of class field theory.

Our criteria coincide with those of Greenberg when the number field K fixed by the residual representation is p-rational. However our approach also works in greater generality.

In particular by passing through the number field K " Qpζ p q, the criteria we give are specially adapted to produce, for many primes p " 1 mod 4 and large m, continuous Galois representations ρ : G Q Ñ Gl m pZ p q ramified only at tp, 8u with open image. In fact, this is the case for all but six primes p " 1 mod 4 less than 4 ¨10 5 . The main technical result we obtain can be viewed as a refinement of Theorem A, piiq. To explain it, let v 2 be the 2-adic valuation, and let ω be the mod p reduction of the cyclotomic character. We prove (Theorem 4. is a sketch of our approach. We first revisit the question of the lifting of residual Galois representations (of order coprime to p) in terms of embedding problems, by using the criteria of Hoechsmann (see for example [START_REF] Neukirch | Cohomology of Number Fields[END_REF]Chapter III,[START_REF] Detinko | 2-generation of simple Lie algebras and free dense subgroups of algebraic groups[END_REF]). The result we obtain involves the adjoint representation of a uniform group G (Theorem 3.3). We then exploit a result of Kuranishi [14] that shows that a semisimple Lie algebra can be generated by 2 elements; in particular we use the explicit form for sl m recently given by Detinko-De Graaf [START_REF] Detinko | 2-generation of simple Lie algebras and free dense subgroups of algebraic groups[END_REF], and Chistopolskaya [START_REF] Chistopolskaya | On nilpotent generators of the special linear Lie algebra[END_REF]. Thus we apply our embedding criteria to some special subgroup G 1 of Sl m pZ p q generated by two elements. And instead of considering number fields of large degree, namely Qpζ p q, we reduce the study of the existence of Galois representations with open image, to properties of certain imaginary quadratic extensions.

In this work we restrict our attention to the problem introduced by Greenberg [START_REF] Greenberg | Galois representations with open image[END_REF] for the group Sl m pZ p q. But it seems likely the methods we introduce will apply more generally for realizing other groups as well.

The paper contains 4 sections. In Section 2 and in Section 3, we recall facts from the maximal pro-p-extension of a number field unramified outside p, then generalities regarding uniform groups and Z p -Lie algebras. In Section 4, we develop the approach of lifting mod p k representations as a question of embedding problem; in particular we give criteria for lifting in some given uniform group (Theorem 3.3). The last section is devoted to applications; in particular we prove the results presented in the Introduction.

Notations. Throughout this article p is a prime number. ' If M is a finitely generated Z p -module, set d p M :" dim Fp M{M p , Mrps :" tm P M, m p " 1u, and T orpMq " tm P M, Dk, m p k " 1u. ' If G is a pro-p group, set G ab :" G{rG, Gs, G p,el :" G ab {pG ab q p , and d p G :" d p G ab . ' If A is a Hausdorff, abelian and locally compact topological group, set A ^the Pontryagin dual of A.

For the computations we have used the program PARI/GP [START_REF]PARI/GP version2.9[END_REF].

1. On the maximal pro-p extension unramified outside p: the results we need 1.1. On pro-p groups. -For classical properties on cohomology and homology of pro-p groups, see for example [START_REF] Neukirch | Cohomology of Number Fields[END_REF]Chapters I and II]. Let 1 ÝÑ G ÝÑ Γ ÝÑ ∆ ÝÑ 1 be an exact sequence of profinite groups where G is a finitely presented pro-p group, and ∆ is a finite group of order coprime to p. Recall that by the Schur-Zassenhaus Theorem one has Γ » G ˙∆. Proposition 1.1. -Let M be a finite Γ-module of exponent p on which G acts trivially. Then for i ě 1, we have the isomorphism:

H i pΓ, Mq » pH i pG, Z{pq b Mq ∆ .
Proof. -First, by the algebraic universal coefficients Theorem for G-homology over F p , one has the isomorphism [START_REF] Bois | Generators of simple Lie algebras in arbitrary characteristics[END_REF] F :

H i pG, Z{pq b M ^" Ñ H i pG, M ^q,
where the tensor product is taken over F p , and where F is defined by

F prf s b mq " rf b ms,
showing that (1) is also an isomorphism of ∆-modules. 

d p H 1 pG K,p , Z{pq ´dp H 2 pG K,p , Z{pq " r 2 `1.
Here as usual pr 1 , r 2 q is the signature of K.

Let us write G ab K,p » F K,p ' T K,p , where T K,p :" T orpG ab K,p q is the torsion of G ab K,p , and where F K,p :" G ab K,p {T K,p » Z tp p is the free part; the quantity t p is the Z p -rank of G ab K,p . By class field theory one has:

t p " dim Qp cokerpι K,p q " r 2 `1 `dim Qp kerpι K,p q.
(2) (See for example [8, Chapter III, §1, Corollary 1.6.3].) Recall also that Leopoldt's conjecture asserts that kerpι K,p q " 1, and thanks to Baker and Brumer [START_REF] Brumer | On the units of algebraic number fields[END_REF] one knowns that Leopoldt's conjecture is true for abelian extensions K{Q. One also has the following well-known result (see for example [19, Chapter X, Corollary 10.3.7]):

Proposition 1.5. -One has kerpι K,p q " 1 ðñ H 2 pG K,p , Z p q " 1.
Proof. -By Proposition 1.3 and Theorem 1.4 one has:

t p ´dp H 2 pG K,p , Z p q " r 2 `1;
thus by combining with p2q, we get: dim Qp kerpι K,p q " d p H 2 pG K,p , Z p q. Observe now that H 2 pG K,p , Z p q is an abelian pro-p group, then H 2 pG K,p , Z p q is trivial if and only if d p H 2 pG K,p , Z p q " 0.

