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Abstract

multi-bsp is a new bridging model which takes into account hierarchical architectures. We dis-
cuss two questions about multi-bsp algorithms and their programming: (1) How do we get a formal
characterization of the class of multi-bsp algorithms? (2) How can a programming language be
proven algorithmically complete for such a class? Our solution is based on an extension of a bsp
version of sequential abstract state machines (asms).

1 Introduction

1.1 Context of the work and background

Modern hpc architectures are made of hundreds of interconnected nodes each, with thousands of cores.
Programming and reasoning on such hierarchical architectures is a daunting task without the use of some
high-level abstractions.

1.1.1 Multi-processors algorithms and hierarchical architectures

As it has been shown in [2], the bsp model [4, 23] is not truly adapted for hierarchical architectures (design
of portable and scalable algorithms, performance prediction, etc.). bsp then partially loses the fact of
being an efficient bridging model. An update of this model is needed and must be defined with the same
level of abstraction, and bridges most of the architectures as the original bsp model did. So a proposition
has been made in [26] and it has been called multi-bsp. The intention is: “with the comparison with the
previous literature, our goal here is that of finding a bridging model that isolates the most fundamental
issues of multi-core computing and allows them to be usefully studied in some detail.” [26].

An important issue [1, 26] is the ability of designing immortal algorithms, which are algorithms that
scale for any machine in the present and in the future as long as the bridging model can be adapted to
it. In particular, these algorithms must work for any number of computing units (up to some constraints
such as a number of processors equal to a power of two). This raises two questions: (1) can we char-
acterize the class of the multi-bsp algorithms so that it is a natural extension of the class of the bsp
algorithms [20]? And (2), can we prove that all the multi-bsp algorithms can be programmed using a
programming language? If we can intuitively answer yes to these two questions or at least as soon as you
see a multi-bsp algorithm or a programming language, formally, this requires more attention. Firstly,
what is an algorithm [27] and secondly what is being algorithmically complete. And thus, what class do
multi-bsp algorithms belong to?
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1.1.2 Axiomatization and imperative characterization of sequential algorithms

The most known definition of sequential (small steps and discrete time) algorithms is the axiomatic pre-
sentation of [15, 16]. The main idea is that there is not any standard language that truly represents all
algorithms. Three widely consensual postulates are used to define the infinite set of sequential algorithms:
(1) sequential time, algorithms work step-by-step; (2) abstract states, algorithms are oracular and the
steps only depend on primitives (elementary operations); (3) bounded exploration, each of these steps is
finite. This axiomatic definition has been mapped to the notion of abstract state machine (asm, also
called evolving algebras, a kind of turing machine with the appropriate level of abstraction [15, 16]).
Every sequential algorithm can be captured by an asm and every asm is a sequential algorithm. That
is algoseq=asmseq.

Furthermore, the study of class models [14, 19, 20] allows us to classify what can or cannot be
effectively programmed. Indeed, if it is known that mainstream languages such as c or java are turing-
complete, which means that they can simulate the computation of any computable function (so the input-
output of any turing machine, up to an unbounded memory), what is called algorithmic completeness
rather focuses on the step-by-step behavior that is, a model could compute all the desired functions, but
some algorithms (ways to compute these functions) could be missing [14]. By using the aforementioned
axiomatization of the algorithms and an operational semantics of an imperative core-language (imp), it
has been formally proved in [19] that asmseq≃ imp that is mainstream languages are also algorithmically
complete, which was only informally assumed so far.

In [20], we extended these results to bsp and proved that algobsp=asmbsp ≃ impbsp. To do so, we
add another postulate that arranges the steps into bsp’s supersteps and in a way that the bsp algorithms
no longer work on a single memory (a first-order structure) but on p-tuples of arbitrary sizes, on per
computing unit. We also extend the asms so that they work on these p-tuples in a seq(par) manner
[7]. asmbsp use internally a global function of communication (which is also working step-by-step) ab-
stracting how communications are performed by any bsp library. Finally, we extend imp in an spmd
(single program multiple data) fashion so that programs also work on p-tuples but in a par(seq) manner.
impbsp programs use an explicit call of a function of communication (i.e. a specific command). In this
way, we define the class of bsp algorithms and prove that bsp languages (mostly c/java+bsplib ones)
are algorithmically complete to this class.

1.2 Content of the work

We are now interested in answering the question of whether such results can be extended to the multi-
bsp model, that is

(Intended theorem) algomulti= asmmulti ≃ impmulti
That is proving an equivalence between an axiomatic definition of the multi-bsp algorithms and

their operational points of view (asmmulti) and, proving an algorithmic simulation between impmulti and
asmmulti (up to elementary operations, e.g. how to perform integer additions or how to manage the
communications). Because the multi-bsp model is (“just”) a hierarchical extension of bsp, it seems
appropriate to ask the question of how to extend the previous results about bsp [20] in a “minimal” way
rather than doing all the proofs from scratch. We will show that this is mostly feasible but that there
are some points that require more important modifications due to the use of nested supersteps. It is to
notice that some definitions will be slightly unsatisfying because there is a lack of description of how
computations are performed on “nodes” in the multi-bsp model [26].

1.3 Outline

We mimic the works of [14, 15, 23] to organize the rest of the paper as a dialog between the author and a
curious but equally scrupulous colleague. We made this uncommon choice of writing because this article
is the continuation of [20] (which also contains a lot of faqs) and it seems natural to ask ourselves the
question of how to do such a work.

In Section 2 p.5, we first discuss multi-bsp algorithms (SubSection 2.1 p.5) and their axiomatization
(SubSection 2.2 p.7). In Section 3 p.13, we then discuss their operational points of view as an extension
of asms (SubSection 3.1 p.13) and the algorithmic simulation with a core programming language (Sub-
Section 3.2 p.16). We finish this section by proving the intended theorem and that the cost model is
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preserved. Some related work is presented in Section 4 p.22. Section 5 p.25 concludes and finishes with
a brief outlook on future work.
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2 An axiomatization of multi-bsp algorithms

Question 1: Hello. Before we start, we probably need a common vocabulary. What should I read so that
we can understand each other?

We recommend the original papers about asms [15, 16]. The author presents the ideas behind asms
(the wanted church-turing thesis for algorithms). The paper [14] is also a good introduction to the ideas
of classes and algorithmic completeness whereas [23] is a perfect introduction to the bsp bridging model.
And of course [26] is the reference for multi-bsp.

This work is the continuation of [20], so, to get a common vocabulary, it is strongly recommended to
read it. All the notions used in this work are presented there (except what is dedicated to the multi-bsp
model): first-order structures X (page. 6), signature, terms θ and universe (p. 7), interpretation of terms

θ
X

(p. 7), isomorphism of structures (p. 8) and consistent updates ∆ (p. 8), etc.

2.1 The multi-bsp model

Q2: Could you remind me of the multi-bsp model which is less known than bsp?

multi-bsp extends the bsp bridging model to take into account modern hierarchical architectures.
There exist other extensions such as the one of [9] but multi-bsp describes hierarchical architectures
in a simpler way. This model brings a tree-based view of nested components (sub-machines) where the

lowest levels
1

are computing units (processors, the leaves) with a small block of memory (e.g. caches)
and every other level (the nodes) contains a memory only (or a network). Inside a node-component,
each memory can access other memories only with the use of an explicit global communication. The tree
is of depth d and is assumed balanced and homogeneous. Fig. 1 illustrates the different components. A
multi-bsp architecture has four parameters at each level s ∈ {1⋯d}:

1. ps is the number of sub-components inside level s;

2. gs is the bandwidth between levels s and s−1; the ratio of the number of operations to the number
of words that can be transmitted in a second;

3. Ls is the synchronization cost of all sub-components at s−1 level;

4. ms is the amount of memory available for each component at level s.

Finally, there is the homogeneous local processing speed r of each of the processors (components of level
1) where a step on a word is considered as the unit of time (g1 = 1). A leaf does not have sub-components
making p1 and L1 both equal to 0. For example, the bsp model with parameters (p, g, L) where each
basic unit has memory m would be modeled with [26] d = 2 and (p1 = 0,g1 = 1,L1 = 0,m1 = m),
(p2 = p,g2 = g,L2 = L,m2) where m2 is, for example, the size of a slower but bigger memory. Another
value for m2 could be n, the size of the problem (implemented as a virtual memory with a distributed
file system). Assuming a specific architecture with data streams as input, m2 could also be ∞ and g2

could rely on the acquisition stream data rate.

Q3: And what about the execution model of multi-bsp algorithms?

A multi-bsp computer works in a sequence of nested supersteps where at a node level s, each
superstep is made of the supersteps of levels s−1 and terminates by a synchronization (barrier) of all the
sub-machines of level s − 1 in favor of a data exchange between the ms−1 memories and ms whereas on
leaves (level 1), a superstep is made of computations only

2
(using the data accessible the local memories

of leaves). Then, a new superstep can start at level s. Note that the definition requires synchronization
of the directly below sub-components of a component, but no synchronization across branches that are
separated in the component hierarchy. The cost of a multi-bsp algorithm is the sum of the costs of the
supersteps of the root node, where the cost of each of these supersteps is (recursively) the maximal cost
of the supersteps of the sub-components plus the needed communication plus the synchronization; And
for each leaf, the cost is the computation time. And so on.

