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RÉSUMÉ. Ce papier présente un panorama de logiques temporelles du temps linéaire avec
contraintes de Presburger dont les modèles sont des séquences de tuples d’entiers. De tels lan-
gages formels permettent de spécifier et vérifier certaines propriétés des systèmes à compteurs.
Le papier rappelle le cadre général de LTL avec domaines concrets et présente les principaux
résultats de décidabilité et complexité des fragments de LTL avec contraintes de Presburger.
Une comparaison avec des formalismes alternatifs ou voisins est aussi ébauchée.

ABSTRACT.We present an overview of linear-time temporal logics with Presburger constraints
whose models are sequences of tuples of integers. Such formal specification languages are well-
designed to specify and verify systems that can be modelled with counter systems. The paper
recalls the general framework of LTL over concrete domains and presents the main decidability
and complexity results related to fragments of Presburger LTL. Related formalisms are also
briefly presented.
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1. Introduction

Temporal logics. Temporal logics are standard formal specification languages to
verify and specify complex systems/programs, see e.g. (Pnueli, 1977; Bérardet
al., 2001). Such languages allow the user to specify by means of temporal formulae
the properties which a program must satisfy and to verify that the specifications are
met. Temporal logics are well-studied formalisms to specify the behavior of finite-state
systems and the computational complexity of the model-checking problems is nowa-
days well-known, see e.g. a survey in (Schnoebelen, 2003). However, it is known that
many systems such as communication protocols have infinitely many configurations
and usually the techniques for the finite case cannot be applied directly. Unfortuna-
tely, for numerous classes of infinite-state systems, the model-checking problem for
the linear-time temporal logic LTL can be easily shown to be undecidable (counter au-
tomata, hybrid automata and more general constraint automata (Revesz, 2002, Chapter
6)). Actually, simpler problems such as reachability are already undecidable. Never-
theless, remarkable classes of infinite-state systems admit decidable model-checking
problems, such as timed automata (Aluret al., 1994a) and subclasses of counter auto-
mata (Ibarra, 1978; Boigelot, 1998; Boigelotet al., 2002; Lerouxet al., 2005). More
specifically, fragments of LTL with Presburger constraintshave been shown decidable
over appropriate counter automata in (Čerans, 1994; Comonet al., 2000; Demriet
al., 2003). We recall that Presburger arithmetic (Presburger,1929) is the first-order
theory of integers with addition (but without multiplication) and, it can be shown to
be decidable by quantifiers elimination.

Content of the paper. The paper presents an overview of linear-time temporal logics
over constraint systems and more precisely of fragments of Presburger arithmetic.
Such logical formalisms allow to express effects of basic instructions in programs.
For instance, a formula of the formF(x = Xy) states that eventually the value of the
variablex is going to be equal to the next value ofy. Decidability and complexity
issues for satisfiability and model-checking about constrained automata (viewed as
models for systems/programs) are discussed along the paperand we provide a ge-
nerous amount of examples. Hence, we present the main framework for linear-time
temporal logics over constraints systems, extending the standard logic LTL (Sistlaet
al., 1985). We explain why symbolic representation of concretemodels of the logics is
needed and how symbolic models can be recognized by automataacceptingω-words
languages. Most of our decidability results are based on theautomata-based approach
from (Vardiet al., 1994) but we cannot apply this method directly since the models of
the logics areω-sequences of valuations (providing an infinite alphabet incompatible
with standard Büchi automata). Decidability and complexity results for fragments and
for extensions of Presburger LTL are thoroughly presented whereas some undecidable
logics are precisely placed in the arithmetical and analytical hierarchies. Finally, we
illustrate the main concepts on simple examples and the results presented herein in
details are compared to alternative formalisms.
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Most of the results stated in the paper are presented in details in other papers. We
have taken a special care to make uniform the notations and toprovide a great amount
of relevant bibliographical references.

Plan of the paper. The structure of the paper is the following. Section 2 introduces
the framework of linear-time temporal logics over constraint systems and presents
fragments of Presburger arithmetic useful in the rest of thepaper. In Section 3, we
present various fragments of LTL over constraint systems (some of them based on
fragments of Presburger arithmetic) whose satisfiability problem is undecidable. In
most cases, runs of Minsky machines can be simulated. The main proof technique to
show decidability is presented in Section 4 where the relationships between satisfia-
bility and symbolic models are clearly stated. This unifies known decidability proofs.
As explained in Section 4, it still remains to check properties assumed in the main
theorem. Decidability results are stated in Section 5 including those for which the
constraint system has integer periodicity constraints or for which the class of symbo-
lic models for a given formula is not necessarilyω-regular. A quite remarkable result
is that model-checking one-counter automata with LTL over quantifier-free Presburger
arithmetic isPSPACE-complete. Decidability and complexity results in presence of the
freeze operator are presented in Section 6. In particular the presence of this powerful
binding mechanism with the poor constraint system〈N,=〉 already produces highly
undecidable problems. On the decidability side, effectiveprocedures can be designed
with one rigid variable and finite models, or with integer periodicity constraints, to
quote a few examples. Related formalisms are compared with the ones presented in
the paper in Section 7. The main goal of this section is to provide the reader useful
bibliographical references to other works related to (temporal) logics and Presburger
constraints.

2. LTL over constraint systems

Linear-time temporal logic LTL equipped with “next-time” operatorX, “until”
operatorU and their past-time counterparts is known to be equivalent to first-order
theory of successors (Kamp, 1968). Satisfiability and model-checking problems for
LTL (even with past-time operators) are also known to bePSPACE-complete (Sistla
et al., 1985). In spite of these nice features, it is worth recalling that a propositional
variablep only represents a property of the current state of the system. For instance,
p may hold true whenever the value of the variablex is greater than the value of the
variabley after running the current instruction. A more satisfying solution is to include
in the logical language the possibility to express directlyconstraints between variables
of the program, whence giving up the standard abstraction made with propositional
variables. When the variables are typed, they may be interpreted in some specific
domain like integers, real numbers, strings and so on. Hence, a proposition like “x is
greater than the next value ofy” can be encoded in such extended temporal logics by
x < Xy but this time the models are made of structured states. This means that each
state comes with a valuation for variables. Hence, the basicidea behind the design of
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temporal logics over constraint systems is to refine the language of atomic formulae
and to allow the possibility to compare values of variables at successive positions of
the execution of programs, see e.g., in (Comonet al., 2000) a representative example
of such logics.

2.1. How to refine LTL with the help of constraint systems

Let VAR = {x0, x1, . . .} be a countably infinite set of variables. A constraint
system is a pairD = 〈D, (Rα)α∈I〉 whereD is a specific domain of interpretation
for variables and(Rα)α∈I is a countable family of relations on the elements ofD. So,
a constraint system is simply a relational structure. An atomicD-constraint is a term
of the formR(x1, . . . , xn) whereR is interpreted as a relation of the domain andn is
the arity of this relation. AD-valuation is a functionv : VAR → D that assigns to
every variable a value inD. A constraint is satisfied by aD-valuationv, denoted by
v |=D R(x1, . . . , xn), if (v(x1), . . . , v(xn)) ∈ R,R being the relation inD associated
to the symbolR.

The consistency problem consists in checking whether thereis a valuation satis-
fying every atomicD-constraint from a finite set. Similarly, the maximal consistency
problem checks for maximal consistency with respect to a finite set of variables and a
finite set of relations. For instance, the maximal consistency problem for the constraint
system〈R, <,=〉 is NLOGSPACE-complete since it amounts to detect cycles in a finite
graph. The implication problem consists in checking whether every valuation satis-
fying a finite setX of atomicD-constraints satisfies an atomicD-constraintA (written
X |=D A). For instance, withD = 〈R, <〉, we have{x < y, y < z} |=D {x < z}.

The logicCLTL(D) is defined as an extension of LTL where the propositional
variables are refined by atomicD-constraints over terms (called atomic temporalD-
constraints). A term is defined as a variablexj prefixed by a certain numberi of X

“next” symbolX and is denoted byXixj (its encoding requiresO(i+ log j) bits). The
termX

ixj is interpreted as the value ofxj at theith next state. The “next” symbolX
is overloaded in this paper sinceX is also used below as a logical temporal operator.
TheCLTL(D) formulae are defined as follows :

φ ::= R(Xl1xj1 , . . . ,X
lnxjn

) | φ ∧ φ | ¬φ | Xφ | φUφ.

The symbolsX andU are respectively the classical operators next-time and until
from LTL. We use the notationsFφ andGφ as the abbreviations for>Uφ and¬F¬φ.
A one-step constraint is an atomic formula of the formR(Xl1xj1 , . . . ,X

lnxjn
) such

that l1, . . . , ln ≤ 1. Given aCLTL(D) formulaφ we define itsX-length|φ|X as the
maximal numberi such that a term of the formXix occurs inφ. Intuitively, theX-
length defines the size of a frame of consecutive states that can be compared. The
models ofCLTL(D) are sequences ofD-valuationsσ : N → (VAR → D) and the
satisfaction relation is defined as for LTL except at the atomic level :

4



Xx = x+ 1Xx = x− 1

Xx = 2

Figure 1. A 1-variable〈N,+1,= 2〉-automatonA0

– σ, i |= R(Xl1xj1 , . . . ,X
lnxjn

) iff 〈σ(i+ l1)(xj1), . . . , σ(i+ ln)(xjn
))〉 ∈ R,

– σ, i |= φ ∧ φ′ iff σ, i |= φ andσ, i |= φ′,

– σ, i |= ¬φ iff σ, i 6|= φ,

– σ, i |= Xφ iff σ, i+ 1 |= φ,

– σ, i |= φUφ′ iff there isj ≥ i such thatσ, j |= φ′ and for everyi ≤ l < j, we
haveσ, l |= φ.