Regarding T K,p , we have the following:

Proposition 1.6. -Suppose Cl K " 1. Then T K,p » T or ´Up {ι K,p pE K q ¯.
Proof. -By class field theory one has U p {ι K,p pE K q » G ab K,p when Cl K " 1. Hence, given a number field K, up to a finite set of primes (those that divide |Cl K |) the computation of T K,p is reduced to the computation of the torsion of U p {ι K,p pE K q. And having some nontrivial element in T or `Up {ι K,p pE K q ˘is something that is rare; typically one has the following conjecture ( [START_REF] Gras | Les Θ-régulateurs locaux d'un nombre algébrique : Conjectures p-adiques[END_REF]Conjecture 8.11]).

Conjecture 1.7 (Gras).

-Given a number field K, then T K,p " 1 for p " 0.

Regarding this conjecture many computations allow us to have some evidence, but very little is known in general. See [8, Chapter IV, §3 and §4] and [START_REF] Gras | Practice of the Incomplete p-Ramification over a Number Field -History of Abelian p-Ramification[END_REF] for a good exposition. Nevertheless, the p-group T K,p is a deep arithmetical object associated to K, as we can see from the following result, for example.

Proposition 1.8. -The pro-p group G K,p is free pro-p (on r 2 `1 generators) if and only if kerpι K,p q " 1 and T K,p " 1. Proof. -If G K,p is free pro-p then G ab K,p » Z tp p , T K,p " 1, H 2 pG K,p , Q p {Z p q
" 0, and by Proposition 1.5 one gets kerpι K,p q " 1. For the reverse, suppose that kerpι K,p q " 1 and G K,p » Z tp p . By Proposition 1.5, H 2 pG K,p , Z p q " 0; by Proposition 1.2, one gets H 2 pG K,p , Z{pq " 0 (take ∆ trivial and M " Z{p), and then G K,p is pro-p free. Regarding the p-rank of G K,p , see Theorem 1.4.

Example 1.9. -Take p ą 3, and let K{Q be an imaginary quadratic field. Observe that E K " 1 and that U p is torsion free. Hence when Cl K " 1, the pro-p group G K,p is free pro-p on 2 generators.

Finally, let us recall that when G K,p is free pro-p then K is said to be p-rational ([18]).

With semisimple action.

-Let ∆ be a finite group of order coprime to p. Let Ψ p be the set of irreducible C p -characters of ∆. Let M be a finite F p r∆s-module. For ϕ P Ψ p , set r ϕ M the ϕ-rank of M: that is the number of times that ϕ appears in the decomposition of M as F p r∆s-module. In particular if χpMq denotes the character of M, then χpMq " ř ϕPΨp r ϕ ϕ. Observe that for a finite Z p r∆s-module M, one has χpM{M p q " χpMrpsq. For the end of this section, let us consider the following frame. Let K{k be a finite Galois extension of degree coprime to p; put ∆ " GalpK{kq. Observe that K p {k is Galois and that ∆ acts on G K,p , T K,p , F K,p , etc. Put Γ " GalpK p {kq » G K,p ˙∆. As we will see, we need that the two pieces F K,p and T K,p of G ab K,p must be orthogonal to each other (as ∆-modules). First, the next Theorem will be essential to lift residual representation.

Theorem 1.12. -Let M be a finite Γ-module of exponent p on which G K,p acts trivially. Assuming Leopoldt's conjecture for K at p, then H 2 pΓ, Mq » `TK,p rps ^b M ˘∆. In particular H 2 pΓ, Mq " 0 if and only if T K,p rps K M.

Proof. -This is a consequence of Proposition 1.2, Proposition 1.5 and Lemma 1.11.

Remark 1.13. -When K contains ζ p , the character of T K,p rps is related to the mirror character of Cl 1 K , where Cl 1 K is the p-Sylow of the p-class group of K. Typically when K " Qpζ p q, r ϕ T K,p rps " r ϕ ˚C l K , where ϕ ˚:" ωϕ ´1. And in this case, Qpζ p q is p-rational if and only if p is regular. For more general results see [START_REF] Gras | Théorèmes de réflexion[END_REF].

To finish, the following proposition will be the starting point for realizing residual representations as Galois extensions of number fields. where n " rk : Qs. In particular if K{k is a CM-field one has χpF K,p {pq " 1 `nϕ, where ϕ is the nontrivial character of GalpK{kq.

Proof. -One has Q p b F K,p " Q p b U p M Q p b ι K,p pE K q.
Then use for example [10, §5 Theorem 5.12, and §6].

Uniform groups and Lie algebras

2.1. Generalities. -For this section we refer to [6, Chapters 4, 7 and 9]. Let G be a finitely generated pro-p group. Set G 1 " G, and for n ě 1, G n`1 " G p n rG, G n s. The pG n q is the p-descending central series of G. For n ě 1, consider the morphism: Recall that a p-adic analytic group is a topological group G having a structure of p-adic analytic manifold for which the addition and the inverse are analytic. Since Lazard [START_REF] Lazard | Groupes analytiques p-adiques[END_REF] one knows that uniform pro-p groups are the socle of p-adic analytic groups. Indeed:

α n : G n {G n`1 Ñ G n`1 {G n`2 x Þ Ñ x p . Definition 2.
Theorem 2.3. -piq A uniform group G of dimension d is a p-

adic analytic group of dimension d (as analytic manifold). piiq Every p-adic analytic group of (analytic) dimension d contains an open subgroup which is uniform of dimension d.

piiiq Let G be a pro-p group which is a p-adic analytic group, then G ãÑ Gl m pZ p q for some m.