1
The term of “stage” was used in place of “level” in [1, 2] because “level” (as layer or floor) is largely used in other

domains in computer science notably in type systems that were used in [2].
2
Regarding a level that is only composed by a memory capacity, that is to say a node, one processor of the branch is
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Figure 1: The multi-bsp components.

Q4: Hum, the architecture is not exactly identical to the original work of [26]. Why?

Indeed and these modifications do not change the way to write or analyze the multi-bsp algorithms.
Firstly, we slightly change the indexes for convenience only. For example, the bandwidth parameter of the
memory concerns the current level instead of the upper level as originally described in [26]. Secondly, in
our purpose, each level has its own memory whereas in [26], the leaves are computing units only, an addi-
tional abstract level. This also simplifies the presentation. Thirdly, we natively allow horizontal commu-
nications to make the set of the bsp algorithms a subset of the multi-bsp ones and, in particular, with the
idea of working in an incremental manner (as in [1]), that is using bsp programs inside multi-bsp ones.

Q5: So your model do not have shared memories and concurrent accesses to them?

Definitively not. Concurrent writing induces unnecessarily complicated semantics (non-deterministic
behaviour) and even if we assume only concurrent reading, we will see later that this leads to an axiom-
atization too far away from that of [16]. From a certain point of view, our multi-bsp model is a kind
of homogeneous tree organized d-bsp [25] model without dynamic subgroup synchronizations and where
sub-components shared a memory.

Q6: So, in your model, processors cannot read/write values from any level. And the communication
phase at a given level i (the h-relation+synchronization Li) is performed by the sub-components only and
not by all the processors that belong to level i. What about the Gi = gi + gi1 +⋯ + g1 parameter (the
cost of communication from level 1 to outside level i) of [26]? Can you elaborate on that? Because your
model deviates from the original model of [26] where each memory, at a level i, is shared be all processors
belong it.

Absolutely. We are in a distributed memory model. There are some pro and cons. First, hierarchical-
network clusters can be taken into account (assuming that some machines share their own memomies
with other ones and where the accesses are, of course, only using communication). Second, a superstep

that is using communication from level 1 to outside level i (the Gi parameters
3
) can be simulated by using

only communication on the deeper levels (i− 1,⋯, 1); that is closer to the recursive data decomposition
of algorithms. And if processors share a given memory (say the l3 cache), then we can cut it into several
parts. Using distributed memories is also closer to the original bsp model. Third, if there are too much
cores, there may be a bootleneck making the Gi parameter inoperative when accessing certain memories
(e.g. the ram). On the contrary, the number of “simultaneous” accesses is reduced by considering
those by sub-nodes only (during a communication phase). And for performing the communications
(scattering/gathering data) where would be the intermediary needed values, on the lowest levels? And
finally, how could processors access a memory (e.g. the ram) without having caches copies (kind of
miss-caches) made by the OS/architecture? Using only communications between levels makes this more
explicit (assuming always enough memory when doing the local computations that is when processors
are using the memories at level 1).

responsible for all the memory manipulations that are done to it: this processor (which is chosen depends on the implemen-
tation) performs the data exchanges such as gathering data, etc. We will show later the inherent problem of such a design.

3
It is to notice that such parameters are defined but never explicitly used in[26] and only communication between

consecutive levels are used in the algorithms.
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But this model suffers for two main defects. First, if there are only communication between different
levels, how does the system handle them? Scattering and gathering data needs a little of computation.
The solution of [29] is using a “master” that is selecting a core to handle a given level. We will analyse
this later. Second, there is no possible communication between processors of different sub-trees without
going through all their top levels and thus using there synchronization mechanisms (unlike the model of
[26]). This overcost must be taken into account when designing multi-bsp algorithms in this model.

Q7: You actually define a multi-bsp computer and so what are algorithms?

Definition 1 (multi-bsp algorithms, informal) A multi-bsp algorithm is a computation, organized in

a nested sequence of supersteps, that can stand on any multi-bsp machine
4
.

Now let us present a more formal definition.

2.2 Axiomatization of multi-bsp algorithms
Q8: It does not seem to be moving too far. What is necessary to be modified in your previous formal
axiomatization [20] of the bsp algorithms?

Obviously the tree of nested components (memories) and the organization of the nested supersteps.

Q9: That sounds too easy. I guess you must redefine all the previous postulates and the asms? And the
imperative language too?

You are right. But let us start with a word of caution and with the postulates. The first one
is identical to the one of both sequential [16] and bsp algorithms [20]. It stipulates that there is no
concurrency.

2.2.1 multi-bsp algorithms as state transition systems

Postulate 1 (Sequential Time) A multi-bsp algorithm A is given by:

1. A (potentially infinite) set of states S(A);

2. A (potentially infinite) set of initial states I(A) ⊆ S(A);

3. A transition function τA ∶ S(A)→ S(A).

Sets are potentially infinite because an algorithm A, such as an integer sorting, can have an infinite
number of inputs, e.g. all possible integer arrays, or the possible distributions whatever the number of
processors for a parallel sorting algorithm. These inputs are encoded in the initial states. We recall

[16, 20] that an execution of an algorithm A is an infinite sequence of states
⇢

S= S0, S1, S2, . . . such that
S0 is an initial state and for every t ∈ N, St+1 = τA(St) (accessible states). And we will say that a state

St of an execution
⇢

S is final if τA(St)=St (terminal execution). The duration is

time(A,S0)
def
= { min {t ∈ N ∣ τ tA(S0) = τ t+1

A (S0)} if the execution is terminal

∞ otherwise

Every algorithm can access elementary operations (a.k.a. primitives) which only depend of the architec-
ture.

Q10: Is it what is called “intrinsically oracular”?

Right. This is an essential feature. For example, a multi-bsp algorithm could be different whether
a broadcasting primitive is available or is simulated by point-to-point sending of data. We are not
interested in a specific library nor a particular machine but to all possible multi-bsp algorithms.

Q11: And so what happens to multi-bsp architectures. Are they also oracular?

Basically yes. multi-bsp algorithms will manipulate states as d-nested-tuples (called trees in the
rest of the paper) of structures. Each structure represents the available memory of a component which
could only be accessible using communicating primitives (nodes), except the ones of computing units
(leaves) where computations could also occur. The related definitions about structures of [16, 20] will
subsequently be used for each component. Let us define the trees.

4
Assuming, if necessary, some properties on the performance parameters such as p2 is even or, on most modern and

realistic machines, that ∀s ∈ {1 . . .d}, ms >>ms−1, etc.
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2.2.2 States as multi-bsp Trees

Definition 2 (multi-bsp Trees) Trees are made of nodes and leaves. Trees are defined by induction

T
def
= ⟨X⟩ ∣ ⟨X∣T1, . . . , Tp⟩

where p > 0 (the number of subcomponents at the level) and X is the memory (structure) of the

component. T1, . . . , Tp (noted
−→
T in the following) are the p branches (subtrees) of the node.

We assume that for each leaf ⟨Y ⟩, a processor exists and can only access without communication to
the Y memory (local computations), whereas nodes ⟨X∣T1, . . . , Tp⟩ can only communicate between two
consecutive levels. We also assume that each memory is unique, for instance that there exists a symbol
id interpreted differently on every memory. To remain consistent with Subsection 2.1 p.5, the leaves and
their associated processors are homogeneous. Moreover, in the following (and for simplicity and when it

is unambiguous), by assuming p ≥ 0, ⟨X∣T1, . . . , Tp⟩ or ⟨X∣−→T ⟩ may denote both leaves and nodes.

Q12: You provided a classical yet general definition for trees, but in Subsection 2.1 p.5 you assumed the
trees to be balanced.

Indeed this is an important assumption for the multi-bsp algorithms (cost analysis, optimality [26]
and algorithm design such as for the distribution and load-balancing of data), but our proofs do not
require this hypothesis and thus we wanted to prove a more general result. If we wanted the multi-bsp

d-trees to be balanced, we could have defined them inductively as T
def
= ⟨X⟩1 ∣ ⟨X∣Tn1 , . . . , Tnp ⟩n+1

, where
n is the level.

Now we can define some simple relations on trees such as subtree, structural equality and position of
a subtree in a tree.

Definition 3 (Subtree relation) For every S and T (trees), we define inductively S ⩿T , S is a subtree
of T , as

S ⩿S
S ⩿Ti ⇒ T ⩿ ⟨X∣T1, . . . , Ti, . . . , Tp⟩

Notice that because each memory is unique, if S ⩿ ⟨X∣T1, . . . , Tp⟩ then there exists a unique i such that
S ⩿Ti. Finally, for the second postulate, we need to define the notion of “preserving the structure of a
tree” and tree-isomorphism.

Definition 4 (Tree-similarity (structurally))

⟨X⟩≗⟨Y ⟩
⟨X∣T1, . . . , Tp⟩≗ ⟨Y ∣U1, . . . , Uq⟩

if p = q and for every 1 ≤ i ≤ p, Ti ≗Ui

To put it simply, the trees are the same but with potentially different memory content on their compo-
nents. This notation is not restricted to trees of structures, and will be used also in Definition 6 for trees
of functions. For example, ⟨X1»»»»»⟨X

2⟩, ⟨X3⟩⟩ is not similar to ⟨Y 1»»»»»⟨Y
2⟩, ⟨Y 3⟩, ⟨Y 4⟩⟩.