As usual, a formulaφ ∈ CLTL(D) is satisfiable whenever there exists a model
σ such thatσ, 0 |= φ. We writeCLTLl

k(D) to denote the restriction ofCLTL(D) to
formulae with at mostk variables andX-length less or equal tol. Standard LTL (Sistla
et al., 1985) can be viewed asCLTL({>,⊥}, T rue) whereTrue = {>}.

Lemma 2.1. LetD be a constraint system with equality predicate. There is a loga-
rithmic space reduction fromCLTL(D) satisfiability intoCLTL1

ω(D) satisfiability.

The proof of Lemma 2.1 is done by renaming terms and requires an unbounded
amount of variables inCLTL1

ω(D).

We define the model-checking problem for the class ofD-automata that are Büchi
automata with transitions labeled with one-step constraints. Ak-variableD-automaton
A is a structure〈Q, δ, I, F 〉 such thatQ is a finite set of states,I ⊆ Q is the set of
initial states,F ⊆ Q is the set of final states andδ is a subset ofQ × Σ × Q where
Σ is a finite subset of1SCk, the set of Boolean combinations of one-step constraints
built over the set of variables{x1, . . . , xk}. We use the notationq

c
−→ q′ as an ab-

breviation for〈q, c, q′〉 ∈ δ. When the constraint system is a fragment of Presburger
arithmetic,D-automata form a special class of counter automata. Figure 1contains a
graphical representation of a 1-variable〈N,+1,= 2〉-automaton where “= 2” is the
unary predicate interpreted by{2} which corresponds to a test-for-two.

The language accepted by aD-automaton is denoted byL(A). A CLTL(D) model
σ is said to realize anω-sequence ofCLTL(D) formulaeφ0φ1 . . . iff for every i ≥ 0,
we haveσ, i |= φi. We write LD(A) to denote the class ofCLTL(D) models that
realize someω-word inL(A).
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The model-checking problem1 for CLTL(D) is defined as follows :

input : aD-automatonA and aCLTL(D) formulaφ,
output : 1 iff there is a modelσ in LD(A) such thatσ, 0 |= φ (denoted byA |=∃ φ).

As expected, this amounts to check that there is a computation ofA that satisfies the
property/formulaφ. A universal version of the problem (more used in verification) can
be also defined analogously (we then useA |=∀ φ). For the restriction of the model-
checking toCLTLl

k(D), φ belongs toCLTLl
k(D) andA is ak-variableD-automaton.

For all non-trivial constraint systems presented in the paper, satisfiability can be
shown equivalent to the existential version of the model-checking problem and validity
can be shown equivalent to its universal version. For instance,A0 |=∃ (x = 0) ∧
GF(x = 0) with A0 defined in Figure 1. Indeed,((Xx = x+ 1) · (Xx = x− 1))ω ∈
L(A0) and(0 · 1)ω realizes thisω-word.

2.2. Fragments of Presburger LTL

2.2.1. Presburger arithmetic

Presburger arithmetic (PA) is the first-order theory of〈Z,+〉 of integers with ad-
dition (Presburger, 1929). This theory is decidable in triple exponential-time (Fischer
et al., 1974) and many fragments can be decided even with a lower complexity, see
below. In (Ginsburget al., 1966), it is shown that PA defines precisely semilinear sets.

Given a Presburger formulaA(x1, . . . , xn) with free variables in~x =
〈x1, . . . , xn〉, and~a = 〈a1, . . . , an〉 ∈ Zn, the truth ofA(x1, . . . , xn) with respect
to the interpretation~a is denoted by~a |= A(~x). We write sol(A(~x)) to denote the
elements~a ∈ Zn satisfying the formulaA(~x). In the sequel, any (possibly infinite)
fragment FPA of PA (understood as a subset of PA) defines implicitely a constraint
system

DFPA = 〈Z, (sol(A(~x))A(~x)∈FPA〉.

Hence, the constraint systemDFPA may contain an infinite set of relations. We shall
write CLTL(FPA) instead ofCLTL(DFPA). For instance the constraints of the form
x ≥ c with c ∈ Z induces the constraint system

〈Z, ({n ∈ Z : n ≥ c})c∈Z〉,

with a countably infinite set of relations.

In the next subsection, we present fragments of Presburger arithmetic useful in the
rest of the paper.

1. Unlike what is done in the journal paper, we consider the existential version for theΣ1

1 results.
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2.2.2. Integer periodicity constraints

We define below languages of the first-order theory of integerperiodicity
constraints. Theconstraint language IPCis defined by the grammar below :

A ::= x ≡k y + c | x ≡k c | A ∧A | ¬A,

wherek, c ∈ N, x, y ∈ VAR. GivenX ⊆ {∃, [], <, Eq}, we define an extension of
IPC, namelyIPCX , by adding clauses to the definition of IPC :

– if ∃ ∈ X, then the clause∃ x A is added (existential quantification),

– if [] ∈ X, then the clausex ≡k y + [c1, c2] with c1, c2 ∈ N is added,

– if Eq ∈ X, then the clausex = y with x, y ∈ VAR is added,

– if <∈ X, then the clausesx < d | x > d | x = d with x ∈ VAR andd ∈ Z

are added.

Observe that the presence of “��” in X allows to express equality constraints between
two variables whereas the presence of “<” allows to express equality constraints bet-
ween a variable and a constant. By way of example, we provide the semantics for the
formulax ≡k y+ [c1, c2] : v |= x ≡k y+ [c1, c2]

def
⇔ there arec ∈ [c1, c2] andl ∈ Z

such that(v(x)− v(y)) = l × k + c.

Below,IPC+ denotesIPC{∃,[],<} whereasIPC++ denotesIPC{∃,[],<,Eq}. IPC++

is the extension of the language of the first-order theory of integer periodicity
constraints introduced in (Tomanet al., 1998) but with the inclusion of negation as
considered in (Bertinoet al., 1996). Observe that what is called “IPC” in (Tomanet
al., 1998) is precisely defined byA ::= x ≡k y + c | x ≡k c | A ∧A | ∃x A.

As Presburger arithmetic,IPC++ enjoys a quantifier elimination property but the
complexity of the consistency problem is lower.

Theorem 2.2. (Demri, 2006)

(I) IPC++ consistency isPSPACE-complete.
(II) Given a constraintA in IPC++, one can compute an equivalent quantifier-free

A′ in polynomial space in|A| and|A′| is inO(2|A|).

2.2.3. Difference logic

Let DL be the following fragment of Presburger arithmetic made of difference
constraints :

A ::= x ∼ y + d | x ∼ d |A ∧A | ¬A

wherex, y ∈ VAR, ∼∈ {<,=} andd ∈ Z. We use the notationsx ≤ y, x ≥ y and
x > y as the respective abbreviations ofx < y ∨ x = y, ¬(x < y) and¬(x ≤ y).
Given a valuationv : VAR → Z, the satisfaction relationv |= c is defined in the
obvious way. DL is a proper fragment of quantifier-free Presburger arithmetic. Indeed,
periodicity constraints of the formx ≡k c or comparisons of the formx+ y + z < 5
are not part of DL.
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The satisfiability problem forCLTL(DL) can be placed in the analytical hierarchy
in Σ1

1.

2.2.4. Quantifier free Presburger arithmetic

The last fragment of Presburger arithmetic we consider in this paper is quantifier-
free Presburger arithmetic QFP that is mainly used in Section 5.6. It is defined as
follows :

A ::=
∑

i∈I

aixi = d |
∑

i∈I

aixi < d |
∑

i∈I

aixi ≡k c | ¬A | A ∧A

whereai, d ∈ Z, k, c ∈ N andI is a finite subset ofN. Observe that QFP is as
expressive as Presburger arithmetic but it is less concise (consistency is inNP).

3. Quantitative constraints and undecidability

In this section, we present undecidable fragments of Presburger LTL even though
some drastic syntactic restrictions are sometimes considered.

3.1. Minsky machines

Undecidability of LTL with Presburger constraints shall bemainly established by
reducing the halting problem or the recurrence problem for nondeterministic Minsky
machines. That is why, we recall below what are these problems. A nondeterministic
Minsky machineM consists of two countersC1 andC2, and a sequence ofn ≥
1 instructions, each of which may increment or decrement one of the counters, or
jump conditionally upon of the counters being zero. After the execution of a non-jump
instruction,M proceeds nondeterministically to one of two specified instructions. The
lth instruction has one of the following forms :

l : Ci := Ci + 1 ; gotol′ or gotol′′

l : if Ci = 0 then gotol′ elseCi := Ci − 1 ; gotol′ or gotol′′

The configurations ofM are triples〈l, c1, c2〉, where1 ≤ l ≤ n, c1 ≥ 0, and
c2 ≥ 0 are the current values of the location counter and the two countersC1 and
C2, respectively. The consecution relation on configurationsis defined in the obvious
way. A computation ofM is anω-sequence of related configurations, starting with
the initial configuration〈1, 0, 0〉. The computation is recurring if it contains infinitely
many configurations with the value of the location counter being 1. The recurrence
problem is to decide, given a nondeterministic Minsky machineM , whetherM has
a recurring computation. This problem isΣ1

1-hard (Alur et al., 1994b, Section 4.1).
Similarly, the problem of checking whether from〈1, 0, 0〉 a configuration with location
counter1 can be reached in at least one step is undecidable (Minsky, 1967) –halting
problem.

8



3.2. Constraint systems with counting mechanism

High undecidability ofCLTL1
ω(N,=,+1) satisfiability can be easily shown by

reducing the recurrence problem for nondeterministic Minsky machines. More ge-
nerally, we define below three abstract conditions for a constraint system to admit
implicitly a counting mechanism which leads to undecidability.