Proof. -See [6, Interlude A].
In what follows, we will consider uniform groups G as subgroups of Gl m pZ p q.

Exponential and logarithm. -

2.2.1.

The Lie algebras gl m and sl m . -Set ε " 0 if p ą 2, and ε " 1 if p " 2. Take m ě 2. Let gl m be the Z p -free module of dimension m 2 generated by the matrices E i,j ppq :" p 1`ε E i,j , where E i,j are the elementary matrices. Then gl m is a Z p -Lie algebra, subalgebra of the algebra gl m pQ p q of the matrices of size m ˆm with coefficients in Q p , equipped with the Lie bracket pA, Bq " AB ´BA. It is not difficult to see that pgl m , gl m q Ă p 1`ε gl m : the algebra gl m is said to be powerful. Thanks to [15, Chapter IV, Theorem 1.3.5.1], one knows that the exponential map exp : x Þ Ñ ř ně0 pn!q ´1x and the logarithm map logpzq :" ř ně1 p´1q n`1 n ´1pz ´1q n converge for x P gl m and z P Gl 1 m , where Gl 1 m " tA P Gl m pZ p q, A " 1 mod p 1`ε u. Moreover exp and log are reciprocal on these two spaces. Hence exppgl m q " Gl 1 m and since gl m is powerful, Gl 1 m is uniform ([6, Chapter 5, Theorem 5.2]). Let sl m be the Z p -Lie subalgebra of gl m consisting of matrices with zero trace. The algebra sl m is also powerful, and then Sl 1 m :" exppsl m q is uniform. More, since sl m pQ p q :" Q p bsl m is simple, one has sl m pQ p q " psl m pQ p , sl m pQ p qq which implies that the abelianization of Sl m pZ p q is finite. Observe that exp ˝T race " det ˝exp, confirming that Sl 1 m " exppsl m q is also the subgroup of Gl 1 m of matrices of determinant 1. 2.2.2. Uniform groups and Z p -Lie algebras. -For k ě 1, let ϕ k be the reduction map:

ϕ k : Gl m pZ p q Ñ Gl m pZ{p k Zq.

Set Gl pkq

m " kerpϕ k`ε q and Sl pkq m " kerpϕ k`ε q X Sl m pZ p q Proposition 2. As for Gl 1 m in Proposition 2.4, the p-descending central series pG n q of a uniform group G Ă Gl m pZ p q is easy to describe. Indeed:

Proposition 2.7. -One has G n " exppp n´1 gq. In particular, G n {G n`1 » p n´1 g{p n g » g p .
Proof. -See [6, Chapter 4, Lemma 4.14].

The Lie algebra g as a sub-module of gl

m . -Let G Ă Gl 1
m be uniform; set g " logpGq. Recall that g is the powerful sub-Lie Z p -algebra of gl m such that exppgq " G. Let ∆ 1 be a finite subgroup of Gl m pZ p q of order coprime to p, acting by conjugation on G; observe that ∆ 1 also acts on Gl m , on gl m,p :" gl m {pgl m , and on g p . Since p ∤ |∆ 1 |, the Z p r∆ 1 s-module gl m is projective (see [START_REF] Serre | Linear representations of finite groups[END_REF]Chapter 14,§14.4]) and then, gl m,p and gl m pQ p q :" Q p b gl m have the 'same' character (as ∆ 1 -modules). Of course, for the same reason, g p and gpQ p q have the same character. Since gpQ p q Ă gl m pQ p q we obtain: Proposition 2.8. -Let ∆ 1 Ă Gl m pZ p q be a subgroup of order coprime to p acting on g by conjugation. Then g p is a sub-∆ 1 -module of gl m,p . Definition 2.9. -When the action is given via a Galois representation ρ 0 : ∆ Ñ Gl m pZ p q (here ∆ 1 " ρ 0 p∆q), the ∆-module g p is called the adjoint of G following ρ 0 .

Semisimple algebras. -The next Theorem, due to Kuranishi ([14]

), is essential for our strategy. See also [START_REF] Bois | Generators of simple Lie algebras in arbitrary characteristics[END_REF].

Theorem 2.10 ([14]

). -Let L be a semisimple Q p -Lie algebra. Then L can be generated by 2 elements.

Let L Ă gl m be a powerful Z p -Lie algebra. For x P L, put w L pxq :" maxtk, x P p k Lu, w L p0q " 8; it is a valuation on L (following Lazard's terminology, see [ -Let G Ă Gl 1 m be a uniform group such that gpQ p q is semisimple. Then there exist two elements g and g 1 in G such that piq w G pgq " w G pg 1 q, piiq g R xg 1 yG k`1 , piiiq the group G and the (closed) subgroup G 1 generated by g and g 1 , are locally the same.

Proof. -Let g :" logpGq be the powerful Z p -Lie algebra associated to G, and equipped with the valuation ω g . Set L :" Q p b g. By Theorem 2.10 there exist x, y P L such that L " xx, yy. By multiplying x and y by some powers of p, we can assume that x and y have the same valuation k (and are also in g). Suppose now that x " a 0 y mod p k`1 g for some a 0 P Z p zpZ p ; then x ´a0 y and p k 1 y are of the same valuation k 1 `k for some k 1 ě 1. Suppose moreover that x ´a0 y " a 1 p k 1 y mod p k`k 1 `1g for some a 1 P Z p zpZ p ; for some k 2 , the elements x´a 0 y´a 1 p k 1 y and p k 2 y are of the same valuation

k 2 `k ě k 1 `k`1.
If this process does not stop, we can construct a sequence of integers pk n q, k n`1 ą k n , and a sequence of p-adic integers pa n q such that x ´a0 y ´a1 p k 1 y ´¨¨¨´a n p kn y is of valuation k n`1 `k, showing that x P xyy, which is impossible since L is not abelian.