Definition 5 (Position in a tree) For every similar pair of trees T ≗U and every subtree S ⩿T , we
define inductively pos(S, T ;U) as the subtree of U that is in the same position as S is in T :

pos(S, S;U) def
= U

pos(S, ⟨X∣−→T ⟩; ⟨Y ∣−→U ⟩) def
= pos(S, Ti;Ui)

where Ti is the unique (see Definition 3) Tj amongst T1, . . . , Tp such that S ⩿Tj

In [20] we defined multi-isomorphisms for tuples of structures, that should have been named “tuple-
isomorphisms”. For this paper, we define tree-isomorphisms.

Definition 6 (Tree-isomorphism) A tree-function Φ is defined inductively as a tree of functions:

Φ
def
= ⟨ϕ⟩ ∣ ⟨ϕ∣Φ1, . . . ,Φp⟩

where p > 0 and ϕ is a standard function, such that for every tree T ≗Φ:

if Φ = ⟨ϕ⟩ then Φ⟨X⟩ = ⟨ϕ(X)⟩
if Φ = ⟨ϕ∣Φ1, . . . ,Φp⟩ then Φ⟨X∣T1, . . . , Tp⟩ = ⟨ϕ(X)∣Φ1(T1), . . . ,Φp(Tp)⟩
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For every T and U (trees), the tree-function Φ is a tree-isomorphism between T and U if 1) T ≗Φ≗U ,

and 2) for every subtree ⟨X∣−→T ⟩⩿T and ⟨Y ∣−→U ⟩ = pos(⟨X∣−→T ⟩, T ;U) there exists ⟨ϕ∣−→Φ⟩≗⟨X∣−→T ⟩ such that ϕ

is an isomorphism between X and Y .
To put it simply, we apply an isomorphism to each memory (structure) of the tree. For example,
⟨X1»»»»»⟨X

2⟩, ⟨X3⟩⟩ is isomorph to ⟨Y 1»»»»»⟨Y
2⟩, ⟨Y 3⟩⟩ if each X

i is isomorph to each Y
i. Notice that if Φ is a

tree-isomorphism then Φ
−1, defined as Φ where all the ϕ have been replaced by their reciprocal ϕ−1, is

also a tree-isomorphism which is the reciprocal of Φ.

Q13: What does isomorphism in this context mean?

We are interested in the actual properties of all the models of computation, not the naming conven-
tions used for them, as in [16]. Thus, in the following, we always reason up to isomorphism.

Postulate 2 (Abstract States) For every multi-bsp algorithm A:

1. The states of A are trees of structures with the same finite signature L(A) (containing at least the
booleans, the equality and a uniquely interpreted id (identifier) symbol);

2. S(A) and I(A) are closed by tree-isomorphisms and subtrees;

3. The transition function τA preserves tree structures and the universes, and commutes with tree-
isomorphisms.

Q14: Are you defining a fixed size for the trees?

No. For each state, d (the maximal depth of a tree) and each pi are fixed for each execution only,
abstracting the run of the algorithm on different multi-bsp machines and thus making the approach
general when modeling algorithms (the notion of immortal algorithm). In the same way, the structures of
different initial states contain potentially different values, abstracting the run of different input (initial)
data.

Q15: Ok and what does “preserves tree structures” mean?

By “preserves tree structures” we mean that if T is a state (thus is a tree) then τA(T ) is a tree such
that τA(T )≗T . For every subtree S ⩿T we define τA(T )S, the (unique) subtree of τA(T ) which is in the
same position in τA(T ) as S is in T .

Definition 7 (Next subtree)

τA(T )S
def
= pos(S, T ; τA(T ))

Q16: Also, what does “closed and commute” by/with “tree-isomorphisms” or ”subtrees” mean?

Let Z be a set of trees. Z is closed by tree-isomorphims means that if Φ is a tree-isomorphism and
T ∈ Z then Φ(T ) ∈ Z. Z is closed by subtrees means that if S ⩿T and T ∈ Z then S ∈ Z. τA commutes
with tree-isomorphisms means that if Φ is a tree-isomorphism and T is a state then τA(Φ(T )) = Φ(τA(T )).
Q17: Could you also briefly remind me of the concept of universe?

We recall [16, 20] that if a structure X has signature L(A) and universe U(X), the update (f,−→a , b)
where f ∈ L(A) and −→a , b ∈ U(X) is defined as in [20, 16], and so is the structure X ⊕ (f,−→a , b) with
the same signature and universe as X, and where all the symbols are interpreted as in X except f that
now has value b in f(−→a ). The update is said trivial if nothing has changed. As in [20, 16], the notation
X ⊕∆ is extended to tuples of updates ∆ that clash if inconsistent. Moreover, if the structures X and
Y have the same signature and universe, then ∆ = Y ⊖X denotes the unique set of non-trivial updates
such that Y = X ⊕∆.

Definition 8 (Updates of a leaf) As in [16, 20], the set of updates done to the memory of the leaf

⟨X⟩ is ∆(A,X) def
= τA(X)⊖X.

In [20] the states were tuples
−→
X of structures and we defined ∆

i(A,−→X) as the i-th component of the

tuple τA(
−→
X)⊖−→X. But in the multi-bsp context, where the states are trees, we define updates of subtrees.

Definition 9 (Updates of a subtree) For every state T , the set of updates done for a subtree ⟨X∣−→T ⟩⩿T
is ∆(A,T )⟨X∣−→T ⟩

def
= Y ⊖X, where ⟨Y ∣−→U ⟩ = τA(T )⟨X∣−→T ⟩.
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2.2.3 multi-bsp algorithms work step-by-step

Q18: And now, do processors compute locally (and nodes communicate) on every isomorphic data-
structure without limitation?

Sorry to say no again. We want the algorithms to work step-by-step. Indeed, step-by-step means
that at every step, only a bounded number of terms are manipulated, not a growing number of terms,
making any machine/algorithm unrealistic [16] (and thus opposed to the bridging model approach).

Q19: Are you speaking of the exploration witnesses à la gurevich [16]?

Yes. We need such a postulate to forbid algorithms to work unrealistically
5
. It is as those of sequential

and bsp algorithms. For the rest of the paper, we also need to define the notion of coincidence.

Definition 10 (Coincidence over terms) Let A be a multi-bsp algorithm and Θ be a set of terms

of L(A). We say that two states U and V of A coincide over Θ if U ≗V and for every ⟨X∣−→U ⟩⩿U and

⟨Y ∣−→V ⟩ = pos(⟨X∣−→U ⟩, U ;V ) we have for every θ ∈ Θ that θ
X
= θ

Y
.

where θ
X

denotes the interpretation [20] (p. 7) of the term θ in the structure (memory) X.

Postulate 3 (Bounded exploration) For every multi-bsp algorithm A there exists a finite set Θ(A)
of terms (closed by subterms) such that for every state U and V , if they coincide over Θ(A) then for
every pair of subtrees S and W such that S ⩿U and W = pos(S,U ;V ) we have ∆(A,U)S = ∆(A, V )W .

Θ(A) is called the exploration witness of A and contains at least the boolean symbol true. The inter-
pretations of the terms in Θ(A) are called the critical elements.

Q20: What can we do with these elements?

We can prove that every value in an update is a critical element.

Lemma 1 (Critical Elements) Let A be a multi-bsp algorithm and U be a state. For every subtree
S ⩿U , if (f,−→a , b) ∈ ∆(A,U)S then −→a , b are critical elements.

Proof (sketch). The proof (by contradiction and by using a fresh variable in the witness) is similar
to the ones of [16, 20]. □

That implies that for every step of the computation, for a given memory (structure), only a bounded
(finite) number of terms are read or written, thus that a bounded amount of work is done at every step.

Lemma 2 (Bounded Set of Updates) Let A be a multi-bsp algorithm and U be a state. For every
subtree S ⩿U , card(∆(A,U)S) (cardinality) is bound.

Proof (sketch). The proof is similar to the one in [16, 20]. □

2.2.4 multi-bsp algorithm nested computations

Q21: That is thus close to the original work of [16]. But, I currently do not see anything about the
nested superstep organization of multi-bsp algorithms.

This is our last postulate. The communication between local memories occurs only during a com-
munication phase. To do so, a multi-bsp algorithm A will use two functions compuA and commA

whether, during the execution of A, a branch runs computations or communications (it is working). The
function commA allows the communication between the memories of a component. So we need first to
define the set of leaves (resp. nodes) for the compuA (resp. commA) function.

Definition 11 (All leaves and nodes) The (potentially infinite) sets of the single memories (from
leaves) and tuples of memories (from nodes) of a multi-bsp algorithm A are defined as:

Leaves (A) def
= ⋃

T∈S(A)
{X ∣ ⟨X⟩⩿T}

Nodes (A) def
= ⋃

T∈S(A)
{(X0, X1, . . . , Xp)

»»»»»» p > 0 ∧ ⟨X0

»»»»»»⟨X1∣
−→
T1⟩, . . . , ⟨Xp∣

−→
Tp⟩⟩⩿T}

where p + 1 is called the arity of the tuple.

