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Abstract—Ensemble-based methods are one of the most often
used methods in the classification task that have been adapted
to the stream setting because of their high learning performance
achievement. For instance, Adaptive Random Forests (ARF) is a
recent ensemble method for evolving data streams that proved
to be of a good predictive performance but, as all ensemble
methods, it suffers from a severe drawback related to the high
computational demand which prevents it from being efficient and
further exacerbates with high-dimensional data. In this context,
the application of a dimensionality reduction technique is crucial
while processing the Internet of Things (IoT) data stream with
ultrahigh dimensionality. In this paper, we aim to alleviate this
deficiency and improve ARF performance, so we introduce the
CS-ARF approach that uses Compressed Sensing (CS) as an
internal pre-processing task, to reduce the dimensionality of data
before starting the learning process, that will potentially lead
to a meaningful improvement in memory usage. Experiments
on various datasets show the high classification performance of
our CS-ARF approach compared against current state-of-the-art
methods while reducing resource usage.

Index Terms—Data stream mining, compressed sensing, en-
semble learning, adaptive random forests

I. INTRODUCTION

Mining Internet of Things (IoT) data streams is a very
attractive field that has gained popularity and attracted the
attention of the data mining community for the last few
years [1]. In the IoT era, there has been a lot of interest
in data arriving in the form of continuous and infinite data
streams. In fact, many applications generate indefinitely, at
high rates, massive streams of data that need to be processed in
an incremental fashion requiring real-time processing systems.
Due to the enormous volume of data generated daily and the
storage limitation, there is an information overload in most
sciences. Experimental life sciences in different domains such
as social networks, call records, text mining, and more.

Streaming classification is an active area of research in
data mining field. This task for data streams is similar to the
batch classification where both operate in order to predict the
class labels of new incoming unlabeled instances composed
by vectors of attributes. The stream classification processes
instances from the stream while updating continuously, af-
ter prediction, the models as the stream emerges to follow
the current distribution of the data. Traditional–or batch–
classification algorithms have been proved to be of limited
effectiveness under streaming environments, so a variety of
algorithms have been proposed to cope with the evolving
data stream challenges [2]–[8]. Moreover, ensemble learning
is receiving increased attention for data stream learning to im-
prove learning performance [9], [10]. Unlike single classifiers,
ensemble-based methods predict by combining the predictions
of several classifiers. Several empirical and theoretical studies
have shown the reasoning that combining multiple “weak” in-
dividual classifiers leads to better predictive performance than
a single classifier [3], [11], [12]. The difference between batch
and data stream classifiers resides in the way how the learning
and prediction are performed. Moreover, the stream setting
raises several challenges related primarily to the resource
constraints because of the unbounded size of the evolving
streams. Unlike learning algorithms for static datasets, data
streams algorithms must process data incrementally using the
one-pass processing.

Handling high-dimensional data has become a big challenge
since many domains [13], such as biology, social media,
spam email filters and so forth, generate data with ultrahigh
dimensionality that need to be processed in a stream fashion
considering their online nature. Nevertheless, other than their
sensitivity to the learning algorithm used as a base learner,
most of the existing stream ensemble-based methods are



often expensive and time-consuming when dealing with sparse
and high-dimensional data streams [2]. Despite their good
classification performance, the major drawback of ensembles
is the high computational cost that exacerbates gradually with
the dimensionality of the data.

In a recent work [9], the adaptive random forests method
(ARF) was proposed to deal with evolving data streams by
extending the random forest algorithm (RF) using a concept
drift mechanism to deal with changes in the distribution over
time and decide when to change an obsolete tree with a new
one inside the ensemble. However, it appears that ARF is
effective (in terms of accuracy) but inefficient (in terms of
resource usage) with high-dimensional data streams.