In conclusion, there exists a 0 , ¨¨¨, a k i P Z p zpZ p , and integers k 1 , ¨¨¨, k i such that x 1 :"

x ´a0 y ´¨¨¨a k i p k i y is of valuation k `ki`1 , but such that x 1 R xp k i`1 yy `pk`k i`1 `1g.
By abuse we note x by x 1 , p k i`1 y by y, and k `ki by k. Thus, we may assume that x and y are in g with the same valuation k, that they generate L , and that tx, yu is free in p k g{p k`1 g » g p » pF p q d , where d is the dimension of G.

Set g " exppxq and g 1 " exppyq. Then by the previous observations one has: g R xg

1 yG k`1 .
Let G 1 " xg, g 1 y be the closed subgroup of G generated by g and g 1 . The pro-p group G 1 is p-adic analytic as closed subgroup of a p-adic analytic group; let U be an open uniform subgroup of G 1 . Then for r " 0, g p r and pg 1 q p r are in U. Hence the Z p -Lie algebra L U " logpUq of U contains p r x and p r y, and then Q p b L U " L . Thus, U and G are locally isomorphic and even locally the same (due to the fact that U Ă G), see for example [23, [START_REF] Chistopolskaya | On nilpotent generators of the special linear Lie algebra[END_REF]). -Take m ě 3. The Lie algebra sl m is simple. Set x " ř m´1 i"1 E i,i`1 ppq, and y "

Example 2.14 ([5] or

" E m,1 ppq m odd, E m´1,1 ppq `Em,2 ppq m even.
Observe that xx, yy Zp Ă sl m . Thanks to [5, Proposition 2.5 and Proposition 2.6] and [3, Example 2] one has xx, yy " sl m pQ p q. Put g " exppxq, g 1 " exppyq and G 1 " xg, g 1 y Ă Gl 1 m . Observe that w G pgq " w G pg 1 q " 1. Then G 1 has Sl pkq m as open subgroup for some k " 0.

Lifting in uniform pro-p groups

To simplify we take p ą 2. The goal of this section is to give lifting criteria for uniform groups including the well-known conditions when G " Sl 1 m of Gl 1 m (see [17, §1.6]).

Compatible actions.

-Let G be a pro-p group of p-rank ě d, and let ∆ Ă AutpG q be finite of order coprime to p. Set Γ " G ˙∆.

Let G p,el :" G {G p rG , G s be the maximal abelian p-elementary quotient of G ; observe that G p,el can be seen as a F p r∆s-module.

Let M be a sub-F p r∆s-module of G p,el , and let ρ 0 : ∆ Ñ Gl m pZ p q be a representation of ∆ such that kerpρ 0 q acts trivially on M. Put ∆ 1 " ρ 0 p∆q. Hence M is also a ∆ 1 -module by ρ 0 psq ¨m :" s ¨m.

Let P r M : G Ñ G p,el Ñ M be the projection of G on M.
Let G 1 Ă Gl m pZ p q be a pro-p group such that d p G 1 " d p M. Suppose that ρ 0 p∆q acts on G 1 by conjugation. Hence pG 1 q p,el becomes a ∆-module via ρ 0 , by s ¨g1 :" ρ 0 psq ¨g1 . We suppose now that the action of ∆ on M is compatible with that of ∆ on pG 1 q p,el : in other words, χppG 1 q p,el q " χpMq, as ∆-module. Hence there exists one ∆-isomorphism β : pG 1 q p,el " Ñ M (which is equivalent to be an isomorphism of ∆ 1 -modules).

Embedding problem.

-Let G Ă Gl 1 m be a uniform pro-p group of dimension d. Set g :" logpGq Ă gl m . Given 1 ď s ď d and k ě 0, let z 1 , ¨¨¨, z s P p k g be some free elements in p k g{p k`1 g » pZ{pq d . Set g i " exppz i q. Then for i " 1, ¨¨¨, k, one has

w G pg i q " k. Let us consider the closed subgroup G 1 of G generated by the g i 's. The group G 1 is p-adic analytic. Observe that G 1 Ă G k Ă Gl pkq m " kerpGl m pZ p q Ñ Gl m pZ{p k qq.
Recall that pG n q is the p-central descending series of G.

For n ě 1, put G 1 rns :" G 1 X G n`k´1 . Hence G 1 r1s " G 1 . Lemma 3.1.
piq The pro-p group G 1 is of p-rank s, and pG 1 q p,el » G 1 {G 1 r2s . piiq For each n ě 1, G 1 rns ⊳ G 1 , the quotient G 1 rns {G 1 rn`1s is p-elementary abelian, and G 1 acts trivially (by conjugation) on G 1 rns {G 1 rn`1s . piiiq The G 1 rns are open in G 1 , and

č n G 1 rns " t1u.
Proof.

piq One has the commutative diagram:

G 1 {G 1 r2s / / G k {G k`1 » log / / p k g{p k`1 g G 1 {pG 1 q p rG 1 , G 1 s P g g g g ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ log 6 6 ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ Hence the family tg 1 G 1 r2s , ¨¨¨, g s G 1 r2s u is free in G 1 {G 1 r2s , showing that d p G 1 ě d p G 1 {G 1 r2s ě s. But G 1 is generated by the g i 's. Thus d p G 1 " s, and P is an isomorphism. piiq Clearly G 1 rns ⊳ G 1 . Since G n`1 " G p n rG, G n s one has: G 1 rns {G 1 rn`1s " G 1 X G n {G 1 X G n`1 " `G1 X G n ˘Gp n rG, G n s L G p n rG, G n s. Hence G 1
rns {G 1 rn`1s is abelian, and G and then G 1 acts trivially on G 1 rns {G 1 rn`1s .

piiiq Point piiq shows that the G rns are of finite index in G 1 , and then open since G 1 is pro-p finitely generated. Regarding the intersection, that is obvious since č n G n " t1u.