5
We insist that such witnesses are not used to prove that the executions are finite; It is not a kind of measurement as

in the Hoare logic.
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To put it simply, we recursively add all the memory components (from nodes and leaves) of all the
subtrees of all the states (trees) of a multi-bsp algorithm A. We can now give the last postulate.

Postulate 4 (Nested superstep phases) For every multi-bsp algorithm A there exists a pair of
functions compuA ∶ Leaves (A) → Leaves (A) and commA ∶ Nodes (A) → Nodes (A) preserving the

arity, such that by induction on every state ⟨X∣−→T ⟩:
τA⟨X⟩ = ⟨compuA(X)⟩

τA ⟨X0

»»»»»»⟨X1∣
−→
T1⟩, . . . , ⟨Xp∣

−→
Tp⟩⟩ = ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⟨X0

»»»»»»τA⟨X1∣
−→
T1⟩, . . . , τA⟨Xp∣

−→
Tp⟩⟩

if ∃1 ≤ i ≤ p, τA⟨Xi∣
−→
Ti⟩ /= ⟨Xi∣

−→
Ti⟩

⟨X ′
0

»»»»»»⟨X
′
1∣
−→
T1⟩, . . . , ⟨X ′

p∣
−→
Tp⟩⟩

otherwise
where p > 0 and commA(X0, X1, . . . , Xp) = (X ′

0, X
′
1, . . . , X

′
p), which performs the communications of

the memories of a component.

From a certain point of view, compuA is the call of a single processor’s operation whereas commA is a
single collective data transfer.
Q22: Some explanations are needed.

Of course. The function τA is close to the bsp one of [20] except that it is now defined recursively
(on each level) and thus for each component. τA performs computations on leaves only and communi-
cations within the upward memory components otherwise. Notice that τA induces that the function of
communication modifies the structures if a shifting (upward or downward the work in the tree) of level
is needed. As intended for the multi-bsp model of execution, for a given level, such an evaluation is
feasible only if there is no work in the lower levels (they finish their supersteps). Otherwise, nothing is
done; That forbids concurrent memory manipulations from different levels.

Q23: I do not see the bsp’s sequences of computations and communications as in your previous postulates
about bsp [20]. Is this normal?

For a node controlling only p > 0 leaves, we have:

τA ⟨X0∣⟨X1⟩, . . . , ⟨Xp⟩⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨X0∣⟨compuA(X1)⟩, . . . , ⟨compuA(Xp)⟩⟩
if ∃1 ≤ i ≤ p, compuA(Xi) /= Xi

⟨X ′
0
»»»»»⟨X

′
1⟩, . . . , ⟨X ′

p⟩⟩
otherwise, where p > 0 and

commA(X0, X1, . . . , Xp) = (X ′
0, X

′
1, . . . , X

′
p)

which corresponds closely to the fourth postulate [20] for bsp algorithms (the sequence of supersteps),
especially when considering a bsp machine as a multi-bsp machine with a single node of p processors.

Q24: It is strange that there is no computation on nodes because most communication patterns need a
little computation. How do you do that?

It is the responsibility of the communication function to (implicitly) perform such computations
because it is oracular. In “practice” [1, 30], the needed computations that are done in the upper memories
focus on data management and one selected (by the implementation/architecture) processor of a branch
can do such a work. We will discuss this issue later.

Q25: A bit of cheating but let us move on. What is thus a multi-bsp algorithm?

A multi-bsp algorithm is an object verifying these four postulates, and we denote by algomulti the
(infinite) set of multi-bsp algorithms.

Q26: And now, what can we deduce from all this?

Now, we can prove that the set of multi-bsp algorithms satisfies a strict separation of the phases. To
do so, we first prove some lemmas about the computation and communication phases. So for convenience,
we will define such phases for branches.
Definition 12 (Computation and Communication phases) A leaf ⟨X⟩ is said to be in a compu-

tation phase if compuA(X) /= X. A node ⟨X0

»»»»»»⟨X1∣
−→
T1⟩, . . . , ⟨Xp∣

−→
Tp⟩⟩ is said to be in a computation

phase if there exists 1 ≤ i ≤ p such that τA⟨Xi∣
−→
Ti⟩ /= ⟨Xi∣

−→
Ti⟩. Otherwise, the node is said to be in a

communication phase.
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This requires some remarks. Firstly, we did not specify the function commA in order to be generic
(oracular spirit). Secondly, during a computation phase, if a processor has finished its computations, the
processor “waits” for the communication phase, that corresponds to a possible load-balancing overhead
of the algorithm. That can also happen between different nodes during the communication phases: one
branch (sub-component) needs more computations/communications than other branches. Thirdly we do
not distinguish a communication step from a synchronization step, because both are globally done, at a
given level, by the function commA. A superstep is a manipulation of the memories of each component
until the sub-components finish their own supersteps.

Lemma 3 (Computation phases are closed by subtree) Let A be a multi-bsp algorithm, and T
be a state. If a subtree S ⩿T is in a computation phase, then T is also in a computation phase.

Proof. The proof is done by induction on the subtree relation. If S = T then T is in a computation
phase by hypothesis. If S ⩿Ti with T = ⟨X∣T1, . . . , Ti, . . . , Tp⟩ and p > 0, then by induction hypothesis
Ti = ⟨Xi∣U1, . . . , Uq⟩ is in a computation phase. So, either q = 0 (it is a leaf) and compuA(Xi) /= Xi,
or τA⟨Xi∣U1, . . . , Uq⟩ = ⟨Xi∣τA(U1) , . . . , τA(Uq)⟩ and there exists 1 ≤ j ≤ q such that τA(Uj) /= Uj . In
any case, τA(Ti) /= Ti, so T is also in a computation phase. □

Notice that in general we do not have τA(T )S = τA(S). For instance, two leaves ⟨X1⟩ and ⟨X2⟩ may have
finished their computations so we have τA⟨X1⟩ = ⟨X1⟩, but they may be updated by the communication
function so τA⟨X∣⟨X1⟩, ⟨X2⟩⟩X1

/= X1. But this is the case for subtrees in a computation phase.

Lemma 4 (Computing states) Let A be a multi-bsp algorithm, and T be a state. For every leaf
S ⩿T in a computation phase: τA(T )S = τA(S).
Proof. The proof is done by induction on T . If T = ⟨X⟩ is a leaf, then the only subtree is T
itself. Let us assume now that T = ⟨X∣T1, . . . , Tp⟩ is a node. If S = T then by definition of pos
we have τA(T )S = τA(T ) = τA(S). If there exists 1 ≤ i ≤ p such that S ⩿Ti then by induction
hypothesis τA(Ti)S = τA(S). Because the subtree S ⩿T is in a computation phase, by Lemma 3, so
do T . So τA(T ) = ⟨X∣τA(T1) , . . . , τA(Tp)⟩ and thus, by definition of pos, τA(T )S = τA(Ti)S . Hence
τA(T )S = τA(S). □

Corollary 1 (Computing leaves) Let A be a multi-bsp algorithm, and T be a state. For every leaf
⟨X⟩⩿T in a computation phase: ∆(A,T )X = ∆(A,X).
Proof. By definition, ∆(A, T )X = τA(T )X⊖X. Because ⟨X⟩ is in a computation phase, by Lemma 4,
τA(T )X = τA(X). So ∆(A, T )X = ∆(A,X). □

Thus, a leaf in a computation phase ignores all the processors above.

Technical Lemma 1 (Properties of the computation) For every multi-bsp algorithm A, compuA
preserves the universes and commutes with isomorphisms.

Proof (sketch). The proof is similar to the one of [20]. □

Lemma 5 (Computing states are closed by tree-isomorphisms) Let A be a multi-bsp algorithm,
Φ be a tree-isomorphism and T ≗Φ be a state. If T is in a computation phase, then Φ(T ) is in a com-
putation phase too.

Proof. If T = ⟨X⟩ is a leaf, we assume by contradiction that Φ⟨X⟩ is not in a computation phase, so
τA(Φ⟨X⟩) = Φ⟨X⟩. By the second postulate, τA(Φ⟨X⟩) = Φ(τA⟨X⟩). So Φ(τA⟨X⟩) = Φ⟨X⟩, and by
applying Φ

−1
on both sides we have τA⟨X⟩ = ⟨X⟩ that contradicts that ⟨X⟩ is in a computation phase.