Definition 3.1. A constraint systemD is said to admit an implicit counting mecha-
nism if the following conditions are met :

1)D contains the equality predicate,

2)D contains a binary predicateR such that

a)R = {〈a, b〉 ∈ D2 : f(a) = b} for some injective mapf : D → D,

b) 〈D,R〉 is a DAG.

∇

So, wheneverD has an implicit counting mechanism, for anya ∈ D, a
R
−→

f1(a)
R
−→ . . . f i(a)

R
−→ . . . is isomorphic to〈N, <〉. For instance, for everyD ∈

{N,Z,Q,R} and for everyi ∈ D \ {0}, the constraint system〈D,=,=+i〉 has an
implicit counting mechanism, wheren =+i n

′ iff n = n′ + i. Similarly, the constraint
system〈D \ {0},=,=×i〉 admits an implicit counting mechanism wheren =×i n

′ iff
n = n′ × i with i 6= −1.

Theorem 3.1. (Demriet al., 2003) The satisfiability problem forCLTL1
ω(D) is Σ1

1-
hard for every constraint systemD with an implicit counting mechanism.

The proof is by reducing the recurrence problem for nondeterministic Minsky ma-
chines (see Section 3.1) as done in the proof of (Comonet al., 2000, Theorem 3). In-
deed, computations of such machines can be encoded as modelsof someCLTL1

ω(D)
formula. It is then easy to express that a location counter appears infinitely often. This
is the wayCLTL1

3(DL) satisfiability can be shown undecidable, see e.g. (Comonet
al., 2000). For instance the instruction

– l : C1 := C1 + 1 ; gotol′ or gotol′′

can be encoded by a temporal formula of the form

G(xl = yl ⇒ (Xz1 = z1 + 1 ∧ X(xl′ = yl′ ∨ xl′′ = yl′′))),

wherez1 is a variable dedicated to the counterC1.

Recall thatΣ1
1-hardness implies that no recursively enumerable axiomatization

exists. As corollaries we obtain :

Corollary 3.2. For everyD ∈ {N,Z,Q,Q+R,R+},
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(I) for everyi ∈ D \ {0}, satisfiability forCLTL1
ω(D,=,=+i) is Σ1

1-hard.
(II) for everyi ∈ D \ {0, 1,−1}, satisfiabilityCLTL1

ω(D,=,=×i) is Σ1
1-hard.

3.3. Restricting syntactic resources

In Section 3.2, we have seen thatCLTL1
ω(N,=,+1) and variants are highly unde-

cidable. The obvious way to encode Minsky machines requiresan unbounded amount
of variables in order to encode their control states. In thissection, we provide evidence
that restricting further the syntactic ressources preserves undecidability. For instance,
Lemma 3.3 states how to reduce theX-length of formulae and Lemma 3.4 how to
reduce the number of variables.

Lemma 3.3. (Demriet al., 2006b) For allk, l, k′, l′ ∈ N\{0} and constraint systems
D, there is an exponential time reduction fromCLTLl

k(D) into CLTLl′

k′(D) whenever
k × l = k′ × l′ andk′ = k ×m for somem ≥ 2.

The idea of the proof is to encodem states from aCLTLl
k(D) model into a single

state in aCLTLl′

k′(D) model. For instance, ifk′ = 2k, then theCLTLl
k(D) model

below 





1
2
. . .

k













k + 1
k + 2
. . .

2k













2k + 1
2k + 2
. . .

3k






. . .

is encoded as theCLTLl′

k′(D) model below






1
2
. . .

2k













2k + 1
2k + 2
. . .

4k






. . .

Lemma 3.4 below states how to reduce the number of variables in formulae.

Lemma 3.4. (Demri et al., 2006b) For allk, l, k′, l′ ∈ N \ {0} and constraint sys-
temsD with equality and at least three elements, there is a logspace reduction from
CLTLl

k(D) into CLTLl′

k′(D) whenever3k × l ≤ k′ × l′ andk = k′ ×m for some
m ≥ 2.

The idea of the proof is to encode one state from aCLTLl
k(D) model into3m

states in aCLTLl′

k′(D) model. Only one state over three encodes values. Intermediate
states are used to know when a sequence of3m states inCLTLl′

k′(D) corresponds to
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a state in aCLTLl
k(D) model. For instance, ifk′ = 1 andk = 2, then theCLTLl

k(D)
model below (

1
2

) (
3
4

)

. . .

is encoded as theCLTLl′

k′(D) model

position 0
︷ ︸︸ ︷

1 = b 6= b 6= 2 6= b 6= b 6=

position 1
︷ ︸︸ ︷

3 = b 6= b 6= 4 6= b 6= b . . .

whereb denotes arbitrary values satisfying the mentioned relations with its neighbors
(each occurrence ofb corresponds to a possibly distinct value). In order to ensure that
such values exist, we assume that the domain has at least three distinct elements. The
beginning of the encoding of some state from theCLTLl

k(D) model is such that two
consecutive values of the variable are identical.

The flat fragment ofCLTL1
ω(DL) is shown decidable in (Comonet al., 2000) with

a decision procedure of complexity at least the one of Presburger arithmetic. The flat
fragment is defined by restricting the use of the until operator : the left arguments do
not contain temporal operators. Undecidability ofCLTL1

3(DL) is shown in (Comon
et al., 2000) by reducing the halting problem for Minsky machines.Similarly, undeci-
dability of CLTLω

2 (DL) is shown in (Demriet al., 2003) with constraints of the form
x = y andx = y + 1. It is possible to refine these results.

Theorem 3.5. (Demriet al., 2006b) Satisfiability forCLTL2
1(DL) is Σ1

1-complete.

As a consequence of Theorem 3.5 and Lemma 3.3, we can improve the Σ1
1-

hardness ofCLTL1
3(DL) established in (Comonet al., 2000).

Corollary 3.6. The satisfiability problem forCLTL1
2(DL) is Σ1

1-complete.

Consequently, the logicLp from (Comonet al., 2000) restricted to two variables is
also highly undecidable. Moreover, the satisfiability problem can easily be reduced to
the model-checking problem sinceφ ∈ CLTL(DL) is satisfiable iffA> |= φ where

A> is the one-stateD-automaton〈{q}, δ, {q}, {q}〉 with unique transitionq
>
−→ q (i.e.

every model is accepted byA>). So we get the following corollary.

Corollary 3.7. (Demriet al., 2006b) The model-checking problems forCLTL1
2(DL)

andCLTL2
1(DL) areΣ1

1-complete.

By close inspection of the proofs of Theorem 3.5 and Corollary 3.6, one can show
that satisfiability and model-checking forCLTL1

2(DL) andCLTL2
1(DL) but restricted

to the sometime operatorF (instead of until) are alsoΣ1
1-hard.
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3.4. CLTL1
1(QFP) satisfiability

ExtendingCLTL(DL) with constraints of the formax + by = 0 wherea, b ∈ Z

results to an undecidable logic even restricted to one variable andX-length one.

Theorem 3.8. (Demriet al., 2006b)CLTL1
1(QFP) satisfiability is undecidable.

Indeed, the values of two counters〈c1, c2〉 in the configuration of a Minsky ma-
chine can be encoded by the value2c13c2 for the variable. Zero tests, increments and
decrements can be encoded with constraints of the formx ≡2 0, x ≡3 0, Xx = 2x
(incrementation of the first counter) etc. The value of the instruction counter is enco-
ded for instance by repeating the same configuration. As a consequence, the model-
checking problem is undecidable even for the fragment restricted to one variable and
X-length one.

4. General schema with symbolic models

In this section, we explain the main approach to establish decidability of model-
checking and satisfiability problems forCLTL(D). Unless otherwise stated,D is a
constraint systemD = 〈D, (Rα)α∈I〉 with I possibly infinite.

4.1. ω-regularity via abstraction

Given an LTL formulaφ built over the propositional variables in{p1, . . . , ps},
the LTL models ofφ can be viewed asω-sequencesσ : N → Σ with Σ =
P({p1, . . . , ps}). The automata-based approach advocated in (Vardiet al., 1994) es-
tablishes that one can effectively and efficiently build a Büchi automatonAφ such that
the language accepted byAφ contains precisely the models ofφ, whence providing a
method to solve the satisfiability and model-checking problems for LTL. Indeed, the
non-emptiness problem for Büchi automata isNLOGSPACE-complete. We recall that
a Büchi automaton is a structureA = 〈Σ, S, S0, ρ, F 〉 such thatΣ is a finite set of
symbols (the alphabet),S is a finite set of states,S0 ⊆ S is the set of initial states,
ρ : S×Σ→ P(S) is the transition function and,F ⊆ S is a set of final (or accepting)
states. A run is an infinite sequences0

a0−→ s1
a1−→ s2 . . . such that for everyi ≥ 0,

si+1 ∈ ρ(si, ai) ands0 ∈ S0. Given a runc, we write inf(c) to denote the set of
states that occur infinitely often inc. An accepting runc verifies inf(c) ∩ F 6= ∅.
The wordσ ∈ Σω is accepted by the accepting runc = s0

a0−→ s1
a1−→ s2 . . . whenever

σ = a0a1a2 . . .. The wordσ is also said to be accepted by the automatonA and we
write L(A) to denote the language of infinite words accepted by the Büchiautomaton
A.