We now include conditions of Section 3.1. Via β and ρ 0 , suppose that pG 1 q p,el can be seen as a sub-∆-module of G p,el ; or equivalently, pG 1 q p,el is ∆ 1 -isomorphic to a subspace M of G p,el . Hence there exists a surjective morphism

f 2 : Γ Ñ G 1 {G 1 r2s ˙∆1 , such that piq pf 2 q |G " β ´1 ˝P r M , piiq pf 2 q |∆ " ρ 0 .
Recall that G 1 {G 1 r2s " pG 1 q p,el . More generally, suppose that for some n ě 2, there exists a surjective morphism

f n : Γ Ñ G 1 {G 1 rns ˙∆1
, where pf n q |∆ " ρ 0 . Then let us consider the embedding problem pE n q:

Γ " G ˙∆ ψn v v fn 1 / / G 1 rns {G 1 rn`1s / / G 1 {G 1 rn`1s ˙∆1 gn / / / / G 1 {G 1 rns ˙∆1
where g n is the natural map (in particular g n|∆ 1 is the identity). Thanks to the criteria of Hoechsmann (see for example [19, Chapter III, §5]), pE n q has some solution when H 2 pΓ, G 1 rns {G 1 rn`1s q " 0, where the action of Γ on G 1 rns {G 1 rn`1s is induced by conjugation via f n . See for example [19, Chapter III, §5, Proposition 3.5.9]. In fact we need more: Proposition 3.2. -If pE n q has a solution ψ n , then ψ n is an epimorphism (the solution is called proper).

Proof. -The question is to see if the map ψ n is surjective. Since G 1 {G 1 rn`1s and G 1 {G 1 rns are p-groups, it is equivalent to see if these two groups have the same minimal number of generators: that is Lemma 3.1, piq.

Main

Theorem. -We can now announce the key theoretical result of our paper.

Let us write G ab » T ' Z t p , where T is the torsion part of G ab . Let us keep the notations of the previous sections. In particular G is a uniform group of dimension d, G 1 is a closed subgroup of G, β is a ∆-isomorphism from pG 1 q p,el to a sub-∆-module of G p,el , ρ 0 : ∆ Ñ Gl m pZ p q is a representation of ∆, and ∆ 1 " ρ 0 p∆q. We suppose moreover that ∆ 1 acts by conjugation on G. Hence, via ρ 0 , the group ∆ acts also on g :" logpGq Ă gl n , and on g p :" g{pg (see §2.2.3). Theorem 3.3. -With the above notations, suppose given f : Γ " G ˙∆ ։ G 1 {pG 1 q p rG 1 , G 1 s ˙∆1 where f |∆ " ρ 0 , such that: piq H 2 pG , Q p {Z p q " 0; and piiq T rps K g p . Then the embedding problem

Γ " G ˙∆ ψ w w w w f G 1 ˙∆1 g / / / / G 1 {G 1 r2s ˙∆1
has a (proper) continuous solution ψ.

Proof. -It is a proof step by step. ' First, for n ě 2 suppose given a surjective morphism f n : Γ Ñ G 1 {G 1 rns ˙∆1 , where pf n q |∆ " ρ 0 . And consider the embedding problem pE n q. ' Observe now that

G 1 rns {G 1 rn`1s G 1 X G n L G 1 X G n`1 " / / pG 1 X G n qG n`1 {G n`1 _ G n {G n`1 G n G n`1 {G n`1 " o o
Since G is uniform, G n {G n`1 » g p , and this isomorphism is also compatible with the action of ∆. In particular, G rns {G 1 rn`1s q " 0: the embedding problem pE n q has some proper solution ψ n thanks to Proposition 3.2. Put f n`1 :" ψ n . ' By hypothesis f 2 is given. Hence by the previous computation one deduces that pE 2 q has a proper solution, which gives the existence of one f 3 . Then pE 3 q has a proper solution, etc. To conclude, it suffices to take the projective limit of a system of compatible solutions ψ n , and to remember that č n G 1 rns " t1u.

Remark 3.4. -Observe that G 1 ˙∆1 ãÑ G m pZ p q. Hence the continuous map ψ induces a continuous Galois representation ρ : Γ Ñ Gl m pZ p q with image containing G 1 as open subgroup. Moreover for δ P ∆, one has ψpδq " ρ 0 pδq; thus ρ |∆ » ρ 0 . In other words, ρ is a lift of ρ 0 . Finally observe that changing the map β (which is possible since p ą 2), changes the representation ρ.

Applications

Before developing the arithmetical context, let us make a quick observation.

Proposition 4.1. -Let k be a number field such that r 2 ą 0. Suppose Leopoldt and Gras conjectures for k at p. Take p " 0. Then for every p-analytic group G for which the Lie algebra is semisimple, there exist continuous Galois representations ρ : Galpk{kq Ñ Gl m pZ p q with image locally the same as G.

Proof. -Here we assume that the pro-p group G k,p is free of p-rank r 2 `1. Let U Ă G be a uniform subgroup of G. The group U is pro-p. We can assume that U Ă Gl 1 m , and we conclude with Corollary 2.12 (as consequence of Theorem 2.10).