If T = ⟨X∣T1, . . . , Tp⟩ is a node, we assume by contradiction that Φ(T ) = ⟨ϕ(X)∣Φ1(T1), . . . ,Φp(Tp)⟩
is not in a computation phase, so for every 1 ≤ i ≤ p, τA(Φi(Ti)) = Φi(Ti). By the second postulate,
τA(Φi(Ti)) = Φi(τA(Ti)), so by applying Φ

−1
i we obtain that for every 1 ≤ i ≤ p, τA(Ti) = Ti, which

contradicts that T is in a computation phase.
□

Technical Lemma 2 (Shifting of level) Let A be a multi-bsp algorithm, and T be a state. If a
subtree S ⩿T has finished its communication phase, then: (1) if S = ⟨X∣T1, . . . , Tp⟩ then the next phase
(communication or computation) will be on the Ti ; exclusise or (2) if exist U = ⟨X∣T1, . . . , S, . . . , Tp⟩
then the next phase (communication or computation) will be on U .
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Proof (sketch). The proof is done by induction on T and by case using the fourth postulat: if S is
a leaf (end of the computation phase) then U is a node (the level is “up”); otherwise, S is a node, and
depending of commA, either one of the Ti has been modified such that a new phase helds on Ti (the
level is “down”) or U has beeen modified such the next communication phase helds on U . □

By abuse of language, we will say that the shifting of level (where the next phases take place in the
tree, that is the flow of execution is changing of level) can only be directly downward (resp. upward)
and we say “down” (resp. “up”). We will say that the level is ±1 depending if it is “down” or “up”.
Notice that we did not assume in the fourth postulate that the communication function commutes with
tree-isomorphisms, because this is a corollary (proved as in [20]) of the second postulate and Lemma 5.

Corollary 2 (Properties of communication) For every multi-bsp algorithm A and for every state
in a communication phase, commA preserves the universes and commutes with tree-isomorphisms.

Proof. Let T = ⟨X0

»»»»»»⟨X1∣
−→
T1⟩, . . . , ⟨Xp∣

−→
Tp⟩⟩ be a node not in a computation phase, so

τA(T ) = ⟨X ′
0

»»»»»»⟨X
′
1∣
−→
T1⟩, . . . , ⟨X ′

p∣
−→
Tp⟩⟩ ,

where commA(X0, . . . ,Xp) = (X ′
0, . . . ,X

′
p). By the second postulate, τA preserves the universes, so does

commA. Let Φ be a tree-isomorphism. Because T is not in a computation phase, by Lemma 5 (with
Φ
−1), Φ(T ) is not in a computation phase either, so

τA(Φ(T )) = ⟨ϕ0(X0)′
»»»»»»⟨ϕ1(X1)′∣

−→
Φ1(

−→
T1)⟩, . . . , ⟨ϕp(Xp)′∣

−→
Φp(

−→
Tp)⟩⟩ ,

where commA(ϕ0(X0), . . . , ϕp(Xp)) = (ϕ0(X0)′, . . . , ϕp(Xp)′). Moreover, by the second postulate, τA(Φ(T )) =
Φ(τA(T )) = Φ ⟨X ′

0

»»»»»»⟨X
′
1∣
−→
T1⟩, . . . , ⟨X ′

p∣
−→
Tp⟩⟩, so for every 0 ≤ i ≤ p, ϕi(Xi)′ = ϕi(X ′

i), and thus commA com-

mutes with tree-isomorphisms. □

Q27: Could you justify that your work extends the one about bsp?

Our postulates are a “natural” extension of those in [16, 20].

Proposition 1 (Hierarchy of models) A bsp algorithm with a unique processor (p = 1) is a sequen-
tial algorithm. A multi-bsp algorithm with a single node controlling only leaves is a bsp algorithm.
Thus:

algoseq ⊆ algobsp ⊆ algomulti

Proof (sketch). algoseq ⊆ algobsp is proven in [20]. Regarding the second inclusion, by ignoring the
node and considering the leaves as a tuple, we obtain the same postulates (see Question 23 p.11) as in
[20]. The hypothesis on id in the second postulate and on the subtrees in the third postulate correspond
to the location in the tuples of [20]. □

Q28: That is not a surprise and I am glad that this is the case. And what about the realization of a
function of communication (commA) as in [20]?

This function “simulates” the bsplib’s drma routines within the asm framework and we exhibited its
exploration witness. That allows a constructive result for bsp because any algorithm using such routines
can be truly analysis. This construction matters since bsplib is a standard and common library. Sadly,
such a library currently does not exist for multi-bsp and so we cannot do this work yet right now.

Q29: So for now, you have just an abstract axiomatization. What is the link with actual programming?

We will now follow [16, 20] to provide an operational point of view with the notion of abstract state
machines (asms). And then, we will provide an imperative multi-bsp programming core-language and
exhibit formally their links.

3 Imperative characterization of multi-bsp algorithms

3.1 asmmulti and the multi-bsp algorithms

As for the sequential case [16] and the bsp case [20], we first define the asmmulti machines and then we
prove that they “capture” [15] the multi-bsp algorithms, or in other words, that multi-bsp algorithms
and asmmulti are the same mathematical objects.
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3.1.1 Definition and operational semantics of asmmulti

Q30: For the computing phases, are you using standard sequential asms?

Indeed. Sequential asms have been defined in [15] to give an operational model to the sequential
(small-steps and discrete time) algorithms. We also used them in [20] for the bsp algorithms. In fact, an
asm program contains the full algorithm by giving, at each step of the computation, what needs to be
modified in the structures (memories). We refer to [20] (p. 14) for a formal definition of asm programs
Π and the sequential operational semantics ∆(Π,X) (p. 14). We also used such multisets of updates
([20] p. 15) and the transition function τΠ induced by Π on leaves. We assume that asmmulti programs
work in a spmd-like way, which means that at each step of the computation, the asmmulti program Π is
executed individually on each computing unit.

Definition 13 An asmmulti machine M is a triplet (S(M),I(M),τM) such that:

1. S(M) is a set of trees of structures with the same finite signature L(M) (containing at least the
booleans, the equality and a uniquely interpreted id symbol); S(M) and I(M) ⊆ S(M) are closed by
tree-isomorphisms and subtrees;

2. There exists an asm program Π and a communication function commM ∶ Nodes (M)→ Nodes (M)
such that τM ∶ S(M)↦ S(M) is defined by induction as:

τM⟨X⟩ = ⟨τΠ(X)⟩ (call to the Π program)

τM ⟨X0

»»»»»»⟨X1∣
−→
T1⟩, . . . , ⟨Xp∣

−→
Tp⟩⟩ = ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⟨X0

»»»»»»τM⟨X1∣
−→
T1⟩, . . . , τM⟨Xp∣

−→
Tp⟩⟩

if ∃1 ≤ i ≤ p, τM⟨Xi∣
−→
Ti⟩ /= ⟨Xi∣

−→
Ti⟩

⟨X ′
0

»»»»»»⟨X
′
1∣
−→
T1⟩, . . . , ⟨X ′

p∣
−→
Tp⟩⟩

otherwise
where p > 0 and commM(X0, X1, . . . , Xp) = (X ′

0, X
′
1, . . . , X

′
p).

3. commM verifies that:

(1) For every state ⟨X0

»»»»»»⟨X1∣
−→
T1⟩, . . . , ⟨Xp∣

−→
Tp⟩⟩ in communication phase, i.e. such that ∀1 ≤ i ≤

p, τM ⟨Xi∣
−→
Ti⟩ = ⟨Xi∣

−→
Ti⟩, commM preserves the universes and the arity, and commutes with

tree-isomorphisms;

(2) There exists a finite set of terms Θ(commM) such that for every state U and V in commu-
nication phase, if they coincide over Θ(commM) then for every subtrees S ⩿U and W =

pos(S,U ;V ) we have ∆(M,U)S = ∆(M,V )W .

We denote by asmmulti the set of such machines. As for the multi-bsp algorithms, a state T (a tree)
is said final if τM(T ) = T . If U is a state of an asmmulti machine M with an asm program Π, and X ⩿U
is a leaf, then ∆(Π, U)X will denote ∆(M,U)X without ambiguity. The last two conditions about the
communication function may seem arbitrary, but they are required to ensure that it is not a kind of
magic device, and that it performs data-exchanges step-by-step.

Q31: If I understand well, some components may wait for lower or upper level components to finish
their own supersteps. How do you manage that?

It is the role of the machine to do that. A solution, with the help of a fresh boolean, is to let the
machine force the computing units to do empty steps (par endpar i.e. no update). That corresponds
to a busy-looping (spinning). Another solution is considering that it is an implementation issue of the
machine: a variety of system calls can block processes (locks, mutex, etc.). Notice that the machine is
also responsive to shifting of level if necessary.

3.1.2 asmmulti captures multi-bsp algorithms

Q32: The semantics of your asms is close to the superstep postulate and that is not a surprise since the
asm thesis stipulates that asms and algorithms are the same objects. In the multi-bsp case, how are
you going to redo that?

In the same way as for the bsp algorithms [20]. We first used the fact that the transitions of a
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processor in a computation step can be captured by an asm program (Lemma 6). Then, we prove in
Corollary 3 that this potentially infinite number of asm programs can be reduced to a finite number. Fi-
nally, we merge these programs into one (in normal form) in order to prove in Proposition 2 that asmmulti

captures the computation steps of multi-bsp algorithms. Finally, we prove that algobsp = asmbsp.

Lemma 6 (Each Local Transition is Captured by an asm) Let A be a multi-bsp algorithm. For
every state U and leaf X ⩿U in a computation phase, there exists an asm program ΠX such that
Read (ΠX) ⊆ Θ(A) and ∆(ΠX ,X) = ∆(A,X).

