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Abstract

We consider an extension of linear-time temporal logic (LTL) with constraints inter-
preted over a concrete domain. We use a new automata-theoretic technique to show
pspace decidability of the logic for the constraint systems (Z, <, =) and (N, <, =).
Along the way, we give an automata-theoretic proof of a result of [1] when the
constraint system satisfies the completion property. Our decision procedures extend
easily to handle extensions of the logic with past-time operators and constants, as
well as an extension of the temporal language itself to monadic second order logic.
Finally we show that the logic becomes undecidable when one considers constraint
systems that allow a counting mechanism.

Key words: temporal logic, logics of space and time, model-checking

1 Introduction

Constraint temporal logics. In classical Linear-time Temporal Logic (LTL)
[3], properties of a program state are captured using propositions. These propo-
sitions could stand for properties like “the value of variable x is non-negative”,
or that “the value of x is less than that of y”, or even that “the value of x in
the current state is less than the value of y in the next state”. In a natural ex-
tension of the logic, one may consider allowing assertions directly on the value
of variables, as in “x ≥ 0”, “x < y”, or “x < Oy”. The type of variables and
the kind of constraints allowed, leads us to the study of constraint temporal
logics.

? A preliminary version of this paper appeared as [2].
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In this paper we consider constraint temporal logics which are parameterised
by a constraint system D which comprises a concrete domain and an interpre-
tation for relations. The logic is essentially obtained from LTL by replacing
propositions by atomic constraints in D. In classical LTL variables represent
propositions and models for its formulae are sequences of propositional valu-
ations for these variables. These models can be viewed as having a “spatial”
axis (here the elements true and false), along which the variables move. In
constraint logics, the spatial axis for the models will comprise elements from
the domain of D. For example, with the constraint system (N, <,=) one is al-
lowed to use atomic constraints involving < and =, and variables which range
over natural numbers. The formula 2(x < y) in the logic parameterised by
(N, <,=) is interpreted over a sequence of N-valuations for the variables x and
y, and asserts that at every point in the future, the value of the variable x
is less than the value of y. This formula is of course satisfiable, a candidate
satisfying model being ss · · · , where the valuation s assigns 1 to x and 2 to y.

Constraint temporal logics have been introduced and studied by logicians in
the field of knowledge representation [4–8]. Spatio-temporal logics, as they are
better known there, involve a hybrid of temporal logic and constraint systems,
with varying degrees of interaction. For instance, one may be permitted to refer
to the value of a variable x in the next time instant, leading to constraints
of the form (x < Ox). More generously, one may be permitted to refer to a
future value of a variable, as in (x < 3y) which asserts that the current value
of x is less than some future value of y.

While research in the area has focused mainly on logics involving constraint
systems that have as domains intervals [9,1] and regions [10–12], with a variety
of decidability and complexity results, there seems to have been little atten-
tion paid to commonly used constraint systems of the form (D,<,=), with D
as the integers Z or natural numbers N. Comon and Cortier [13] consider a
constraint system with the natural numbers N as the underlying domain and
constraints of the form x < Oy+2, and show that the corresponding constraint
temporal logic is undecidable. They identify a decidable fragment of the logic
by restricting the use of the “Until” operator. Balbiani and Condotta [1] prove
a general decidability result for constraint systems that satisfy a “completion”
property and terms of the form O · · ·Ox. The completion property says that
given a finite consistent set of constraints X, a valuation for a subset of vari-
ables which satisfies the constraints in X involving only those variables, can
be extended to a valuation which satisfies all of X. The constraint system
(R, <,=) satisfies this property, and the decidability of the constraint logic
based on (R, <,=) in pspace follows from this result.

Our contribution. In this paper we concentrate on a constraint tempo-
ral logic called CLTL(D), for Constraint LTL parameterised by a constraint
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system D, in which we restrict ourselves to terms of the form O · · ·Ox.

Our main technical contribution is a decision procedure for the satisfiability
problem for the logic over the constraint systems Z = (Z, <,=) and N =
(N, <,=). These logics are interesting from a technical point of view. As a
typical illustration, the formula 2(x > Ox) has no (infinite) N-models, while
it does have R-models and Z-models. These constraint systems do not satisfy
the completion property, and hence we cannot use the technique of [1] here.
Further, in contrast to classical LTL, we show in Sec. 6 that the set of models
L(ϕ) of a formula ϕ in these logics is, in general, not ω-regular (i.e. it cannot
be accepted by an automaton on infinite words). Nevertheless, we show that
their satisfiability problems are decidable, and in fact pspace-complete. Our
approach is automata-theoretic in that we associate with a given formula ϕ
in CLTL(Z), an automaton AZ

ϕ which is non-empty iff ϕ has a Z-model (and
similarly for the N case). Roughly speaking, the technique used is as follows:
we find an ω-regular superset M of L(ϕ), which has the property that all its
ultimately periodic words (those of the form τ · δω) are also in L(ϕ). This
guarantees that M is non-empty iff L(ϕ) is. We can now check the emptiness
ofM – using standard automata theory techniques – to decide the satisfiability
of ϕ.

The second contribution of this paper arises from the fact that we use a general
automata-theoretic approach which is also modular in nature. The approach
is automata-theoretic in the sense of [14] in that we construct an automaton
for a given formula whose language is non-empty if and only if the formula
is satisfiable. It is modular in that the automaton we construct is the inter-
section of two separate automata, one corresponding to the underlying logical
language, and the other for the constraint system under consideration. There
are many benefits of such an approach and we hope these will be evident in the
paper. In particular, this approach facilitates a transparent argument for the
result of [1] for constraint systems satisfying the completion property. For such
constraint systems D we can further show that the set of models of formulas
in this logic is ω-regular (more precisely we speak here of the set of induced
“frame sequences” or symbolic models). The modular approach also makes it
easy to generalize the decision procedure in a transparent manner to handle
past operators in LTL as well as to augment the underlying logical language
from LTL to Büchi’s monadic second order logic [15].

The third part of our contribution is that we establish decidability and com-
plexity results for some natural extensions of Constraint LTL. We consider
an extension which allows constants to be used in constraints, and show that
for “dense” constraint systems like (R, <,=) and for the discrete constraint
systems (Z, <,=) and (N, <,=), we can reduce the satisfiability problem to
the standard case by eliminating the constants. We also introduce a class of
constraint systems having a “counting” mechanism and we establish that the
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satisfiability problem for CLTL(D) becomes undecidable whenD has a “count-
ing” mechanism. In particular the logic for the constraint system (N,=,=+1, )
is undecidable. Finally, we make use of our modular approach to show the
decidability of the satisfiability and model-checking problems for MSO exten-
sions of CLTL(D).

Applications. Our main motivation in this work has been to examine de-
cidability issues related to a natural extension of LTL. However, there are
some potential applications of the work here. The constraint logics considered
here can be viewed as a convenient specification language for the behaviour
of non-terminating programs. Valuation sequences can be thought of as snap-
shots of a program’s variables at specific points of time during its execution.
The work in this paper can be used to tell whether the given specification
is realizable, and if so, to synthesize a program that meets the specification.
For example, for a CLTL(Z, <,=) specification ϕ, our technique enables us to
tell whether ϕ is satisfiable, and if it is, gives us an ultimately periodic frame
sequence τ · δω, along with a procedure to label it with integers, to obtain a
model for the given specification. These finite frame sequences τ and δ, along
with the labeling procedure, can be thought of as the required program whose
behaviour satisfies the given specification.

Our modular automata-theoretic technique has also been useful in subsequent
related work as detailed below, where it has been used as a fruitful starting
point.

Related work. The analysis of the reachability problem for counter sys-
tems is ubiquitous in the verification of infinite-state systems [16–19] and this
partly motivates the versions of constraint LTL introduced in this paper. On
the logical side, temporal logics with Presburger constraints have been devel-
oped in [20,21,13,22], some of which have quite expressive decidable fragments.
Spatio-temporal logics, see e.g. [12,23–25] are also examples of versions of LTL
with constraint systems for which the constraint system has indeed a spatial
structure. Examples of such spatial systems satisfying the completion property
and those not satisfying this property can be found in [1] and [26]. Incidentally,
a property similar to completion is used in Constraint Satisfaction Problems
[27]. Complexity and decidability results for such logics can be found in [23].
In the introduction of concrete domains in description logics is due to [6] and
since then, such logic-based formalisms for knowledge representation have been
intensively studied, see e.g. [28,29]. Hence, LTL over concrete systems can be
technically viewed as a subclass of description logics over concrete domains
in which the models are linear. However, the introduction of LTL over Pres-
burger constraints is motivated by the need to model-check counter systems
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whereas concrete domains in description logics have been introduced to inte-
grate concrete qualities into description logic concepts.

The general approach presented in [2] and further developed in this long ver-
sion, has been the starting point to further analyse temporal logics with con-
straint systems. Some of these are detailed below.

• Periodicity constraints are considered in [30] with applications for the au-
tomaton-based technique to define calendars.
• An extension of CLTL(N, <,=) with constants and periodicity constraints is

shown in pspace in [31] generalizing the pspace upper bound of CLTL(N, <
,=) established in this paper.
• The branching-time extension of [31] is explored in [32] that generalizes the

decidability result.
• Complexity and decidability issues for fragments of LTL with Presburger

constraints are analyzed in [33].
• A survey on Constraint LTL over Presburger constraints can be found

in [34].

In [30,35–37], versions of Constraint LTL with the freeze operator that allow
to express constraints of the form (x < 3y) are studied, leading to various
complexity and decidability results. For instance, such an operator can be also
encoded in logical formalisms for data words and XML documents [38] or for
computations of systems with unboundedly many locations as resources [39],
to quote a few examples.

Finally, the different variants of LTL over constraint systems presented in
this paper can be viewed as fragments of first-order LTL where the domain
of interpretation of variables is fixed as well as the interpretation of predicate
symbols. Moreover, variables in CLTL(D) correspond to unary predicate sym-
bols interpreted as singletons (the values of variables). However, CLTL(D) has
no quantification over elements of the domain and in that sense it corresponds
to a very weak first-order extension of plain LTL. A variant of first-order LTL
has been introduced in [40] to verify data-driven web applications. The inter-
play between temporal operators and first-order quantifiers is also restricted
since no quantification can occur in the scope of temporal operators, which
guarantees better computational properties.

Plan of the paper. In the next couple of sections we define our logic and
state its important relation to classical LTL. Sec. 4 addresses constraint sys-
tems which satisfy the completion property, and Secs. 5-7 address the sat-
isfiability problem for the constraint systems Z and N . In Sec. 9 & 10 we
consider extensions to the logic. Though the emphasis in most of the paper
is on the satisfiability problem for the logics, in Sec. 8 we also look at the
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model-checking problem for the logic CLTL(D).

2 Definitions

The set of natural numbers, integers, rationals, and reals, will be denoted by
N, Z, Q, and R respectively. An infinite word (or sequence) over an alphabet
Σ is a function α : N→ Σ, written as α(0)α(1) · · · . For an infinite word α, we
will use α[i, j] to denote the finite word α(i)α(i + 1) · · ·α(j), and α[i,∞] to
denote the infinite suffix α(i)α(i+ 1) · · · . The set of all infinite words over Σ
is denoted by Σω. For a finite word τ and a finite or infinite word γ, we use
τ · γ to denote the concatenation of τ and γ, and τω to denote the infinite
word τ · τ · · · .

A (concrete) constraint system D is of the form (D,R1 . . . , Rn, I), where D is
a non-empty set referred to as the domain, and each Ri is a predicate symbol
of arity ai, with I(Ri) ⊆ Dai being its interpretation. We will suppress the
mention of I whenever it is clear from the context. Let us fix such a constraint
system D for the rest of this section.

An (atomic) D-constraint over a finite set of variables U is of the form
R(x1, . . . , xa), where R is a predicate symbol of arity a in D and each xi ∈ U .
AD-valuation over U is a map s : U → D. We will use the notation valD(U) to
denote the set of D-valuations over U . Let c = R(x1, . . . , xa) be a D-constraint
over U , and let s be a D-valuation over U . Then we say s satisfies c, written
s |=D c, iff (s(x1), . . . , s(xa)) ∈ I(R).

In the temporal logic we consider, we will allow terms of the form O · · ·Ox to
appear in an atomic constraint. The idea is that a term OOx, for example, will
refer to the variable x, 2 steps ahead. Formally, an (atomic) D-term constraint
over a set of variables U , is of the form

R(On1x1, . . . , O
naxa)

where x1, . . . , xa ∈ U , and n1, . . . , na ∈ N. Here Oi stands for the juxtaposition
of the next-state operator O i times, with O0x representing just x. A D-
term constraint is interpreted over a sequence of D-valuations. A D-valuation
sequence over a set of variables U is an infinite sequence σ of D-valuations
over U . We say a D-valuation sequence σ over U satisfies a D-term constraint
c = R(On1x1, . . . , O

naxa) over U , written σ |=D c, iff

(σ(n1)(x1), . . . , σ(na)(xa)) ∈ I(R).

Let c be a D-term constraint over a set of variables U . By the O-length of
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c we will mean the value i + 1 where i is the largest j for which Oj occurs
in c. Thus the O-length of the term constraint x < Oy is 2. The truth of a
term constraint c in a valuation sequence σ is clearly determined completely
by σ[0, k − 1], where k is the O-length of c.

A term constraint c over U of O-length k can also be viewed in a natural way
as a constraint over the variables U × {0, . . . , k − 1}, by identifying Oix with
(x, i). Whenever it is convenient we will take the liberty of adopting this view.

We now introduce CLTL(D), the Constraint Linear-Time Temporal Logic pa-
rameterised by the constraint system D. Let Var be a countably infinite set
of variables, which we fix for the rest of this paper. The syntax of CLTL(D)
is given by:

ϕ ::= c | ¬ϕ | (ϕ ∨ ϕ) | Oϕ | (ϕUϕ)

where c is a D term constraint over the set of variables Var . The symbol ’O’
is overloaded herein (used for D-terms and as a temporal operator) but this
will not cause any confusion.

Models for CLTL(D) formulas are D-valuation sequences over the variables
Var . Let ϕ be a CLTL(D) formula, and σ be D-valuation sequence over Var .
The satisfaction relation σ |= ϕ is defined inductively below.

σ |= c iff σ |=D c

σ |= ¬ϕ iff σ 6|= ϕ

σ |= ϕ ∨ ψ iff σ |= ϕ or σ |= ψ

σ |= Oϕ iff σ[1,∞] |= ϕ

σ |= ϕUψ iff ∃k ∈ N such that σ[k,∞] |= ψ and ∀i : 0 ≤ i < k, σ[i,∞] |= ϕ.

We use the derived operators 3 and 2 which stand for “sometime” and “al-
ways”, with the semantics 3ϕ ≡ (>Uϕ), and 2ϕ ≡ ¬(>U¬ϕ).

Let LD(ϕ) denote the set of models of a CLTL(D) formula ϕ. Thus LD(ϕ) =
{σ ∈ (valD(Var))ω | σ |= ϕ}.

Let voc(ϕ) denote the finite set of variables that appear in ϕ. The truth of
ϕ in a valuation sequence is thus determined completely by the values of the
variables in voc(ϕ), and so we can describe models of ϕ by restricting them
to the variables in voc(ϕ).

As an example, consider the constraint system N = (N, <,=) with the usual
interpretation of the symbols ‘<’ and ‘=’. Let ϕ be the formula 2(x < Oy). Let
us represent a valuation s restricted to voc(ϕ) = {x, y} as (s(x), s(y)). Then
ϕ is satisfied by the N-valuation sequence σ = (1, 2)(2, 4)(3, 6) · · · , but not
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by σ′ = (1, 1)(2, 2)(2, 2) · · · . It is visually convenient to describe a valuation
sequence like σ using the notation below:

y 2 4 6 8 · · ·

x 1 2 3 4 · · ·

As another example, the valuation sequence below satisfies the formula 3(y <
O2z) ∧ ¬2(y < O2z):

z 8 0 3 2 · · ·

y 5 1 0 1 · · ·

x 1 0 4 4 · · ·

We recall briefly the definition of classical LTL. We are given a countable set of
propositions P , and formulas are formed in much the same way as CLTL(D),
except that instead of constraints c we have propositional assertions p from
the set P . Models of LTL formulas are sequences of propositional valuations
to variables in P . A propositional valuation over P can be represented as a
subset of P , specifying the subset of propositions set to true. A propositional
valuation sequence is thus a sequence over 2P . The satisfaction relation α |=LTL

ϕ, for a propositional valuation sequence α and LTL formula ϕ, is given as
follows. α |=LTL p iff p ∈ α(0), with the semantics of the remaining operators
being the same as that of CLTL(D).

We can view the logic CLTL(D) as a generalization of classical LTL. LTL is
equivalent to the constraint logic CLTL({0, 1}, true) with I(true) = {1}. A
translation from LTL into CLTL({0, 1}, true) consists of replacing the propo-
sitional variable pi by true(xi). For instance,

{p2, p3} · {p3} · {p1, p3} . . . |=LTL 3(p1 ∧ p3)

iff

x3 1 1 1 · · ·

x2 1 0 0 · · · |= 3(true(x1) ∧ true(x3)).

x1 0 0 1 · · ·

3 Semantics via classical LTL

The semantics of CLTL(D) formulas can also be given in terms of classical
LTL. This view of the logic will play an important role in the developments
in this paper.
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Before we proceed, we will assume for convenience of notation that the for-
mulas in CLTL(D) are over a fixed, finite set of variables V . This assumption
involves no loss of generality as far as our decision procedures are concerned,
since a given formula can speak of only a finite number of variables in Var .
Henceforth, unless explicitly stated, we will assume valuations, valuation se-
quences, and term constraints, to be over the fixed finite set of variables V .

Next we introduce some required terminology. A frame over a set of variables
U , w.r.t. a constraint system D, is essentially a maximally consistent set of
D-constraints over U . More precisely, let frameD(s, U) denote the (possibly
empty) set of D-constraints over U satisfied by a D-valuation s over U . Then
a set of D-constraints X is a frame over the variables U , w.r.t. D, if there
exists a D-valuation s over U such that X = frameD(s, U).

In anticipation of a later need we define what we call the frame checking
problem for a constraint system D. This is the problem of deciding whether a
given set of D-constraints X, and a finite set of variables U , whether X is a
frame over U , w.r.t. D.

We now want to refer to the frame induced by a k-length segment of a valu-
ation sequence over V , which we will call a k-frame. Let σ be a D-valuation
sequence and let k ∈ N. We use atc(D, k) to denote the set of all D-term
constraints over V , of O-length at most k. Let k-frameD(σ) denote the set
of all term constraints over V of O-length at most k, that are satisfied by σ.
Thus k-frameD(σ) = {c ∈ atc(D, k) | σ |=D c}. A k-frame w.r.t. D is a subset
r of atc(D, k) such that r = k-frameD(σ), for some D-valuation sequence σ.

As an example, consider the constraint system N = (N, <,=), and the N-
valuation sequence σ of Sec. 2. We take V to be {x, y}. Then the following
set is a 2-frame w.r.t. N , and coincides with 2-frameN (σ):

{ x < y, x < Ox, x < Oy, y < Oy,Ox < Oy,

y = Ox,Ox = y, x = x, y = y,Ox = Ox,Oy = Oy }.

Extending the view of term constraints as constraints, a k-frame can be viewed
as a frame over the set of variables V ×{0, . . . , k−1} in the expected manner.

We say a pair of k-frames (r, r′) (w.r.t. D) is locally consistent, if for all R (of
say arity a), and for all 1 ≤ n1, . . . , na ≤ k − 1:

R(On1x1, . . . , O
naxa) ∈ r iff R(On1−1x1, . . . , O

na−1xa) ∈ r
′.

Accordingly, a k-frame sequence ρ will be said to be locally consistent if for
all i ∈ N, the pairs (ρ(i), ρ(i+ 1)) are locally consistent.
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A given D-valuation sequence σ induces, for a given k, a canonical locally
consistent k-frame sequence ρ, w.r.t. D, denoted k-fsD(σ), and given by ρ(i) =
k-frameD(σ[i,∞]). The sequence σ is indeed a concrete model of CLTL(D)
whereas k-fsD(σ) can be viewed as one of its symbolic representations by
abstracting the values by D-terms.

We extend k-fs to act on sets of valuation sequences in the natural way; thus
k-fsD(L) = {k-fsD(σ) | σ ∈ L}. Conversely, a k-frame sequence ρ will be said
to admit a D-valuation sequence, if there exists a D-valuation sequence σ such
that k-fsD(σ) = ρ. In that case, the concrete model σ is said to realize the
symbolic model ρ.

As an illustration, consider once again the constraint systemN , with V = {x}.
The 2-frame sequence rω, where r = {x < Ox, x = x,Ox = Ox}, admits the
N-valuation sequence

x 0 1 2 3 · · · .

However the 2-frame sequence rω where r = {x > Ox, x = x,Ox = Ox} does
not admit any N-valuation sequence, since we cannot have an infinite strictly
decreasing sequence of natural numbers.

We say a CLTL(D) formula ϕ has O-length k if the largest O-length of term
constraints in ϕ is k. Thus the O-length of the formulae 2(O(x < Oy)) and
2(x < Oy) is 2.

Consider now a CLTL(D) formula ϕ, and let k be its O-length. We can view
ϕ as an LTL formula over the set of “propositions” atc(D, k), by viewing each
term constraint c that appears in ϕ syntactically as a proposition pc, or just c
for notational convenience. Thus, for a sequence ρ ∈ (2atc(D,k))ω, we have the
(symbolic) satisfaction relation ρ |=LTL ϕ defined by the usual semantics of
LTL. We use LLTL(ϕ) to denote the set

{ρ ∈ (2atc(D,k))ω | ρ |=LTL ϕ}.

The following proposition is now a direct consequence of the semantics of
CLTL(D) and LTL, and summarizes the link between the two logics:

Lemma 3.1 Let ϕ be a CLTL(D) formula of O-length k. Let σ be a D-
valuation sequence, and let ρ = k-fsD(σ). Then σ |= ϕ iff ρ |=LTL ϕ. 2

For a formula ϕ in CLTL(D) of O-length k, let LD
fs(ϕ) denote the set of k-frame

sequences induced by the valuation sequence models of ϕ. That is

LD
fs(ϕ) = {k-fsD(σ) | σ |= ϕ}.

In the light of Lemma 3.1, LD
fs(ϕ) is the set of all k-frame sequences (w.r.t.
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D) that satisfy ϕ as an LTL formula, and admit a D-valuation sequence.
Equivalently, LD

fs(ϕ) contains the symbolic models having a concrete model
satisfying ϕ.

4 A general decidability result

Let D = (D,R1, . . . , Rn) be a constraint system. The satisfiability problem
for CLTL(D) is: given a CLTL(D) formula ϕ, does there exist a D-valuation
sequence which satisfies ϕ? In other words, is LD(ϕ) 6= ∅? (equivalently, is
LD

fs(ϕ) 6= ∅?).

From Lemma 3.1 we have the following corollary.

Corollary 4.1 A CLTL(D) formula ϕ of O-length k is satisfiable iff there
exists a locally consistent k-frame sequence which (symbolically) satisfies ϕ
as a classical LTL formula, and which admits a D-valuation sequence, i.e. a
concrete model.

This suggests a way to answer the satisfiability problem for the logic. Recall the
automata-theoretic approach to solving the satisfiability problem for classical
LTL [41]. One builds an automaton ALTL

ϕ which accepts precisely the models
of the given formula φ. This automaton can then be checked for nonemptiness
to decide the satisfiability of the given formula. In our case we can build
the formula automaton ALTL

ϕ corresponding to the LTL version of the given
formula ϕ. If we could now construct automata that

(1) filter out k-frame sequences that are not locally-consistent and
(2) filter out k-frame sequences that do not admit D-valuations;

then we can intersect them and check the resulting automaton for nonempti-
ness to decide the satisfiability of ϕ. This approach has structural similarities
with [42] where nonemptiness of timed languages is checked by considering
untimed languages.

As we will see in Sec. 6, there are constraint systems for which (2) above is not
possible, and one has to adopt a slightly different approach for them. However,
there are constraint systems for which it suffices to ensure (1), and (2) is
automatically taken care of. Constraint systems that satisfy a “completion”
property are one class of such constraint systems. In the rest of this section
we elaborate on these ideas.

A constraint system D is said to satisfy the completion property if, essentially,
given a consistent set of constraints X over a set of variables U , any partial
valuation which respects the constraints in X involving only the assigned
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variables, can be extended to a valuation which respects all the constraints in
X. More precisely, for a set of constraints X and a subset of variables U , let
us use the notation X �U to denote the set of constraints in X which use only
variables in U . Then, the constraint system D satisfies completion if given

• a frame X over a finite set of variables U w.r.t. D,
• a subset U ′ of U , and
• a valuation s′ over U ′, such that frameD(s′, U ′) = X �U ′.

there exists a valuation s over U which extends s′ and satisfies frameD(s, U) =
X.

The constraint system (R, <,=) is one example of a system that satisfies the
completion property. We will prove this fact in the next section where we show
that the completion property is closely related to “denseness” of the domain.

An example of a constraint system which does not satisfy the completion
property is (Z, <,=), since for the set of constraints X = {x < y, x < z, z <
y, x = x, y = y, z = z} over the set of variables U = {x, y, z}, the partial
valuation s : x 7→ 0, y 7→ 1 satisfies the constraints in X involving x and y,
but cannot be extended to a valuation which satisfies the constraints x < z
and z < y in X.

We now observe that:

Lemma 4.2 Let D be a constraint system which satisfies the completion prop-
erty. Then every locally consistent k-frame sequence w.r.t. D admits a D-
valuation sequence.

Proof Let ρ = r0r1 . . . be a locally consistent k-frame sequence w.r.t.
D = (D,R1, . . . , Rn). We define a D-valuation sequence σ = s0s1 · · · with
the property that ρ = k-fsD(σ).

We take the liberty of viewing each ri as a frame over the variables Ui =
V × {i, . . . , i+ k − 1}. Since each ri is a k-frame, for each i there exists a D-
valuation ti over Ui such that ri = frameD(ti, Ui). For each i ∈ {0, . . . , k − 1}
and x ∈ V , we define si(x) = t0(x, i). Now suppose that si is defined for
0 ≤ i ≤ j with j ≥ k − 1. Let us define sj+1. Consider the set of constraints
rj+1. We know that rj+1 is a frame over Uj+1. Further consider the subset
U ′ = V ×{j+1, . . . , j+k−1} of Uj+1. The restriction t′ of the valuation tj to
U ′, is such that rj+1 �U ′ = frameD(t′, U ′). Thus, by the completion property
we have aD-valuation t′′ which extends t′ to the variables V ×{j+1, . . . , j+k},
and satisfies rj+1 = frameD(t′′, Uj+1). We can now define sj+1(x) = t′′(x, j+1)
for each x ∈ V .

The sequence σ = s0s1 · · · can be completely defined and σ has the property
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that k-fsD(σ) = ρ. Hence ρ admits the D-valuation sequence σ.

2

Here is an interesting property of the language of k-frames defined by a
CLTL(D) formula, which we had alluded to in the beginning of this section.
Recall that a Büchi automaton over an alphabet Σ is simply a classical au-
tomaton A = (Q, q0,−→, F ) over Σ, but with the set of final states F used
as an acceptance condition on infinite words α ∈ Σω. A run ρ : N → Q on α
is accepting if ρ(i) ∈ F for infinitely many i ∈ N. L(A) is the set of infinite
words accepted by A, and L ⊆ Aω is termed ω-regular if L = L(A) for some
Büchi automaton A over Σ. The class of w-regular languages are known to
be effectively closed under the boolean operations of union, intersection, and
complement. Further, the nonemptiness problem for these automata is easily
decidable, being essentially a graph reachability problem. We refer the reader
to [43] for further details.

Lemma 4.3 Let D be a constraint system satisfying the completion property.
Let ϕ be a CLTL(D) formula. Then LD

fs(ϕ) is ω-regular.

Proof Let ϕ be of O-length k. We define a Büchi automaton AD
ϕ over the

alphabet 2atc(D,k), such that L(AD
ϕ ) = LD

fs(ϕ). Define AD
ϕ = ALTL

ϕ ∩ AD,k
lc (i.e.

the automaton which accepts the intersection of the languages of the two au-
tomata), where ALTL

ϕ is the Vardi-Wolper automaton [41] for the LTL formula

ϕ, and AD,k
lc is a Büchi automaton over 2atc(D,k), defined below, which accepts

locally consistent k-frame sequences.

Define AD,k
lc = (Q, q0,−→, F ) where Q is the set of k-frames w.r.t. D, along

with a separate start state q0; −→ is given by q0
r
−→ r, and r

r′
−→ r′ iff (r, r′) is

locally consistent (here r and r′ range over k-frames w.r.t. D); and F = Q. 2

Thus, if AD
ϕ can be constructed effectively, Lemma 4.3 gives us a way to decide

the satisfiability problem for a constraint system D which satisfies the com-
pletion property: construct AD

ϕ and check it for nonemptiness. We know that

ALTL
ϕ can indeed be constructed [41]. However, whether automatonAD,k

lc can be
constructed effectively depends on the decidability of the frame-checking prob-
lem for D, since the transition relation of the automaton must be computable
and for this one needs to recognize whether a set of constraints constitutes a
frame.

In particular, if D is such that frame checking can be done in pspace (in
the size of the frame), then the satisfiability problem for CLTL(D) can be
solved in pspace in the size of the given formula. The automata ALTL

ϕ and

AD,k
lc have sizes exponential in the length of ϕ. However, they are both im-

plicitly defined graphs whose adjacency relation can be checked in pspace
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in the length of ϕ. For AD,k
lc we need the assumption that frame checking

for D can be done in pspace. Now checking emptiness of the language ac-
cepted by a Büchi automaton essentially requires checking whether there is
a final state reachable from the initial state, which is again reachable from
itself. It is well-known that reachability on an n-node graph can be done non-
deterministically in nlogspace. Thus, emptiness checking forAD

ϕ can be done
non-deterministically in pspace in the length of ϕ. Since deterministic and
non-deterministic pspace coincide, we can conclude that it can be done deter-
ministically in polynomial space. This is essentially the result of [1], presented
in an automata-theoretic manner.

Theorem 4.4 ([1]) The satisfiability problem for CLTL(D) when D satisfies
completion and allows frame-checking in pspace, is in pspace. 2

Finally, if D is non-trivial in the sense that at least one of the relations R is not
∅ or Da (where a is the arity of R), the satisfiability problem of classical LTL
(which is known to be pspace-hard [44]) can be reduced to the satisfiability
problem for CLTL(D). We can do this by translating an LTL formula ψ into
a CLTL(D) formula ϕ as follows. With each proposition p we associate a set
of distinct variables {xp

1, . . . , x
p
a}. Further, these sets are disjoint for each pair

of propositions. We now replace each proposition p in ψ by R(xp
1, . . . , x

p
a). The

formula ψ is now LTL satisfiable iff ϕ is CLTL(D) satisfiable.

To summarize:

Theorem 4.5 The satisfiability problem for CLTL(D) when D is non-trivial,
satisfies completion, and allows frame-checking in pspace, is pspace-complete. 2

Examples of constraint systems satisfying the completion property can be
found in Corollary 5.4 (including (R, <,=), (Q, <,=) and (D,=) for any infi-
nite set D).

5 Domains of the form (D,<,=)

In this section we consider domains of the form (D,<,=), where D is an infi-
nite set, ‘<’ is any strict total ordering on D, and ‘=’ is the equality relation.
We introduce a natural way of representing frames over such domains as la-
belled directed graphs. This representation will play a useful role in subsequent
arguments in this paper. We then give a characterisation of such domains that
satisfy the completion property.

For a constraint system of the form (D,<,=) it is convenient to visualise a
frame as a labelled, directed graph. For the rest of this section let us fix a
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constraint system D = (D,<,=) with D an infinite set, and ‘<’ a strict total
ordering on D. We represent a frame X over a finite set of variables U by
a {<,=}-labelled, directed graph GX over the vertices U , where we place a
‘∼’-labelled edge (for ∼∈ {<,=}) from x to y precisely when x ∼ y ∈ X.

Such a graph clearly satisfies the conditions that:

(1) There is an edge between every pair of vertices;
(2) If there is a ‘=’-labelled edge from x to y then there is also one from y

to x;
(3) There are no strict cycles – i.e. directed cycles containing a ‘<’-labelled

edge.

We call such a graph (i.e. a {<,=}-labelled directed graph over a set of vertices
U which satisfies the conditions 1–3 above) a frame graph over U .

Conversely, given a frame graph H over a finite set of vertices U , the set of
constraints gtof (H) = {x ∼ y | x

∼
−→ y in H} constitutes a frame over U . To

see this, observe that we can label the vertices of H by natural numbers via
a labelling l : U → N, which respects the edges in H – i.e. if u

∼
−→ v then

l(u) ∼ l(v). The map l is said to be an edge-respecting labelling. This follows
since we can quotient H by equating vertices joined by edges labelled by ‘=’
to get a DAG (in fact a total order) on U , which can then be linearized. Since
U is finite, this gives us a natural edge-respecting labelling l of U by numbers
in N. From a finite non-decreasing sequence of natural numbers we can always
obtain a corresponding (order preserving) sequence in D, which gives us an
edge-respecting D-labelling l′ of H. Viewing l′ as a D-valuation over U , it is
immediate that frame (l′, U) = gtof (H). Thus gtof (H) is a frame.

Frame graphs are thus a faithful representation of frames in the following
sense:

Lemma 5.1 Let X be a frame over U w.r.t. D. Then

(1) GX is a frame graph over U .
(2) If H is a frame graph over U then gtof (H) is a frame over U .
(3) gtof (GX) = X.
(4) A D-valuation s over U is such that frame (s, U) = X iff s is an edge-

respecting labelling of GX . 2

Observe that the frame-checking problem for D amounts to checking whether
the graph corresponding to the given frame satisfies the conditions 1–3 in the
definition of a frame graph above. Since cycle detection in a directed graph
can be done in nlogspace, we conclude that the frame checking problem for
D is in nlogspace.
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Fig. 1. A 3-frame sequence over the variables {x, y}

Extending the representation of frames as frame graphs, a locally consistent
k-frame sequence ρ can be represented as a single {<,=}-labelled, directed
graph Gρ. The graph Gρ is essentially the superimposition (in an overlapping
manner) of the graphs corresponding to the successive k-frames. Fig. 1 shows
the first two 3-frames of a locally consistent k-frame sequence represented as
a single graph. In the figure we have left out self-loops on the vertices, as well
as ‘<’ labels on edges, for brevity. More precisely, Gρ has V × N as its set
of vertices, and an edge (x, i)

∼
−→ (y, j) (∼∈ {<,=}) iff either i ≤ j and

(x ∼ Oj−iy) ∈ ρ(i), or, i > j and (Oi−jx ∼ y) ∈ ρ(j).

In a natural way, a D-valuation sequence σ can be viewed as a D-labelling l
of the vertices of Gρ by defining l(x, i) = σ(i)(x). Conversely, a D-labelling
l of Gρ gives us a D-valuation sequence σ given by σ(i)(x) = l(x, i). It thus
follows that:

Lemma 5.2 A locally consistent k-frame sequence ρ admits a D-valuation
sequence σ iff σ is an edge-respecting D-labelling of Gρ.

We now show that the completion property for domains of the form (D,<,=)
is strongly related to denseness of the domain. As usual we say D is dense
(with respect to the ordering <) if for each d, d′ in D with d < d′, there exists
d′′ in D, such that d < d′′ < d′. We say D is open iff for each d ∈ D, there
exist d′, d′′ ∈ D with d′ < d < d′′.

Lemma 5.3 Let D be a constraint system of the form (D,<,=) where D is
infinite and < is a total order. Then, D satisfies completion iff D is dense and
open.

Proof We will make use of the representation of frames as graphs here.

LetD satisfy completion. ThenD must be dense and open. To see this consider
the frame X = {x < y, y < z, x < z}, over the variables U = {x, y, z} (we
have suppressed the mention of the identity constraints x = x etc, for brevity).
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Let d, d′ ∈ D with d < d′. Then the labelling l′ over U ′ = {x, z} given by
(d, d′) is an edge-respecting labelling of GX restricted to U ′. By the completion
property, we should be able to extend l′ to an edge-respecting D-labelling l
over U . We thus have an element l(z) ∈ D with d < l(z) < d′. Similarly for
openness, given a d ∈ D we can consider the trivial edge-respecting labelling
of the single vertex y, which assigns d to y. This labelling must be extendable
to a labelling of U , which gives us elements l(x) and l(z) of D satisfying
l(x) < d < l(z).

Conversely, let D be open and dense. We show that it satisfies the completion
property. Let X be a frame over a finite set of variables U . Let U ′ be a non-
empty subset of U , and l′ an edge-respecting labelling for the subgraph of GX

induced by U ′. Let x be a vertex in U \ U ′. We will label x with d ∈ D, such
that the resulting labeling l = s′ ∪ {(x, d)} of U ′ ∪ {x} is an edge-respecting
labelling of the subgraph induced by U ∪ {x}. This will suffice to prove the
completion property, since this procedure can be repeatedly applied to obtain
a labelling of U which extends l′.

Let X=x be the set of vertices in U ′ to which there is an ‘=’-labelled edge from
x in GX ; X<x the set of vertices in U ′ from which there is a ‘<’-labelled edge
to x; and Xx< the set of vertices in U ′ to which there is a ‘<’-labelled edge
from x. Let p = max{l′(y) | y ∈ X<x} and q = min{l′(z) | z ∈ Xx<} (we will
use the values of p and q only when the sets X<x and Xx<, are respectively
non-empty.) Note that p and q are values in D, and by denseness and openness
of D there exist elements p′, q′, r in D such that p < p′, q′ < q and p < r < q.

We label x as follows:

(1) if X=x is non-empty, label x by l′(y) for any y ∈ X=x,
(2) if X<x is non-empty and both X=x and Xx< are empty, label x by p′,
(3) if Xx< is non-empty and both X=x and X<x are empty, label x by q′.
(4) if X<x and Xx< are non-empty and X=x is empty, label x by r.

To argue that d is an acceptable label for x, suppose to the contrary, that it
was not. Then there must exist a vertex y in U ′ and an edge between x and
y which is inconsistent with the labels of x and y. Two cases arise here: We
have x

<
−→ y but l(x) ≥ l(y) (and the symmetric case of y

<
−→ x), or x

=
−→ y

and l(x) 6= l(y).

For the first case, it must have been the case that x was labelled by clause 1.
Thus there must be another vertex z in U ′ with x

=
−→ z in GX , and l(x) = l(z).

But since l′ was an edge-respecting labelling, we must have y
<
−→ z or y

=
−→ z

in GX . This gives us a strict cycle x
<
−→ y

<
−→ z

=
−→ x or x

<
−→ y

=
−→ z

=
−→ x

in GX , which is a contradiction.

For the second case to have arisen, it must again be the case that x was labelled

17



by clause 1. Thus there is a vertex z such that x
=
−→ z and l(z) = l(x). Once

again this gives us a strict cycle in GX which is a contradiction. 2

It now follows that:

Corollary 5.4 The following constraint systems are non-trivial and satisfy
the completion property [1]:

(1) (R, <,=), (Q, <,=).
(2) (D,<,=) where D is any dense open subset of R.
(3) (Dn,≺,=) for n ≥ 1, and D ∈ {Q,R}, where ≺ is for instance a lexico-

graphical ordering based on (D,<,=).
(4) (D,=) for any infinite set D. 2

It now follows from Theorem 4.5 that:

Corollary 5.5 The satisfiability problem for CLTL(D) for each of the con-
straint systems D in Corollary 5.4 (in particular (R, <,=)) is pspace-complete. 2

Constraint systems satisfying the completion property can be found in [9,45].
Other constraint domains used in spatio-temporal logics as spatial domains
lead to a pspace upper bound, see e.g. [23, Chapter 16] and [25].

Finally, we point out an important property of Gρ which is that it does not
contain any strict cycles:

Corollary 5.6 Let D = (D,<,=) be such that < is a strict total order on D.
Then, for a locally consistent k-frame sequence ρ w.r.t. D, the graph Gρ has
no strict cycles.

Proof It is not difficult to see that a k-frame with respect to D is also one
w.r.t. (R, <,=). Thus ρ is also a locally consistent k-frame sequence w.r.t.
(R, <,=). Now by Corollary 5.4 and Lemma 4.2, ρ admits an R-valuation
sequence. Equivalently, there is an edge-respecting R-labelling of Gρ. Thus
a strict cycle in Gρ would imply a label in Gρ is less than itself, which is a
contradiction. 2

6 Satisfiability for CLTL(Z, <,=)

In this section we consider the constraint system Z = (Z, <,=). It follows
from Lemma 5.3 that Z does not satisfy the completion property. As a result
we cannot appeal to Theorem 4.4 to solve the satisfiability problem for the
logic CLTL(Z). In fact, we will show that unlike the case for R, the language
LZ

fs(ϕ) is not ω-regular in general (Corollary 6.5). Nonetheless, we can still
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solve the satisfiability problem for CLTL(Z) automata-theoretically. The idea
is to define a Büchi automaton AZ

ϕ which accepts a superset of LZ
fs(ϕ) with

the property that all ultimately periodic words in it are also in LZ
fs(ϕ). It will

then follow that L(AZ
ϕ ) is non-empty iff ϕ is CLTL(Z)-satisfiable.

We begin with a characterisation of locally consistent k-frame sequences which
admit a Z-valuation sequence, along the lines of [20, Lemma 5.5]. Let ρ be
a locally consistent k-frame sequence (which in this section we understand
to be w.r.t. Z). For a directed path p in Gρ, let slen(p) denote the strict
length of p – i.e. the number of ‘<’-labelled edges in p if this number is finite,
and ω otherwise. For any two vertices u, v in Gρ, define slen(u, v) to be the
supremum of slen(p) over directed paths p from u to v, if it exists, and ω
otherwise. Whenever there is no directed path from u to v, slen(u, v) takes
the value 0 by convention.

Lemma 6.1 Let ρ be a locally consistent k-frame sequence. Then ρ admits a
Z-valuation sequence iff for all u, v ∈ Gρ, slen(u, v) < ω.

Proof If ρ admits a Z-valuation sequence σ, let l be the corresponding edge-
respecting labelling of Gρ. Then clearly slen(u, v) ≤ |l(v)−l(u)| for all vertices
u, v in Gρ. Thus, there cannot exist vertices u and v with slen(u, v) = ω.

Conversely, suppose Gρ satisfies the given condition. We assume that k is at
least 2 (for k = 1, it is clear that ρ always admits a Z-valuation). One can
verify that the procedure given below produces an edge-respecting Z-labelling
l of Gρ. This in turn implies that ρ admits a Z-valuation sequence. We assume
an ordering ≺ on variables, and use it to define an ordering of vertices in Gρ

given by (x, i) ≺ (y, j) iff i < j, or i = j and x ≺ y.

(1) Label the vertices in order. Begin by labelling the first, say (x, 0), by 0.
(2) In general, if X is the portion of the graph already labelled, and u is the

next vertex to be labelled:
(a) if there is a directed path from u to a vertex in X, set l(u) =

min{l(v)− slen(u, v) | v ∈ X, ∃ a path from u to v}, else,
(b) set l(u) = max{l(v) + slen(v, u) | v ∈ X, ∃ a path from v to u}.

Note that with k ≥ 2 every vertex other than (x, 0) has a vertex preceding it in

the ordering above, to which it is connected by an edge (from the relation (
<
−→

∪
=
−→ ∪

>
−→)∗). Hence case (2a) or (2b) is always applicable, and the procedure

never gets stuck.

To argue that the procedure does give us a valid Z-labelling for Gρ, let us
assume the contrary. Then there must be a first time where the procedure
labels a vertex, say u, with a value which contradicts the strict length of a
path from or to this vertex u. Moreover, since there are no strict cycles in Gρ,
this path must be from u to an already labelled vertex, or from an already
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labelled vertex to u. Let the vertex at the other end of the offending path be
v, and let the vertices labelled up to this point be X. Note that v ∈ X. There
are two cases to examine:

(1) The offending path p is from u to v, and slen(p) > l(v) − l(u). But
in this case, step (2a) of the procedure is applicable, and hence l(u) ≤
l(v)− slen(p). Thus this case is not possible.

(2) The offending path p is from v to u with slen(p) > l(u)− l(v). Here again
two possibilities arise.

In the first possibility vertex u was labelled by an application of step (2a)
of the procedure. So there must have been a vertex w in X with a path
q from u to w, and l(u) = l(w) − slen(q). But since v and w were la-
belled without any discrepancy, it must be the case that l(w) − l(v) ≥
slen(p)+slen(q). Thus l(u) = l(w)−slen(q) ≥ l(v)+slen(p). This contra-
dicts our assumption that slen(p) > l(u)− l(v), and hence this possibility
is ruled out too.

The second possibility is that u was labelled by an application of
step (2b) of the procedure. But then it must be the case that l(u) ≥
l(v) + slen(p). Thus this case is ruled out too.

2

The natural question is now: can we characterize, by means of automata,
the locally consistent k-frame sequences that admit a Z-valuation? Consider
the condition (CZ) below on a locally consistent k-frame sequence ρ. In what
follows, by an infinite forward (respectively backward) path in Gρ we will mean
a sequence d : N→ V × N satisfying:

(1) for all i ∈ N, there is an edge from d(i) to d(i+ 1) (respectively, an edge
from d(i+ 1) to d(i)),

(2) for all i ∈ N, if d(i) is in level j, then d(i+ 1) is in a level greater than or
equal to j + 1. By the “level” of a vertex (x, j) we mean j.

Such a path d will be called strict if there exist infinitely many i for which
there is a ‘<’-labelled edge from d(i) to d(i+ 1) (respectively, from d(i+ 1) to
d(i)).

Two vertices are in the same k-frame iff the difference of levels between them
is strictly less than k. Here is the condition (CZ).

(CZ): There do not exist vertices u and v in the same k-frame in Gρ satisfying:

(1) there is an infinite forward path d from u,
(2) there is an infinite backward path e from v,
(3) either d or e is strict, and
(4) for each i, j ∈ N, whenever d(i) and e(j) belong to the same k-frame

20



x

= = = = = = = =

========

y

z

Fig. 2. ρZbad satisfies (CZ) but does not admit a Z-valuation sequence.

there is an edge labelled ‘<’ from d(i) to e(j).

It follows from Lemma 6.1 that condition (CZ) is necessary for ρ to admit
a Z-valuation sequence: if ρ does not satisfy (CZ) – i.e. there are vertices u
and v satisfying the conditions (1)-(4) above – then u and v are such that
slen(u, v) = ω, and hence by Lemma 6.1 ρ does not admit a Z-valuation
sequence.

But it is not sufficient as witnessed by the 2-frame sequence ρZbad in Fig. 2. In
the figure we have shown only the relevant edges. Essentially from the vertex
(x, i), for i of the form j(j+1)

2
, we have a strict path of strict length j + 1 by

going from (x, i) to (y, i+1), and then on to (y, i+ j+1). The frame sequence
ρZbad can be defined formally as follows. We have V = {x, y, z} and:

• {x < y < z, x < Oy, x < Oz, z > Ox, z > Oy, Ox < y < Oz, x =
Ox, z = Oz} ⊆ ρZbad(i) for every i ≥ 0;

• y > Oy ∈ ρZbad(
i×(i+1)

2
) for every i ≥ 0;

• y < Oy ∈ ρZbad(i) for every i ≥ 0 such that i 6= i′×(i′+1)
2

for some i′.

ρZbad clearly satisfies condition (CZ): there are no strict forward or backward
paths from any vertex in Gρ. However, note that the vertices u = (x, 0) and
v = (z, 0) have unbounded strict length – i.e. slen(u, v) = ω, and hence ρ
cannot admit a Z-valuation sequence.

However, when ρ is an ultimately periodic word condition (CZ) is indeed suffi-
cient. We say an infinite word α is ultimately periodic if it is of the form τ · δω

for some finite words τ and δ.

Lemma 6.2 Let ρ be an ultimately periodic, locally consistent, k-frame se-
quence. Then ρ admits a Z-valuation sequence iff ρ satisfies (CZ).

Before we proceed with the proof, here are a few observations which can be
readily verified. In what follows, ρ = τ · δω is an ultimately periodic, locally
consistent k-frame sequence.

(1) We term a level in Gρ a δ-boundary if it is of the form |τ | + i · |δ| for
some i ∈ N. An l-suffix of Gρ, denoted Gρ[l,∞], is the subgraph of Gρ on
the vertices V × {l, l + 1, . . .}. Let l and m be δ-boundaries in Gρ, with
l < m. Then there is an isomorphism between the suffixes Gρ[l,∞] and
Gρ[m,∞], given by (x, n) → (x, n + (m− l)), where n ≥ l. Accordingly,
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Fig. 3. Short-circuiting a backward loop

we say vertices (x, n) and (x, n+i) are isomorphic if (x, n+i) is the image
of (x, n) under one of the isomorphisms above (i.e. n is on or to the right
of a δ-boundary, and i is a multiple of |δ|).

(2) A forward path between two isomorphic vertices implies an infinite for-
ward path in Gρ. Say there is a forward path p from u to u′ and u, u′ are
isomorphic. Then u′ is isomorphic to a vertex u′′ ahead of it, under the
same isomorphism. Thus there is an isomorphic copy of the path p, which
goes from u′ to u′′. This argument can be repeatedly used to concatenate
copies of p to obtain an infinite forward path from u.

In a similar manner, a backward path between two isomorphic vertices
implies an infinite backward path in Gρ.

(3) Here is a property of Gρ which holds even in the absence of periodicity.
Let p be a path from u to v in Gρ, with v at a level ahead of u. Then
we can obtain a forward path p′ from u to v in Gρ. This is done by
“short-circuiting” the portions of the path p that loop backward. With
reference to Fig 3, if p does not take a forward edge at a vertex w, then
let w′ be the first vertex it visits to the right of w (if it exists). Since this
edge to w′ is from a vertex either to the left or at the same level as w,
it must be the case that w and w′ are in a common k-frame, and hence
there must be an edge between w and w′. This edge must be either an
‘=’ or ‘<’-labelled edge from w to w′, since otherwise Gρ would contain
a strict cycle. Furthermore, if the backward loop contained a strict edge,
the edge from w to w′ is strict.

A similar argument holds when p is a path from u to v with u ahead
of v. In this case we have a backward path p′ from v to u.

We return now to the proof of Lemma 6.2.

Proof If ρ admits a Z-valuation sequence, then by Lemma 6.1 ρ must satisfy
the condition (CZ).

Conversely, let ρ = τ · δω be a locally consistent, ultimately periodic k-frame
sequence. Suppose ρ does not admit a Z-valuation sequence. Then we will
show that ρ fails to meet condition (CZ).

By Lemma 6.1 there must exist two vertices u and v in Gρ with slen(u, v) = ω.
We will use this property to produce a picture in Gρ which violates (CZ). Let
l be a level to the right of the first δ-boundary and the vertices u and v. Let
m be the level l + k · |δ| · |V |.

22



l

τ δ

m

u
w1

w2

w3w4
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r

s′tt′
v

Fig. 4. The path p′ for case (a)

Now consider a u-v path p with

slen(p) > (m+ 1) · |V |+ |δ| · |V |.

Such a path exists because slen(u, v) = ω. Without any loss of generality we
can assume p has no non-strict cycles (and hence no cycles at all), since a
non-strict cycle can be eliminated without affecting the strict length of the
path. Thus p never re-visits a vertex in Gρ. It now follows that there must be
at least |δ| · |V | strict edges in p which occur to the right of level m.

Now consider the portion p from the time it first crosses to the right of m,
till the time it crosses back to the left of m for the last time. Since there are
only |δ| · |V | non-isomorphic vertices to the right of m, it must be the case
that this portion of the path visits two isomorphic vertices w1 and w2, both to
the right of m, such that w1 is visited first, and w2 is visited next via a strict
path. Using the observation on short-circuiting a path, we can now produce a
path p′ in Gρ that begins at u, goes to w1 via a forward path q, then visits w2

via a strict path r, then goes back to v via a backward path s.

Two cases arise at this point: (a) w1 is to the left of w2, and (b) w1 is to the
right of w2.

We deal with case (a) first. In this case r must be a strict forward path from
w1 to w2. Notice also that the backward path s spans across the levels l to
m. Since an edge in s can span at most k levels, by the choice of m, s must
visit two isomorphic vertices w3 and w4 which lie between the levels l and
m. Without loss of generality we assume w3 is to the right of w4. Let this
backward path from w4 to w3 be t. Let us write the path s as s′tt′. This is
shown in Fig. 4.

Since w1 and w2 are isomorphic, we have a strict forward path d from u (given
by q followed by r, followed by isomorphic copies of r ad infinitum). Similarly,
since w4 and w3 are isomorphic, we have an infinite backward (not necessarily
strict) path e from v.

Further, we can assume that u and v lie in the same k-frame, since if this were
not the case, with say v ahead of u, we can choose u to be any vertex along
the path q that lies in the same k-frame as v.
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w4
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Fig. 5. Strict edge from w to w′

l
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m

u

w2
w1

w3 w4

r
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q1
q3

q2

v

Fig. 6. The path p′ for case (b)

It remains now to argue that for any two vertices w on d and w′ on e, which
are in the same k-frame, there is a strict edge from w to w′. Now note that
the number of levels spanned by the paths r and t are a multiple of |δ|; say
k1 · |δ| and k2 · |δ| respectively (by isomorphism of (w1, w2) and (w3, w4)). Let
w1 = (x, n1) and w4 = (y, n4). Then the vertices (x, n1 + ik1k2|δ|) and (y, n4 +
ik1k2|δ|), for any i, are images of w1 and w4 under the same isomorphism.
Hence there is a strict path isomorphic to rs′tt′ between these vertices as well.
Further, these vertices also lie on the paths d and e respectively. Now given
w and w′ on d and e respectively, consider the next occurrence of the two
isomorphic copies of w1 and w4 described above, to the right of both w and w′

(see Fig. 5). Then there is a strict path between w and w′ obtained by going
right to the copy of w1, then taking the strict copy of rs′tt′ to the copy of w4,
and then back to w′. Hence there must be a strict edge from w to w′ (or else
we would have a strict cycle in Gρ, see Corollary 5.6).

This completes the proof that in this case there is a picture in Gρ which
contradicts (CZ).

Coming now to case (b), where we assume w1 is to the right of w2. Then the
path r is a strict backward path from w2 to w1. Then the path p′ from u to v
appears as shown in figure Fig. 6, with q2 being a forward path between two
isomorphic vertices. Once again this gives us an infinite forward path from u
given by q1 followed by q2 ad infinitum, and a strict backward path from v
given by s followed by r ad infinitum. Using an argument similar to case (a)
above, we once again get a picture in Gρ which contradicts (CZ).

With this we conclude the proof of Lemma 6.2. 2

Now let ϕ be the given CLTL(Z) formula. Let k be the O-length of ϕ. Let us
define AZ

ϕ = ALTL
ϕ ∩ AZ,k

lc ∩ A
Z
k , where ALTL

ϕ and AZ,k
lc are as in Sec. 4, and

AZ
k – described below – accepts k-frame sequences which satisfy (CZ).

Let B be a Büchi automaton over the alphabet of k-frames, which simply
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checks the negation of condition (CZ). Thus B non-deterministically guesses
the vertices u and v, and then verifies the conditions (1)–(4). We non-deterministically
choose in the beginning, whether to signal (via the Büchi condition) each time
the d or e path sees an edge labelled ‘<’. Here is a more precise definition of
the automaton B:

Define B = (Q,S0,−→, F ), over the alphabet of k-frames, where

• S0 = {q0};
• Q = {q0} ∪ (V × {0, . . . , (k − 1)} ×V × {0, . . . , (k − 1)} × {d, e} × {0, 1});
• −→ is given by:
· q0

v
−→ q0

· (guess (x, i) as u, and (y, j) as v, as well as which of d or e is strict)
q0

v
−→ (x, i, y, j, d, 0) and q0

v
−→ (x, i, y, j, e, 0) for all x, i, y, j.

· (wait till x or y is at the edge of the frame)
(x, i, y, j, f, b)

v
−→ (x, i − 1, y, j − 1, f, b) for f ∈ {d, e} and b ∈ {0, 1},

provided i, j ≥ 2.
· (guess a forward edge from (x, 1))

(x, 1, y, j, d, b)
v
−→ (z, i, y, j − 1, d, b′) provided

j > 1,
(x, 0)

<
−→ (z, i) ∈ v and b′ = 1, or (x, 0)

=
−→ (z, i) ∈ v and b′ = 0,

(z, i)
<
−→ (y, j − 1) ∈ v.

· similarly for (y, 1), and for (x, 1) and (y, 1) simultaneously.
· similar clause for e.
• F comprises all states of the form (x, i, y, j, f, 1).

The automaton AZ
k is now just the complement of B.

Lemma 6.3 A CLTL(Z) formula ϕ is satisfiable iff L(AZ
ϕ ) is non-empty.

Proof Suppose ϕ is satisfiable. Let σ be a Z-valuation sequence such that
σ |= ϕ. Let ρ = k-fsZ(σ), where k is the O-length of ϕ. By Lemma 3.1, ρ ∈
L(ALTL

ϕ ). We know that ρ is a locally consistent k-frame sequence and hence

ρ ∈ L(AZ,k
lc ). Further, by Lemma 6.1, Gρ satisfies (CZ) and hence ρ ∈ L(AZ

ϕ ).

Thus ρ ∈ L(ALTL
ϕ ) ∩ L(AZ,k

lc ) ∩ L(AZ
k ). Hence ρ ∈ L(AZ

ϕ ).

Conversely, suppose AZ
ϕ accepts a word ρ. Then it must accept an ultimately

periodic word ρ′ (by nature of the acceptance condition). Since ρ′ ∈ L(AZ
ϕ ), we

know that ρ′ is such that ρ′ |=LTL ϕ, ρ′ is locally consistent, and satisfies (CZ).
By Lemma 6.2, ρ′ admits a Z-valuation sequence σ. Further, since ρ′ |=LTL ϕ,
by Lemma 3.1, σ |= ϕ. Thus ϕ is CLTL(Z) satisfiable. 2

This lets us conclude that

Theorem 6.4 The satisfiability problem for CLTL(Z) is decidable.
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CZ + lc LLTL(ϕ)

L(AZ

ϕ
)

ρZ

bad

LZ

fs (ϕ)

Fig. 7. The languages LZ
fs(ϕ) and L(AZ

ϕ ).

Proof Given ϕ ∈ CLTL(Z) we can effectively construct the automaton AZ
ϕ

and check it for emptiness. 2

The decision procedure can be shown to run in pspace. Before that, as a
consequence of Lemma 6.2 and the existence of the automaton AZ

ϕ , we observe
that:

Corollary 6.5 There are formulas ϕ in CLTL(Z) for which LZ
fs(ϕ) is not

ω-regular.

Proof Consider the formula ϕ = 3((x < Oy) ∧ (y < z)). We will show that
LZ

fs(ϕ) is not ω-regular.

Let us suppose that LZ
fs(ϕ) was ω-regular. Then, since ω-regular languages are

closed under boolean operations, L = ((2atc(2,Z))ω − LZ
fs(ϕ)) ∩ L(AZ

ϕ ) is also
ω-regular. This is the lightly shaded region in Fig. 7. Note that L is disjoint
from LZ

fs(ϕ).

Now consider the frame sequence ρZbad of Fig. 2. ρZbad satisfies (CZ) and is a
locally consistent 2-frame sequence. Further it satisfies ϕ as an LTL formula
(i.e. ρZbad |=LTL ϕ). Hence it belongs to L(AZ

ϕ ). However, as observed earlier,
ρZbad does not admit a Z-valuation sequence, and hence ρZbad 6∈ L

Z
fs(ϕ). Hence

ρZbad ∈ L.

But since L is ω-regular, there must exist an ultimately periodic word ρ′ in
L. ρ′ ∈ L(AZ

ϕ ) and hence is locally consistent, satisfies (CZ), and satisfies ϕ
as an LTL formula. By Lemma 6.2, ρ′ admits a Z-valuation sequence. Since
we also have that ρ′ ∈ L(ALTL

ϕ ), by Lemma 3.1 we must have ρ ∈ LZ
fs(ϕ). But

this contradicts the fact that L and LZ
fs(ϕ) are disjoint. Hence LZ

fs(ϕ) could
not have been ω-regular. 2

Complexity of the decision procedure. We now want to argue that the
satisfiability problem for CLTL(Z) can be solved in pspace. Given a CLTL(Z)
formula ϕ of O-length k, we show that the decision procedure above runs in
space polynomial in n = |ϕ|.
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Fig. 8. AZ
ϕ and component automata

Recall that we need to check if the language accepted by the automaton AZ
ϕ =

ALTL
ϕ ∩ AZ,k

lc ∩ A
Z
k , is empty.

We briefly describe the construction of the automaton AZ
k . It is obtained

from the automaton B above by Safra’s construction [46] to complement a
Büchi automaton. Note that the automaton B has a number of states which is
polynomial in n, say p(n). From this Safra’s method constructs a deterministic
Streett automaton C which accepts the complement of the language accepted
by B, and has 2O(p(n) log n) states. This automaton can then be converted to an
equivalent Büchi automaton AZ

k with the same order of states.

Though the automaton AZ
ϕ is exponential in n (note that both component au-

tomataAZ
k and ALTL

ϕ are exponential in n), we can still check its nonemptiness
non-deterministically in pspace in n, as argued below. Using Savitch’s theo-
rem, it then follows that its nonemptiness can be checked deterministically in
pspace in n.

To argue that AZ
ϕ can be checked for nonemptiness non-deterministically in

pspace, we note that AZ
ϕ has an implicitly defined transition relation that can

be checked in pspace in n. Fig. 8 depicts the fact that the transition relation
of AZ

ϕ is implicitly defined in terms of the transition relations of its component
automata. Each of the component automata have implicitly defined transition
relations, that can be computed in pspace. ForALTL

ϕ the argument is standard
and can be found in [47]. For AZ

k one can verify in [46] that the construction
of the automata C and AZ

k are indeed such that their states can be described
in space polynomial in n and their transition relation can be checked in space
polynomial in n.

Thus we can conclude that checking nonemptiness of the automaton AZ
ϕ can

be done in pspace in n. pspace-hardness follows from that of classical LTL
as in the proof of Theorem 4.5. Hence we have:

Theorem 6.6 The satisfiability problem for CLTL(Z) is pspace-complete.
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Fig. 9. ρNbad satisfies (CN ) but does not admit an N-valuation sequence.

7 Satisfiability for CLTL(N, <,=)

In this section we outline a decision procedure for the satisfiability problem
for CLTL over the constraint system N = (N, <,=). The decidability of this
logic actually follows from the fact that CLTL(Z) extended with constants is
decidable (cf. Sec. 9). However for reasons of independent interest, we sketch
a decision procedure for this logic, which in fact is very much along the lines
of the one for CLTL(Z) in the previous section. It is hoped that this will em-
phasize the fact that a simple-minded approach to rule out infinite backward
chains will not work, and further that the languages corresponding to these
formulas could in fact be non-ω-regular.

We begin with a notion similar to that of slen in the previous section. For a
vertex u in Gρ, we define sdlen(u) to be the supremum of slen(p) over directed
paths p from some vertex v to u in Gρ.

Lemma 7.1 Let ρ be a locally consistent k-frame sequence. Then ρ admits an
N-valuation sequence iff for all u ∈ Gρ, sdlen(u) < ω.

Proof If ρ admits an N-valuation σ, then clearly sdlen(u) ≤ l(u), where l is
the N-labelling of Gρ corresponding to σ. Thus, there cannot exist a vertex u
with sdlen(u) = ω.

Conversely, if Gρ satisfies the given condition, then one can verify that the
N labelling l given by l(u) = sdlen(u) is an edge-respecting labelling of Gρ.
Hence ρ admits an N-valuation. 2

Let (CN ) denote the following condition on a locally consistent k-frame se-
quence ρ: Gρ satisfies (CZ) and it does not contain a strict backward path.

Condition (CN ) is once again necessary but not sufficient to ensure that a
locally consistent k-frame sequence admits an N-valuation sequence. One can
see that it is not sufficient by considering the 2-frame sequence ρNbad of Fig. 9.
It clearly satisfies condition (CN ), but does not admit an N-valuation sequence
because the vertex u = (y, 0) is such that sdlen(u) = ω.

However, we can assert that:

Lemma 7.2 Let ρ be an ultimately periodic, locally consistent, k-frame se-
quence. Then ρ admits an N-valuation sequence iff ρ satisfies (CN ).
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Fig. 10. The case (a)
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Fig. 11. The case (b)

Proof Suppose ρ does not admit an N-valuation. Then by Lemma 7.1 there
must exist a vertex u with unbounded strict descending length. We now choose
the levels l and m, and a backward path p from u of suitable strict length,
as in the Z case. Once again, we must visit two isomorphic vertices w1 and
w2 (in that order, as we go along the path in the backward direction), with
both w1 and w2 to the right of level m, and with a strict path between them.
Again, two cases arise: either w1 is to the left of w2, or w2 is the left of w1.
If w1 is to the left of w2, then we have the situation in Fig. 10, and we have
an infinite backward path from u given by q followed by r ad infinitum. This
contradicts condition (CN ).

If w2 is visited before w1, then the situation in Fig. 11 arises. We now have a
strict infinite forward path d from w2 given by r followed by r ad infinitum.
We also have an infinite backward path e from w3 given by q2 repeated ad
infinitum. As in the case of Z we can argue that for any two vertices w and
w′ on d and e respectively, there is a strict edge from w to w′. This picture
violates (CZ) and hence (CN ). 2

We can now define an automaton AN
ϕ as in the Z case, so that the CLTL(N )

formula ϕ is satisfiable iff L(AN
ϕ ) is non-empty. We can define AN

ϕ to be the
intersection of AZ

ϕ and an automaton that rejects k-frame sequences which
contain a vertex with a strict backward path from it.

In a similar manner to the Z case, we can thus conclude that:

Theorem 7.3 The satisfiability problem for CLTL(N ) is pspace-complete.

Finally, the frame sequence ρN
bad of Fig. 9 allows us to argue that there is a

CLTL(N ) formula ϕ (for example x < Ox) for which LN
fs (ϕ) is not ω-regular.

Once again the argument is similar to the Z case.
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8 Model-Checking

A natural model-checking problem for CLTL(D) one may study would be to
consider a Kripke structure M whose states are labelled by D-valuations,
and a CLTL(D) formula ϕ; and to ask if every valuation sequence generated
by M satisfies ϕ. However this problem easily reduces to the classical LTL
model-checking problem, since we can transform M into a Kripke structure
Mk labelled by k-frames (where k is the O-length of ϕ) corresponding to the
k-frame induced by k-length valuation sequences inM. WhetherM satisfies
ϕ is now equivalent to checking whether Mk satisfies ϕ as a classical LTL
formula.

Hence, in this section we focus on a more interesting model-checking problem
which has been proposed earlier in the literature in the context of counter
automata [13] (see also [48,49] and [50, Chap. 6]). As in the case of classi-
cal LTL, this model-checking problem will be shown to be equivalent to the
satisfiability problem for the logic.

Let D be a constraint system. A D-automaton A is a Büchi automaton A over
an alphabet comprising CLTL(D) formulae. Thus transitions in A are of the

form q
ϕ
−→ q′, see similar structures in [51]. Fig. 12 shows a N -automaton with

variables {x, y, z}.

q0

q1 q2

q3

> x < Ox

>

>
2(x = y) (y = Oz) ∨3(x = O4x)

Ox < x

Fig. 12. An example of a D-automaton

Viewed as a Büchi automaton over CLTL(D) formulas, a D-automaton A
accepts a language L(A) of ω-words over CLTL(D) formulas. Elements of
L(A) can be understood as symbolic models. However, with each ω-word α =
ϕ0ϕ1 · · · in L(A), we can associate a set of D-valuation sequences σ which
satisfy σ[i,∞] |= ϕi for each i. Such sequences can be viewed as concrete
models. Let Lvs(A) denote this set of D-valuation sequences: thus

Lvs(A) = {σ | ∃α ∈ L(A), σ[i,∞] |= α(i) for each i}.
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The N -automaton A in Fig. 12 is such that Lvs(A) = ∅. However, if we
consider it as an Z-automaton, Lvs(A) contains the Z-valuation sequence

〈0, 0, 0〉, 〈0, 0, 0〉, 〈−1,−1, 0〉, 〈−2,−2, 0〉, 〈−3,−3, 0〉, . . .

The model-checking problem for CLTL(D) is defined as follows: Given a D-
automaton A and a CLTL(D) formula ϕ, is there a σ ∈ Lvs(A) that σ |= ϕ?
(in symbols A |=∃ ϕ?)

Note that for convenience we have defined the existential version of the prob-
lem. The universal version of the problem can be phrased in terms of the
version above. We also note that the nonemptiness problem for D-automata
is a restriction of the model-checking problem for CLTL(D), by taking ϕ = >.
The problems are in fact inter-reducible to each other.

We now show that the satisfiability and model-checking problems for CLTL(D)
are inter-reducible. This is analogous to the situation for classical LTL.

Theorem 8.1 Let D be a non-trivial constraint system. Then the model-
checking and satisfiability problems for CLTL(D) are inter-reducible with re-
spect to logspace transformations.

Proof Let us reduce the satisfiability problem to the model-checking problem
for CLTL(D). We only need to observe that ϕ is CLTL(D) satisfiable iffA> |=∃

ϕ whereA> is a one-stateD-automaton such that q0
>
−→ q0 and Q0 = F = {q0}.

To reduce the model-checking problem to the satisfiability problem, we use the
idea behind the reduction from the model-checking problem to the satisfiability
problem for classical LTL from [44]. Let A = (Q,Q0, F,→) be a D-automaton
and ϕ be a CLTL(D) formula. By non-triviality of D, there is R of arity a such
that R 6= ∅ or R 6= Da. For every state q ∈ Q, we consider an exclusive set
of new variables xq

1, . . . , x
q
a from Var , distinct from those in V . In that way,

for each q ∈ Q, R(xq
1, . . . , x

q
a) behaves as an independent atomic formula that

can be locally set to either true or false. Now, let us encode A by a CLTL(D)
formula. For every q ∈ Q, let nextq be the formula that encodes the successors
of q:

nextq
def
=

∨

q
ψ
−→q′∈δ

(ψ ∧R(Oxq′

1 , . . . , Ox
q′

a )).

Let uni be the formula stating the unicity of the current state:

uni
def
=

∨

q∈Q

(R(xq
1, . . . , x

q
a) ∧

∧

q′∈Q\{q}

¬R(xq′

1 , . . . , x
q′

a )).
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Let ϕA be the formula encoding the accepting runs of A:

ϕA
def
=

∨

q∈Q0
R(xq

1, . . . , x
q
a)

∧ 2uni

∧ 2(
∧

q∈QR(xq
1, . . . , x

q
a)⇒ nextq)

∧ 23(
∨

q∈F R(xq
1, . . . , x

q
a)).

One can show that A |=∃ ϕ iff ϕ ∧ ϕA is CLTL(D) satisfiable. 2

Observe that in the second part of the above proof, we use the fact that we
have a countably infinite supply of variables in Var .

As a consequence of Theorem 8.1, the pspace-completeness results for the
satisfiability problem carry over for the model-checking problem too. In partic-
ular, from Theorem 4.5 we get that the model-checking problem for CLTL(D)
whenD satisfies completion, non-triviality, and allows frame-checking in pspace

(and hence for all the constraint systems in Corollary 5.4), is pspace-complete.
Also, from Theorems 6.6 and 7.3 we have that the model-checking problem
for Z and N are also pspace-complete.

9 Decidable Extensions

In this section we outline some extensions of the logic CLTL(D) for which the
satisfiability and model checking problems remain decidable.

9.1 Monadic second order logic

We define a Constraint Monadic Second Order Logic, parameterized by the
constraint system D, and denoted CMSO(D). Here the underlying logic is
generalized from LTL to MSO [15].

We assume a supply of individual variables x, y, . . ., and set variables X,Y, . . ..
These variables will range over positions (respectively sets of positions) of a
given sequence. The syntax of CMSO(D) is given by:

ϕ ::= Qc(x) | x ∈ X | x ≺ y | ¬ϕ | (ϕ ∨ ϕ) | ∃xϕ | ∃Xϕ.

Here c is an atomic D-term constraint, and Qc is a unary predicate with the
semantics below.
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A structure for the logic will be a pair (σ, J) where σ is a D-valuation se-
quence, and J is an assignment of individual variables to a position of σ (i.e.
an element of N), and set variables to a set of positions of σ. The predicate ‘≺’
is interpreted as the usual ordering on N. The satisfaction relation σ, J |= ϕ
for atomic formulas ϕ is given below.

σ, J |= Qc(x) iff σ[J(x),∞] |=D c

σ, J |= x ∈ X iff J(x) ∈ J(X)

σ, J |= x ≺ y iff J(x) < J(y)

The operators ¬, ∨, and the existential quantifiers ∃x and ∃X are interpreted in
the usual manner. In particular the quantifier ∃X is interpreted as follows. Let
i ∈ N. We will use the notation J[i/x] to denote the assignment which maps
x to i and agrees with J on all other individual and set variables. Similarly,
for a subset S of N, the notation J[S/X] will denote the interpretation which
sends X to S, and agrees with J on all other variables. Then:

σ, J |= ∃Xϕ iff there exists S ⊆ N such that σ, J[S/X] |= ϕ.

As an illustration, the CMSO(N ) formula ∀xQx<Oy (x) rephrases the CLTL(N )
formula 2(x < Oy). By analogy to CLTL(D), the O-length of some CMSO(D)
ϕ is the maximal O-length of D-terms occurring in unary predicates of ϕ.

Recall that classical monadic second order logic over a set of propositions
P is defined similar to CMSO(D) above, except that instead of Qc we have
predicates of the form Qp for each p ∈ P . A model for the logic is an ω-
word α over 2P , and the formula Qp(x) is interpreted as: α, J |=MSO Qp(x) iff
p ∈ α(J(x)). Just as in Lemma 3.1 it is easy to show the following result.

Lemma 9.1 Let ϕ be an CMSO(D) formula of O-length k. Let σ be a D-
valuation sequence, and let ρ = k-fsD(σ). Then σ |= ϕ iff ρ |=MSO ϕ. 2

Using Büchi’s well-known result that for every classical MSO formula we can
construct a Büchi automaton AMSO

ϕ which accepts precisely the models of ϕ,
we can now follow the same route as in the previous sections to conclude that:

Theorem 9.2 The satisfiability (and model-checking) problem for CMSO(D)
is decidable for D = N , Z, and for any D which satisfies completion, non-
triviality, and has a decidable frame checking problem. 2
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9.2 Adding constants

We can extend the language of constraints by allowing constants to be used,
leading to term constraints of the form (Ox < 3). The model checking problem
for this extension can be handled as in Sec. 8, so we focus here on the satisfi-
ability problem. We restrict ourselves to domains of the form (D,<,=) intro-
duced in Sec. 5, and denote the version of the logic extended with constants
by CLTLcon(D,<,=). For reasons of effectiveness, we assume the constants
are from D ∩Q.

Consider first the case of domains which are dense and open (or equivalently
those which satisfy the completion property). Let ϕ be a formula with con-
stants K1, . . . ,Kn. Without loss of generality we assume that K1 ∼1 K2 ∼2

. . . ∼n−1 Kn with ∼i∈ {<,=}. Consider the CLTL(R, <,=) formula ϕ′:

ϕ[K1 ← y1, . . . ,Kn ← yn] ∧
n−1∧

i=1

(yi ∼i yi+1) ∧2(
n∧

i=1

yi = Oyi)

where y1, . . . , yn are new variables not occurring in ϕ and Ki ← yi denotes
the operation of replacing every occurrence of Ki by yi. ϕ

′ is now satisfiable
iff ϕ is. To see this, note that if ϕ is satisfiable, the same valuation extended
by labelling yi’s by Ki’s satisfies ϕ′. Conversely, given a D valuation sequence
σ which satisfies ϕ′, we can re-label the variables y1, . . . , yn with K1, . . . ,Kn,
and repeatedly use the completion property to label the remaining variables
so that we get an edge-respecting labelling of the underlying frame sequence.
This gives us a valuation sequence which satisfies ϕ.

Corollary 9.3 The satisfiability problem for CLTLcon(D,<,=) when D is
dense and open, is solvable in pspace.

We now consider CLTLcon(Z). Once again we can reduce the satisfiability for
CLTLcon(Z) to that of CLTL(Z). Let ϕ be a CLTLcon(Z) formula, and let m
and M be respectively the minimum and maximum constants used in ϕ. Let
xm, xm+1, . . . , xM be new variables that do not occur in voc(ϕ). Consider the
CLTL(Z) formula ϕ′ which is the conjunction of:

(1) ϕ[m← xm, . . . ,M ← xM ]
(2) 2

∧M
i=m(xi = Oxi)

(3) (xm < . . . < xM)
(4)

∧

y∈voc(ϕ) 2((y < xm) ∨ (y > xM) ∨ (y = xm) ∨ . . . ∨ (y = xM)).

The claim is now that ϕ is satisfiable iff ϕ′ is. Given a model for ϕ we can
extend it to a model for ϕ′ by assigning the value K to xK for each K between
m and M . Conversely, consider a model σ for ϕ′. Then σ may not be a model
for ϕ for two reasons: first, the values assigned to xm, . . . , xM may not be
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contiguous, and secondly, they may not begin at m. The first problem can
be taken care of by observing that the values assigned to xm, . . . , xM in σ
can be “compressed” without contradicting the formula. Thus, if dm, . . . , dM

were the values assigned to xm, . . . , xM in σ, then we relabel all vertices which
are labelled with these values, by the values dm, dm + 1, . . . , dm + (M − m)
respectively. Clause 4 of the formula ensures that this is still a model of the
formula. It is now easy to see that the values of all vertices can be shifted
down uniformly by the value (dm −m) to get a model for ϕ′ and hence also
for ϕ.

Assuming a binary encoding for the constants, the size of ϕ′ can be exponential
in ϕ. Hence we have:

Corollary 9.4 The satisfiability problem for CLTLcon(Z, <,=) is solvable in
expspace.

Few remarks about the logic CLTLcon(Z, <,=) are in order.

(1) We conjectured in [2,52] that satisfiability for CLTLcon(Z, <,=) is indeed
still in pspace. By an appropriate extension of the notion of symbolic
models, we have shown in [31] that it is the case.

(2) We note that the satisfiability problem for CLTL(N ) and CLTLcon(N )
can be reduced to that of CLTLcon(Z) by adding the constraint

2(
∧

x∈voc(ϕ)

(x > 0)).

Thus this gives us an alternate solution to the satisfiability problem for
CLTL(N ) and provides a pspace upper bound.

(3) A CTL variant of CLTLcon(Z, <,=) is known to be undecidable [20, The-
orem 1] and our complexity upper bound in Corollary 9.4 refines results
in [20].

9.3 Other extensions

The satisfiability results of this paper can be easily extended to handle the
past-time operators O−1 (previous) and S (since) in the temporal language.
Indeed, since we use automata-based techniques, the treatment of LTL with
those past-time operators from [53] can be used in our framework to obtain a
pspace upper bound. This answers an open question from [1].

Actually, for any extension L of LTL obtained by adding a finite amount of
MSO-definable temporal operators, one can show that L(D) satisfiability is
in pspace as soon as D satisfies completion, non-triviality, and allows frame-
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checking in pspace. Indeed, instead of considering the Büchi automatonALTL
ϕ ,

one builds the automaton AL
ϕ based on the developments in [54].

10 Undecidable Extensions

As seen in the previous section, the decidability results from Secs. 4–7 are
quite robust when the logical language is enriched. However, adding even
basic quantitative relations (like =+1) to the constraint system quickly leads
to undecidability.

More generally, we define below three abstract conditions for a constraint sys-
tem to admit implicitly a counting mechanism which leads to undecidability.
A constraint system D is said to admit an implicit counting mechanism if the
following conditions are met:

(1) D contains the equality predicate,
(2) D contains a binary relation R such that

(a) R = {(x, y) ∈ D2 : f(x) = y} for some injective map f : D → D,
(b) (D,R) is a DAG.

Observe that for any d in D, the set {f i(d) : i ∈ N} with the relation R (i.e.

d
R
−→ f1(d)

R
−→ . . . f i(d)

R
−→ . . .) is isomorphic to (N, <).

For every D ∈ {N,Z,Q,R} and for every i ∈ D \ {0}, the constraint system
(D,=,=+i) has an implicit counting mechanism, where n =+i n

′ iff n = n′ + i.
Similarly, the constraint system (D \ {0},=,=×i) admits an implicit counting
mechanism where n =×i n

′ iff n = n′ × i with i 6= −1, 1, 0. Similar conditions
are used to encode natural numbers in classical predicate logic, see e.g. [55,
Sect. 4.3.1].

Theorem 10.1 The satisfiability problem for CLTL(D) is undecidable for ev-
ery constraint system D with an implicit counting mechanism.

Proof The proof is based on the proof of [56, Theorem 2, Case 2] (see also [57,
Theorem 5] and [13, Theorem 3]) reducing the recurring computation problem
for nondeterministic 2-counter machines.

A nondeterministic 2-counter machines consists of two counters C0 and C1,
and a sequence of n instructions. The lth instruction is either of the form

• add〈l, Ci, l
′, l′′〉meaning “add 1 to the counter Ci and go to either instruction

l′ or instruction l′′” or of the form
• sub〈l, Ci, l

′, l′′〉 meaning “if Ci 6= 0, then subtract 1 from the counter Ci and
go to the instruction l′, otherwise go to the instruction l′′”.
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A configuration is a triple 〈ic, n0, n1〉 ∈ {1, . . . , n} × N × N where ic is the
instruction counter and ni is the value of the counter Ci. A computation is an
infinite sequence of configurations starting at the initial configuration 〈1, 0, 0〉
and such that two successive configurations are admissible according to the
instructions of the machine. A computation is recurring iff it contains in-
finitely many configurations with the value counter being 1 (Büchi acceptance
condition).

In order to encode the configurations, we shall use the variables ic, n1, and n2.
However, since D does not necessarily have constant values, we shall introduce
additional variables with constant values throughout the models:

• d1, . . . , dn to encode the n different possible values of the instruction counter;
• dn+1 and dn+2 the initial values of the counters C0 and C1, respectively.

Now, we define a formula that enforces that the interpretation of d1, . . . , dn

are distinct and constant throughout the model. The formula ϕinst does the
job:

ϕinst
def
=

d1,...,dn are distinct
︷ ︸︸ ︷

∧

1≤i<j≤n

(¬(di = dj))∧2(
∧

1≤i≤n

di = Odi).

In a similar way, we define a formula that enforces that dn+1 and dn+2 are
constant values. The formula ϕinit-c does the job:

ϕinit-c
def
= 2(dn+1 = Odn+1 ∧ dn+2 = Odn+2).

Observe that for these values of the counters, we do not require that dn+1 6=
dn+2.

Now we define a formula stating what is the first instruction counter and what
are the initial values of the counters:

ϕinit
def
= (ic = d1) ∧ (n0 = dn+1) ∧ (n1 = dn+2).

It remains to specify how the values of the current configurations evolve along
the ω-sequence of states. We need to specify how to encode the relationships
between two successive configurations. For each instruction l, we will define
a formula ψl that specifies its effects on the instruction counter and on the
counters. For instance, adding one to a counter Ci will be encoded by the
atomic formula R(ni, Oni).

If the lth instruction is of the form add〈l, Ci, l
′, l′′〉, the formula µl is defined

as follows:

go to either l′ or l′′

︷ ︸︸ ︷

((dl′ = Oic) ∨ (dl′′ = Oic))∧

add 1 to Ci
︷ ︸︸ ︷

R(ni, Oni)∧

C1−i does not change
︷ ︸︸ ︷

(On1−i = n1−i) .
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Similarly, if the lth instruction is of the form sub〈l, Ci, l
′, l′′〉, the formula µl is

defined as follows:

(

Ci 6=0
︷ ︸︸ ︷

¬(ni = dn+1+i)⇒

go to l′

︷ ︸︸ ︷

(dl′ = Oic)∧

sub 1 from Ci
︷ ︸︸ ︷

R(Oni, ni) ∧

C1−i does not change
︷ ︸︸ ︷

(On1−i = n1−i) )

∧(

Ci=0
︷ ︸︸ ︷

(ni = dn+1+i)⇒

go to l′′

︷ ︸︸ ︷

(dl′′ = Oic)∧

C0 does not change
︷ ︸︸ ︷

(On0 = n0) ∧

C1 does not change
︷ ︸︸ ︷

(On1 = n1) ).

It remains to express that a computation is recurring with the formula ϕrec

below:
23(ic = d1).

We define the final formula ϕM to be the formula below:

ϕinst ∧ ϕinit-c ∧ ∧ϕrec ∧2(
∧

1≤l≤n

((ic = dl)⇒ µl)).

Using the fact that D has an implicit counting mechanism, it is easy to see
that M has a recurring computation iff ϕM is CLTL(D) satisfiable. 2

Corollary 10.2 For each D ∈ {N,Z,Q,Q+R,R+} and for every i ∈ D \{0},
satisfiability for CLTL(D,=,=+i) is undecidable.

The above Σ1
1-hardness results implies that CLTL(D) is not recursively enu-

merable and therefore there cannot be complete proof systems for it.

A slight adaptation of the proof of Theorem 10.1 allows us to show the fol-
lowing result.

Corollary 10.3 For every D ∈ {N,Z,Q,Q+,R,R+} and for every i ∈ D \
{0, 1,−1}, satisfiability CLTL(D,=,=×i) is undecidable.

Proof The only difference with the proof of Theorem 10.1 is that we have to
enforce that dn+1 and dn+2 are not equal to zero which can be expressed by
the formula ¬(dn+1 =×i dn+1) ∧ ¬(dn+2 =×i dn+2). 2

Finally, we show that Theorem 10.1 holds even when we restrict ourselves to
just two variables. This follows from the general result below.

Lemma 10.4 Let D = (D,=, . . .) be a concrete domain equipped with equal-
ity. Then CLTL(D)-satisfiability can be reduced in logarithmic space to CLTL(D)-
satisfiability restricted to formulas with at most two variables.

Proof Let ϕ be a CLTL(D) formula of O-length m with variables x1, . . . , xn

for some n ≥ 3. We set M = n×m. We shall build a CLTL(D) formula ϕ′ (in
logarithmic space in |ϕ|) such that ϕ is CLTL(D) satisfiable iff ϕ′ is CLTL(D)
satisfiable.
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If D is a singleton, every variable in ϕ can be replaced by x leading to ϕ′. In
the sequel, we assume that D has at least two elements.

A sequence v0, . . . , vm−1 of valuations of the form {x1, . . . , xn} → D, viewed
as a sequence of m states in a model for ϕ, will be encoded by M successive
valuations u1, . . . , uM over {x, y} such that

• for every 1 ≤ i ≤ M , ui(x) = vj(xk+1) where j and k are such that i =
j × n+ k and k < n.
• u1(y) = u1(x) and for every 2 ≤ i ≤M , ui(y) 6= ui(x).

The second variable y has a unique function: to be able to count the positions
of the states modulo M with the satisfiability of the atomic constraint x = y.
The first formula that we consider allows us to access states whose positions
are multiple of M . Basically, the first states of n × m states sequences are
exactly the states satisfying x = y. The formula ϕmult does the job:

ϕmult
def
= (x = y) ∧

∧

1≤i≤M−1

¬(Oix = Oiy) ∧2(x = y ⇔ OMx = OMy).

Indeed, we have σ |= ϕmult iff for all i, (σ[i,∞] |= x = y iff i = 0 mod M). The
formula ϕshift below states that for 2 ×M consecutive valuations over {x, y}
u1, . . . , uM , u

′
1, . . . , u

′
M , un+1, . . . , uM = u′1, . . . , u

′
M−n:

2(x = y ⇒
M−n∧

i=1

On+ix = OM+ix)

We now define the map t from subformulas of ϕ to formulas over {x, y}:

• t is homomorphic with respect to the Boolean operators;
• t(R(Oj1xi1, . . . , O

jαxiα)) = R(O(j1−1)×n+i1x, . . . , O(jα−1)×n+iαx);
• t(Oψ) = O(¬(x = y)U((x = y) ∧ t(ψ)));
• t(ψUµ) = ((x = y)⇒ t(ψ))U((x = y) ∧ t(µ)).

Now one can easily show that ϕ is CLTL(D) satisfiable iff ϕmult ∧ t(ϕ) is
CLTL(D) satisfiable. 2

When only one variable is involved, undecidability can still be established
following [33].

11 Conclusion

We have studied some natural satisfiability and model-checking problems re-
lated to a simple constraint temporal logic. The technique used in this pa-
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per is automata-theoretic and its novelty lies in its applicability in the face
non-regularity of the set of models described by formulas in the logics. The
automata-theoretic approach also leads to transparent generalizations of the
techniques for some extensions of the logic.

Among the issues we have not paid much attention to are applications of
these results, particularly in the area of automated program verification. For
example one could consider model-checking properties of finitely presented
infinite state programs like timed automata [58] (where clocks can be modelled
as real-valued variables) or integer-valued programs [59]. Another application
one could investigate would be in the area of program synthesis. As mentioned
in the the introduction, the theory developed here can in principle be used to
synthesize programs satisfying a given CLTL specification.

Another interesting problem we would like to investigate is the decidability of
the logic when we allow more expressive quantifiers like y = 3x expressing that
some future value of x is equal to the current value of y. These quantifiers are
related to the “freeze quantifiers” used in some real-time logics [57] (see also
recent developments in [35,36]), and one may be able to exploit the techniques
used there.
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