When k is totally real, one strategy is to start with a residual Galois representation of Galpk{kq of order coprime to p (typically of order 2) in which at least one real place is ramified.

4.1. The principle. -We apply Section 2.2.3 in our favorite arithmetical context as developed by Greenberg [START_REF] Greenberg | Galois representations with open image[END_REF], Ray [START_REF] Ray | Constructing Galois representations ramified at one prime[END_REF], etc. ' Let us start with a Galois extension K{k of Galois group ∆ of order coprime to p. Recall that ∆ acts on G K,p , etc. Set Γ " GalpK p {Kq » G K,p ˙∆. Suppose kerpι K,p q trivial (equivalently, assume Leopoldt's conjecture for K at p). Then H 2 pG K,p , Q p {Z p q " 0 by Proposition 1.5. ' Let ρ 0 : ∆ Ñ Gl m pZ p q be a Galois representation of GalpK{kq. For i " 1, ¨¨¨, s, let L i {K be cyclic degree p extensions in K p {K. Let L be the compositum of the L i 's and set M " GalpL{Kq. We suppose that ∆ acts on M but also that kerpρ 0 q acts trivially on M as in Section 3.1. Hence ∆ 1 :" ρ 0 p∆q acts on M by ρ 0 psq ¨m :" s ¨m. ' Let G Ă Gl 1 m a uniform group, and let G 1 be an open subgroup of G as in Section 3.2. Recall that G 1 " xg 1 , ¨¨¨, g s y where the

g i 's are in G k zG k`1 . In particular G 1 Ă G k . Observe that G k`1 " G p k`1 by Theorem 2.3. Write G{p k`1 :" pG mod G p k`1 q.
We suppose now that ρ 0 p∆q acts by conjugation on G 1 , such that there exists a ∆isomorphism β : pG 1 q p,el Ñ M (which is equivalent to say that is a ∆ 1 -isomorphism). Hence, we also get GalpL{Kq ˙ρ0 p∆q » pG 1 q p,el ˙∆1 . By Lemma 3.1 recall that

pG 1 q p,el » G 1 {pG 1 q p rG 1 , G 1 s » G 1 {G 1 r2s » G 1 G k`1 {G k`1 .
We then have a continuous Galois representation

ρ 1 : GalpK{kq Ñ G{p k`1 ˙∆1 such that: piq pρ 1 q |GalpKp{Kq " β ´1 ˝P r M , piiq ρ 1 | GalpK{kq " ρ 0 , piiiq ρ 1 mod G p k » ρ 0 .
The Galois representation ρ 1 plays the role of the function f of Theorem 3. [START_REF] Chistopolskaya | On nilpotent generators of the special linear Lie algebra[END_REF] and [START_REF] Detinko | 2-generation of simple Lie algebras and free dense subgroups of algebraic groups[END_REF]. Take m ě 3, and consider z 1 " E 1,2 ppq `E2,3 ppq `¨¨¨`E m´1,m ppq P gl m , and z 2 " " E m,1 ppq m odd E m´1,1 ppq `Em,2 ppq m even.

Set g 1 " exppz 1 q P Gl 1 m and g 2 " exppz 2 q P Gl 1 m , and G 1 " xg 1 , g 2 y. Take the uniform group G :" Sl 1 m . Of course G 1 Ă G. As seen in 2.14 (thanks to Corollary 2.12), the analytic groups G 1 and Sl m pZ p q are locally the same. ' Set A " ř i p´1q i`1 E i,i . By conjugation, A ¨z1 " ´z1 and A ¨z2 " z 2 , and then A acts by ´1 on g 1 and by `1 on g 2 . Of course A acts also on Sl m pZ p q. Let ρ 0 : GalpK{Qq Ñ Gl m pZ p q be the Galois representation defined by ρ 0 psq " A. Here kerpρ 0 q " 1, and the map β : M Ñ pG 1 q p,el defined by βph 1 q " g 1 pG 1 q p rG 1 , G 1 s and βph 2 q " g 2 pG 1 q p rG 1 , G 1 s is an isomorphism of ∆-modules. For m " 2, consider Example 2.13 and take z 1 " E 1,1 ppq ´E2,2 ppq, z 2 " E 1,2 ppq `E2,1 ppq, g 1 " exppx 1 q, g 2 " exppx 2 q, and A " E 1,1 ´E2,2 . In conclusion, principle of Section 4.1 allows us to lift ρ 0 to a Galois representation of GalpK p {Qq Ñ Gl m pZ p q. Proof. -Here the field K is p-rational and E K " 1; then apply Corollary 4.2. Hence there exists a continuous Galois representation ρ 1 : GalpK p {Qq Ñ Sl 1 m ˙ρ0 p∆q ãÑ Gl m pZ p q with image containing Sl k m for some k " 0, as open subgroup. Let ω 1 : G Q Ñ Z p be the cyclotomic character. Now, recall that since Sl m pQ p q is semisimple, every open subgroup of Sl 1 m has finite abelianization. Hence the image of the Galois representation ρ :" ρ 1 b ω 1 : GalpK p {Qq Ñ Gl m pZ p q has p-adic dimension m 2 ; in conclusion the image of ρ is open in Gl m pZ p q.

As corollary, we obtain: piq ρ is unramified ouside tp, 8u if p " ´1 mod 4, piiq ρ is unramified ouside t2, p, 8u if p " 1 mod 4.

Proof. -Take K " Qp ? ´pq. Thanks to an explicit version of Brauer-Siegel (see for example [START_REF] Louboutin | The Brauer-Siegel Theorem[END_REF]), p ∤ |Cl K |. (For p " 3, the number field Qp ? ´3q is 3-rational).