In attempt to improve the performance of the ARF method,
we propose the compressed adaptive random forests (CS-
ARF); an ensemble-based method that extends the ARF [9] to
handle high-dimensional and sparse data streams. To do so, we
incorporate a dimensionality reduction technique, Compressed
Sensing (CS)–also called Compressing Sampling [14], to
project the data into a lower-dimensional space by remov-
ing redundancy and finding useful combinations of existing
features. Therefore, instead of building trees using high-
dimensional instances, we will use a smaller representation
of these instances that will boost the efficiency of the CS-
ARF approach. The main contributions of this paper are the
following:

• Compressed-Adaptive Random Forests (CS-ARF): a new
ensemble method to support high-dimensional data
streams classification. We aim to enhance the resource
usage of the ARF method by compressing the input data,
using CS internally, and then fed them to the ensemble
members which are built upon different CS independent
matrices;

• Empirical results: we compare our novel approach against
several popular algorithms from the literature using a
various set of datasets. Results show that our method
obtains a good trade-off among the three axes (accuracy,
memory and time).

This paper is organized as follows. Section II reviews the
prominent related work. In Section III, we introduce basics
about compressed sensing followed by its application in
conjunction with the ARF algorithm. Section IV presents
and discusses the experimental results, in terms of accuracy
and resource usage, performed on synthetic and real-world
datasets. We finally draw concluding remarks.

II. RELATED WORK

There are several algorithms in the literature that address the
classification task in the streaming framework. For instance,
naive Bayes [15] which uses the assumption that the attributes
are all independent of each other and w.r.t. the class label
uses Bayes’s theorem to compute the posterior probability
of a class given the training data. The k-Nearest Neighbors
(kNN) is another algorithm that has been adapted to the data
stream setting. It does not require any work during training
but it uses the entire dataset to predict the class labels for test

examples. The challenge with adapting kNN to the stream
setting is that it is not possible to store the entire stream
for the prediction phase [16]. An envisaged solution to solve
this issue is to manage the examples that are remembered
so that they fit into limited memory (window) and to merge
new observations with the closest ones already in the window.
Another new kNN approach that has been proposed recently
is Self-Adjusting Memory kNN (samkNN) [8]. SamkNN uses
a dual-memory model to capture drifts in data streams by
building an ensemble with models targeting current or former
concepts. Several tree-based algorithms have been proposed to
handle evolving data streams [5]–[7]. A well-known decision
tree learner is the Hoeffding Adaptive Tree (HAT) [3] which
extends Hoeffding decision trees [5] to deal with concept
drifts by incorporating the ADaptive WINdowing (ADWIN)
algorithm [17], to monitor the performance of branches on the
tree and replace them with new branches when their accuracy
decreases.

In order to achieve higher predictive performance than
single classifiers, one could use ensembles. This category
of classifiers has been widely studied and often used when
dealing with evolving data streams because, other than im-
proving the accuracy by aggregating the predictions of several
weak learners (the ensemble members), it is applied to handle
concept drifts by resetting or updating current models for each
ensemble member [3], [18]. An extensive review about the
related work is provided in [18]. Among those algorithms, we
represent briefly the well-known ones. Leveraging Bagging
(LB) [19] which is a streaming version of Bagging [11]
that handles drifts using ADWIN [17], where if a change is
detected, the worst classifier is erased and a new one is added
to the ensemble. LB also induces more diversity to the ensem-
ble via randomization. Adaptive Random Forests (ARF) [9]
is a recent ensemble method that uses Hoeffding tree as a
base learner and a drift detection scheme where we replace
a tree once a drift is detected. Streaming Random Patches
(SRP) [20] is also a novel ensemble method that combines
random subspaces and bagging while using a strategy to detect
drifts similar to the one introduced in ARF [9].

One notable issue related to the ensemble-based methods
with evolving data streams is the massive computational
demand (in terms of memory usage and running time). Ensem-
bles require more resources than single classifiers which be-
come significantly worse with high-dimensional data streams.
To cope with this problem without importantly affecting the
predictive performance of the ARF method, we need to incor-
porate an efficient dimensionality reduction technique that can
internally transform high-dimensional data into a lower space
before the learning task.

Feature transformation, also known as feature extraction,
plays a critical role when dealing with high-dimensional data
and is often used in data mining and machine learning. This
task consists on extracting a subset of relevant features (in
low-dimensional space) from a set of input features in high-
dimensional space [21]. This pre-processing step provides
potential benefits to stream mining algorithms, such as re-



ducing the storage usage, decreasing the processing time, and
enhancing–or not losing much in– the prediction performance.