Given anCLTL(D) formulaφ built over the variablesx1, . . . , xk, theCLTL(D)
models ofφ are sequencesN → Dk. The productDk is not necessarily finite and

12



thereforeCLTL(D) modelscannotbe viewed asω-sequences over afinite alpha-
bet. In order to reuse results for Büchi automata, one strategy consists in abstracting
CLTL(D) models ofφ as sequencesN → {0, 1}m for somem ≥ 1 depending onφ
and on the constraint systemD. Each element of{0, 1}m can be viewed as a finite set
of local properties (for instance “the next value ofy is equal to the current value of
x”). Given a formulaφ and a modelσ : N→ Dk, we can define an abstract/symbolic
modelabs(φ, σ) : N→ {0, 1}m. In order to solveCLTL(D) as it is done for LTL, the
best situation we can hope for, is that the set of abstract models derived from a given
CLTL(D) formula isω-regular and the corresponding Büchi automaton can be built
effectively and efficiently.

The rest of this section is dedicated to the presentation of the main steps to switch
from the concrete models to the symbolic ones.

4.2. Syntactic measure

In order to check the satisfiability status of a givenCLTL(D) formulaφ, we only
need to take into account relevant syntactic resources inφ. For instance, for LTL for-
mulae, the number of propositional variables occurring in the formula is the appro-
priate criterion. Since we are dealing with constraint systems, we need to extend this
notion.

Definition 4.1. A (syntactic) measureµ is a triple〈k, l,X〉 such thatk ∈ N \ {0}
(the number of variables fromVAR), l ∈ N (theX-length) andX is a finite subset of
relation symbols related toD. ∇

For instance, given anCLTL(N, <,=) formulaφ, a measure〈k, l,X〉 for φ can
be defined such thatk is the number of distinct variables occurring inφ (assumed to
bex1, . . . , xk), l = |φ|X, andX = {<,=}. More generally, whenI is finite, we can
assume without any loss of generality that the relations in ameasure are exactly those
appearing inD.

4.3. Symbolic state

The set of atomic temporalD-constraints defined from a measureµ = 〈k, l,X〉 is
denoted byCONSµ and is defined as the set

{R(t1, . . . , tn) : R ∈ X}

where each termti is of the formX
l′xk′ with 0 ≤ l′ ≤ l and1 ≤ k′ ≤ k. Cardinality

of CONSµ is at most exponential ink + l + |X|. In the case the arity of constraint
relations inD is bounded (as for instance in〈R, <,=〉), the cardinality ofCONSµ

is polynomial ink + l + |X|. We write FORµ to denote the subset ofCLTL(D)
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formulae restricted to atomic formulae inCONSµ. We define below a symbolic state
as a finite set of (local) properties satisfied at a given position of a model. It abstracts
aD-valuation whose range can have values arbitrarily large.

Definition 4.2. A symbolic state with respect to the measureµ is a subset ofCONSµ.
∇

Observe that not every symbolic state is [resp. maximally] consistent. The set of
symbolic states is denoted bySYMBµ. A symbolic modelρ for CLTL(D) with res-
pect toµ is a sequenceρ : N → SYMBµ (it is of the formN → {0, 1}m for some
m ≥ 1, see Section 4.1). We are now in position to define the symbolic satisfaction re-
lation |=µ with respect to the measureµ. Formulae are inFORµ and symbolic models
areω-words over the alphabetSYMBµ. Boolean and temporal operators are defined
homomorphically as for|=. Only the atomic case requires a special treatment that is
indeed similar to what happens for LTL : for anyφ ∈ CONSµ, we haveρ, i |= φ

def
⇔

φ ∈ ρ(i).

4.4. Abstraction

Given a concrete modelσ of CLTL(D) and a measureµ, we writeρµ
σ (it corres-

ponds toabs(φ, σ) in Section 4.1) to denote the symbolic model wrtµ such that for
everyi ≥ 0,

ρµ
σ(i)

def
= {φ ∈ CONSµ : σ, i |= φ}.

Lemma 4.1. Letµ be a measure,σ be a model,φ be a formula inFORµ andi ∈ N.
If σ, i |= φ, thenρµ

σ, i |=µ φ.

Definition 4.3. An abstraction forCLTL(D) is a computable functionf from the set
of formulae to the set of measures. ∇

An abstraction is complete whenever for every formulaφ, for all modelsσ and
i ∈ N, σ, i |= φ iff ρf(φ)

σ , i |=f(φ) φ.

Theorem 4.2. Let f be a complete abstraction. Thenφ is CLTL(D) satisfiable iff
there is a symbolic modelρ such that

(I) ρ, 0 |=f(φ) φ,

(II) there is a concrete modelσ such thatρ = ρ
f(φ)
σ .

In the proof, ifσ, 0 |= φ, then by Lemma 4.1,ρf(φ)
σ , 0 |=f(φ) φ. Obviously,ρf(φ)

σ

has a concrete model. Conversely, ifρ satisfies (I) and (II), then by completeness of
the abstraction,σ, 0 |= φ.

In order to establish thatCLTL(D) satisfiability is inPSPACE, we often show that
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– CLTL(D) admits a complete abstractionf where consistent elements of
SYMBf(φ) can be encoded in polynomial space and checking whetherX ⊆
CONSf(φ) is consistent can be done in polynomial space,

– the symbolic models satisfying Condition (I) in Theorem 4.2 can be defined with
a Büchi automaton computable in polynomial space (as for LTL, see Section 4.5),

– the symbolic models satisfying Condition (II) in Theorem 4.2 can be defined
with a Büchi automaton computable in polynomial space.

In order to preserve thePSPACEupper bound, Büchi automata can be replaced by any
class of operational models whose non-emptiness problem can be check inNLOG-
SPACE, see e.g. (Demriet al., 2006b). Examples ofPSPACEupper bounds established
with such an approach can be found in (Demriet al., 2003; Demriet al., 2005a; Gas-
con, 2005; Demri, 2006; Demriet al., 2006b). However, the class of symbolic models
satisfying Condition (I) is usuallyω-regular, unlike the class of symbolic models sa-
tisfying Condition (II), see e.g. (Demriet al., 2003).

4.5. Büchi automaton for symbolic satisfaction

We define below a Büchi automaton accepting the symbolic models wrt f(φ) sym-
bolically satisfyingφ (Condition (I) in Theorem 4.2). This slightly extends the stan-
dard translation from LTL formulae into Büchi automata (Vardi et al., 1994).

We definecl(φ) the closure ofφ with a slight modification to consider atomic
constraints and an atom ofφ is a maximally consistent subset ofcl(φ). As usual
ψ1Uψ2 ∈ cl(φ) implies X(ψ1Uψ2) ∈ cl(φ) andψ1Uψ2 belongs to an atomX iff
eitherφ2 ∈ X or φ1,X(ψ1Uψ2) ∈ X. LetAf(φ)

φ be the generalized Büchi automaton

defined by the tuple〈Q, δ, I, F 〉 over the alphabetSYMBf(φ) such that :

–Q is the set of atoms ofφ andI = {X ∈ Q : φ ∈ X},

–X
Z
−→ Y iff

- for every atomic temporal formulaA in X, Z |=D A (instance of the impli-
cation problem),

- for everyXψ ∈ cl(φ), Xψ ∈ X iff ψ ∈ Y ,

– Let {ψ1Uφ1, . . . , ψnUφn} be the set of until formulae incl(φ). We poseF =
{F1, . . . , Fn} whereFi = {X ∈ Q : ψiUφi 6∈ X or φi ∈ X} for every i ∈
{1, . . . , n}.

It is then easy to show the following result.

Lemma 4.3. L(A
f(φ)
φ ) = {ρ : N→ SYMBf(φ) | ρ, 0 |=f(φ) φ}.
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5. Decidability results

In this section, we provide various examples of decidable fragments of Presburger
LTL and more generally of decidable LTL over constraint systems.

5.1. Completion property

A general problem about the class of logicsCLTL(D) is to identify sufficient
conditions on the constraint systemD for which model-checking and satisfiability
for CLTL(D) admit effective decision procedures, ideally in polynomial space as for
plain LTL. Very often this amount to check whetherD has a complete abstraction and
whether for every measureµ, the set{ρµ

σ : σ CLTL(D)−model} of symbolic models
wrt µ isω-regular or not. In this section, we present a class of constraint systems such
that the above set is indeedω-regular and there is an easy way to characterize it with
a Büchi automaton.

A symbolic modelρ wrt µ is one-step consistent iff for everyi ≥ 0,

– ρ(i) is maximally consistent wrtµ,

– for every atomic formulaR(Xl1xj1 , . . . ,X
lnxjn

) ∈ CONSµ with l1, . . . , ln ≥ 1,
R(Xl1xj1 , . . . ,X

lnxjn
) ∈ ρ(i) iff R(Xl1−1xj1 , . . . ,X

ln−1xjn
) ∈ ρ(i+ 1).

For the constraint system〈R, <,=〉 and the measure〈1, 2, {<,=}〉, the symbolic mo-
del wrtµ below is one-step consistent :

ρ0 = {x > Xx,Xx > XXx, x > XXx, x = x,Xx = Xx,XXx = XXx}ω.

One-step consistency is a necessary condition for a symbolic model to belong to
{ρµ

σ : σ CLTL(D)−model}. We define below a class of constraint systems for which
this condition is also sufficient.

A constraint systemD has the completion property (Demriet al., 2003) iff for
every measureµ = 〈k, 0, X〉, for every maximally consistent setY ⊆ CONSµ (made
of atomicD-constraints) and1 ≤ k′ < k, if

– Y ′ = {φ ∈ Y : φ ∈ CONS〈k′,0,X〉} (restriction ofY to atomicD-constraints
with {x1, . . . , xk′}) and,

– v : {x1, . . . , xk′} → D such thatY ′ = {φ ∈ CONS〈k′,0,X〉 : v |= φ},

then there isD-valuationv′ : {x1, . . . , xk} → D such thatv′ is an extension ofv
andY = {φ ∈ CONSµ : v′ |= φ}. Similar properties have been also introduced
in (Dechter, 1992; Balbianiet al., 2002; Lutzet al., 2005a) known as global consis-
tency.

WhenD is a constraint system satisfying the completion property,the set of sym-
bolic models obtained by abstraction can be easily characterized.
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Lemma 5.1. LetD be a constraint system with the completion property andµ be a
measure. A symbolic modelρ wrt µ has a concrete model iffρ is one-step consistent.

For instance,〈R, <,=〉, 〈R+, <,=〉, 〈Q, <,=〉, 〈Q+, <,=〉 as well as〈D,=〉 for
any non-empty setD satisfy the completion property. The above-mentioned symbolic
modelρ0 has therefore a concrete model. By constrast,ρ0 has no concrete model with
the constraint system〈N, <,=〉 because of well-foundedness.

Letµ be a measure andφ be a formula inFORµ. We writeLµ(φ) to denote the set
of symbolic modelsρ wrt µ such thatρ, 0 |=µ φ andρ has a concrete model. Observe
thatφ is satisfiable iffLµ(φ) is non-empty.

Lemma 5.2. Let D be a constraint system admitting a complete abstractionf and
satisfying the completion property. Then, for everyCLTL(D) formulaφ, Lf(φ)(φ) is
ω-regular.

The Büchi automaton accepting the languageLf(φ)(φ) can be defined as the in-
tersection of the Büchi automaton accepting one-step consistent symbolic models wrt
f(φ) and,Af(φ)

φ .

Based on these properties, we can establish the following complexity result.

Theorem 5.3. (Balbianiet al., 2002; Demriet al., 2002) LetD be a constraint sys-
tem with a finite amount of relations. WheneverD satisfies the completion property
and, the implication and the maximally consistency problems are inPSPACE, then
CLTL(D) satisfiability and model-checking are inPSPACE.

The proof in (Balbianiet al., 2002) uses arguments analogous to the ones used
in (Sistlaet al., 1985) to show that LTL is inPSPACEwhereas the proof in (Demriet
al., 2002) takes advantage of the automata-based approach for LTL (Vardi et al., 1994).

Corollary 5.4. Model-checking and satisfiability forCLTL(R, <,=), CLTL(Q, <
,=) andCLTL(D,=) for any setD with at least two elements, arePSPACE-complete.

Adding toCLTL(Q, <,=) comparisons with constants inQ (encoded with a bi-
nary representation) of the formx ∼ c with ∼∈ {<,=} andc ∈ Q preserves the
PSPACEupper bound. Indeed, constants in a formula can be encoded byvariables that
remain equal along the model and we need only to specify how the constants compare
between each other.

5.2. Finite model case

For another class of constraint systems, we can provide complexity upper bounds
for CLTL(D) problems, namely whenD is finite. Finiteness means thatD is of the
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form 〈D,R1, . . . , RN 〉 whereD is a finite set{d1, . . . , dM}. It should not come as a
surprise that for such a restricted case,CLTL(D) satisfiability is inPSPACEsince one
can design a simple logspace reduction fromCLTL(D) satisfiability to LTL satisfia-
bility.

Theorem 5.5. Let D be a finite constraint system. The satisfiability problem for
CLTL(D) is decidable inPSPACE.

A proof consists in introducing an auxiliary constraint system

D′ = 〈D,P1, . . . , PM 〉

such thatPi = {di} for eachi. A logspace reduction fromCLTL(D) to CLTL(D′)
can be designed andCLTL(D′) satisfiability can be shown inPSPACEsinceD′ admits
an easy complete abstraction and satisfies the completion property, see also (Demri,
2004, Theorem 4). The reduction is indeed homomorphic for Boolean and temporal
operators andR(t1, . . . , tn) is translated into

∨

R(di1
,...,din )

Pi1(t1) ∧ · · · ∧ Pin
(tn).

This atomic step still guarantees that the reduction is in logspace since the arities of the
relationsRi’s and the cardinal ofD are parameters of the logic.PSPACE-hardness can
be also easily shown by reducing LTL satisfiability [resp. model-checking] whenever
D is non-trivial. This means that there is a relationR in D of arity n ≥ 1 such that
eitherR 6= ∅ orR 6= Dn.

5.3. Integer periodicity constraints

The languageIPC++ is a quite expressive fragment of Presburger arithmetic.
This is witnessed by thePSPACE-completeness of its consistency problem whereas
〈N, <,=〉 is only NLOGSPACE-complete. For instance, formulae ofCLTL(IPC++)
can encode calendars and slices from (Niezetteet al., 1992). A calendarC can be vie-
wed as an ordered partitionX1, X2, . . . of N such that (the partition can be finite but
we omit this case here)

(ordering) for all i, x andy, x ∈ Xi andy ∈ Xi+1 imply x < y,
(consecution) for everyi, there arex ∈ Xi andy ∈ Xi+1 such thaty = x+ 1.

A calendarC = X1, X2, . . . can be represented inCLTL(IPC++) by the interpre-
tation of a variablex in an CLTL(IPC++) modelσ : N × VAR → Z such that
consecutive positions inσ having the same value forx belongs to the same class :

σ(0, x) = σ(1, x) = . . . = σ(i1, x)
︸ ︷︷ ︸

X1={0,...,i1}

6= σ(i1 + 1, x) = . . . = σ(i2, x)
︸ ︷︷ ︸

X2={i1+1,...,i2}

6= . . .
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In most cases,{σ(i, x) : i ∈ N} is naturally finite (minuts, hours, days in a week,
months). This means that a class of such calendars can be alternatively encoded as
consecutive positions having the same value modulo some integer.

Theorem 5.6. (Demri, 2004) Satisfiability and model-checking forCLTL(IPC++)
is PSPACE-complete.

A key argument for such a proof is thatIPC++ admits a complete abstraction and
it is possible to encode in polynomial-space the maximally consistent symbolic states.
As an application of Theorem 5.6, we can characterize the complexity of the equi-
valence problem for extended single-string automata defined in (Lago et al., 2001,
Sect.5), see other related automata in (Bresolinet al., 2004) and (Puppis, 2006).
This problem is central to check whether two time granularities are equivalent (see
also (Wijsen, 2000)) when granularities are encoded by suchautomata that can be
viewed as Büchi automata recognizing exactly oneω-word. Guards on transitions
expressed by integer periodicity constraints and update maps on transitions provide
conciseness of such constraint automata. Similarly, in (Combi et al., 2002), the authors
advocate the need to design an extension of LTL that expresses quantitative temporal
requirements, such as periodicity constraints.CLTL(IPC++) with past-time opera-
tors (that is alsoPSPACE-complete) provides such an extension.

Let IPC′ be the fragment ofIPC{∃} containing Boolean combinations of atomic
constraints of the form eitherx ≡k c or ∃z (x ≡k z ∧ y ≡k′ z). An update mapg for
the variablexi is defined as an expression of the form eitherxi := xi + c or xi := c

with c ∈ Z. We write UPx1,...,xn
to denote the set of update maps that uses variables

from {x1, . . . , xn}. An extended single-string automatonA (ESSA) over the finite set
of variables{x1, . . . , xn} (Lagoet al., 2001) is a structure of the form〈Q, q0, v0,Σ, δ〉
where

–Q is a finite set of states andq0 ∈ Q (initial state),

– ~v0 ∈ Zn (initial value of the variablesx1, . . . , xn),

– Σ is a finite alphabet,

– δ ⊆ Q×Σ×Q× ({>}∪ IPC′)×P(UPx1,...,xn
) and for everyq ∈ Q, there are

exactly twou such that〈q, u〉 ∈ δ, sayu1 andu2, and in that caseu1 is of the form
〈a1, q1, A,X1〉, u2 is of the form〈a2, q2,¬A,X2〉 whereA is a constraint inIPC∗

built over variables in{x1, . . . , xn} and in bothX1 andX2 exactly one update map
for xi is present.

The elements ofδ are also denoted byq
a,A,X
−−−→ q′ (A is the guard andX is the global

update map).

A configuration is a member〈q,~v〉 ∈ Q × Zn. We define the one-step relation
a
−→ for a ∈ Σ as follows :〈q,~v〉

a
−→ 〈q′, ~v′〉 iff there is q

a,A,X
−−−→ q′ ∈ δ such that

[x1 ← v1, . . . , xn ← vn] |= A (in IPC++) and for everyg ∈ X,

– if g is xi := xi + c thenv′i = vi + c ;
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– if g is xi := c thenv′i = c.

It is easy to check that there is exactly one sequencew = a1a2 . . . ∈ Σω such
that〈q0, ~v0〉

a1−→ 〈q1, ~v1〉
a2−→ . . .. The uniqueω-sequence generated from the ESSAA

is denoted bywA. The equivalence problem for ESSA consists in checking whether
wA = wA′ , given two ESSAA andA′. This problem introduced in (Lagoet al., 2001)
is central to check the equivalence of time granularities when granularities are encoded
by such automata.

For instance, theω-word associated with the ESSA below isa2n

· bω with initial
value0 :

q0, x0 = 0 q
a, x ≡2n 2

n

− 1, x := 0

a,¬x ≡2n 2
n

− 1, x := x + 1 b,>, x := 0

Theorem 5.7. (Demri, 2004) The equivalence problem for ESSA isPSPACE-
complete.

In order to establish thePSPACEupper bound, given two ESSAA andA′, one
can build anIPC{∃})-automatonB in logspace such that equivalent toB |=∃ > iff
wA = wA′ . Actually l(B) will contain at most oneω-word. B is indeed a product
betweenA andA′. ThePSPACElower bound is obtained by adequately reducing QBF.
The proof entails that checking whetherwA = wA′ can be done in time

O(22×maxsize2×n × |Q| × |Q′|),

wheren is the number of variables used inA,A′ andmaxsize is the size of the grea-
test integerk in ≡k-guards occurring inA,A′. Hence, the greatest integer occuring
in A,A′ has value inO(2maxsize). Actually, the proof also entails that the problem
remainsPSPACE-hard when the only integerk in ≡k-guards occurring inA,A′ is 2
or when the integers are encoded with a unary representation. Similarly, the problem
remainsPSPACE-hard when only two distinct variables are used.

Another simpler problem which arises when dealing with timegranularities, is to
find thenth occurrence of a given symbol in a string (Lagoet al., 2003, Sect. 4). Here
is the definition of the occurrence problem for ESSA :

input : An ESSAA, a ∈ Σ andn,m ∈ N (with a binary representation).
question Is thenth occurrence ofa in wA in position less thanm ?

The proof of Theorem 5.7 can be easily adapted to prove the result below.

Theorem 5.8. (Demri, 2006) The occurrence problem for ESSA isPSPACE-
complete.
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5.4. Decidability ofCLTL(Z, <,=)

Even though the consistency problems for〈Z, <,=〉 and〈R, <,=〉 are identical,
and bothCLTL(Z, <,=) andCLTL(R, <,=) admit complete abstractions, respecti-
vely, the satisfiability problem forCLTL(Z, <,=) requires more sophisticated tech-
niques to be shown inPSPACEthan forCLTL(R, <,=). Indeed, not only〈Z, <,=〉
does not satisfy the completion property, but alsoω-regularity is not guaranteed which
may invalidate the use of Büchi automata.

Lemma 5.9. (Demri et al., 2003) There are a measureµ and a formulaφ in FORµ

such thatLµ(φ) is notω-regular.

The very problem comes from the fact that for some measureµ, the class of one-
step consistent symbolic models wrtµ that admit a concrete model is not necessarily
ω-regular. In order to circumvent this difficult, we introduced in (Demriet al., 2003)
an over-approximation of this class that isω-regular and we show that any ultimately
periodic one-step consistent symbolic model wrtµ satisfying this new condition admit
a concrete model. This allows us to show the result below.

Theorem 5.10. Satisfiability and model-checking forCLTL(N, <,=) and
CLTL(Z, <,=) arePSPACE-complete.

The above result has been extended in (Demriet al., 2005a). The set ofIPC∗

constraintsA is defined as follows :

A ::= A′ | x < y | A ∧A | ¬A

A′ ::= x ≡k [c1, c2] | x ≡k y + [c1, c2] | x = y | x < d | x = d |
A′ ∧A′ | ¬A′ | ∃x A′

wherex, y ∈ VAR, k ∈ N \ {0}, c1, c2 ∈ N andd ∈ Z. IPC∗ extends both〈Z, <,=〉
and IPC++. Observe that the constraint language is defined in two layers in order
to avoid an occurrence ofx < y in the scope of∃ which would make possible the
encoding of incrementation.

So far,IPC∗ is the optimal known class of qualitative constraints onZ such that
CLTL(IPC∗) is decidable in polynomial-space. By a qualitative constraint, we mean
for instance a constraint that is interpreted as a non-deterministic binary relation, like
x < y andx ≡2k y + 5 (the relationship betweenx andy is not sharp). Constraint
automata with qualitative constraints onZ are quite attractive operational models
since they can be viewed as abstractions of counter automatawhere incrementations
and decrementations are abstracted by operations modulo some power of two. Com-
mon programming languages perform arithmetic operators for integer types modulo
2k (Müller-Olm et al., 2005), typicallyk is either 32 or 64. For example,x = y + 1
can be abstracted byx ≡2k y + 1 ∧ y < x which is expressible inIPC∗.
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By extending adequately proof techniques from (Demriet al., 2003; Demri, 2004),
we can characterizeCLTL(IPC∗) complexity. Observe that even thoughIPC∗

contains both〈Z, <,=〉 andIPC++, the successor relation cannot be defined inIPC∗.

Theorem 5.11. (Demri et al., 2005a) Satisfiability and model-checking for
CLTL(IPC∗) arePSPACE-complete.

Surprisingly this allows to characterize the complexity ofmodel-checking integral
relational automata.

Corollary 5.12. The model-checking problem for integral relational automata res-
tricted to the LTL fragment of CCTL∗ introduced in (̌Cerans, 1994) is inPSPACE.

5.5. CLTL1
1(DL)

We have shown previously that bothCLTL1
2(DL) andCLTL2

1(DL) are indeci-
dable. When the number of variables and theX-length are both restricted to one, we
regain thePSPACEupper bound.

Theorem 5.13. (Demri et al., 2006b) Model-checking and satisfiability for
CLTL1

1(DL) arePSPACE-complete.

The proof is based on the fact that DL admits a complete abstraction and the class
of symbolic models wrt to some measure of the form〈1, 1, X〉 that admit a concrete
model can be recognized by one-counter automata where

– the counter is interpreted inZ,

– there are zero tests and sign tests,

– accepted words areω-sequences (Büchi acceptance condition),

– updates of the counter are among 0,-1,1.

Standard Büchi automata form a specific subclass of such one-counter automata.
Additionally, in order to get thePSPACE upper bound one needs to show that
non-emptiness problem for this class of one-counter automata is NLOGSPACE-
complete (Demriet al., 2006b).

5.6. Model-checkingCLTL1
1(QFP)

We have seen in Section 3.4 thatCLTL1
1(QFP) satisfiability is highly undeci-

dable. Consequently, so isCLTL1
1(QFP) model-checking. However, there is a re-

levant restriction of theCLTLω
1 (QFP) model-checking problem that is decidable.

22



Indeed, consider as operational models one-counter automata where the counter is in-
terpreted inZ, there are zero tests and sign tests, accepted words areω-sequences and
updates of the counter are inZ.

Theorem 5.14. (Demri et al., 2006b) The model-checking problem for
CLTLω

1 (QFP) over one-counter automata with updates inZ is PSPACE-complete.

5.7. Other decidable extensions

One of the nice features of Theorem 4.2 rests on the distinct treatments between
symbolic satisfaction and existence of concrete models forsymbolic models. Hence,
letD be a constraint system such thatCLTL(D) has been stated inPSPACEpreviously
and LTL+ be an extension of LTL for which formulae can be translated into Büchi
automata in polynomial space. This includes for instance extensions

– with past-time operators previous and since, see e.g. (Lichtensteinet al., 2000),

– more generally, with a finite amount of MSO-definable temporal opera-
tors (Gastinet al., 2003),

– with automata-based operators (Wolper, 1983),

– with fixpoint operator, see e.g. (Vardi, 1988).

A quite remarkable feature of our proof technique is the following.

Theorem 5.15. CLTL+(D) model-checking and satisfiability are also inPSPACE.

Extensions ofCLTL(D) by addition of MSO-definable temporal operators (not
necessarily a finite amount) are decidable ifCLTL(D) can be proved decidable with
the above-mentioned proof techniques. It suffices to adapt the definition ofAf(φ)

φ from
plain LTL to LTL+.

6. Ubiquous freeze operator

Atomic temporalD-constraints allow us to compare values of variables at bounded
distance as inx < X

2y. The languages presented previously have not the possibility
to state a property of the form : “there isi ≥ 0 such thatx < X

iy holds true” which
can be written “

∨

i x < X
iy” with a generalized disjunction. Similarly, a property

like “all the future values ofx are different from the current value ofx”, which may
be written

∧

i>0 ¬(x = X
ix), cannot be expressed in the previous languages. In this

section, we investigate extensions ofCLTL(D) that can express such properties by
adding the so-called freeze operator that allows to store a value fromD (typically
the value of a variable) and to test it later but possibly at some unbounded distance
from the position it has been stored. This is a very weak form of existential first-order
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quantification. However, it is worth recalling that first-order LTL is known to be highly
undecidable (Abadi, 1989; Kröger, 1990) even in the case theuninterpreted domains
are finite (Trahtenbrot, 1963). The extension ofCLTL(D) with addition of the freeze
quantifier↓ is denoted byCLTL↓(D).

6.1. Definition

In order to defineCLTL↓(D) formally, we divide the setVAR into the (counta-
bly infinite) set of rigid variables (VARr) and the (countably infinite) set of flexible
variables (VARf ). The clause↓y=Xjx φ with y ∈ VARr andx ∈ VARf is added
to the definition ofCLTL(D). Atomic formulae are of the formR(t1, . . . , tn) where
eachti is either a rigid variable or a term of the formXix with x ∈ VARf . A model
σ for CLTL↓(D) is an infinite sequence of valuationsσ : N × VARf → D over
the set of flexible variables and the satisfaction relation is indexed by an environment
e : VARr → D. The definition of|=e is extended as follows :

σ, i |=e↓y=Xjx φ
def
⇔ σ, i |=e′ φ wheree′ is obtained frome by only modifying the

value fory : e′(y) = σ(i+ j)(x).

Satisfaction of atomic formulae uses bothσ ande depending whether variables are in
VARf or VARr. Without any loss of generality, we can also assume that for all the
formulaeφ in CLTL↓(D), the free variables inφ are necessarily flexible.

A similar binding mechanism can be found in other logical formalisms :

– in real-time logics (Henzinger, 1990; Aluret al., 1994b),

– in modal logics withλ-abstraction (Fitting, 2002; Lisitsaet al., 2005),

– in first-order logic over data words (David, 2004; Bojańczyket al., 2006),

– in quantified propositional temporal logic with repeating(French, 2003).

A more detailed comparison can be found in (Demriet al., 2006d).

The formula below fromCLTL↓(N,=) states that in the model all the values of
the variablex are distinct :

ϕ0 = G ↓y=x XG(x 6= y).

We can indeed show that the freeze quantifier is really powerful since every satisfiable
formula φ in CLTL(N,=) has a model which contains only finitely many distinct
values (Demriet al., 2006d). By contrast, all the models ofϕ0 contain an infinite
amount of distinct values.
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6.2. Undecidable fragments

Surprisingly, adding the freeze operator leads to undecidability even for the poor
constraint system〈N,=〉. Hence, the effects of adding the freeze operator in full ge-
nerality are quite devastating. Recall that〈N,=〉 satisfies the completion property and
CLTL(D) admits a complete abstraction.

Theorem 6.1. (Demriet al., 2005b) Satisfiability forCLTL↓(N,=) restricted to two
rigid variables and one flexible variable isΣ1

1-complete.

Undecidability with three rigid variables has been independently shown in (Lisitsa
et al., 2005). TheΣ1

1 upper bound is easily obtained. In order to get the hardness re-
sult, first one can show that satisfiability forCLTL↓(N,=) can be reduced in logspace
into its restriction to a unique flexible variable. Then, therecurrence problem for non-
deterministic 2-counter machines can be reduced to satisfiability for CLTL↓(N,=)
restricted to two rigid variables and one flexible variable.Undecidability is a conse-
quence of the fact that the freeze operator can express that if there aren consecutive
distinct values (of the flexible variable) between two special markers (encoding that a
counter has valuen) then there aren+ 1 consecutive distinct values between the next
occurrences of the two special markers and the subsequence of n last distinct values
is equal to the first sequence ofn distinct values. This requires exactly the use of two
rigid variables.

The above problem is also undecidable with finite models. When a single rigid
variable is considered undecidability still holds but witha lower degree.

Theorem 6.2. (Demriet al., 2006c) Satisfiability forCLTL↓(N,=) restricted to one
rigid variable and one flexible variable isΠ0

1-complete.

The proof is by reduction from infinitary nonemptiness problem for incrementing
counter automata. This new class of automata are the counterpart of lossy counter
automata (a special class of lossy channel systems (Schnoebelen, 2002)) in which
counters can increment without notice.

6.3. Decidability but not PR

The undecidability results presented in Section 6.2 does not leave many hopes to
use the freeze operator while being on the decidability side. Indeed, these results are
obtained with quite poor constraint systems. By contrast, finite models and one rigid
variable lead to decidability with very high complexity.

Theorem 6.3. (Demriet al., 2006c) Satisfiability forCLTL↓(N,=) restricted to one
rigid variable over finite models is decidable but not primitive recursive.
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The decidability proof is done in three steps :

1) There is a logspace reduction fromCLTL↓(N,=) restricted to one rigid va-
riable toCLTL↓(N,=) restricted to one rigid variable, one flexible variabley and the
freeze operator is only used in subformulae of the form↓y=x ψ (Demriet al., 2005b).

2) Every formula in this fragment can be reduced to an equivalent alternating 1-
register automaton (Demriet al., 2006c).

3) Non-emptiness for alternating 1-register automaton canbe reduced to deci-
dable finitary non-emptiness problem for incrementing counter automata (Demriet
al., 2006c).

Non primitive recursiveness is proved in two steps :

1) Finitary nonemptiness for incrementing counter automata can be shown non
primitive recursive by adapting the proof in (Schnoebelen,2002).

2) This latter problem can be reduced in logspace to satisfiability in CLTL↓(N,=)
restricted to one rigid variable.

6.4. Finiteness, flatness and periodicity constraints

Theorem 5.5 has a counterpart in presence of the freeze operator possibly at the
cost of one more exponential in space. LetD be a constraint system〈D,R1, . . . , RN 〉
whereD is a finite set.

Theorem 6.4. (Demriet al., 2005b) LetD be a finite constraint system. The satisfia-
bility problem forCLTL↓(D) is decidable inEXPSPACE.

The proof is by designing an exponential-time reduction from CLTL↓(D) satis-
fiability into CLTL(D′) for some other finite constraint systemD′ and then to take
advantage of Theorem 5.5. It is natural to wonder whether theexponential space upper
bound is optimal. After all,CLTL(D) satisfiability is only in polynomial space. For
most domainsD, the answer is positive as stated below.

Theorem 6.5. (Demriet al., 2005b) LetD be a constraint system with equality such
that the underlying domainD contains at least two elements.CLTL↓(D) satisfiability
is EXPSPACE-hard.

CLTL↓(D) satisfiability can be also shown to be decidable when restricted to so-
called flat formulae. For the rest of this section,D is not necessarily finite. Flat frag-
ments of plain LTL versions have been studied in (Dams, 1999;Comonet al., 2000)
(see also in (Ibarraet al., 2001, Section 5) the design of a flat logical temporal lan-
guage for model-checking pushdown machines) and the definition of flatness takes
advantage of the polarity of ‘until’ subformulae occurringin a formula.
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We say that the occurrence of a subformula in a formula is positive if it occurs
under an even number of negations, otherwise it is negative.The flat fragment of
CLTL↓(D) is the restriction ofCLTL↓(D) where, for any subformulaφ1Uφ2, if it is
positive then↓ does not occur inφ1, and if it is negative then↓ does not occur inφ2.

This concept of flatness restricts the interplay between future-time operators and
the freeze quantifier as done in (Bouajjaniet al., 1996; Comonet al., 2000; ten Cate
et al., 2005) to limit the interaction between modalities and freeze-like quantifiers. In
order to understand why flat formulae are more manageable, ina formula like↓y=x Fφ
that is flat, only the current value ofx needs to be stored. By contrast, in a formula like
G ↓y=x φ that is not flat, one needs to store as many values ofx as there are future
positions.

We assume that the flexible variables ofCLTL↓(D) are{x0, x1, . . .} and the ri-
gid variables ofCLTL↓(D) are {y0, y1, . . .}. For ease of presentation, we assume
that the flexible variables ofCLTL(D) are composed of the following two disjoint
sets :{x0, x1, . . .} and{ynew

0 , ynew
1 , . . .}. We define a mapt from the flat fragment

CLTL↓(D) into CLTL(D) as follows :t replaces eachyj by ynew
j in atomic formu-

lae, it is homomorphic for Boolean and temporal operators, and

t(↓y=Xnx ψ)
def
= ynew = X

nx ∧ G(ynew = Xynew) ∧ t(ψ)

It is easy to show thatt(φ) can be computed in logspace in the size ofφ.

Lemma 6.6. LetD be a constraint system with equality. For any formulaφ of the flat
fragment ofCLTL↓(D), φ is CLTL↓(D) satisfiable ifft(φ) is CLTL(D) satisfiable.

As a corollary, we obtain the following result.

Theorem 6.7. (Demri et al., 2005b) Flat fragments ofCLTL↓(Z, <,=),
CLTL↓(N, <,=), CLTL↓(R, <,=), and CLTL↓(D) with D finite are PSPACE-
complete.

Even though flatCLTL↓(N,=) satisfiability can be reduced in logspace to
CLTL(N,=) satisfiability,CLTL↓(N,=) is more expressive thanCLTL(N,=), see
details in (Demriet al., 2006d).

Finally, using ideas and techniques useful to prove above-mentioned results, we
can show that the following result.

Theorem 6.8. (Demri, 2006) Satisfiability forCLTL↓(IPC+) is EXPSPACE-
complete.

By contrast,CLTL↓(IPC++) is undecidable as a consequence of Theorem 6.1
andCLTL(IPC+) is “only” PSPACE-complete.
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An alternative binding mechanism is the existential quantification. In order to de-
fineCLTL∃(D) formally, we consider the same syntactic categories as forCLTL↓(D)
except that we add the clause∃ y φ with y ∈ VARr to define formulae.CLTL∃(D)
andCLTL↓(D) have the same models and the satisfaction relation is indexed by an
environmente : VARr → D. The relation|=e is defined as follows :

σ, i |=e ∃ y φ
def
⇔ there isa ∈ D such thatσ, i |=e′ φ wheree′ is obtained frome

only modifying the value ofy : e′(y) = a.

WhenD contains equality,CLTL↓(D) can be viewed as a fragment ofCLTL∃(D)
but it is not always the case as inIPC+. Indeed,↓y=x φ is then equivalent to∃ y x =
y ∧ φ.

Theorem 6.9. (Demri, 2006) Satisfiability forCLTL∃(IPC+) is EXPSPACE-
complete.

The simple fragment ofCLTL↓(N,=) with past-time operators is restricted to
formulae with one flexible variablex and one rigid variabley such that

– the only temporal operators areX, X
−1, XXF andX

−1
X
−1F−1,

– every occurrence of such temporal operators is immediately preceded by↓y=x,

– the only terms occurring in atomic formulae arex andy.

X
−1 is the “previous” operator andF−1 is the “sometimes in the past” operator. This

simple fragment is known to be equivalent to a first-order logic with two variables, see
e.g. (Demriet al., 2006c) and consequently we can establish the following result by
using the decidability for this first-order language shown in (Bojańczyket al., 2006).

Theorem 6.10. (Demri et al., 2006c) Satisfiability for the simple fragment of
CLTL↓(N,=) with past-time operators is decidable.