Galois representations via K "

Qpζ p q. -The study of Galois representations through Qpζ p q allows us to realize for large m, Galois representations ρ : G Q Ñ Gl m pZ p q unramified outside tp, 8u, and with open image.

Take k " Q, K " Qpζ p q. Let s be a generator of ∆ " GalpK{Qq. Remind that ι K,p is injective, and by Proposition 1.14, χpF K,p {pq " 1 `ω `ω3 `¨¨¨`ω p´2 , where ω : G Q Ñ F p Ă Z p is the mod p reduction of the cyclotomic character.

Take m ě 3. Let g 1 and g 2 be the elements of Sl 1 m as in the previous section. Set G 1 " xg 1 , g 2 y Ă Sl 1 m .

Given an odd integer a, set A a psq " m ÿ i"1 ω ia psqE i,i . Consider the Galois representation ρ 0 : GalpK{Qq Ñ Gl m pZ p q defined by ρ 0 psq " A a psq.

Definition 1 .

 1 10. -Two finite F p r∆s-modules M and N are said to be orthogonal, and write M K N, if for every ϕ P Ψ p one has r ϕ M ¨rϕ N " 0. Since χpM b Nq " χpMqχpNq and χpM ^q " χpMq ´1, one has: Lemma 1.11. -Let M and N be two finite F p r∆s-modules. Then ´M^b N ¯∆ " 0 if and only if M K N. We denote by Reg the character of the regular representation, by 1 the trivial character, and for a subgroup D of ∆, by Ind ∆ D 1 D the induced character from D to ∆ of the trivial character 1 D of D.

Proposition 1 .

 1 14. -Assuming the Leopoldt conjecture for K at p, one has χpF K,p {pq " 1 `nReg ´ÿ v|8 Ind G Dv 1 Dv ,

Theorem 4 . 3 .

 43 -Given p ą 3, and m ě 1. Let K{Q be an imaginary quadratic extension such that p ∤ |Cl K |. Then there exist continuous Galois representations ρ : GalpK p {Qq Ñ Gl m pZ p q with open image.

Corollary 4 . 4 .

 44 -There exist continuous Galois representations ρ : GalpQ{Qq Ñ Gl m pZ p q with open image satisfying:

Proposition 1.2. -

  Let us write G ab » Z t p ' T , where T is the torsion subgroup of G ab . Let M be a finite Γ-module of exponent p on which G acts trivially. If H 2 pG, Q p {Z p q " 0 then H 2 pG, Mq » `T rps ^b M ˘∆.After observing that H 2 pG, Z p q ^» H 2 pG, Q p {Z p q " 0, then H 2 pG, Z{pq is isomorphic to `H1 pG, Z p qrps ˘^» T rps ^, and we conclude with Proposition 1.1. Z{pZq ´dp H 2 pG, Z{pZq " t ´dp H 2 pG, Z p q.

	Proof. -By taking the G-homology of the exact sequence 0 ÝÑ Z p ÝÑ Z p ÝÑ Z{pZ ÝÑ 0, we get the exact sequence of F p r∆s-modules
	H 2 pG, Z p q{p	/ / H 2 pG, Z{pZq	/ / / / H 1 pG, Z p qrps.
	By the way, the proof of Proposition 1.2 allows us to obtain:
	Proposition 1.3. -One has		
	d p H 1 pG,		
			See for example [12, Chapter VI,
	§15, Theorem 15.1]. By Pontryagin duality, we obtain H i pG, Mq » H i pG, Z{pq b M, as ∆-modules. Since |∆| is coprime to p, by the Hochschild-Serre spectral sequence one also has H i pΓ, Mq » H i pG, Mq ∆ (see for example [19, Chapter II, §1, Lemma 2.1.2]). By combining these two observations we finally obtain the claimed isomorphism.

1.2. Restricted ramification. -Let

  K be a number field. To simplify when p " 2 we assume K totally imaginary. Set ' E K :" Z p b O K the pro-p completion of the group of units of the ring of integers O K of K, ' Cl K the p-Sylow of the class group of K, ' K p the completion of K at p|p, U p the local units of K p , ' U p :" lim

	ÐÝ n	U p {U p n p the pro-p completion of U p , and U p :"	p|p ź	U p ,
	' ι K,p : E K Ñ U p the diagonal embedding of E K into p-adic units. 1.2.1. The pro-p group G K,p . -Let K p {K be the maximal pro-p extension of K un-ramified outside p; set G K,p " GalpK p {Kq. The pro-p group G K,p is finitely presented. More precisely, one has (see [19, Chapter VIII, Proposition 8.3.18; Chapter X, Corollary
	10.4.9, Theorem 10.7.13]):		

Theorem 1.4. -The pro-p group G K,p is of cohomological dimension 1 or 2, and

  Let G be a uniform pro-p group. Then for all n ě 1, G n`1 is uniform and also equal to:piq G p n rG n , G n s, piiq G p n " xg p n , g P Gy " tg p n , g P Gu, piiiq pG n q p .

	Proof. -See [6, Chapter 3, Theorem 3.6].