In this context, a well-known technique has been pro-
posed, Compressed Sensing (CS) [14], also called Compressed
Sampling, that deals with redundancy while transforming
and reconstructing data. The basic idea is to use orthogonal
features or samples, i.e. complementary features, to provably
and properly represent data as well as reconstruct them from a
small number of samples. More details about the basic notions
of CS are available in the following.

III. COMPRESSED ADAPTIVE RANDOM FORESTS

Ensemble-based methods have recently attracted a lot of at-
tention in the machine learning community thanks to their high
predictive performance [18]. Since ensembles combine several
single classifiers however, their resource usage is accordingly
huge in comparison to one classifier, which makes them
inappropriate in high-dimensional contexts. To address this
weakness, we use an efficient feature transformation technique,
such as compressed sensing, to reduce the dimensionality of
data for the following learning task.

A. Notation

In the following, we assume a data stream S is a sequence of
instances X1, X2, . . . , XN , · · · , where N denotes the number
of available observations so far. Each instance Xi is composed
of a vector of d features (x1i , . . . , x

d
i ). The feature transforma-

tion comprises the process of finding some a mapping function
A : Rd → Rp, where p � d, to be applied on each instance
X from the stream.

B. Compressed Sensing

CS has been firstly proposed for signal processing [14] to
efficiently compress and reconstruct a signal. It has been thor-
oughly studied and used in different domains with the offline
setting, such as image processing [22], face recognition [23],
and vehicle classification [24]. The principle of CS is based
on the exploitation of the sparsity of high-dimensional data
to recover them from a small set of features. Given a sparse
vector X ∈ Rd, CS measures Y ∈ Rp as follows:

Y = AX, (1)

where p � d and A ∈ Rp×d is called measurement–
sampling or sensing– matrix. This matrix is used to assure
to transformation from high-dimensional space to a lower
dimensional one.

Three basic principles under which CS enables the data
recovery from a small set of possibly noisy features with high
probability:

• Sparsity: the sparsity of data in some basis can be
exploited for compression by keeping the non-zero val-
ues and removing irrelevant features without much loss.
Given an instance X = {x1, . . . , xd}, X is said to be
s-sparse if ‖X‖0 = |{j : xj 6= 0}| ≤ s.

• Restricted Isometry Property (RIP): A satisfies the RIP
for all s-sparse instance X if there exists ε ∈ [0, 1] such
that:

(1− ε)‖X‖22 ≤ ‖AX‖22 ≤ (1 + ε)‖X‖22. (2)

It has been proved that a matrix A will satisfy the RIP
in CS with high probability if p = O(s log(d)) [14].

• Incoherence: this principle is applied through the RIP
by measuring similarities and capturing the correlation
between any two columns between features of sparse
data. The coherence measures the largest similarity be-
tween any columns of data (all the values for a given
dimension). CS aims to identify low coherence pairs,
characterizing the dependence between columns, to cap-
ture enough information for reconstruction purposes [25].

Two related properties have been pointed out for the
characterization of the sensing matrix, the largest coherence
and the RIP. The latter is both a necessary and a sufficient
condition in data reconstruction and the randomization is a key
component in the construction of the sampling matrix [26].
Two well-known random sensing matrices, that honor the
RIP with high probability and are prominent thanks to their
simplicity, are used in CS: (i) Gaussian random matrix, which
is generated from a Gaussian distribution having entries with
zero mean and variance equals to 1 ((Ai,j ∼ N (0, 1)); and (ii)
Bernoulli random matrix, which is generated from a Bernoulli
distribution taking values 1 or −1 with equal probability
(Ai,j ∈ {1/

√
p,−1/√p}). These matrices are universal and

can be applied to any sparse data.

C. CS-ARF Approach

Random forest algorithm [27] is widely used in the batch
learning classification. It grows several trees while randomly
selecting features at each split node from an entire set of
input features. Nonetheless, this is inapplicable on evolving
data streams because random forest algorithm performs multi-
ple passes to establish bootstraps which is inappropriate in
the streaming framework. For this to happen, an adaptive
random forests (ARF) algorithm [9] has been proposed to
adapt random forest to work under the streaming setting. This
adaptation includes the use of: (i) an online bootstrap process
to approximate the original data explained in [9]; and (ii) a
random subset of features to limit the size of input set during
each leaf split. To cope with concept drifts, ARF method
includes a warning and drift detection operators in order to
adapt to changes in the data distribution over time which will
lead to a superior classification performance.

One major drawback of ensemble-based methods despite
their good classification performance, and particularly the ARF
method, is the important amount of computational resources
needed to deal with high-dimensional data streams. However,
this kind of data solicits additional resources that could be
avoided using a feature extraction technique. The main idea to
mitigate this curse of dimensionality and improve the resource
usage of the ARF method is to use an efficient technique with



relevant properties, such as compressed sensing (CS) [14],
[28].

In this vein, we propose our novel approach Compressed
Adaptive Random Forests, denoted CS-ARF in the following,
that combines the simplicity of compressed sensing and the
high learning performance of the reputed ARF method for
evolving data streams. Given an infinite stream of high-
dimensional instances X ∈ Rd, we wish to construct a low-
dimensional representation Y ∈ Rp, where p � d and Y
is the dense representation of X after the application of the
dimensionality reduction using CS projection.

We assume that all the instances X in the stream S are
s-sparse to adhere to the CS requirements and use a RIP
matrix in order to transform data into lower dimensional space
of O(s log(d)) [14]. This compression space size is easy to
obtain, since it depends on the size of the input features, which
makes it convenient for applications in the streaming context
where the number of instances N is unknown. CS is also
different from random projection which satisfies the Johnson-
Lindenstrauss (JL) lemma [29] asserting that N instances from
an Euclidean space can be projected into a lower dimensional
space of O(logN/ε2) dimensions.

Fundamentally, CS is composed of two main phases: (i)
the compression phase, during which occurs the projection of
the high-dimensional data into a smaller dimensional space;
and (ii) the decompression phase, where the data are recov-
ered from their low-dimensional representation. To assure the
recovery of the original data with high probability, avoid the
information loss that may occur under this transformation and
make it minimal, we must use a sensing matrix that respects
the restricted isometry property of the CS technique.

In this work, we are only concerned by the compression
phase that will alleviate the need of resources in the ARF clas-
sification task while dealing with high-dimensional streams.
So, for each tree inside our ensemble approach, CS-ARF, we
apply a pre-processing step consisting in the CS transformation
on every incoming instance via solving (1). Therefore, the low-
dimensional representation of the current instance will be fed
to the underlying ARF ensemble member for prediction and
then used to update the corresponding model.

For the purpose of obtaining sufficiently good–or with minor
loss in– accuracy and reducing the use computational re-
sources, we need perform projection using an effective sensing
matrix A that respects the RIP for the CS application. In this
regard, recent studies [30], [31] assessed the performance of
different sensing matrices that satisfy the restricted isometry
property with high probability and showed that compressed
sensing, using Gaussian random matrices, achieves good re-
sults in comparison with other sensing matrices. In the light
of this, we focus on using Gaussian random matrices because
of their simplicity and data-independent nature, which is
suitable to the evolving data streams. We do not need the
instances from the stream to achieve the projection of high-
dimensional data. Instead, we build the sensing matrix A such
that its elements are independently generated from a Gaussian
distribution Ai,j ∼ N (0, 1).

The main novelty of our approach is in how we internally
couple the CS technique with the ARF method to deal with
evolving data streams. In fact, we use several CS matrices
by generating a different Gaussian matrix for each tree in
order to promote diversity inside the ensemble and lose as
little as possible in terms predictive performance. Thus, each
ensemble member in our CS-ARF approach will be preceded
by a dimensionality reduction step that uses a different sensing
matrix. Therefore, models–or trees– are going to be different
inside the ensemble method CS-ARF because of: (i) the
randomization due to the generation of different Gaussian
matrices; and (ii) the construction of the trees by using random
subsets of features for node splits.

Algorithm 1 CS-ARF algorithm. Symbols: S ∈ Rd: data
stream; p: output dimension; e: ensemble size; m: maximum
features evaluated per split; C: change detector; B: set of
background trees; δw: warning threshold; δd: drift threshold.