Proof (sketch). The proof is similar as in the sequential case [16, 19], and uses Lemma 1 for critical
elements, and Lemma 2 to obtain a finite program ΠX . □

As in [15, 20], to narrow the number of relevant states we use the finiteness of the exploration witness
Θ(A). For every memory X, we denote by EX the equivalence relation on pairs (θ1, θ2) of terms in
Θ(A) defined by:

EX(θ1, θ2)
def
= { true if θ1

X
= θ2

X

false otherwise

Corollary 3 (Syntactically equivalent memories) Let A be a multi-bsp algorithm, U and V be
two states, and X ⩿U and Y ⩿V be two leaves. If X and Y are in a computation phase and EX = EY
then:

∆(ΠX , V )Y = ∆(A, V )Y
Proof (sketch). By definition of the operational semantics of asmmulti, ∆(ΠX , U)X = ∆(ΠX , X)
and ∆(ΠX , V )Y = ∆(ΠX , Y ). Because X and Y are in a computation phase, by Corollary 1 p.12,
∆(A,U)X = ∆(A,X) and ∆(A, V )Y = ∆(A, Y ). Then the proof is identical to the sequential case [16].
□

Proposition 2 (asmmulti capture Computations) For every multi-bsp algorithm A, there exists an
asm program ΠA such that for every state U and leaf X ⩿U in a computation phase:

∆(ΠA, U)X = ∆(A,U)X

Proof (sketch). The proof is similar to [16, 20] by using Corollary 3 to obtain subprograms and the
finite exploration witness in the third Postulate to obtain a finite global program. □

Theorem 1 algomulti = asmmulti

Proof (sketch). The proof is similar to [16, 20] and is made by mutual inclusion. 1) A multi-bsp
algorithm A is an asmmulti machine with the same (initial and standard) states and communication
function, and using the program ΠA from Proposition 2 during the computation phases (and using
technical Lemma 1, such computations preserve the universes and commute with tree-isomorphisms).
Moreover, according to Corollary 2 the communication function preserves the universes and commutes
with tree-isomorphisms. Finally, the other properties from Definition 13 are verified according to the
postulates. 2) An asmmulti machine M with an asm program Π verifies the fourth postulate, in particular
its exploration witness is the closure by subterms of Θ(Π) ∪ Θ(commM), and thus is a multi-bsp
algorithm. □

Q33: It is a little long. Is this really useful?

Yes. But to our purpose, asms are intermediary objects only. Algorithmic completeness of program-
ming languages is the main goal. How communications are organized (in a nested manner) is defined in
both postulates and asmmulti in a similar way so that does not modify how computations are performed.
It is the communication function that decides how to shift levels and how terms are sent (depending on
the content of the memories/structures which, of course, have been modified by the leaves during the
execution of the program Π itself).

15



3.2 Programming multi-bsp algorithms and algorithmical completeness

Q34: That is a curious computation model to let an abstract function manage the level and how to send
data. Any programmer’s code would rather contain explicit shifting of level and letting the function of
communication order the data. Can you elaborate on that?

Indeed. The asm program must modify the structures in order to initiate a shift of levels. Further-
more, the asm execution flow is close to “low level” assembly codes and thus lacks control flow structures
for programming algorithms in as usual. So most programmers naturally want a finer control and prefer
using a programming language to get their algorithms implemented. We now present an spmd extension
of the standard imp core-language. The imp programs are common sequences of commands, which are
standard control flow statements (conditionals and unbounded loop) or assignments (sequential updates),
so this programming language can be seen as minimal.

3.2.1 Semantics of a core imperative multi-bsp language

Q35: Why not directly choose a mainstream language such as c or java?

There are too many constructions on such languages and thus when doing proofs on them, some
cases may be missed. A theorem prover such as coq can help you to do that but that is not the goal of
this work. A core language is sufficient because we can apply the following results to every mainstream
language with at minimal such control flows. Let us introduce you to impmulti, our core imperative
language [19] (inspired by the library of [30]).

Definition 14 (Syntax)

commands: c
def
= f (θ1, . . . , θα) ∶= θ0

∣ if F {P1} else {P2}
∣ while F {P}
∣ comm ∣ up ∣ down

programs : P
def
= end ∣ c;P

where F is a formula ([20] p. 7), f has arity α and θ0, θ1, . . . , θα are terms. comm is used to perform
one step of communication whereas up and down are used to shift of level. To improve readability we
do not write the end when there is no ambiguity.

Q36: I imagine better primitives such as the use of synchronizing primitives (like bsp’s bsp sync())
to control the shifts of levels (flow up and down) on the multi-bsp trees and communications between
levels such as upward(value v) and downward(value v,int id) [30]. What about such primitives?

These primitives are for programs that are executed at each level of the d-trees, even on nodes.
Assuming that only “scattering and gathering” of values are allowed as “computations” on nodes, the
function of communication commM can simulate them easily. Again, we use such an abstract function in
order not to be restricted by a particular library. Take for example the upward routine. It allows us to up-
ward values from the memories of a level i to the memory of i−1. In impbsp, we should have a code such as:

up; while notEmpty(buffer) { if manage(id) {commM; } }
where the buffer contains the values to upward and manage is a function that determines if the leaf
handles or not the node at the given level (being the “master” [30]). In our simulation, on each leaf,
the asmmulti program will run the above code where the values from the buffers are communicated
step-by-step by the commM.

Q37: And what about recursive calls on the d-trees of [2] or [30]?

Both are interesting programming languages that both allow to clearly distinguish what is executed
on the nodes or leaves and how to send data between levels. They can be simulated by the use of the
down/up primitives. A stack can also be used to keep track of the recursive calls of [2].

Q38: So, what is the formal operational semantics of such a core language?

The operational semantics of the local computations is formalized by a state transition system [19],
where a state of the system is a pair P⋆X of a program P and a memory (structure) X, and a transition ≻
is determined only by the head command and the current structure. Here two examples of rule [20] (p. 31)

(where ⊕ stands for an update of structure and θα
X

for an interpretation of a term θ in the structure X):
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f (θ1, . . . , θα) ∶= θ0;P ⋆X ≻ P ⋆X ⊕ (f, θ1
X
, . . . , θα

X
, θ0

X)

while F {P1};P2 ⋆X ≻ P1 # while F {P1};P2 ⋆X if F
X
= true

Other rules are described in [20] (p. 31) and are without surprise. It is easy to show that this transition
system is deterministic. The local states without successors are sync;P ⋆X (where sync is comm or
up or down) and end⋆X. We use the same notation as in [20] about ≻t (the succession of t steps) and
∆(P,X) (the succession of updates made by P on X).

Q39: Standard. But for true multi-bsp programs?

Firstly, for a tree T , we note
↝
PT (resp.

↝
IT and

↝
T ) the tuple of programs (P1, . . . , Pβ) (resp. level

identifiers, structures) where each Pi (resp. Ii, Xi) is a program (resp. identifier, structure) of a leaf of
the tree T in a standard breadth-first traversal (in order of the id). The operational semantics of impmulti
is also formalized by a state transition system, where a state of the system is a triple

↝
IT ⋆

↝
PT ⋆ T where

T is a tree of structures. The level identifiers (that take values from 1 to d) will be used to handle in
which level the program manipulates a node and so, in different branches of T , these identifiers could be
different. In practice, a component can choose a single representative leaf to handle the computations
needed by the communications (contrary to this semantics where all processors on the same branch have
a code that runs and manages the communication of the node at a given nested-superstep). It is to
notice that the comm, down and up are synchronous and global to all the computing units of the same
branch (accordling to the level identifiers); So if one diverges the overall computing diverges and if one
performs a routine different than those of others then the overall machine fails.

If for a leaf ⟨X⟩,↝I⟨X⟩= (1), then
↝
P ⟨X⟩ is said to be in a computation phase. For a node ⟨X∣−→T ⟩ = T , if

↝
PT= (P1, . . . , Pβ), we say that

↝
PT is also in a computation phase if Pi ≠ sync;P ⋆X, where sync = comm,

up or down. Otherwise the tree is in a communication phase. We define next(sync;P ) = P and

next(end) = end. We also note
−−−→
next(. . . , P i, . . . ) = (. . . ,next(P i), . . . ). We denote by

−→
≻s the reduc-

tion at node level s which is defined as
−→
≻ in [20] (p. 32) but where we are using ≻

s
instead of ≻ and ≻

s

is defined as follow:

P ⋆X ≻
s
τX(P ) ⋆ τP (X) if P ⋆X has a successor (without being an update) and s ≠ 1

P ⋆X = τX(P ) ⋆ τP (X) otherwise

Definition 15 (A semantics machine for the multi-bsp core-language) An impmulti machine M

is a quintuplet (S(M),I(M),Pinit,commM,
↝
II(M)):

1. S(M) is a set of trees of structures with the same finite signature L(M) (with at least the booleans,
the equality and a uniquely interpreted id symbol);

2. The initial states of the transition system have the form
↝
IT ⋆

↝
PT ⋆ T , where T ∈ I(M) ⊆ S(M) and

↝
PT= (Pinit,⋯, Pinit) (Pinit on each leaf);

3. Pinit is a program with terms from L(M);

4. commM ∶ Nodes (M)→ Nodes (M) verifies (as in Definition 13) that:

(1) For every state
↝
IT ⋆

↝
PT ⋆ T such that

↝
P is in a communication phase, commM preserves the

universes and the arity (size of tuples), and commutes with tree-isomorphisms;

(2) There exists a finite set of terms Θ(commM) such that for every state
↝
IT ⋆

↝
PT ⋆ T and

↝
JU ⋆

↝
QU

⋆ U , if
↝
PU and

↝
QU are in a communication phase, T ≗U and T and U coincide over Θ(commM)

then for each S = ⟨X0

»»»»»»⟨X1∣
−→
T1⟩,⋯, ⟨Xp∣

−→
Tp⟩⟩⩿T and V = pos(S, T ;U) = ⟨Y0

»»»»»»⟨Y1∣
−→
U1⟩,⋯, ⟨Yp∣

−→
Up⟩⟩

we have commM(X0,X1,⋯,Xp)⊖(X0,X1,⋯,Xp) = commM(Y0, Y1,⋯, Yp)⊖(Y0, Y1,⋯, Yp), where
⊖ is defined in [20] (p. 25).