7. Related work

In this section, we provide useful pointers to works dealingwith temporal logics
and Presburger constraints in order to facilitate the comparison between the present
framework and existing logical formalisms. Section 7.1 deals with first-order temporal
logics whereas Section 7.2 presents LTL variants with quantitative aspects. Section 7.3
refers to quantitative branching-time temporal logics whereas Section 7.4 is dedicated
to specification languages for expressing properties aboutcounter systems. Logics
with Presburger constraints on the number of children in tree-like models are described
in Section 7.5 (see also the automata-based counterparts).Sections 7.6 and 7.7 present
alternative temporal logics over concrete domains such as spatio-temporal logics and
description logics over concrete domains.
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7.1. First-order temporal logics

The different variants of LTL over constraint systems presented in this paper can be
viewed as fragments of first-order LTL where the domain of interpretation of variables
is fixed as well as the interpretation of predicate symbols. Moreover, flexible variables
in CLTL(D) correspond to unary predicate symbols interpreted as singletons (the
values of variables). However,CLTL(D) has no quantification over elements of the
domain and in that sense it corresponds to a very weak first-order extension of plain
LTL. It is worth recalling that first-order LTL is highly undecidable (Abadi, 1989; Krö-
ger, 1990) even in the case the uninterpreted domains are finite (Trahtenbrot, 1963).
Similarly, first-order LTL over finite time structures is highly undecidable (Cerritoet
al., 1999). In particular, theΣ1

1-hardness implies that no axiomatization with a coun-
table set of axioms exists for this logic.

Since the freeze binding mechanism is a first-order quantification over a singleton
set, the freeze quantifier can be expressed in first-order temporal logics (Degtyarevet
al., 2002; Wolteret al., 2002; Hodkinsonet al., 2003; Gabbayet al., 2003). Indeed,
CLTL↓(N,=) satisfiability can be reduced to first-order temporal logicT L satisfia-
bility over the linear structure〈N, <〉 (the latter logic was introduced in (Gabbayet
al., 2003, Chapter 11)). To each flexible variablex one associates a unary predicate
symbolPx in such a way thatPx is interpreted as the singleton set containing the
value ofx.

A variant of first-order LTL has been introduced in (Deutschet al., 2004) to verify
data-driven web applications. The interplay between temporal operators and first-order
quantifiers is restricted since no quantification can occur in the scope of temporal
operators, which guarantees better computational properties.

7.2. Quantitative versions of LTL

The logics presented in this paper belong to the long tradition of quantitative ver-
sions of LTL. LTL-like logics having models non isomorphic to ω can be found in
(Alur et al., 1996; Reynolds, 2003; Hirshfeldet al., 2003; Hirshfeldet al., 2004; Lutz
et al., 2005b; Demriet al., 2005c). Temporal operators in the real-time logics
from (Alur et al., 1996; Hirshfeldet al., 2004; Lutzet al., 2005b) are indexed by inter-
vals. By contrast, Constrained LTL defined in (Bouajjaniet al., 1995) have standard
LTL models but the logical language is enriched with Presburger constraints about the
number of occurrences of events. This extension of LTL is undecidable and decidable
fragments are introduced in (Bouajjaniet al., 1995).

7.3. Branching-time temporal Logics

Integral relational automata defined in (Čerans, 1994) form a subclass ofIPC∗-
automata and we have seen that the model-checking problem for CLTL(IPC∗) is
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PSPACE-complete. By contrast, it is shown in (Čerans, 1994) that model-checking in-
tegral relational automata with a CTL version ofCLTL(IPC∗) is undecidable roughly
because quantification over natural numbers can be simulated by a quantification over
paths. However, model-checking for the existential fragment of the CTL* version of
CLTL(IPC∗) is shown decidable in (Bozzelliet al., 2006) extending a weaker result
from (Čerans, 1994). The decidability proof is based on techniques forwell-structured
systems.

Very few classes of counter systems are decidable for CTL* (see e.g. (Finkelet al.,
1997) for one-counter systems). Another logical formalismclose to the ones presented
in this paper is studied in (Bultanet al., 1997) where an undecidable temporal logic
with CTL-like operators and atomic formulae in Presburger arithmetic is introduced
and the models are counter systems.

7.4. Verification of counter systems

Analyzing the reachability problem for counter systems is ubiquitous for the veri-
fication of infinite-state systems, see e.g. (Ibarraet al., 2000) (reversal-bounded sys-
tems), (Comonet al., 1998) (flat systems), (Finkelet al., 2002) (flat Presburger transi-
tion systems), (Danget al., 2003) (discrete timed automata), see also the decidability
of reachability for classes of 2-counter systems (Finkelet al., 2000). It is worth no-
ting that, even though decidability can be obtained only at the cost of making drastic
restrictions on counter systems, there is a remarkable class of counter systems that are
sufficiently expressive for modelling different case studies. For instance, the flattable
systems (Lerouxet al., 2005) admit a flat finite unfolding of the control graph with the
same reachability set (see also (Demriet al., 2006a) for properties other than acces-
sibility). On the logical side, temporal logics with Presburger constraints have been
developed in (̌Cerans, 1994; Bouajjaniet al., 1995; Bultanet al., 1997; Comonet
al., 2000; Bruyèreet al., 2003), some of which have quite expressive decidable frag-
ments. However, undecidability of the reachability problem can be proved for quite
restricted counter systems, see e.g. (Cortier, 2002; Potapov, 2004).

The subclass of one-counter automata is obviously equivalent to pushdown sys-
tems with a singleton stack alphabet and many results on suchsystems can be therefore
applied to one-counter automata. For instance, model-checking one-counter automata
with the modalµ-calculus has been shown inEXPTIME in (Walukiewicz, 2001) and
this result has been refined in (Serre, 2004, Section 7.2) (see also (Serre, 2006)) where
it is proved that the problem is inPSPACE. It is worth mentioning that in these logics
the atomic formulae can only speak about the control states and not about the content
of the counter, a major difference with formalisms involvedin Theorem 5.14. Simi-
larly, in (Bouajjaniet al., 1997) model-checking pushdown automata over the linear
µ-calculus is proved inEXPTIME. Surprisingly, one-counter automata have applica-
tions in various parts of theoretical computer science :

– for verification of cryptographic protocols (Lafourcadeet al., 2005),
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– for validating XML streams (string representations of XMLdocuments) by en-
coding recursive DTDs as one-counter automata (Chiticet al., 2004),

– to solve the identification problem (Wakatsukiet al., 2004).

7.5. Constraints on the number of children

In order to query XML documents with Presburger and/or regular constraints on
the children of nodes, logical and automata-based formalisms have been recently
introduced (Seidlet al., 2004; Ohsakiet al., 2005; Zilio et al., 2006; Bonevaet
al., 2005; Demriet al., 2006e) leading to various expressiveness and complexity re-
sults about logics and specialized tree automata. As usual,XML documents are viewed
as finite labeled, unranked ordered trees. For instance, thecomputational complexity
of a logic with fixed-point operators, Presburger and regularity constraints is studied
in (Seidl et al., 2004), improving results for description logics with qualified num-
ber restrictions (Hollunderet al., 1991; Calvaneseet al., 2005). Graded modal logics
from (Fine, 1972; Barnabaet al., 1985; van der Hoeket al., 1995) have very elemen-
tary Presburger constraints compared to modal logic extended with all quantifier-free
Presburger constraints that is shown to be inPSPACEin (Demriet al., 2006e), see also
related logics in (Pacuitet al., 2004; Schröderet al., 2006). In those logics, Presburger
formulae express constraints on the number of children.

7.6. Spatio-temporal logics

Spatio-temporal logics, see e.g. (Wolteret al., 2000; Gabbayet al., 2003; Hodkin-
sonet al., 2003; Gabelaiaet al., 2003) are examples of versions of LTL with constraint
systems for which the constraint system has indeed a spatialstructure. Examples of
such spatial systems verifying the completion property andexamples of systems not
verifying this property can be found in (Balbianiet al., 2002). Complexity and deci-
dability results for such logics can be found in (Gabbayet al., 2003).

7.7. Description logics over concrete domains

The introduction of concrete domains in description logicsis due to (Baaderet
al., 1991) and since then, such logic-based formalisms for knowledge representation
have been intensively studied, see e.g. (Lutz, 2003; Lutz, 2004). As expected, concept
satisfiability with respect to general TBoxes with an arithmetic concrete domain is
undecidable which is comparable to the undecidability ofCLTL(N,=,+1) satisfia-
bility. Hence, LTL over concrete domains can be technicallyviewed as a subclass of
description logics over concrete domain in which the modelsare linear. Among the
differences, it is worth observing that in LTL it is possibleto access to any succes-
sor position with the always operatorG whose counterpart in description logics is
the presence of a transitive closure operator. Motivationsare also quite different. In-
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deed, the introduction of LTL over Presburger constraints is motivated by the need
to model-check counter systems whereas concrete domains indescription logics have
been introduced to integrate concrete qualities into description logic concepts.

8. Concluding remarks

In this paper, we have presented an overview of linear-time temporal logics with
Presburger constraints and we have compared them with alternative formalisms. Be-
cause of lack of space, we have not provided the full technical details and they can be
found in the original papers. It is worth observing that a great amount of work remains
to be done to push the decidability border further in order toget effective procedures
to verify programs with variables interpreted in fixed domains.

Among the open problems, let us mention a few of them. The firsttrack is certainly
to have more decidability results for richer classes of constraint systems. For instance,
what is the decidability status ofCLTL({0, 1}∗,⊂,=) where⊂ is the subword [resp.
prefix, factor] relation ? Obviously,CLTL({0}∗,⊂,=) behaves asCLTL(N, <,=).
Developing model-checking techniques for such a logic might help to verify programs
manipulating strings. Another line of research consists inextending known decidabi-
lity proofs to heterogeneous constraint systems, for instance mixing strings and natural
numbers. Finally, let us quote other interesting problems :

– How to refine the classification of constraint systemsD such thatCLTL(D) is
decidable ? inPSPACE?

– What makes decidable branching-time extensions of decidableCLTL(D) ?

– How to restrict further the use of the freeze binding quantifier in order to regain
decidability ?
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