1: function CS-ARF(p, e,m, δw, δd)
2: T ← CreateTrees(e)
3: G← GaussianMatrix(e, d, p) . generate e random

matrices
4: B ← ∅
5: for all X ∈ S do
6: (x, c)← X
7: for all t ∈ T and gm ∈ G do
8: y ← CS(x, p, gm) . y is the projection of x

into p-dimensions using CS
9: ĉ← predict(t, y)

10: TreeTrain(m, t, Y ) . train t on the
compressed Y ← (y, c)

11: if C(δw, t, Y ) then . if a warning is detected
12: b← CreateTree() . create a background

tree
13: B(t)← b

14: if C(δd, t, Y ) then . if a drift is detected
15: t← B(t) . Replace t by b
16: for all b ∈ B do
17: TreeTrain(m, b, Y )

Algorithm 1 shows the pseudo-code of the proposed CS-
ARF approach. As explained previously, for each ensemble
member t, we apply the CS transformation by generating a
Gaussian random matrix gm (different from the ones generated
for the rest of the ensemble members) and therefore represent
the current instance using e low-dimensional representation to
fed it to each of the e trees (lines 6 − 8), instead of feeding
the high-dimensional instance X . Then, we predict the class
label for the current compressed dense instance Y ∈ Rp (line
9) before using it to train the trees (line 10). For more details
about the tree training task and how trees are updated, we
redirect readers to the work of Gomes et al. [9]. To cope with
concept drifts, the ARF method includes a warning and drift
detection mechanisms, where once a warning is detected for an
ensemble member, a background tree is created (lines 11−13).



TABLE I: Overview of the datasets
Dataset #Instances #Attributes #Classes Type

Tweets1 1,000,000 500 2 Synthetic
Tweets2 1,000,000 1,000 2 Synthetic
Tweets3 1,000,000 1,500 2 Synthetic
RBF 1,000,000 200 10 Synthetic
Enron 1,702 1,000 2 Real
IMDB 120,919 1,001 2 Real
Nomao 34,465 119 2 Real
Har 10,299 561 6 Real
ADS 3,279 1,558 2 Real

This tree will be replaced by its corresponding background tree
if this warning signal becomes a drift (lines 14− 15).

IV. EXPERIMENTS

In this section, we assess the impact of compressed sensing
on the novel ensemble-based method, adaptive random forests
for evolving data streams. To do so, we conduct several exper-
iments to evaluate the performance of the CS-ARF approach.
Hence, we aim to find the best trade-off over three main axes:
(i) the classification accuracy, i.e., the proportion of correctly
predicted instances; (ii) the memory usage (megabytes), which
is the cost of maintaining the current models of our ensemble
in the main memory; and (iii) the overall running time, which
comprises the data transformation, prediction, and learning.
All such aspects are strongly related, so that the drastic
reduction of time and space complexities would make our
approach much faster than using all features. Of course, one
should weigh the classification performance while assessing
all those factors.

A. Data
We use 4 synthetic and 5 real datasets that have been

thoroughly used in the literature to evaluate the performance
of stream classifiers. Table I presents a short description of
each dataset, further details are provided in what follows.

Tweets. Tweets was created using the tweets text data
generator provided by MOA [32] that simulates sentiment
analysis on tweets, where messages can be classified into
two categories depending on whether they convey positive
or negative feelings. Tweets1, Tweets2, and Tweets3 produce
1, 000, 000 instances of 500, 1, 000, and 1, 500 features, re-
spectively.

RBF. The Radial Basis Function (RBF) generator provided
also by MOA. It creates centroids at random positions, and
each one has a standard deviation, a weight and a class label.
This dataset simulates drift by moving the centroids with
constant speed.

Enron. The Enron corpus dataset is a large set of email
messages that was made public during the legal investigation
concerning the Enron corporation [33]. This cleaned version
of Enron consists of 1, 702 instances and 1, 000 features.

IMDB. IMDB1 movie reviews dataset was first proposed
for sentiment analysis [34], where reviews have been pre-

1http://waikato.github.io/meka/datasets/

processed, and each review is encoded as a sequence of word
indexes (integers).

Nomao. Nomao [35] is a large dataset that has been
provided by Nomao Labs. It contains data coming from several
sources on the web about places (name, website, address,
localization, fax, etc· · · ).

Har. Human Activity Recognition dataset [36] built from
several subjects performing daily living activities, such as
walking upstairs/downstairs, sitting, standing and laying, while
wearing a waist-mounted smartphone equipped with sensors.
The sensor signals were pre-processed using noise filters and
attributes were normalized and bounded within [−1, 1].

ADS. Advertisements dataset2 is a set of possible advertise-
ments on internet pages, where each row represents one image
tagged as ad or nonad (which are the class labels).

B. Results and Discussions

The experiments were implemented and evaluated in Java
by extending the MOA framework [4], [32] using the datasets
described above. We use the online learning setting for Inter-
leaved Test-Then-Train method [37] for evaluation, where each
instance is provided as input for testing the model and, right
after, given as training input to adapt the learning model. For
a fair comparison, we evaluate the CS-ARF approach against
state-of-the-art classifiers coupled with compressed sensing
as a filter, where we use one CS matrix for dimensionality
reduction with all the ensemble members. For the state-of-the-
art classification comparison, we use Leveraging Bagging [19]
(LBcs), Streaming Random Patches [20] (SRPcs), Hoeffding
Adaptive Trees [3] (HATcs), Self-Adjusting Memory kNN [8]
(SAMkNNcs), and Naive Bayes [15] (NBcs) algorithms. We
include single classifiers (HAT, SAMkNN, NB) in our com-
parison, because they are often used as baselines in the stream
classification. It has been proved in [9], [20] that the ensemble-
based methods, LB and SRP, are the best outperforming other
ensemble classifiers using a similar set of datasets to the one
used in this work.

Parameterization: we use k = 11 for number of neighbors
in the SAMkNN algorithm. We use a similar configuration for
the HAT algorithm and Hoeffding tree (HT)–the base learner
for all the ensemble methods– with the grace period, the split
confidence, and subspace size set to g = 50, c = 0.01, and
m = 80%, respectively. To cope with drifts, the ensemble
methods are coupled with the change detector and estimator
ADWIN [17] using the default parameters for; (i) the warning
threshold δw = 0.00001; and (ii) the drift threshold δd =
0.0001 [9], [19], [20]. For all the ensemble-based methods,
the ensemble size is fixed to e = 30 learners.

Figure 1 presents the results of the CS-ARF approach,
while applying a CS transformation over all the datasets into
different space sizes (10, 30, 50, 70, 90), and the vanilla ARF
method, whilst using all the input features of the data stream
without any projection (all on the X-axis). We notice that for
almost all the datasets, the accuracy of our CS-ARF approach

2https://www.kaggle.com/uciml/internet-advertisements-data-set
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Fig. 1: CS-ARF and ARF comparison: the CS-ARF while projecting into different dimensions (10, 30, 50, 70, 90); the ARF
with the entire datasets (all on x-axis): (a) accuracy (%), (b) memory (MB), (c) running time (sec).

is moderately affected while varying the output dimension p
(Figure 1(a)). It slightly improves when we increases the p,
because we are using random subspaces from a dense set of
features and not sparse ones (with many zeros). On the other
hand, the ARF method using the original data (presented by all
in the X-axis) somewhat outperforms the CS-ARF approach
for almost all datasets. This behaviour is explained by the fact
that when we use a dimensionality reduction technique we
are removing features that may impact the accuracy of any
classifier. In contrast, Figure 1(b) illustrates the behavior of
the memory usage which is different in the sense that vanilla
ARF, using the entire data without projection (all), is more
memory consuming than the CS-ARF approach. Figure 1(c)
depicts the CS-ARF processing time that increases with p and
becomes slower than the ARF method. This is due to the
fact that with the CS-ARF approach, we have the additional
processing of the CS computation that increases when the CS
matrix becomes larger. We highlight that this is an accuracy-
resource usage tradeoff, because for a low value of p, our
approach is able to be as accurate as the ARF method while
using much smaller computational resources. Moreover, the
accuracy increases slightly when we increase the number of
dimensions to reach the accuracy of the ARF method.

Figure 2 shows an accuracy comparison of the CS-ARF
approach against reputed state-of-the-art algorithms, coupled
with a compressed sensing filter, on the Tweet1 dataset (this
behavior is practically the same with the other datasets). We
notice that our approach achieves consistently better accuracy
than its competitors for different output dimensions. Single
classifiers (HATcs, SAMkNNcs, NBcs) are less accurate than
the ensemble-based methods because the latter combine the
predictions of several single “weak” classifiers and are all
coupled with drift detection techniques.

Due to the stochastic nature of the CS technique and
therefore our CS-ARF approach, all the results reported in
this paper are an average of several runs (with different
random Gaussian matrices). Figure 3 depicts the standard
deviation based on the accuracies obtained over several runs
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Fig. 2: Accuracy comparison over different output dimensions
on Tweet1 dataset.

for different output dimensions using Tweet3 and Har datasets
(Figure 3(a) and 3(b), respectively). For both datasets, our
approach has a small standard deviation (too close to zero), i.e.
for all the runs, the accuracies obtained are close to the mean
reported in this paper. On the other hand, a larger standard
deviation is obtained with the other algorithms showing that
the classification accuracies obtained for the different runs
are farther away from the mean. This difference is explained
by the fact that the competitors use one CS matrix as an
internal filter while our approach uses a different Gaussian
matrix for each ensemble member. This strategy somewhat
increases the diversity inside the ensemble and thus a better
predictive performance is obtained, guaranteeing some close
approximation (with a CS perturbation ε) to the accuracy that
would be obtained using the original stream. Based on these
results, we use p = 50 in the following, because the standard
deviation is minimal for most of the algorithms.

The results presented in Table II show the classification
performance of the CS-ARF approach against other algorithms
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Fig. 3: The standard deviation of the methods while projecting into different dimensions: (a) Tweet3, (b) Har datasets.

TABLE II: Accuracy (%) comparison of CS-ARF, LBcs,
SRPcs, SAMkNNcs, and NBcs while projecting into 50-
dimensions.

Dataset CS-ARF LBcs SRPcs HATcs SkNNcs NBcs

Tweets1 86.46 82.64 81.08 76.35 76.29 79.82
Tweets2 85.53 81.88 80.93 76.69 74.06 79.48
Tweets3 86.96 79.65 78.58 71.30 72.61 78.24
RBF 99.55 99.50 99.74 96.20 99.77 96.41
Enron 92.11 96.18 96.35 94.59 96.17 91.37
IMDB 74.90 74.86 74.87 74.04 74.55 74.27
Nomao 96.74 96.70 96.68 95.02 96.63 86.25
Har 88.14 88.61 88.65 80.22 82.07 81.72
ADS 98.25 99.74 99.81 98.71 98.52 89.48

for all datasets projected in a space of 50-dimensions using
the compressed sensing technique. We note that the CS-ARF
performs the best on most of the datasets and highlight the
difference that is statistically insignificant when outperformed
by other algorithms, as reported in [20].

To assess the benefits in terms of resources–where small
values are desirable– Figure 4 shows the memory behavior
for the ensemble-based methods. This figure depicts the large
gains on almost all datasets of our approach, CS-ARF, which
outperforms the LBcs and the SRPcs methods, confirming
previous studies [9], [20] that reveal the high consumption of
the LB. We also note that with small datasets, such as Enron
and ADS, the CS-ARF does not achieve a prominent gain.
Indeed, with large datasets our proposed approach is efficient
which makes it highly convenient for high-dimensional data
streams where the stream size is potentially infinite, which is
not the case of the Enron and ADS datasets.

V. CONCLUSIONS

In this work, we presented the compressed adaptive random
forests approach (CS-ARF) to enable the ARF method to be
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Fig. 4: Memory comparison of the ensemble-based methods
on all the datasets while projecting into 50-dimensions.

both efficient (in terms of resource usage) and effective (in
terms of classification accuracy) with high-dimensional data
streams. The CS-ARF approach combines the Compressed
Sensing (CS) technique, given its ability to preserve pairwise
distances within 1±ε-factor, in conjunction with the strength of
the reputed ARF method, that achieves high predictive perfor-
mance. Our proposed approach transforms high-dimensional
data streams, using the CS technique as an internal online
pre-processing step, afterwards it uses the obtained low-
dimensional representation of data for the learning task using
the ARF method.

We evaluated and discussed the proposed method via ex-
tensive experiments using a diverse set of datasets. Results
showed the ability of our approach to achieve good perfor-
mance, close to what would be obtained using the origi-
nal datasets without projections, and outperform well-known



state-of-the-art algorithms. We also showed that, despite its
stochastic nature, the CS-ARF approach achieves good stable
accuracy, by extracting relevant features from sparse data in
different low-dimensional spaces, while using feasible amount
of resources.
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