Q40: Are they limitations on the
↝
IT ? They look like any identifier and so processors can do whatever.

Indeed, but the operational semantics will forget to do whatever. If there is not computation from
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an initial state, it is just an unless algorithm.

Q41: And why such a definition of commM?

As explained in [20], such limitations are used to forbid this function to do whatever, especially an
unbounded reduction on the structures.
We denote by level(S, T ) at which level S is in T if S ⩿T . For every T ≗U and s ∈ 1 . . . d (a level identifier,

where d is the depth), the operational semantics
↝
≻ of impmulti denoted

↝
IT ⋆

↝
PT ⋆ T

↝
≻
↝
JU ⋆

↝
QU ⋆ U is

defined with three cases:

Communication case: S = ⟨X0

»»»»»»⟨X1∣
−→
T1⟩, . . . , ⟨Xp∣

−→
Tp⟩⟩⩿T where

↝
IS=(s,⋯, s) and level(S, T )=s and

↝
PS=

(P1,⋯, Pβ) (where for all i Pi=comm;P ), then
↝
IS=
↝
JS and

↝
QV=

−−−→
next(↝PS) and if V = ⟨Y0

»»»»»»⟨Y1∣
−→
U1⟩, . . . , ⟨Yp∣

−→
Up⟩⟩=

pos(T, S;U) then U1=T1⋯Up=Tp and (Y0, Y1,⋯, Yp)=commM(X0,X1,⋯,Xp);

Shifting case: S = ⟨X0∣
−→
T ⟩⩿T where

↝
IS=(s,⋯, s) and level(S, T )=s and

↝
PS=(P1,⋯, Pβ) (where for all i

Pi=up;P or Pi=down;P ), then
↝
QV=

−−−→
next(↝PS) and if ⟨V ∣−→U ⟩=pos(T, S;U) then

−→
U =

−→
T and

↝
JS=
↝
IS ±1

(for each si of
↝
IS ) according that down (resp. up) is the next command and if s ≠ 1 (resp. s ≠ d);

Computation case: If S = ⟨X⟩ then
↝
IS=
↝
JS= (1) and if ⟨Y ⟩ = pos(T,B;U) and if

↝
PS= P then Y = τP (X)

and
↝
Q⟨Y ⟩= τX(P ). If S = ⟨X0∣

−→
T ⟩⩿T where

↝
IS=(s,⋯, s) and level(S, T )=s and

↝
PS=(P1,⋯, Pβ) (where

for all i Pi≠sync;P ) then
↝
PS ⋆

↝
S
−→
≻s

↝
QV ⋆

↝
V if V ==pos(T, S;U).

A state
↝
IT ⋆

↝
PT ⋆ T is said final if all components are in a communication phase (performing

nothing). We say that, on local memories (tree) T and initial level identifier
↝
IT , the (initial) program

Pinit terminates globally if there exists t,
−→
P
′ and U such that

↝
IT ⋆

↝
Pinit ⋆ X

↝
≻t

↝
I
′
U ⋆

−→
P
′ ⋆ U , where U ≗T

and
−→
P
′
=

↝
P
′
U and it is a final state. We denote by time(Pinit, I,X) the smallest of those t, by assuming (as

in the Definition 2.2.1) potential infinite duration if Pinit does not terminate globally (there is an infinite
number of nested supersteps or during one of them, at least, the computations of one processor diverges).

Moreover, because the reached state is a fixpoint, U is unique, and will be denoted by
−−−→
Pinit(I,X).

Q42: Why select all the leaves of a branch to perform the node communications rather than use a single
leaf (a master) as in [2] or [30]?

To be sure that they are all at the right level during communication. That is thus only for semantics
convenience. Which leaf is the “master” and truly manipulated the memory is implementation depen-
dent. Moreover, that allows us to formally specify when the “waiting” is not implemented with system
calls but with a busy-looping.

Q43: So, are there computations on the nodes in your model?

As explained before, in our version of the multi-bsp model, nodes are memories only and so yes, only
communications can occur. But how these communications are managed (and what are they doing) is
thus the responsibility of the commM function. For our core imperative language, to allow executing an
unbound number of calls of this function and choosing how to shift levels, “while” and “if” statements
are possible on nodes but no assignment (local modification of the structure/memory which can be
considered as a “distant writing”).

Q44: You forbid local assignments (on a leaf) when it is indicated that it is a node reduction (commu-
nication).

Indeed. Without that, during any nested superstep, a leaf can modify its own memory and thus not
respecting the multi-bsp model of execution.

Q45: But then it is impossible for the commM function to be well executed. For example, if commM

is inside a loop in order to send a complex data in several steps (e.g partitioned a list), then there is no
way to write the current memory of the leaf to manage this number of steps. And it is unrealistic to use
only the node memory to perform such a work. Could you elaborate on that?

You are right. By leaving a control to the programmer over the communications, it is necessary
to “execute” some codes. Because leaf updates are not allowed, we need to allow the function of com-
munications to perform some modifications on the memories of the leaves. But these updates must not
allow the processors to enter again a local computing phase because that would break the multi-bsp
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execution model. These modifications must be used for the communications only. To do that we first
note descendants(T ) = (X1,⋯,Xβ) all the leaf structures (in a breadth-first order of the id) of a tree T
which is not a parent of leaves. If ∀Xi ∈ descendants(T ) τΠ(Xi) = Xi then every computing unit has
finished its computation steps. Then, we modified commM so that now (Y0, Y1,⋯, Yp, descendants(U)) =
commM(X0,X1,⋯,Xp, descendants(T )) so that ∀X ∈ (descendants(T )), τP (X) = ∅ (a new local computing
phase is still impossible). Finally, to keep an equivalence with your previous models, we need the same
slight change of the definition of commA in the postulates as well as in the asmmulti machine. Notice that
the previous results are still valid, such a modification does not affect how the computations are orga-
nized, only what the communication can change. But we agree that this is an unsatisfactory trick but it
is necessary if you want to be able to do several communication steps or user-programmed shifts of level.

Q46: Would not that hide some communications between the nodes and the leaves?

Admitting this new communication functions, yes. But that could be part of the gi parameters.
Notice that the semantics forbids assignments during the node superstep, only commA can modifying the
structures. For example, such modifications could be used when serializing values (mainly an internally
graph traversing) when using functional or object programming languages [2]. One can also imagine
some restrictions on commA. We currently prefer to stay as general as possible. We will discuss this
issue in future work. Now let us present our final result.

3.2.2 Algorithmic completeness of a core-imperative multi-bsp language

Now that we have defined our core multi-bsp programming language as a common imperative model of
computation, we prove in the following that asmmulti algorithmically simulates impmulti and vice-versa.

Q47: “Algorithmically simulates”, what is it?

We say that a computation model M1 can algorithmically simulate another computation model M2

if for every program P2 of M2 there exists a program P1 of M1 producing “similar” executions from the
initial states.

Definition 16 (Algorithmic Simulation) Let M1 and M2 be two machines. We say that M1 simu-
lates M2 if for every program P2 of M2 there exists a program P1 of M1 such that: (1) L(P1) ⊇ L(P2),
L(P1) \ L(P2) is a finite set of fresh variables depending only on P2, and uniformly initialized; there

exists d > 0 and e ≥ 0 depending both only on P2 such that for every execution
⇢

T= T0,T1, . . . of P2

there exists an execution
⇢

S= S0,S1, . . . of P1 verifying that for every (2) t ∈ N, Sd×t∣L(P2) = Tt and (3)
time(P1,S0) = d × time(P2, T0) + e.

Notice that the parameters d and e depend on what is simulated and not on a particular state of the
execution. If M1 simulates M2 and M2 simulates M1 then they are said algorithmically equivalent which
is denoted by M1 ≃ M2. Algorithm completeness is when a model of computation is algorithmically
equivalent to the entire class of algorithms [14] for the functions it computes. More details (notably
about fresh variables and uniformly initialized) could be find in [20] (p. 30).

Q48: So is the cost preserved using such an algorithmic simulation?

Indeed. Simply because an algorithmic simulation [19, 20] only grows any step (computation or
communication) of the simulated model by a constant factor. Thus durations (the cost of the algorithms
that is all the computations and commmunications) grow only in a linear fashion.