1. -The pro-p group G is said to be uniform if for every n, the map α n is an isomorphism. Hence when G is uniform, there exists some d such that G n {G n`1 » pZ{pq d ; the integer d is called the dimension of G. Theorem 2.2. -

  4. -piq One has Gl 1 m " Gl p1q m and Sl 1 m " Sl p1q m . piiq The subgroups Gl pkq m (resp. Sl pkq m ) correspond to the p-descending central series of Gl 1 Sl 1 m). In other words, Gl pkq m " pGl m q k and Sl pkq m " pSl m q k . piiiq For k ě 1 one has Gl pkq m " exppp k´1 gl m q, and Sl pkq m " exppp k´1 sl m q. Proof. -For piq and piiq see [6, Chapter 5, Theorem 5.2]; for piiiq see [6, Chapter 4, Lemma 4.14]. There is a correspondence between the category of uniform pro-p groups G and the category of powerful Z p -Lie algebras L. When G Ă Gl 1 m this correspondence is given by the exponential and the logarithm; in particular L " logpGq P gl m . Gl 1 m a uniform pro-p group of dimension d. Set g :" logpGq Ă gl m , and g p :" g{pg. Observe that g p is a F p -vector space of dimension d.

	Proposition 2.4 is a special case of the following result:
	Theorem 2.5. -Proof. -See [6, Chapter 9, Theorem 9.10].
	Definition 2.6. -Let G Ă

m

(resp.

  1 rns {G 1 rn`1s is a sub-∆-module of g p . ' Since f n pG q Ă G 1 {G 1 rns , by Lemma 3.1 the group G acts trivially (via f n ) on G 1 But by hypothesis T rps K g p . Then as G 1 rns {G 1 rn`1s ãÑ g p , one has T rps K G 1 rns {G 1 rn`1s . By Lemma 1.11 we finally get H 2 pΓ, G 1

	By Theorem 1.12 we get	rn`1s . rns {G 1
	H 2 pΓ, G 1 rns {G 1 rn`1s q » ´T rps ^b G 1 rns {G 1 rn`1s ¯∆.	
	'	

  We start with an imaginary quadratic extension K{Q. Let p ą 2 be a prime number. Put ∆ " GalpK{Qq " xsy, and let ϕ be the nontrivial character of ∆. ' Suppose that p ∤ |Cl K |. For p " 3, we assume moreover that U p {ι K,p pE K q is torsion free; typically K " Qp ? ´3q. The pro-p group G K,p is free (see Example 1.9), and χpG ab K,p {pq " 1 `ϕ by Proposition 1.14. Take M " G p,el K,p " xh 1 , h 2 y » pZ{pq 2 , such that s ¨h1 " h 1 and s ¨h2 " h ´1 2 . ' We recall observation of Example 2.14 from

3.

' As ∆ 1 (or ∆) acts by conjugation on G 1 , we assume moreover that it also acts on G. Set g :" logpGq Ă gl n . Hence g p becomes a ∆-module (via ρ 0 ). As consequence of Theorem 3.3 and Remark 3.4, we get: Corollary 4.2. -If kerpι K,p q " 1 and T K,p rps K g p , then the representation ρ 0 lifts to a Galois representation ρ : GalpK p {kq Ñ Gl m pZ p q with image containing G 1 as open subgroup.

4.2. Galois representations via imaginary quadratic fields. -
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Then A a psq ¨z1 " ω ´apsq z 1 and A a psq ¨z2 " " ω apm´1q psq z 2 m odd ω apm´2q psq z 2 m even.

Put g 1 " exppz 1 q and g 2 " exppz 2 q. The action of A a psq is odd on g 1 , and even on g 2 . Of course A a psq acts also on Sl 1 m . Thanks to the decomposition of χpF K,p {pq, we can find h 1 and h 2 in F K,p such that s ¨h1 " h ω a psq 1 , and s ¨h2 " h ω apm´1q psq 2 if apm ´1q " 0 mod p ´1 for m odd, and s ¨h2 " h ω apm´2q 2 if apm ´2q " 0 mod p ´1 for m even; there is no condition for the odd character, but the even character must be trivial. Put M " F p h 1 `Fp h 2 Ă G p,el K,p . Then ∆ acts on M, kerpρ 0 q " kerpω a q acts trivially on M, and the two ∆-modules M and pG 1 q p,el are isomorphic. Here, it is not difficult to see that the character χpgl m,p q of gl m,p (via ρ 0 ) contains only characters like ω pi´jqa with i, j P t1, ¨¨¨, mu.

We can apply the previous techniques. And, as before, the representation ρ 0 lifts when ω aa 1 does not appear in χpT K,p rpsq " χ ˚pC l K rpsq, for every a 1 P t˘1, ˘2, ¨¨¨, ˘mu (in fact class modulo p ´1 of).

Take now a the odd part of p ´1; in other words, p ´1 " a2 λ with 2 ∤ a; so λ " v 2 pp ´1q. We obtain the first condition (regarding the existence of h 1 and h 2 ): for m odd we must have v 2 pm ´1q ě v 2 pp ´1q; for m even we must have v 2 pm ´2q ě v 2 pp ´1q. For a regular prime p, that is the only condition. Regarding the condition so that T K,p K gl m,p : Let us start with a character ω k i that appears in χpCl K rpsq, that is equivalent to say that ω 1´k i appears in χpT K,p rps); if ω 1´k i appears in χpgl m,p q then a divides k i ´1.

Let us look at quickly the p " 3 mod 4 case; here a " pp ´1q{2. There is no condition on m, and the condition regarding T K,p becomes r ω pp´1q{2 pT K,p q " 0. Observe that r ω pp´1q{2 pT K,p q " r ϕ pT K 0 ,p q, where K 0 " Qp ? ´pq and where ϕ is the nontrivial character of GalpK 0 {Qq. Hence since r ϕ T K 0 ,p " 0 (see the proof of Corollary 4.4), we get that there is no obstruction for the embedding problem. In fact, observe that in this case the representation we obtain through Qpζ p q can be deduced by the one of Corollary 4.4.

We have proved: