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Abstract

In this paper, we propose a data-driven reduced homogenization technique to capture
diffusional phenomena in heterogeneous materials which reveal, on a macroscopic level,
a history-dependent non-Fickian behavior. The adopted enriched-continuum formulation,
in which the macroscopic history-dependent transient effects are due to the underlying
heterogeneous microstructure is represented by enrichment-variables that are obtained by
a model reduction at the micro-scale. The data-driven reduced homogenization minimizes
the distance between points lying in a data-set and points associated with the macroscopic
state of the material. The enrichment-variables are excellent pointers for the selection of
the correct part of the data-set for problems with a time-dependent material state. Proof-
of-principle simulations are carried out with a heterogeneous linear material exhibiting
a relaxed separation of scales. Information obtained from simulations carried out at the
micro-scale on a unit-cell is used to determine approximate values of metric coefficients in
the distance function. The proposed data-driven reduced homogenization also performs
adequately in the case of noisy data-sets. Finally, the possible extensions to non-linear
history-dependent behavior are discussed.

Keywords Data-Driven Mechanics · Computational Homogenization ·Model Order Reduction
· Non-Fickian Diffusion ·

1 Introduction
Transient mass diffusion phenomena in heterogeneous materials are prevalent in engineering
applications, for example, Lithium-ion batteries [1], polycrystalline materials [2], diffusion in
porous gels [3], etc. For their analysis, numerical methods like finite elements in conjunction
with transient computational homogenization [4, 5] are used. Computational homogenization
represents the heterogeneous domain by a homogeneous macro-scale and a heterogeneous micro-
scale and solves the transient diffusion phenomena in a coupled two-scale setting. Despite the
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fact that the individual micro-scale constituents might reveal instantaneously linear behavior,
the homogenization of transient mass diffusion phenomena in heterogeneous materials provides
an emergent non-Fickian diffusion behavior [6, 7]. This lagging and history-dependent diffu-
sion behavior obtained at the macro-scale is due to the transient nature of the mass diffusion
occurring at the micro-scale. Diffusion in a heterogeneous material, consisting of inclusions
embedded in a matrix material, can be characterized by a characteristic loading time T , a
characteristic diffusion time for the inclusions τi = d2/Di and a characteristic diffusion time for
the matrix τm = `2/Dm, where d is the inclusion size (e.g. diameter), ` is the characteristic
size of the representative microscopic domain (e.g. the unit-cell), Di and Dm are the diffusivity
constants for the inclusions and the matrix, respectively. In the regime of the relaxed separa-
tion of scales (τm � τi ∼ T ), the non-Fickian behavior at the macro-scale is due to the slow
diffusion inside the inclusions. This gives rise to a lagging behavior at the macro-scale, which
is more prominent in the macroscopic storage term than in the diffusion term.

The homogenization in transient regimes is generally computationally very expensive. In
previous work [8], a model reduction technique, based on component mode synthesis [9, 10] was
developed for transient diffusion phenomena in heterogeneous materials with linear material
properties in the relaxed separation of scales regime. The microscopic primary field variable
was decomposed into a steady-state and a transient part. Model reduction was achieved by
solving an eigenvalue problem and selecting only a few eigenvectors in the reduced bases set.
When projected onto the reduced bases subspace, the discretized mass balance equation at the
micro-scale provides a set of ordinary differential equations in terms of the activity coefficients
of the eigenvectors. At the macro-scale, the macroscopic initial boundary value problem, the
ordinary differential equations of the activity coefficients, and the effective, homogenized, con-
stitutive equations entail an enriched-continuum description, where the activity coefficients are
the emerging enrichment-variables. These enrichment-variables can be treated as separate fields
or as internal-variables, as used in the constitutive theories involving internal variables [11].
This method was later extended to coupled diffusion-mechanics phenomena [12], where diffu-
sion induced stresses were correctly captured with the reduced method. The major limitation
of the enriched-continuum formulation is the fact that it relies on the linear material models at
the micro-scale to obtain the well-defined eigenvector reduced bases by solving an eigenvalue
problem.

In this work, a further extension of the enriched-continuum formulation is proposed, which
we call data-driven reduced homogenization. It combines the model reduction at the micro-
scale, to obtain enrichment-variables playing the role of internal-variables, and the data-driven
framework, which was first proposed in [13].

The data-driven computing [13] eliminates the need for a material model in computer sim-
ulations and instead directly uses raw data obtained from e.g. experiments or micro-scale
simulations. In essence, the data-driven method tries to find a point in the data-set closest to
the physical-state of the material obeying compatibility and the balance laws (or vice-versa). It
was further extended to noisy data-sets [14], dynamics [15] and inelastic material behavior [16].
Data-driven computational homogenization, was proposed in [17, 18], where the expensive
micro-scale calculations were performed first to generate data containing homogenized quanti-
ties in an off-line stage, while in an on-line stage, the homogenized macro-scale problem was
solved using the data-driven approach. It was also showed that the search through the data-set
is much more efficient than solving micro-scale problems in a coupled manner.

The data-driven approach proposed in [13] is fundamentally different from other data-driven
methods used in mechanics, where the data is typically used to learn the behavior of the material
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in terms of a stress-strain relationship or an energy potential. Classically, this learning process
involves linear/non-linear regression through, experimentally collected, data points to build
a model. The regression analysis has recently been replaced by techniques such as artificial
neural networks, deep learning, etc. borrowed from the field of data science. For example, [19]
employed a data-driven method that uses artificial neural networks to obtain a decoupled
and efficient computational homogenization for non-linear elastic materials by approximating
a density energy function. For a data-set with few points, a data-driven inverse problem
was proposed in [20] to recover the entire constitutive manifold. Notably, [21] developed a
multi-scale data-driven method using recurrent neural networks, which can capture the history-
dependent behavior for plasticity and replaces the micro-scale calculations with a surrogate
model. Detailed reviews for modern data-driven model building techniques can be found in [22,
23, 24, 25].

The data-driven reduced homogenization, that will be proposed in this work, entails three
stages, i.e. (1) model reduction, (2) data-generation, and (3) data-search.

1. The model reduction at the micro-scale, depending on the material models of the con-
stituents, can be applied to the discrete mass balance equations. It can be categorized
as a pre-processing stage. In the context of data-driven reduced homogenization, the
central goals of performing model reduction at the micro-scale are to be able to (i) solve
a large number of micro-scale problems in a computationally efficient manner during
the data-generation stage and (ii) obtain internal-variables to represent the effect of the
micro-scale transient behavior at the macro-scale. For the materials with memory, the
internal-variables approach provides a computationally efficient way to keep track of the
history dependence [16], hence, easing the computational efforts later in the data-search
stage.

2. The data-generation stage involves the solution of many micro-scale problems, post-
processing, and storage of the results in the form of the macroscopic conjugate quantities.
The data-generation stage is typically an off-line stage. To ensure that the data-set con-
tains representative values of conjugate quantities involved in the problem, the micro-scale
should be probed under different loading conditions with different frequencies.

3. Finally, the data-search is carried out to find an optimum point that reflects the minimal
distance from the current physical-state of the material, satisfying balance equations.

In this work, following [13, 16, 26], a staggered distance-minimizing data-driven solver is
adopted. It iteratively minimizes a quadratic distance function, defined on the material phase-
space, while looking for a point in the data-set. The compatibility of the macroscopic primary
field is enforced directly and the macroscopic balance law is enforced with the help of La-
grange multipliers. To find the physical-state of the material, the stationarity conditions are
obtained and then solved by taking all possible variations of the Lagrangian function. Then,
the search through the data-set is performed by an array indexing lookup operation. The
data-search stage constitutes the on-line stage. The material models (here linear) are known
at the micro-scale and the data-driven approach is applied to the macro-scale only. The for-
mulation has to be adapted to the dimension and structure of the phase space. In particular,
the history-dependence typically entails very high dimension phase spaces, which can be ad-
dressed through various strategies (see [16]). But the structure of the data-driven solver itself
remains quite transparent also in case of non-linearity. In this preliminary work, the analy-
sis is limited to the linear material behavior, and the results are compared with the reference
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enriched-continuum formulation [8], while the data-driven reduced homogenization approach
for non-linear materials will be analyzed in future work. The novel contributions in this paper
are:

• introduction of data-driven reduced homogenization for macroscopic history-dependent
linear diffusion behavior;

• proposing a methodology to evaluate optimal numerical values of the coefficients in the
distance function based on the information from micro-scale simulations.

The paper is organized as follows: The diffusion enriched-continuum formulation and model
reduction for linear materials are briefly presented in Section 2. The data-driven reduced
homogenization is derived in Section 3: first, the data-set and phase-space are defined; next
the solution procedure and the algorithm is elaborated for a distance minimizing data-driven
solver. All stages of the data-driven reduced homogenization are evaluated with numerical
examples in Section 4, where after setting up the micro-scale and macro-scale problems, the
data-generation is performed by micro-scale simulations. An important discussion is made on
the selection of numerical values of the coefficients in the distance function and the performance
and convergence of the proposed method is assessed with a noisy data-set. Future perspectives,
along with an outlook to extend the proposed data-driven reduced homogenization method
to non-linear history-dependent diffusion materials, are presented in Section 5 and finally the
conclusions are given in Section 6.

2 Enriched Continuum for Diffusion Problems
Assuming that the micro-scale material properties and microstructural topology are known, the
non-Fickian behavior at the macro-scale can be captured through a multi-scale approach such
as transient computational homogenization [4, 5, 7]. For diffusion problems, the macroscopic
behavior, in terms of the macroscopic chemical potential µ̄ as the primary unknown field, is
obtained by solving a macroscopic transient mass balance equation

∇ · j̄ + ċ = 0 , in Ω ,

µ̄(t = 0) = µ̄0 , in Ω ,

µ̄ = ˆ̄µ , on ∂Ωµ̄ ,

−j̄ · n = ĵ , on ∂Ωj .

(1)

where ∂Ωµ̄ and ∂Ωj are the Dirichlet and Neumann sub-parts of the macroscopic boundary ∂Ω,

respectively, and n is the outward unit-normal vector, ĵ is the prescribed mass influx and ˆ̄µ
is the prescribed macroscopic chemical potential. The explicit expressions for the macroscopic
constitutive equations of the macroscopic mass flux j̄ and the rate of change of macroscopic
concentration ˙̄c are not known and these are to be determined through homogenization, based
on the micro-scale material behavior and morphological information.

The micro-scale problem is described by the balance equation

∇ · j + ċ = 0 (2)

with the known constitutive equations given by

j = −M · g, where g = ∇µ and µ = Λ(c− c0) , (3)
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with M the mobility tensor, Λ the chemical modulus and c0 the reference concentration. The
material properties are assumed to be known for each micro-structural constituent. Transient
computational homogenization involves down-scaling and up-scaling steps: the former consists
in imposing the governing macroscopic quantities (µ̄, ḡ), with ḡ = ∇µ̄, on the micro-scale
domain, and the latter involves the computation of the effective conjugate quantities (j̄, ˙̄c),
after solving the transient fully resolved micro-scale problem which can be computationally
rather expensive.

In the relaxed separation of scales regime (requiring that the characteristic diffusion time of
the matrix τm is much smaller than that of the inclusion τi which is of the same order of mag-
nitude as the characteristic loading time T i.e. τm � τi ∼ T ), for micro-scale constituents with
a linear material behavior, a reduced model for transient heat conduction has been proposed
in [8]. Whereby the computationally expensive solution of the transient micro-scale problem is
replaced by an inexpensive solution of a set of ordinary differential equations at the macro-scale
by using computational homogenization along with component mode synthesis. A similar ap-
proach to [8] can be adopted for transient mass diffusion problems in heterogeneous materials.
First, discretized (e.g using FEM) the microscopic chemical potential field µ˜ can be decom-
posed into its steady-state µ˜ss and transient µ˜tr parts. Next, an eigenvalue problem is solved
at the micro-scale to obtain the reduced eigenmodes Φ˜(q), where q = 1, 2, ...,Nq, with Nq are
the reduced number of eigenvectors. Finally, the microscopic discretized problem is projected
onto the subspace of the reduced eigenbasis yielding a decoupled system of first-order ordinary
differential equations

η̇˜+ αη˜ = −
∗
d˜ ˙̄µ−

∗
a˜ · ˙̄g . (4)

where η˜ is the column of the modal amplitudes, having the meaning of activity coefficients or

reduced degrees of freedom η(q), α is the diagonal matrix of eigenvalues α(q) , and
∗
a(q) and

∗
d(q)

are the coefficients that couple the micro-scale to the macro-scale. Projection onto the reduced
degrees of freedom, also provides the expression for the macroscopic constitutive equations of
the macroscopic flux

j̄ = −a˜T η̇˜−B · ḡ − c ˙̄µ−C · ˙̄g , (5)

and the rate of change of the macroscopic concentration

˙̄c = d˜T η̇˜+ e · ḡ + f ˙̄µ+ f · ˙̄g . (6)

At the macro-scale, equations (1), (4), (5) and (6) present a diffusion enriched-continuum with
η˜ as the column of enrichment-variables. The effective coefficients (a˜,B, c,C) and (d˜, e, f ,f)

are the linear maps between the macroscopic quantities (η̇˜, ḡ, ˙̄µ, ˙̄g) and (j̄, ˙̄c), respectively.
Their magnitudes and directions depend on the microstructural material properties and mi-
crostructural morphology. The reader is referred to [8] for a detailed derivation of the enriched-
continuum formulation in the context of transient heat conduction, and to reference [27] for
the expressions of the effective coefficients used in equations (4)–(6) and the numerical im-
plementation of the enriched-continuum for mass diffusion problems. The enriched-continuum
formulation has also been extended to transient mass diffusion problems coupled to mechanics
in [12].

The non-Fickian diffusion at the macro-scale, represented by j̄ = j̄(η̇˜, ḡ, ˙̄µ, ˙̄g) in equation
(5) and ˙̄c = ˙̄c(η̇˜, ḡ, ˙̄µ, ˙̄g) in equation (6), allows to capture the complex history dependence. The
enrichment-variables η˜ play similar role to the internal-variables used in the constitutive theory
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of inelastic materials [11]. However, here the macroscopic model is non-classical one since the
storage terms ˙̄c also depend on the internal-variables, which is usually not the case for inelastic
materials. In the data-driven approach, η˜ can serve as an indicator in time for the selection
of the conjugate quantities, hence capturing the history-dependent behavior efficiently. On the
other hand, if instead of an enriched-continuum, the standard transient computational homog-
enization scheme [4] would be used for the data-driven approach, there would be no internal-
variables η˜ at the macro-scale. Instead, it would require the storage of the complete history
of the discrete microscopic fields µ˜(t), for the corresponding macroscopic quantities (µ̄, c̄, ḡ, j̄)
together with the data. The data-search stage would then consist of searching through the
entire history of the discrete microscopic fields µ˜ up to a given time t. This would consume
an enormous amount of computer resources for data-generation, data-storage, and data-search.
Hence, the extraction of an enrichment-variable like quantity through the model reduction at
the micro-scale is a crucial step towards an efficient data-driven solver for transient diffusion
problems in heterogeneous materials. In the next section, the data-driven homogenization for
transient diffusion problems with history effects is formally derived.

3 Data-Driven Reduced Homogenization
In this section, the data-driven reduced homogenization is derived for transient diffusion prob-
lems with history effects at the macro-scale. First, the notions of data-set and phase-space are
presented. Then, a specific class of data-driven solver, i.e. a distance minimizing data-driven
solver, is chosen for the current implementation, which results in a double minimization of
the distance function. Next, the solution procedure using a staggered scheme is presented and
finally, each step involved of the data-driven simulation algorithm.

For the sake of simplicity, a temporally and spatially discrete macroscopic problem is con-
sidered. The time is discretized by backward-Euler scheme, in which a rate term Ḟ can be
approximated by

Ḟ ≈ F
n+1 −Fn

∆t
(7)

where ∆t = tn+1 − tn is the time increment between the current tn+1 and previous tn time
instance. Spatial discretization of the domain Ω is performed by finite elements containing
m = 1, 2, ...,M material (integration) points and i = 1, 2, ...,N nodes. The notations and
terminologies adopted here, follow from [16, 28].

3.1 Data-Set and Phase-Space

The data-driven reduced homogenization relies on a data-set generated by micro-scale reduced-
order simulations. The choice of the macroscopic quantities to be stored in the data-set depends
on the expressions of the constitutive equations (4)–(6) and the data extracted from the micro-
scale simulations. Here, we choose to store all quantities and their rates (except for the flux
rate). The local data-set

Dm =
{(

µ̄′m, ˙̄µ′m, ḡ
′
m, ˙̄g′m, η˜′m, ˙η˜m′, j̄ ′m, c̄′m, ˙̄c′m

)}ndp

I=1
, (8)

is available at each material point m of the macroscopic discrete model. In present work,
the data-set Dm is constant in time, examples of temporally evolving data-sets i.e. Dn+1

m can
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be found in [16]. In (8) the prime •′ denotes a quantity that belongs to the data-set Dm.
Without any prime the quantity belongs to the physical state. I represents a data-point post-
processed at each time-step from the micro-scale simulations and ndp is the total number of
data-points. It should be noted that after the data-generation stage the homogenization model
is disregarded, and thereafter data-driven problems solely rely on the data at hand collected in
(8). The local data-sets Dm, in general, can be different for each macroscopic material point m.
Collectively, from all the material points, the total number of data-sets available in a discrete
system represent a global data-set

D = D1 ×D2 × ...×DM . (9)

The physical-state of the material at the homogenized macro-scale can be characterized by
a point in the local phase-space Zn+1

m

zn+1
m =

(
µ̄m, ˙̄µm, ḡm, ˙̄gm, η˜m, ˙η˜m, j̄m, c̄m, ˙̄cm

)n+1

∈ Zn+1
m , (10)

evolving in time, whereby the dimensions of the phase-space are dim(Zn+1
m ) = R1×R1×Rsd×

Rsd × RNq × RNq × Rsd × R1 × R1, in which sd is the spatial dimension of the problem under
consideration. Once combined, all the local states zn+1

m make up the global physical-state

zn+1 =
{(

µ̄m, ˙̄µm, ḡm, ˙̄gm, η˜m, ˙η˜m, j̄m, c̄m, ˙̄cm

)n+1 }M
m=1
∈ Zn+1 , (11)

in the global phase-space Zn+1 = Zn+1
1 ×Zn+1

2 × ...×Zn+1
M . The physical-state of the material

zn+1 at the macro-scale should obey the macroscopic compatibility and the discrete macroscopic
mass balance laws at each time instance tn+1.

For each material point, in an element of the discretized macroscopic domain, the compat-
ibility is expressed in terms of the discretized macroscopic chemical potential, defined at the
nodes µ̄n+1

i as

ḡn+1
m =

N∑
i=1

∇Nmiµ̄
n+1
i . (12)

The macroscopic mass balance (1), once discretized in space and time and after applying the
Dirichlet and the Neumann boundary conditions, reads at each node i and time instance tn+1

as

−∆t
M∑
m=1

wm∇Nmi · j̄n+1
m +

M∑
m=1

wmNmi(c̄
n+1
m − c̄nm) = −∆tĵ

n+1

i where i = 1, 2, ...,N . (13)

In equations (12) and (13), wm contains information regarding quadrature weights and the
volume of the elements, ∇Nmi is the gradient of finite element shape function Ni evaluated
at integration point m. Here, for the sake of simplicity of the notation, the finite element
shape functions Ni and their gradients ∇Ni, are defined globally on the whole finite element
mesh. Here, it should be noted that the macroscopic flux j̄m as well as the concentration c̄m, in
equation (13), are the constitutive quantities which are evaluated at the material points. The
primary unknown field is µ̄i defined on the nodes. This is different from the typical finite element
discretization of the mass balance equation in which usually the concentration field are assumed
primary unknown field. Note also that similar expressions could be obtained by alternative
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spatial discretization techniques. The compatibility (12) and the terms in the macroscopic mass
balance law (13) are coupled through the data-set Dm. Through this coupling the discretized
macroscopic chemical potential µ̄n+1

i is solved at the nodes. The compatibility (12) and the
balance law (13) pose restrictions on the state zn+1 of the material, hence constraining the
phase-space Zn+1 as

En+1 = {zn+1 ∈ Zn+1 : compatibility (12) and macroscopic mass balance (13)} . (14)

3.2 Distance Minimizing Data-Driven Problem

A distance minimizing data-driven problem, as introduced in [13], seeks a compatible and
equilibrated material physical-state zn+1 ∈ En+1 that has a minimum distance to a point in
the global data-set D. To work with a distance, first the local phase-space Zn+1

m is equipped
with a local norm

|zn+1
m | =

[
1
2

1Cm(µ̄n+1
m )2 + 1

2
2Cm( ˙̄µn+1

m )2 + 1
2

3Cm(ḡn+1
m )2 + 1

2
4Cm( ˙̄gn+1

m )2 + 1
2
(η˜n+1
m )T 5Cm(η˜n+1

m )+

1
2
(η̇˜n+1

m
)T 6Cm(η̇˜n+1

m
) + 1

2
7Cm(j̄n+1

m )2 + 1
2

8Cm(c̄n+1
m )2 + 1

2
9Cm( ˙̄cn+1

m )2
]1

2
, (15)

where JCm with J = 1, 2, ..., 9 are the coefficients which non-dimensionalize the measure (15)
and do not represent any material property. The coefficients 5Cm and 6Cm are diagonal
matrices of size Nq × Nq. The numerical values of these coefficients are important for the
numerical convergence of the data-driven problem and will be discussed in Section 4.4. Each
term in the measure (15) is quadratic, which, under the linear constraints of compatibility and
equilibrium, leads to a convex optimization problem. Then, locally, at the material point level,
the distance between two points yn+1

m , zn+1
m ∈ Zn+1

m can be measured as

dm(zn+1
m , yn+1

m ) = |zn+1
m − yn+1

m | . (16)

The global norm can be obtained by taking squares and integrating the local norms over
the entire domain

|zn+1|g =

(
M∑
m=1

wm|zn+1
m |2

)1
2

, (17)

which metrizes the global phase-space Z. Consequently the global distance from a point yn+1 ∈
Zn+1 to zn+1 ∈ Zn+1 is measured as

d(zn+1, yn+1) = |zn+1 − yn+1|g . (18)

The distance minimizing data-driven problem is then written as a double minimization

min
yn+1∈D

min
zn+1∈En+1

d(zn+1, yn+1) = min
zn+1∈En+1

min
yn+1∈D

d(zn+1, yn+1) . (19)

It aims to find a point yn+1 in the global data-set D which is closest to a compatible and
equilibrated material state En+1, or equivalently, find a compatible and equilibrated material
state En+1 which is closest to a point yn+1 in global data-set D while both minimizing the
global distance function d(zn+1, yn+1).
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The double minimization problem (19) is a combination of continuous and discrete opti-
mization problems, the former over the continuous manifold En+1, the latter in the discrete
data-set D. It has a combinatorial complexity, since for each material point m contributing
to the global distance-function (18), ndp points can be evaluated and the minimum should be
chosen among those. To efficiently solve this computationally intensive combinatorial problem,
following [28, 26], a staggered solution scheme is adopted here which freezes the continuous min-
imization problem while solving the discrete one and vice-versa. It assumes at an iteration k
the optimum point in the data-set ∗ykn+1 ∈ D to be known and finds a closest state zn+1

k+1 ∈ En+1

to that data-set point. This first step represents a projection operation zn+1
k+1 = PEn+1

∗
yk
n+1,

where PEn+1 denotes the closest point projection from D onto En+1.
Subsequently, in turn, the point zn+1

k+1 can be used to find the closest point in the data-set
for the next iteration ∗yk+1

n+1 = PDz
n+1
k+1 , where PD denotes the closest point projection from Zn+1

onto D. The iterations are continued until there is no other optimum point in the data-set to
choose i.e. PDzn+1

k+1 = PDz
n+1
k .

3.3 Solution Procedure

Assuming a known minimizing point ∗yn+1
k ∈ D, the projection zn+1

k+1 = PEn+1
∗
yk
n+1 is followed

after minimizing the quadratic distance function d2(•, ∗ykn+1) subject to the constraints (12) and
(13). The compatibility is imposed directly by introducing the chemical potential field as in
equation (12) and the discrete mass balance is enforced by using Lagrange multipliers λn+1

i at
the nodes. The discrete Lagrangian can be written as

Ln+1
=
M∑
m=1

wm

[
1
2

1Cm

(
N∑
i=1

Nmiµ̄
n+1
i −

∗
µ̄m
n+1

)2

+ 1
2

2Cm

(
N∑
i=1

Nmi
µ̄n+1
i − µ̄ni

∆t
−
∗
˙̄µm
n+1

)2

+

1
2

3Cm

(
N∑
i=1

∇Nmiµ̄
n+1
i −

∗
ḡm
n+1

)2

+ 1
2

4Cm

(
N∑
i=1

∇Nmi
µ̄n+1
i − µ̄ni

∆t
−
∗
˙̄gm
n+1

)2

+

1
2

5Cm
(
η˜n+1
m − ∗η˜n+1

m

)2

+ 1
2

6Cm

(
η˜n+1
m − η˜nm

∆t
−
∗
η̇˜n+1
m

)2

+

1
2

7Cm
(
j̄n+1
m −

∗
j̄m
n+1

)2

+ 1
2

8Cm
(
c̄n+1
m −

∗
c̄m
n+1
)2

+ 1
2

9Cm
(
c̄n+1
m − c̄nm

∆t
−
∗
˙̄cm
n+1

)2
]

+

N∑
i=1

[(
−∆t

M∑
m=1

wm∇Nmi · j̄n+1
m +

M∑
m=1

wmNmi(c̄
n+1
m − c̄nm) + ∆tĵ

n+1

i

)
λn+1
i

]
, (20)

where the rate terms in the distance function are approximated using the backward-Euler time
discretization introduced in (7).

Next, to find the stationarity conditions for all the variables appearing in the discrete La-
grangian (20), it needs to be perturbed with respect to the admissible fields δµ̄n+1

i , δη˜n+1
m , δj̄n+1

m , δc̄n+1
m , δλn+1

i .
These stationarity conditions are discussed next, one-by-one. The perturbation with respect to
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the macroscopic chemical potential field µ̄n+1
i , discretized at the nodes, provides,

δµ̄n+1
i :

∂Ln+1

∂µ̄n+1
i

= 0 =⇒

M∑
m=1

wm

N∑
j=1

[
Nmi

(
1Cm +

2Cm
∆t

)
Nmj + ∇Nmi

(
3Cm +

4Cm
∆t

)
·∇Nmj

]
µ̄n+1
j =

M∑
m=1

wm

N∑
j=1

[
Nmi

2Cm
∆t

Nmj + ∇Nmi

4Cm
∆t
·∇Nmj

]
µ̄nj +

M∑
m=1

wm

[
Nmi(

1Cm
∗
µ̄m
n+1 + 2Cm

∗
˙̄µm
n+1) + ∇Nmi · ( 3Cm

∗
ḡm
n+1 + 4Cm

∗
˙̄gm
n+1)

]
, (21)

which can be written in a matrix-column form as

K µ̄µ̄˜n+1 = M µ̄µ̄˜n + F˜∗
µ̄ . (22)

Equation (21) is a transient diffusion equation for µ̄ with corresponding bi-linear forms (Nmi •
Nmj) and (∇Nmi •∇Nmj) as the capacity and diffusivity matrices, respectively. The macro-

scopic chemical potential field µ̄˜n+1 calculated by (22), with given (
∗
µ̄m

n+1,
∗
˙̄µm
n+1,

∗
ḡm

n+1,
∗
˙̄gm
n+1)

in the forcing term F˜∗
µ̄, is locally compatible with (

∗
µ̄m
n+1,

∗
ḡm
n+1) in a weak sense and also con-

strained by the corresponding rate terms (
∗
˙̄µm
n+1,

∗
˙̄gm
n+1) in the data-set. The Dirichlet boundary

conditions, appearing in equation (1), are enforced on the µ̄˜ field, while homogeneous Neumann
conditions are considered on the complementary part of the boundary ∂Ωj.

The perturbation with respect to the enrichment-variables reads

δη˜n+1
m :

∂Ln+1

∂η˜n+1
m

= 0 =⇒ η˜n+1
m =

1

(∆t 5Cm + 6Cm)

[
6Cmη˜nm + ∆t 5Cm

∗
η˜n+1
m + ∆t 6Cm

∗
η̇˜n+1
m

]
,

(23)

which means that locally η˜n+1
m should be consistent with ∗

η˜n+1
m and its rate

∗
η̇˜n+1
m , present in

the data-set. Since η˜m does not appear in the macroscopic balance equation (13) there are no
Lagrange multipliers λ˜n+1 in (23); η˜m is connected to the other physical-state variables via the
data-set only.

The perturbation with respect to the macroscopic mass flux yields

δj̄n+1
m :

∂Ln+1

∂j̄n+1
m

= 0 =⇒ j̄n+1
m =

∗
j̄m
n+1 + ∆t

1
7Cm

N∑
i=1

∇Nmiλ
n+1
i , (24)

which states that the difference between the local macroscopic mass flux j̄n+1
m and its counter-

part in the data-set
∗
j̄m
n+1, at iteration k, should be balanced through the Lagrange multipliers

field λn+1
i . The perturbation with respect to the macroscopic concentration can be written as

δc̄n+1
m :

∂Ln+1

∂c̄n+1
m

= 0 =⇒

c̄n+1
m =

1

(∆t 8Cm + 9Cm)

[
9Cmc̄nm + ∆t 8Cm

∗
c̄m
n+1 + ∆t 9Cm

∗
˙̄cm
n+1 −∆t

N∑
i=1

Nmiλ
n+1
i

]
, (25)
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which gives a local macroscopic concentration field c̄n+1
m consistent with (

∗
c̄m
n+1,

∗
˙̄cm
n+1) in the

data-set, whereby the difference is rectified by the Lagrange multipliers field λn+1
i .

Finally, taking the variation with respect to the Lagrange multiplier field λn+1
i amounts to

δλn+1
i :

∂Ln+1

∂λi
= 0 =⇒ −∆t

M∑
m=1

wm∇Nmi · j̄n+1
m +

M∑
m=1

wmNmi(c̄
n+1
m − c̄nm)+∆tĵ

n+1

i = 0 , (26)

which is the balance between the internal and the external macroscopic mass fluxes at the
nodes. Substituting the expressions of j̄n+1

m and c̄n+1
m from equations (24) (25) into equation

(26) and performing some straight forward manipulations provides the system of equations for
the Lagrange multiplier field λn+1

i as follows

−∆t2
M∑
m=1

wm∇Nmi ·
1

7Cm

N∑
j=1

∇Nmjλ
n+1
j −∆t

M∑
m=1

wmNmi
1

∆t 8Cm + 9Cm

N∑
j=1

Nmjλ
n+1
j =

∆t
M∑
m=1

wm∇Nmi·j̄∗m−∆tĵ
n+1

i −
M∑
m=1

wmNmi

( 1

∆t 8Cm + 9Cm

[
∆t 8Cmc̄∗m+ 9Cmc̄nm+∆t 9Cm ˙̄c∗m

]
−c̄nm

)
,

(27)

which in the matrix-column form can be written as

Kλλ˜n+1 = F˜
∗
λ . (28)

In equations (24)–(28), the Lagrange multiplier field can be interpreted as an equivalent macro-
scopic chemical potential which minimizes the difference between the physical-state (j̄n+1

m , c̄n+1
m )

and the point (
∗
j̄m
n+1,

∗
c̄m
n+1,

∗
˙̄cm
n+1) in the data-set, which are present in F˜

∗
λ. In equation (28),

the Lagrange multiplier field is subject to λn+1
i = 0 on ∂Ωµ̄ and there is an influx of mass ĵ,

which is zero, at the Neumann part of the boundary that naturally appears in the system of
equations through the weak form (13). For a variational formulation and a detailed discussion
on the boundary conditions on the fields appearing in the data-driven problems, the reader is
directed to [26].

In a staggered approach, after solving for µ̄˜n+1 and λ˜n+1 from equations (22) and (28), the

projection zn+1
k+1 = PEn+1

∗
yk
n+1 can be obtained by evaluating η˜n+1

m , j̄n+1
m and c̄n+1

m from (23), (24)

and (25), respectively. The subsequent projection ∗yk+1
n+1 = PDz

n+1
k+1 is achieved by a simple search

through the data to find a point in the global data-set D which provides the minimum distance
to zn+1

k+1 , as discussed in more detail in the next section.

3.4 Algorithm

The pseudo algorithm for distance minimizing data-driven reduced homogenization is shown in
Algorithm 1. The data-driven solver initializes with setting the maximum number of allowed
iterations maxIter, the data-driven iteration counter k, the allowed tolerance tol and the time
stepping variable n. An initial guess for the optimum ∗

yk
n+1 ∈ D is made. In the preliminary

work [13], ∗ym,kn+1 was initialized by assigning randomly a point in the Dm to each material point
m. However, it was observed that an initial guess of ∗ykn+1 = 0 requires less number of iterations
to converge to the desired tolerance, both for steady-state and transient problems.
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Algorithm 1: Distance minimizing data-driven reduced homogenization.
I Initialize: maxIter = 100, k = 0, tol = 10−12, n = 1 ;
I Assign: ∗ykn+1 = 0 ;

I Assemble: K µ̄,Kλ,M µ̄,F˜∗
µ̄
k and F˜

∗
λ
k ;

for n = 0 → T do
while k < maxIter do

I Solve: K µ̄µ̄˜n+1
k+1 = M µ̄µ̄˜nk+1 + F˜∗

µ̄
k (22) and Kλλ˜n+1

k+1 = F˜
∗
λ
k (28) ;

for m = 1→M do
I Evaluate: zn+1

m,k+1 = PEn+1
∗
ym,k
n+1 ;

I Choose: ∗ym,k+1
n+1 = PDz

n+1
m,k+1 such that dm(zn+1

m,k+1,
∗
ym,k+1
n+1 ) ≤ dm(zn+1

m,k+1, Dm) ;
I Integrate: d(zn+1

k+1 ,
∗
yk+1
n+1) from dm(zn+1

m,k+1,
∗
ym,k+1
n+1 ) ;

I Assemble: F˜∗
µ̄
k+1 and F˜

∗
λ
k+1 using ∗yk+1

n+1 ;
end

if abs
(
d(zn+1

k+1 ,
∗
yk+1
n+1)− d(zn+1

k ,
∗
yk
n+1)

)
≤ tol then

I Terminate ;
else

I k = k + 1 ;
end

end
end

Unlike material model based finite element solvers, independently of the existence of a poten-
tial non-linearity in the material behavior, the distance minimizing data-driven solver requires
the assembly of the matrices K µ̄,Kλ and M µ̄ only once. For a specific physical phenomenon
under consideration, for instance elasticity, diffusion, or history-dependent materials, the same
solver can be used for different materials and different data-sets. Then, in the time stepping
and data-driven loops, first the pertinent µ̄˜n+1 and λ˜n+1 problems are solved. In the current
formulation these two problems, (22) and (28), are algebraically independent, the only coupling
is through the data-set D. However, in some other data-driven problems, as can be seen in
the case of dynamics [14] and transient Fickian diffusion [26] (formulated in concentrations), a
coupled system of equations emerges after taking variations of the Lagrangian.

Next, at the material point level, the projection zn+1
m,k+1 = PEn+1

∗
ym,k
n+1 is performed. It involves

evaluating the physical-state of the material zn+1
m,k+1 = (µ̄m, ˙̄µm, ḡm, ˙̄gm, η˜m, η̇˜m, j̄m, c̄m, ˙̄cm)n+1

k+1 ,

from the previously calculated ∗ykn+1, µ̄˜n+1
k+1 and λ˜n+1

k+1 . The local values of µ̄n+1
m,k+1 are evaluated

by interpolating µ̄n+1
i,k+1 using the finite element shape functions Nmi, ḡn+1

m,k+1 is computed by
using compatibility (12), while η˜n+1

m,k+1, j̄
n+1
m,k+1 and c̄n+1

m,k+1 are calculated by (23), (24) and (25),
respectively and their rates ( ˙̄µm, ˙̄gm, η̇˜m, ˙̄cm)n+1

k+1 using the approximation in (7).
The global distance function (18) is minimized by finding the minima of the local distance

function (16), using all the points in the local data-set Dm, at each material point m, and
then integrating it using numerical quadrature. The minimum for the local distance function
(16) is found through a simple lookup array search algorithm, which amounts to performing
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the projection ∗ym,k+1
n+1 = PDz

n+1
m,k+1. Searching through the data-set Dm is the computationally

expensive part of data-driven algorithm. If the data-set is large enough, a smart search algo-
rithm, for instance, based on a tree search algorithm [29], should be used to accelerate this step.

Then, using the newly found values of ∗ym,k+1
n+1 , the flux columns F˜∗

µ̄
k+1 and F˜

∗
λ
k+1 are assembled.

Finally, the convergence is checked and the iterations are terminated if there is no change in
the optimum data point. When the data-set is perfect, i.e. it contains all the required points to
the corresponding states in the phase-space for a given spatial and temporal discretization and
boundary conditions, the data-driven solver should be able to find a point in the data-set which
matches the point in the phase-space exactly. In that case, the convergence (or stop) criteria
can be set as the distance function approaching zero, i.e. d(zn+1

k+1 ,
∗
yk+1
n+1)→ 0. However, when the

data is noisy or incomplete, the distance function might not approach zero and may stagnate,
after some iterations, at a certain minimum value. In that case, the convergence criteria based
on the stagnation of the global distance function, that is abs(d(zn+1

k+1 ,
∗
yk+1
n+1)−d(zn+1

k ,
∗
yk
n+1)) ≤ tol

as given in Algorithm 1, can be used to terminate the data-driven iterations, where abs(•) is
the absolute value.

4 Numerical Examples
In this section, the proposed framework for data-driven reduced homogenization for tran-
sient diffusion problems with history effects is illustrated through numerical examples. First,
the problem settings are presented for the micro-scale and the macro-scale. Next, the data-
generation step is performed by loading the micro-scale, post-processing, and storing the rele-
vant quantities. After that, the data-driven simulations are carried out, whereby the homog-
enized chemical potential fields obtained by the data-driven approach are compared with the
ones obtained by the regular enriched-continuum formulation. Information from the reduced
micro-scale model is used to select the coefficients in the distance function. The micro-scale
chemical potential fields are post-processed and also compared. The performance of the data-
driven approach using noisy and different data-sets is also analyzed. Finally, a convergence
analysis, with respect to the number of points in the data-set, is carried out.

4.1 Problem Settings: Micro-scale and Macro-scale

4.1.1 Micro-scale

The micro-scale consists of a two-dimensional square unit-cell with side length ` and a single
circular inclusion of diameter d embedded in a matrix. The material properties and linear
constitutive material models for the inclusion and the matrix are assumed to be known and
complying with the relaxed separation of scales regime (τm � τi ∼ T ). Same chemical modu-
lus Λ is assumed for both the inclusion and the matrix. It is not a requirement but rather a
convenience for implementing the down-scaling relations µ̄ = 〈µ〉 and ∇µ̄ = 〈∇µ〉 by fixing a
point at the micro-scale, for more details about implementation see [8]. Lagrange multipliers,
as discussed in [30] for elastodynamics problems, can be used to implement the down-scaling
relations with different storage terms (here Λ) for inclusion and matrix. Specific type of bound-
ary conditions are used to fulfill the up-scaling relations, i.e. equivalence of virtual power. The
most common ones are (i) zero micro-fluctuation and (ii) periodic micro-fluctuation boundary
conditions. In this work, a two-dimensional micro-scale unit-cell attached to a one-dimensional
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macro-scale, as shown in Figure 1, represents a slab in an infinite vertical stack of uni-cells
and hence periodic micro-fluctuation boundary condition is an obvious choice. The unit-cell is
discretized with nearly 4400 linear triangular elements and 2200 nodes. The material properties
and other parameters used in the simulations are listed in Table 1. After the assembly of the fi-
nite element system and application of the periodic boundary conditions, at the micro-scale, an
eigenvalue problem is solved for the smallest 100 eigenvalues α and eigenvectors Φ . Next, a cri-
terion based on either the energy consistency or coupling terms, as proposed in [8, 12], is used to
select a limited number (Nq) eigenmodes that contribute most, in terms of transient effects, to
the macro-scale response. For the unit-cell with a single inclusion, as shown in Figure 1, and the
material properties given in Table 1, the selection criteria based on the coupling terms provides
6 important eigenvectors as a reduced basis set, see [27] for more details and the contour plots

of the selected eigenvectors. Finally, the homogenized coefficients (a˜, ∗a˜,B, c,C, d˜,
∗
d˜, e, f ,f)

are determined and stored [8]. The values for the first components of these coefficients can be
found in Table 2. Note that, even though the macro-scale considered here is a one-dimensional
domain, a two-dimensional micro-scale problem has to be solved to obtain the required values
of the homogenized coefficients, since in a one-dimensional micro-scale domain the diffusion
around the inclusion can not be represented at the macro-scale through homogenization. The
reduced order model (4)–(6) is now ready for the data-generation stage.

4.1.2 Macro-scale

The homogenized macroscopic domain Ω, both for the enriched-continuum and the data-driven
simulations, is a one-dimensional bar of length L with a Dirichlet boundary condition on ∂Ωµ̄

on the left side of the domain and Neumann no-flux boundary condition on the right side of the
domain. It is discretized with 50 linear one-dimensional finite elements, unless stated otherwise,
which are integrated using a two-point Gauss quadrature rule. For consistency, in the following
the vectorial/tensorial quantities in one-dimension are still shown with a tensorial notation.
Total loading time is chosen to be T = 0.1τi[s] and both the enriched-continuum and the data-
driven problems are discretized in time using the backward-Euler time integration scheme. The
reference time step size ∆t is taken to be ∆t = T × 10−3[s]. In a data-driven solver, the time
step size can also be obtained based on a term and its rate present in the data-set, for example
∆t = µ̄I+1

m −µ̄Im
˙̄µI+1
m

. For the macro-scale simulations, the ramp loading conditions

µ̄n+1
p (t) =

{
t
TR
µ̄max , if t ≤ TR (loading)

µ̄max , TR < t ≤ T (relaxation)
on ∂Ωµ̄ , (29)

are used on the Dirichlet part of the macroscopic boundary ∂Ωµ̄, where µ̄max = Λ(cmax − c0)
is the maximum attainable chemical potential during mass diffusion and TR = T/2. The
first part of the ramp till TR represents a loading path and the second part from TR to T
represents a relaxation path. The data-driven reduced homogenization solver is initialized with
an initial guess ∗ykn+1 = 0 and the stagnation criteria |d(zn+1

k+1 ,
∗
yk+1
n+1) − d(zn+1

k+1 ,
∗
yk
n+1)| ≤ tol

is used to terminate the iterations of the staggered scheme. The numerical solution of the
enriched-continuum formulation at the macro-scale is used as a reference solution.
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Table 1: Default parameters used in the simulations.

Parameter Symbol Value Units
Micro-scale
Characteristic unit-cell length ` 1× 10−2 [m]
Inclusion diameter d 0.6× 10−2 [m]
Mobility in matrix Mm 1.1× 10−4 [mol2 J−1 m−1 s−1]
Mobility in inclusion Mi 1.85× 10−9 [mol2 J−1 m−1 s−1]
Reference temperature θ0 298 [K]
Boltzman’s constant kb 8.314 [J K−1 mol−1]
Maximum concentration cmax 24161 [mol m−3]
Minimum concentration c0 0.0547cmax [mol m−3]
Chemical modulus Λ = kbθ0/c0 1.83 [J m3 mol−2]
Characteristic diffusion time of inclusion τi d2/MiΛ = 36000 [s]
Characteristic diffusion time of matrix τm `2/MmΛ = 1.69 [s]
Number of nodes in unit-cell mesh ∼ 2.2× 103

Macro-scale
Macroscopic domain length L 100× 10−2 [m]
Total simulation time T T 0.1τi [s]
Number of elements (reference) 50
Number of nodes (reference) N 51
Time step size ∆t T × 10−3 [s]
Data-Driven Solver
Number of data points ndp 1000
Maximum number iterations maxIter 100
Tolerance for the termination criteria tol 10−12

Table 2: The values of the coefficients appearing in equations (5) and (6), for the unit-cell
shown in Figure 1 with geometrical and material parameters given in Table 1, A(•) indicates
the (•) component of the tensor A.

Coefficient a
(1)
(1) B(11) c(1) C(11) in equation (5)

Units [mol m−2 s−1] [J−1 mol2 m−1 s−1] [J−1 mol2 m−2] [J−1 mol2 m−1]

Value 1.3× 10−7 0.6× 10−4 1.3× 10−8 0.6× 10−5

Coefficient d(1) e(1) f f (1) in equation (6)

Units [mol m−3 s−1] [J−1 mol2 m−2 s−1] [J−1 mol2 m−3] [J−1 mol2 m−2]

Value −33.46 −0.6× 10−16 0.534 −0.13× 10−7
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Gauss quadrature point: x̄m

Nodes: x̄i
Unit-Cell

µ̄p

∂Ωµ̄

Macroscopic Domain Ω

∂Ωj

Figure 1: The macroscopic domain Ω with a prescribed macroscopic chemical potential µ̄p
at the Dirichlet part of the boundary ∂Ωµ̄, and zero-flux ĵ = 0 at the Neumann part of the
boundary ∂Ωj. The finite elements nodes are shown with gray circles. The Gauss quadrature
points, where the data-set Dm is available, are shown with blue crosses. The unit-cell from
which the reduced order model and the data-set are obtained is also shown: the light-gray part
of the unit-cell is the matrix material while the dark gray is the inclusion material.

4.2 Data-Generation from Micro-Scale Simulations

4.2.1 Input Generation (µ̄n+1
m , ḡn+1

m )

To obtain the data-set D representative of the problem, the data-generation involves micro-
scale simulations, ideally with all possible loading scenarios. In practice, a wide spectrum of
loading conditions, i.e. µ̄n+1

m and ḡn+1
m with varying magnitudes and frequencies, may be needed

when a stand-alone micro-scale problem is considered. In the current work, for the validation
of the proposed data-driven solver, the loading conditions (µ̄n+1

m , ḡn+1
m ) are obtained via a post-

processing, at the first Gauss quadrature point of each element and at each time step tn+1, of the
solution of the enriched-continuum problem with different loading conditions, given in Table 3.
As an example, the outcome for the ramp loading condition (31) is shown in Figure 2. In this
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Figure 2: (a) Local macroscopic chemical potential field µ̄n+1
m and (b) local gradient of macro-

scopic chemical potential field ḡn+1
m (t) to be used as the input for the micro-scale data-generation

step. These are post-processed, from the solution of the enriched-continuum problem, at the
first Gauss quadrature point of every element in the macroscopic domain loaded with the ramp
condition (31). The dark black line represents µ̄n+1

m and ḡn+1
m at a reference macroscopic point

ˆ̄xm which will be used to compare the local elemental quantities. The dashed blue line is at a
reference time T̂ = 0.55T at which the global quantities, at the nodes, will be compared.

case, µ̄n+1
m and ḡn+1

m are connected through the macroscopic initial boundary value problem (1)
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and each µ̄n+1
m graph in Figure 2 (a) corresponds to a graph of ḡn+1

m in Figure 2 (b), collectively
representing an input in time to the micro-scale reduced problem (4). The ramp effect smooths
out as x̄m → L, as indicated by the red arrow, which provides different magnitudes and types
of loading conditions for the micro-scale problems. In the following, local quantities of interest,
such as macroscopic mass-flux j̄n+1

m and the rate of change of macroscopic concentration ˙̄cn+1
m

will be compared, for the data-driven and the full enriched-continuum solution will be made, at
a reference point ˆ̄xm, located at the first Gauss quadrature point of the tenth element, which is
indicated with a dark black line in Figure 2. The global quantities, for example the macroscopic
chemical potential field µ̄n+1

i at the nodes will be compared at a time instance T̂ = 0.55T as
shown with a dashed blue line in Figure 2.

4.2.2 Data-Generation

The data-generation is performed by solving the reduced model (4)–(6), for µ̄n+1
m (t) and ḡn+1

m (t)
computed in the previous section, with the time discretization performed using the approxima-
tion in equation (7). The data is stored in a local data-set

Dm = {(µ̄′m, ˙̄µ′m, ḡ
′
m, ˙̄g′m, η˜′m, ˙η˜m′, j̄ ′m, c̄′m, ˙̄c′m)}ndp

I=1 (30)

In current work, for the data-driven simulations the same local data-set Dm is available to all
the material points i.e. D1 = D2 = ... = DM; in general, a different data-set can be available
for each material point.

As stated before, the selection criteria for the dominant eigenvectors, as proposed in [8, 12],
provide Nq = 6 for the considered unit-cell. It turns out, however, that out of these six, only
one eigenvalue has the largest contribution to the lagging behavior at the macro-scale. This
can be verified from the time evolution of η(q),n+1

m and η̇
(q),n+1
m at ˆ̄xm, as shown in Figure 3.

Therefore, it has been chosen to use only η(1),n+1
m and η̇

(1),n+1
m in the data-driven calculations

to capture the history-dependent response. The different loading conditions (Table 3) have
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Figure 3: (a) Time evolution of the enrichment-variables η(q),n+1(t) and (b) their rates η̇n+1
m at

the reference macroscopic point ˆ̄xm. For the unit-cell shown in Figure 1, the eigenvalue and
the corresponding eigenvector corresponding to η(1),n+1 are dominant one.

provided different data-sets which are indexed as listed in Table 3. The number of data-points

17



Table 3: Names, expressions, graphs of the macroscopic loading conditions, symbols and the
number of data-points ndp for different data-sets used in present study.

Name Loading condition expression µ̄n+1
p (t) Graph Data-Set ndp

Ramp µ̄n+1
p (t) =

{
tT
TR
µ̄max , if t ≤ TR

µ̄max , otherwise
(31)

0

µ̄max

0 TR T

DR 1000

where TR = T/2

Sine µ̄n+1
p (t) = µ̄max sin(ωt) (32)

−µ̄max

µ̄max

0 T

DS 1000

where ω = 2π/T

Ramp + Sine (31) and (32)
−µ̄max

µ̄max

0 TR T

D(R+S) 2000

Ramp & Sine µ̄n+1
p (t) =

{
tT

2TR
µ̄max , if t ≤ TR

µ̄max

2 sin(ωt) + µ̄max

2 , otherwise
(33)

0

µ̄max

0 TR T

D(RS) 1000

where TR = T/7 and ω = 2π/(T − TR)

ndp = T/∆t + 1 are also given in the table. After the data-generation stage, the information
about the micro-scale must be discarded, as the data-driven solver should only rely on the raw
data.

Pairs (ḡn+1
m , j̄n+1

m ), ( ˙̄µn+1
m , ˙̄cn+1

m ) and ( ˙̄µn+1
m , η̇

(1),n+1
m , ˙̄cn+1

m ) in DR are visualized in Figure 4
(a), (b) and (c), respectively. The pairs (ḡn+1

m , j̄n+1
m ) show a negative linear behavior that is

independent of the loading path, which indicates that the history effects are not prominent in
the diffusion contribution at the macro-scale and can also be sufficiently accurately calculated
by the standard volume averaging of the Fickian diffusion behavior at the micro-scale. However,
a prominent history dependence and non-Fickian behavior can be observed in the graphs of
( ˙̄µn+1

m , ˙̄cn+1
m ), where there is neither a linear nor logarithmic relation between ˙̄µn+1

m and ˙̄cn+1
m at

the macro-scale. This can also be observed in ( ˙̄µn+1
m , η̇

(1),n+1
m , ˙̄cn+1

m ) graph, which clearly indicates
that the history effect emerges from the storage/capacitance term at the macro-scaleand can
be tracked by the internal-variable η̇(1),n+1

m . A correct value of η̇(1),n+1
m , at a spatial point x̄m

and time tn+1, selected by the projection ∗ym,k+1
n+1 = PDz

n+1
m,k+1, will direct the other quantities, in

the data-set Dm, to be either in the loading or the relaxation path, hence keeping track of the
history effects. Next, the macroscopic chemical potential field µ̄ and the microscopic chemical
potential fields µ obtained from the data-driven reduced homogenization and the enriched-
continuum formulation will be compared to provide an indication of the performance of the
data-driven approach.

4.3 Homogenized and Microscopic Fields

In this section, the developed data-driven reduced homogenization is verified using the data-set
DR generated from the enriched-continuum problem, with the same loading condition (31) as
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Figure 4: From the data-set DR, the pairs (a) (ḡn+1
m , j̄n+1

m ), (b) ( ˙̄µn+1
m , ˙̄cn+1

m ) and (c)
( ˙̄µn+1

m , η̇
(1),n+1
m , ˙̄cn+1

m ) are visualized.

it is used for the data-driven initial boundary value problem. In this scenario, the data-set
can be assumed to be ideal and if the data-driven problem is formulated correctly, both, the
enriched-continuum and the data-driven solutions must match very accurately. In Figure 5, the
macroscopic chemical potential field at time T̂ obtained by the enriched-continuum formulation
µ̄˜n+1
E (reference) is shown with the gray line, while the one obtained by the proposed data-driven

reduced homogenization method µ̄˜D using the data-set DR is shown with the blue line. It can
be observed that µ̄˜n+1

E and µ̄˜n+1
D lie on top of each other. The micro-scale chemical potential
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Figure 5: Comparison between the macroscopic chemical potential fields obtained via enriched
continuum formulation µ̄n+1

E (reference), shown with the gray line, and the data-driven reduced
homogenization µ̄n+1

D using DR, shown with the blue line, at time step T̂ . The microscopic
chemical potential fields µn+1

E and µn+1
D are post-processed at x̄1 = 0.6842[m] .The marker is

plotted at every tenth node of the finite element mesh.

fields µ˜n+1
E and µ˜n+1

D , shown in Figure 6, are post-processed at x̄1 = 0.6842[m] using

µ˜n+1
m = S (I˜µ̄n+1

m + ḡn+1
m ·∆x˜m) + Φ˜(1)η(1),n+1

m , (34)

where S is the Schur-complement of the microscopic finite element matrices, I˜ is a column
of ones and ∆x˜m is the microscopic position vector connecting the spatial coordinates to the
center of the unit-cell. For more details on the post-processing of the microscopic field µ˜m by
using (34) the reader is referred to [8]. The post-processed microscopic fields also reveal an
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excellent agreement with the reference simulation where the maximum of the absolute error is
of the order of 10−11. To obtain these results, the values of the coefficients JCm were chosen

0 1.5× 103 3× 103 [Jmol−1]

µn+1

E

(a)

µn+1

D

(b)

Figure 6: Microscopic chemical potential fields µn+1
E and µn+1

D usingDR data-set post-processed
at time T̂ and x̄1 = 0.6842[m] using equation (34).

based on the information available from the micro-scale, as will be detailed next.

4.4 Numerical Values of the Coefficients JCm
In the data-driven simulations, the coefficients JCm in the norm (15) used in the distance
function (18) serve two purposes, one is to non-dimensionalize the distance function and second
is to give different weights to the parts of the distance function. In a data-set with a large
number of data points ndp, the influence of the coefficients JCm is insignificant [31]. However,
these coefficients play a crucial role when the data-set has a finite number of data points and
if there are inconsistencies in the data-set such as presence of noise or missing points. In a one
dimensional problem i.e. sd = 1, the solution of the data-driven reduced homogenization exists
on a manifold in a 7 + 2Nq dimensional space, which is computationally intractable to fill in
completely. Instead, in data-driven simulations, sparse data-sets are used and the coefficients
in the distance function should be selected carefully to achieve minimum error with a limited
number of iterations.

The total number of coefficients can be reduced by grouping them according to their “clas-
sical” thermodynamic conjugacy. In the norm (15) ( ˙̄µm, ˙̄cm) and (ḡm, j̄m) are the conjugate
quantities. The coefficient which goes along with one of the conjugate quantities should be
equal to the inverse of the other. Some entries of the diagonal matrices 5Cm and 6Cm can
be neglected if the activity of a particular enrichment-variable η(q),n+1

m and its rate η̇(q),n+1
m is

smaller than that of the other enrichment variables.
The values for these coefficients can be selected by using the information, if available, from

the micro-scale calculations. The coefficients which go along with the macroscopic variables
appearing in the distance function, are selected to be equal to the corresponding coupling terms
for the respective macroscopic variable in the macroscopic constitutive equations (5) and (6).
The coefficients whose corresponding macroscopic variables do not appear in equations (5) and
(6) and the ones with an insignificant value, as compared to the other coefficients, are chosen to
be zero. However, a zero weight in the norm (15) eliminates the influence of the corresponding
term on the physics of the problem, care must be taken while setting a coefficient equal to
zero. For example, data-driven solution might not be representative of a time-dependent mass
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diffusion if the coefficient 9Cm corresponding to ċ is zero. Moreover, the stationarity conditions
(21)–(28) also have constraints on which variable can be set to zero. According to (21) the
coefficients 1Cm, 2Cm, 3Cm and 4Cm can not be set to zero simultaneously. Equation (23) and
(25), respectively, restrict (5Cm, 6Cm) and (8Cm, 9Cm) to be zero simultaneously. Also, equation
(24) do not allow 7Cm to be zero. The values for these coefficients used in the simulations are
given in Table 4.

Table 4: The values of the coefficients appearing in the norm (15) distance function (18).

Coefficient Value Units
1Cm 0 [J−1 mol m−3 s−1]
2Cm 0.534 [J−1 mol m−3 s]
3Cm 0.6× 10−4 [J−1 mol m−1 s−1]
4Cm 0 [J−1 mol m−1 s]
5C(1)

m 0 [J mol−1 m−3 s−1]
6C(1)

m 33.46 [J mol−1 m−3 s]
7Cm 1666 [J mol−3 m s]
8Cm 0 [J mol−3 m3 s−1]
9Cm 1.872 [J mol−3 m3 s]

To test the selected values of the coefficients, the data-driven simulations were conducted
with the data-sets D(R+S) and D̃(R+S), where D̃(R+S) is obtained by adding Gaussian noise
to D(R+S) with signal-to-noise ratio of 30. The relative L2-error norm, between the chemical
potential fields µ̄n+1

D and µ̄n+1
E , is compared. Both, the data-driven problem and the enriched-

continuum problem are actuated by the default boundary condition (29). The results are shown
in Figures 12, 13, 14 and 15 in Appendices A and B. It can be observed, that the values of the
coefficients selected as proposed above (the black lines in the Figures), for most of the cases,
yield the smallest values of the relative L2-error norms. Also, less iterations k are required for
the convergence of the staggered scheme. Similar trends have been seen using different data-sets
with different number of data points ndp (not shown here for brevity).

4.5 Noisy Data-Set

Uncertainties during the data-generation steps may result in a noisy data-set, which can affect
the final result and the convergence of a data-driven solver. To analyze how the proposed
data-driven solver behaves in the presence of the noise in the data, a white Gaussian noise,
with a signal-to-noise ratio of 30, is added to each element of the original data-sets Dm which
results in a data-sets with noise D̃m = {(˜̄µm′, ˜̄̇µm′, ˜̄gm′, ˜̄̇gm′, η̃˜m′, ˜̇η˜m′, ˜̄jm′, ˜̄cm′, ˜̇̄cm′)}ndp

I=1. For the pairs

(˜̄gmn+1, ˜̄jmn+1) and (˜̄̇µmn+1, ˜̇ηm(1),n+1, ˜̇̄cmn+1) in the data-set D̃R the noise in the data is shown in
Figure 7.

As can be seen in Figure 8, the relative L2-error between the macroscopic chemical potential
fields µ̄˜n+1

E and µ̄˜n+1
D increases with the addition of noise in the data-set. However, with the

amount of added noise, this error is still reasonably small, see Figure 8 (a). The data-driven
reduced homogenization also captures the local quantities adequately in the presence of noise as
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Figure 7: The white Gaussian noise, with the signal-to-noise ratio of 30, was added to the
original data-set. From the noisy data-set D̃R, (a) the pair (˜̄gmn+1, ˜̄jmn+1) and (b) the pair
(˜̄̇µmn+1, ˜̇ηm(1),n+1, ˜̇̄cmn+1) are shown with blue circular markers on top of the corresponding points
in the original data-set DR, shown with light gray lines.

can be seen in Figure 8(b) and (c), where the time evolutions of the macroscopic mass flux j̄n+1
m

and the macroscopic concentration c̄n+1
m are evaluated at the macroscopic reference point ˆ̄xm

computed with the noisy and original data-sets. Different values of the coefficient JCm in the
distance function were also checked with the noisy data-set D̃(R+S), see Figure 14 and Figure
15 in Appendix B. In that case, the relative L2-error increases but there are less differences in
the relative L2-error for different values of the coefficients, which indicates that in the presence
of noise the influence of the value of the coefficient is less significant. However, the coefficients
JCm still play an essential role in terms of the convergence towards the expected solution.

To reduce the effect of noise in a data-set and obtain smoother fields, a regression can be
performed on neighboring data-points [32]. Noisy data-sets with significant outliers may create
a larger problem. In that case, clustering techniques can be used, as proposed in [14]. In the
presence of noise, and considering the way in which the data-set is generated, there is a chance
that the first and second laws of thermodynamics are not strictly obeyed. To circumvent this
problem, [33] formulated the problem in GENERIC framework to guarantee the thermodynamic
consistency in data-driven computations.

4.6 Different Data-Sets

For convergence of the data-driven procedure towards a true solution, data-sets used in the
simulations should include the states (and their histories) representative for the problem under
consideration. To achieve this, a general data-set can be generated by loading the stand-
alone micro-scale problem with a complete range of inputs and different loading conditions
with different rates. In the following, the performance of the proposed data-driven reduced
homogenization is studied on an example where the data-set is obtained under another loading
than the final data-driven problem is solved for. To this end the data-set DS that is obtained
by post-processing the enriched-continuum results with a sine loading, as given in Table 3, is
used to solve the problem under the ramp loading (29). This provides a challenging test case,
because there are (non-physical) negative values of µ̄ present in the data-set, which do not
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Figure 8: Comparison between the results for the original data-set DR (gray) and the noisy
data-set D̃R (blue) (a) Time evolution of the relative L2-error for the macroscopic chemical
potential µ̄n+1, (b) macroscopic mass flux j̄n+1

m and (c) macroscopic concentration c̄n+1
m .

0 1 2 3

10
3

10
-4

10
-3

10
-2

10
-1

10
0

10
1

DR

DS

D̃S

t [s]

||
µ̄
n
+
1

D
−

µ̄
n
+
1

E
||
/|
|µ̄

n
+
1

E
||

(a)

0 1 2 3

10
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

DR

DS

D̃S

t [s]

j̄
n
+
1

m
(ˆ̄ x

m
)

[m
ol
m

−
2
s−

1
]

(b)

0 1 2 3

10
3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
10

3

DR

DS

D̃S

t [s]

c̄n
+
1

m
(ˆ̄ x

m
)

[m
ol
m

−
3
]

(c)

Figure 9: The comparison of the solutions of the data-driven initial boundary value problem
with the ramp loading condition (29) using data-sets DR shown in black, DS shown in gray
and D̃S shown in blue. The time evolution of (a) the relative L2-error norm, (b) macroscopic
mass flux j̄n+1

m at ˆ̄xm and (c) the macroscopic concentration c̄n+1
m at ˆ̄xm.

appear in the solution of the problem with ramp loading. Also the time evolution of the state
variables is different from the one present in the data. The results of this analysis are shown
in Figure 9.

In this case, the data-driven algorithm is still able to select the representative state zn+1
m ,

for which the macroscopic mass flux j̄n+1
m and the macroscopic concentration c̄n+1

m , evaluated
at the reference macroscopic point ˆ̄xm, are shown in Figure 9 (b) and (c), respectively. There
is an increase in the relative L2-error, as shown in Figure 9(a), when DS is used instead of
DR and an even larger increase in the case of the noisy data-set D̃S. Here, D̃S is obtained by
adding white Gaussian noise, with signal-to-noise ratio of 30, to the data-set DS. Reversely,
the data-sets DR and D̃R cannot be used for the macroscopic initial boundary value problem
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under sine loading conditions at all, since the negative values are not present in these data-sets.
Therefore this analysis is not presented here.

4.7 Convergence Analysis

The convergence of the proposed data-driven reduced homogenization method with respect to
the increase in the number of data-points ndp = T/∆t + 1 is analyzed here. The data-sets
D(RS), generated by the loading condition (33), and D̃(RS), with added noise to D(RS), were
used in this regard to solve the macroscopic problem with the ramp loading conditions (29). As
observed in Figure 10, the increase in the number of data points ndp in the data-set decreases
the time averaged relative L2-error for both the noisy and noiseless data-sets, where, the noisy
data-set D̃(RS) reveals higher errors than the noiseless data-set D(RS). After a certain data-set
coverage, in this case ndp = 103, the error first reaches a plateau and then slightly increases.
This behavior suggests, that, for the problem at hand, the data-set D(RS) has reached its
saturation at ndp = 103 and that it is incomplete by construction, since it does not contain
the data-points from all the possible loading conditions with different frequencies. Even with
a data-set containing the reference solution, the staggered scheme, adopted for the solution of
the double-minimization problem (19), may converge to a local minimum. For an algorithm
able to seek the global minimum, see [32]. Next, the computational costs incurred by the
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Figure 10: The convergence analysis of the proposed data-driven reduced homogenization upon
increasing in the data-set size D(RS) (gray line) and D̃(RS) (blue line). µ̄n+1

D is calculated with
data-driven approach and µ̄n+1

E is calculated with the enriched-continuum approach.

proposed data-driven reduced homogenization are presented with respect to the refined spatial
and temporal meshes, larger data-sets and increasing the number of enrichment-variables.

4.8 Computational Cost

Figure 11 presents the computational costs associated with the proposed method using a com-
puter with a Core-i7 4.4 GHz processor and 16Gb memory. Only one variable under considera-
tion is changed at a time and all the other parameters are set to default, as provided in Table 1.
The computational time increases with the refined mesh (spatial and temporal), number of
data-points ndp and the number of reduced bases η(q). As the number of data-points ndp in-
creases, the data-driven problem becomes computationally more expensive because the lookup
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search through an array of distance functions in a large data-set is required at each iteration.
Similar to the observation in [13], the number of iterations also increases with an increase in
the number of data-points. In a large dimensional phase-space zn+1

m such as used here, compu-
tationally efficient search schemes, may help to reduce the overall CPU time [34], e.g. a tree
search algorithm [29]. For the micro-structure under consideration, as shown in Figure 1, where
the total number of reduced bases to adequately represent the micro-scale inertia effects is only
six, the computational costs do not increase substantially as the number of reduced bases η(q)

are increased. By increasing the number of reduced bases, the number of data-points are not
increased drastically but number of the quantities in the data-set (8) and the dimension of the
phase-space (10) are increased. It should be noted that these simulations were performed for a
one-dimensional macroscopic problem, the data-driven formulation is expected to become even
more expensive in a two- or a three-dimensional case.
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Figure 11: Computational cost of the proposed data-driven reduced homogenization method
with (a) number of elements at the macro-scale, (b) the time step size ∆t, (c) number of
data-points ndp and (d) the number of enrichment-variables η(q).

In this paper, the enriched-continuum formulation is only used to generate the data-sets for
the data-driven method. The iterative nature of the staggered scheme and the search through
the data-set render the data-driven problem more expensive than the enriched-continuum. On
the other hand, the enriched-continuum formulation is restricted to linear material models.
The data-driven method can prove to be computationally more efficient than the classical
homogenization method (without reduction) in the case of a non-linear material behavior where
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a closed-form enriched-continuum formulation might not be feasible. This paper provides the
basis for that extension relying on the fact that the data-driven solver does not change if the
underlying material behavior changes from linear to non-linear. A quantitative comparison can
be found in a recently published paper [17], where it is claimed, that for a two-dimensional
homogenization problem in elasticity, the computational cost per time step was reduced up
to 96.4% with 503 data-points and 0.1% accuracy as compared to a classical computational
homogenization method.

5 Future Perspectives
The current work establishes a firm foundation, based on data-driven mechanics, for a com-
putationally efficient homogenization methodology for non-linear history-dependent diffusion
behavior. The model reduction preserves a prominent two-fold advantage of cheap micro-scale
calculations and provides the effective history tracking through the enrichment-variables. The
challenge for the non-linear case lies in the extraction of a reduced bases set, since an eigenvalue
problem is not at hand, complicating the identification of the enrichment-variables. Possible
extensions of the proposed data-driven reduced homogenization methodology to the non-linear
regime may be inspired by the literature. An example is the nonuniform transformation analysis
(NTFA), as proposed in [35], where it is possible to decompose the time-dependent non-linear
micro-scale response into a linear and a non-linear part. Then, the micro-scale is divided into
several subdomains based on, for example, the material distribution of the constituents. An
analytical reduced bases set is found for the non-linear part of the response in each subdo-
main of the micro-scale unit-cell, while the linear response can be obtained through a simple
linear micro-scale calculation. It should be possible to upscale the activity coefficients of the
non-linear reduced bases to the macro-scale.

The downside of NTFA is the construction of the analytical reduced bases set. In this
context, a more general model reduction method, which relies on reduced bases set by the proper
orthogonal decomposition (POD) [36, 37] of the primary micro-scale field, can be used instead.
It entails performing micro-scale simulations and collecting the snapshots from time responses
of the given micro-structure under various loading scenarios. The responses of these micro-scale
simulations, i.e. snapshots of the primary field variable, are collected in a matrix format and
the reduced bases set is obtained via a proper orthogonal decomposition. Then, the Galerkin
projection onto the reduced bases set can be performed for the micro-scale discrete system
of equations providing the evolution equations of the activity coefficients of the reduced bases
set, which serve as internal-variables that efficiently capture the history-dependent macroscopic
behavior in a data-set. The spatial modes, alone, can not capture the time dependent behavior
and their inclusion in the data-set and phase-space should also be avoided, since, it will make
the data-driven problem computationally very expensive. A different approach using proper
generalized decomposition (PGD) [38] can also be considered. It parameterizes the micro-scale
solution in spatial directions, time, constituents and nonlinear behavior. The reduced bases are
then constructed iteratively with an alternating direction algorithm.

The structure of the data-driven problems depends on the type of problem under consider-
ation, the terms considered in the distance function, and the form of the evolution equations
emerging as a result of the model reduction. The general expressions obtained in (4), (5) and
(6) remain valid when the modes are obtained from a different approach, e.g. NTFA, POD,
PGD. In non-linear data-driven reduced homogenization, the coefficients JCm in the distance
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function might also be approximated by the eigenvalue analysis on the linearized micro-scale
material response as presented in section 4.4 or some analytical averaging maybe used technique
instead.

The current framework can also be extended to other physical phenomena, where the emer-
gent macro-scale behavior is caused by the underlying microstructure. For example, the homog-
enized response of locally resonant acoustic metamaterials in the linear regimes was proposed
in [10] in which an enrichment-variable emerges at the macro-scale by performing model reduc-
tion at the micro-scale. The evolution equation of these enrichment-variables is a second-order
ordinary differential equation. To solve this problem by data-driven formulation, a combination
of a data-driven approach for dynamics problems, as presented in [15], and history dependent
materials using internal-variables, as proposed in [16], can be used. Similar extensions apply to
other multi-physics phenomena, as considered in [12], where an enriched-continuum formulation
for mass diffusion was coupled to mechanics. There, taking the advantage of the linear mate-
rial properties and the relaxed separation of scales, a coupled eigenvalue problem was solved to
obtain the enrichment-variables representing the history-dependent coupled chemo-mechanical
behavior at the macro-scale.

One of the major limitations of any data-driven method, whether a model-free approach [13,
28] or the one which is used to develop e.g. a surrogate micro-scale model [19, 20], is the avail-
ability of sufficiently broad and representative data-sets. The data-sets used in the current work
were generated by post-processing the material states from the solution of a reduced homoge-
nization scheme. However, such efficient models are approximations, which rely on a number of
assumptions, and in most cases are difficult to obtain. In other cases, generation of an adequate
data-set, through numerical/physical experiment becomes a tedious task especially if the non-
linearities are involved. One remedy could be the use of on-the-fly micro-scale simulations to fill
a gap in the sparse data-set. At the same time, running hundreds and thousands of micro-scale
simulations to generate extensive data-sets is expensive and time consuming. This obstacle can
be overcome by making the data-sets available in online repositories, that will save a lot of
resources and time during the data-generation stage. Hence, the data-generation stage can be
replaced by a more efficient data-acquisition stage. In this regard, the Material Genome® [39]
project and its application in finding novel materials using data-driven methods [40] may serve
as an inspiration.

6 Conclusions
In this work, a data-driven reduced homogenization method is proposed for capturing the non-
Fickian and history-dependent transient diffusion behavior in heterogeneous materials. It is
built on the enriched-continuum formulation, developed earlier in [8] for linear material behavior
exhibiting a relaxed separation of scales, and the data-driven mechanics, proposed in [13]. An
enriched-continuum is a macroscopically homogenized description of a heterogeneous material
in which the transient effects emerging from the micro-scale, through a model reduction, are
captured by enrichment-variables at the macro-scale. For linear material properties and the
relaxed separation of scales, the model reduction at the micro-scale can be performed by using
the eigenvectors, obtained via the solution of an eigenvalue problem at the micro-scale, as the
reduced bases. The data-driven method seeks a physical-state of the material closest to a point
in the data-set, which can be obtained by experiments (in this work micro-scale simulations).
Following [16], instead of using the whole history of the microscopic primary field variables,
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the enrichment-variables are used to efficiently keep track of the history-dependent state of
the macroscopic behavior. The data-driven reduced homogenization uses a staggered solution
scheme [28] to tackle the combinatorial complexity of a mixed, continuous and discrete, double-
minimization problem, in which the state and the closest point in the data-set, which minimizes
a global distance function, are found iteratively. The macroscopic compatibility is imposed
directly and the macroscopic mass balance law is imposed through Lagrange multipliers.

Numerical examples are conducted for a macroscopically isotropic response in a one-dimensional
domain, showing an adequate performance and robustness of the proposed methodology. A
two-dimensional micro-scale problem, under one-dimensional loading conditions, is considered
to obtain the macroscopic quantities and to provide the input for generating the data-sets. The
enriched-continuum problem is used as a reference solution, and to generate the data-sets by
post-processing the primary field and its gradient, as well. The actual generation of the data-
set is done using stand-alone micro-scale simulations with different loading conditions having
different frequencies. The obtained point in the data-set can then be added to the already
existing data-set. The large number of coefficients in the distance function make the current
data-driven problem more prone to numerical errors and instabilities, so a methodology is pre-
sented to carefully select the numerical values of these coefficients, based on the information
available from the micro-scale simulations. By doing so, a substantial decrease in the number of
iterations and numerical error was obtained. Data-driven reduced homogenization captures the
homogenized enriched-continuum response very well and also the post-processed micro-scale
fields are in close agreement with each other. The proposed data-driven approach performs
adequately in the presence of noise in the data-set and also in the case when a different data-
set is used. Finally, by increasing the number of points in the data-set the error is reduced
substantially, however at the expense of an increased number of iterations and computational
effort. Obviously, the present work can be extended to an-isotropic macroscopic and two/three-
dimensional behavior.
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A Relative L2-Error for Different Coefficient Values Using
Data-Set D(R+S)

The performance of the data-driven reduced homogenization is checked with different values
of coefficients JCm, appearing in the definition of the norm (15) for the distance function (18),
with the data-set D(R+S). The results are presented in Figure 12 and 13.
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(d) Different numerical values for 4Cm

Figure 12: For the coefficients 1Cm 2Cm 3Cmand 4Cm the time evolution of the relative L2-error
norm, calculated as ||µ̄n+1

D − µ̄n+1
E ||/||µ̄n+1

E ||, where µ̄n+1
D is the chemical potential field obtained

by the data-driven reduced homogenization (proposed) using the data-set Dn+1
(R+S) and µ̄n+1

E is
the chemical potential field obtained by the enriched-continuum formulation (reference) under
boundary conditions (29). The default values and the units of the coefficients are given in Table
4. The relative L2-error computed with the proposed default value for the coefficients JCm is
marked with the black lines.

B Relative L2-Error for Different Coefficient Values Using
Data-Set with Noise D̃(R+S)

The performance of the data-driven reduced homogenization is checked with different values
of coefficients JCm, appearing in the definition of the norm (15) for the distance function (18),
with a noisy data-set D̃(R+S), the result is shown in Figure 14 and 15. An increase in the relative
L2-error is observed as compared to the data without noise D(R+S), With the introduction of
the noise, the error is comparatively less influenced by the numerical values of the coefficients
and more by the noisiness of the data.

29



0 1 2 3 4 5 6

10
3

10
-4

10
-3

10
-2

10
-1

10
0

10
1

t [s]

||
µ̄
n
+
1

D
−

µ̄
n
+
1

E
||
/|
|µ̄

n
+
1

E
||

0

10−3

10−2

10−1

1

101

102

103

(a) Different numerical values for 5C(1)

m

0 1 2 3 4 5 6

10
3

10
-4

10
-3

10
-2

10
-1

10
0

10
1

t [s]

||
µ̄
n
+
1

D
−

µ̄
n
+
1

E
||
/|
|µ̄

n
+
1

E
||

6Cm × 0
6Cm × 10−3

6Cm × 10−2

6Cm × 10−1

6Cm × 1
6Cm × 101

6Cm × 102
6Cm × 103

(b) Different numerical values for 6C(1)

m

0 1 2 3 4 5 6

10
3

10
-4

10
-3

10
-2

10
-1

10
0

10
1

t [s]

||
µ̄
n
+
1

D
−

µ̄
n
+
1

E
||
/|
|µ̄

n
+
1

E
||

0

10−3

10−2

10−1

1

101

102

103
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Figure 13: For the coefficients 5C(1)

m
6C(1)

m and 8Cm the time evolution of the relative L2-error
norm, calculated as ||µ̄n+1

D − µ̄n+1
E ||/||µ̄n+1

E ||, where µ̄n+1
D is the chemical potential field obtained

by the data-driven reduced homogenization (proposed) using the data-set Dn+1
(R+S) and µ̄n+1

E is
the chemical potential field obtained by the enriched-continuum formulation (reference) under
boundary conditions (29). The default values and the units of the coefficients are given in Table
4. The relative L2-error computed with the proposed default value for the coefficients JCm is
marked with the black lines.
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