Q49: So you must now transform any asmmulti machine into an impmulti one, and vice-versa?

Yes. In fact, some modifications of the past transformations of [20] are necessary and such transfor-
mations are not trivial and must be treated carefully.

Q50: So first, could you present the transformation of impmulti programs into asmmulti ones (asmmulti

simulates impmulti)?

This transformation uses a control flow graph (cfg) G(P ) [19, 20] of any impmulti program P in
order to follow the flow of execution (recall that asmmulti programs have a single loop) and gets a bound
number of booleans (each per cfg’s vertices) to manage this control. The computation of this cfg ([20]
p. 33) does not require any change as well as the step-by-step simulation of the sequential parts [20].
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Except that there are now two new kinds of vertices, those of the up and down that are generated as
for the comm in [20].

Q51: Which is to say?

Each processor of the impmulti machine M will be simulated by the asmmulti machine A by using
the same processor but with new symbols L(A) = L(M)∪ {bPi

∣ Pi ∈ G(P )} such that one and only one of
the bPi

is true (where each of these booleans is a vertice of the cfg). Notably, there is the bend boolean
that indicates if there exists or not new instructions to perform in the program P . The asm program
generated from this set of booleans is as in [20] except there are now two new additional function cases
that are up and down, each generating nothing as for the comm case.

Q52: And thus, how the communications are managed, notably the “shifts” of levels?

In the previous definitions of Section 2, we make the hypothesis that, for a multi-bsp algorithm A,
after a call of the function of communication commA, the machine, by reading the memories only, is able
to shift (±1) levels (see Lemma 2 p.12). We will construct such commA as commA = ∪P∈G(P )commAP

where commAP is defined inductively on G(P ) [20] for any program P (that is using the booleans of the
cfg which is thus an example of the aforementioned hidden computations of the communications). We
use JP Kasm, the translation of the first step of a program P [20], where by construction only one bP is
true before each step; That forces only one new bP ′ to be true (except for a final state). The function
of communication commAP is thus inductively build to be as follows: for a given bP , if the boolean bP ′

is set to true (where P ≡ I;P
′

and I is an instruction) then commAP is built inductively on
r
P
′
zasm

;
Moreover and by case of I, if I is an update (f(θ1, . . . , θα)) ∶= θ0 then do not execute it. Otherwise, if I
is comm then commAP is commM and that ends the induction. If I is down (resp. up) that also ends

the induction and the
↝
IT (where T is the node where the communication is currently performed) of the

impmulti machine are updated accordingly in order to get the simulation (we thus need a fresh variable

s on each leaf structure that simulated the
↝
IT of the impmulti machine; this variable is modified only by

commA). And all bP are now false in order not to throw a computing phase before the commM.

Q53: Have you got an example of an impmulti scheme of communication

Take for example the upward(value v) routine [30] and bsp sync(). It allows us to upward values
from the memories of a level i to the memory of i−1. In impbsp, for bsp sync(), we should have a code
such as:

while notEmpty(buffer){
if manage(id){commM; }

};
up;

where the buffer contains the values to upward and manage is a function that determines if the leaf
manages or not the node at the given level (being the “master” or not [30]). In our simulation, on each
leaf, the asmmulti program will run the above code where the values from the buffers are communicated
step-by-step by the commA. And finally, we up levels.

Q54: So, are you running the program on nodes in an abstract manner until reaching a barrier (a
communication phase)?

That sums it up well. Such an execution is costly
6

but this cost is inside the commA which is thus
not to take into account in the simulation. This is not perfect but allows the following result.

Proposition 3 asmmulti algorithmically simulates impmulti with at most length(P )+2 fresh variables, a
temporal dilation d = 1 and an ending time e = 0.

Proof (sketch). The proof is similar to the one of [20] (number of fresh variables) because the com-
puting phases are managed in the same way. Only the communications differ. Let M be an impmulti
machine, and let A be the asmmulti machine defined as in [20] (except the communication function).
According to the definition of an algorithmic simulation [19, 20], there are three points to prove:

1. The number of fresh variables is not modified by the function of communications and thus stay
finite as in [20];

6
Note that in [2, 29], only small computations are expected on nodes so such a trick is not an aberration.
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2. Moreover, a state T of the asmmulti machineA is final if τΠ(T ) = T and ∀⟨X∣−→T ⟩⩿T, commAP(X,−→T ) =
(X,−→T ) and this happens if and only if bend is true for every processor and commAP(X,−→T ) = (X,−→T )
where P is the empty program. Therefore, the asmmulti machine A stops if and only if the impmulti
machine M stops, and the ending time is e = 0;

3. When every processor of a subtree V of T has terminated, the state is in a communication phase
and the communication function commM updates the boolean variables from bcomm;P to bP ,
thus respecting the behavior of the function next. So, one step of the impmulti machine M is
simulated by d = 1 step of the asmmulti machine A (during computation phases). Next, for the

communication phases, the impmulti machine M is
↝
IT ⋆

↝
PT ⋆ T

↝
≻
↝
JU ⋆

↝
QU ⋆ U . We have

descendants(V ) = {s⋯s} ⊂↝IT and there are two cases; First M is shifting of level and the generation
of commA (described in Question 52 p.20) induces (by induction) a single call of commA making

d = 1 and the semantics of
↝
≻ respects the behavior of the function next; Second M is performing

a commmunication phase and then V = ⟨X0

»»»»»»⟨X1∣
−→
T1⟩, . . . , ⟨Xp∣

−→
Tp⟩⟩⩿T again both M and A perform

a single call of the function of communication on the X0,X1,⋯,Xp making d = 1.
□

Q55: And now for the second simulation?

We prove this second simulation (the reverse of the previous simulation) in two steps: (1) We
translate (as in [20]) an asm program Π into an imperative program P

step
Π simulating one step of Π; (2)

Then, we construct an imperative program PΠ which repeats P
step
Π during the computation phase, and

detects the communication phase by using a formula F
end
Π .

Q56: Could you recall P
step
Π please?

Of course. Because the asm and imp programs do not have the same kind of loops and updates, a
naive sequentialization of an asm program Π does not work [19]. A solution is provided in [19] and used

in [20] (p. 35) for bsp programs. We also use such a solution
7

for the sequential computations and we

note it P
step
Π .

Q57: So for the sequential parts there is no change. And for the communications?

According to the definition of asmmulti, a communication phase begins at the termination of the asm
program Π, and continues (recursively) until Π can do the first update of the next computation phase.
while ¬bend

commA
{

if F
end
Π {

skip (r + c +m)#
if needDown {down; comm; }

else if needUp {up; comm; }
else {skip (r + c +m) # comm; }

}
} else { P step

Π }
}

Figure 2: Translation PΠ of Π.

As in bsp [20], with the use of the communication func-
tion’s exploration witness Θ(commA), each processor can lo-
cally know whether commA has updated the memory or not
at the last step. But it cannot know if the communications
have globally terminated. Therefore, we add a fresh boolean
b
end
commA

updated by commA itself to detect if the communi-
cation phase has terminated. We also use two fresh booleans
needUp and needDown that are updated to true by respec-
tively the up and down functions and both booleans are
used to go through the d-trees. Those booleans are disjoint
in order not to up and down at the same time or being false

both if only a horizontal communication is needed. We make the hypothesis that commA is also able
to set these two booleans to false after a shift of level. So the code does not make updates on the nodes
except those which are necessary by comm (resp. down and up) and thus do not throw a computing
phase before communications are done.

Q58: Finally, what is this second transformation?

Let PΠ be the imp program defined in Fig. 2, which is the translation of the asmmulti program Π

where P
step
Π is defined in [20] (p. 37). Notice that the communications are executed only if F end

Π is true

[20] (p. 38). We note r = card(Read (Π)), c is the number of formulas in the asm program Π and m is the
maximum number of updates per block of updates ([20] p. 18) in Π. We obtain the following result.

Proposition 4 impmulti algorithmically simulates asmmulti with at most Read (Π) + 4 fresh variables, a
temporal dilation d=2+r+c+m and an ending time e=d+1

7
The idea is to transform each non-clashing sets of non-trivial updates ([20] p. 17) of any asm program Π into an

appropriate sequence of common updates ([20] p. 36).
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Proof (sketch). The proof is again similar to the one of [20] (number of fresh variables) because the
computing phases are as in [20] and only the communication phases differ. Let A be an asmmulti machine,
with an asm program Π and a communication function commA. Let M be the impmulti machine defined
as in [20] (same fresh variables+needUp and needDown). If commA changes nothing then commM

updates bend
commA

(resp. needUp and needDown) accordongly. As above, there are three points to prove:

1. There are only two new variables (compared to [20]) so the result;

2. The computing phases are managed as in [20]: the while command checks in one step whether the
execution has terminated or not (as in [20]); then, the if command checks in one step whether F end

Π

is true or not which (as in [20]) indicates whether Π has terminated or not. Notice that the comm
commands are the ones in order to be the last things done by a processor during the simulation of
a communication step of the asmmulti machine. This ensures the synchronization of the processors
in the same branch when some are in a computation phase and others are not modified; That also
enables the shift of levels (down or up, technical Lemma 2). It is only the function of communication
that is able to perform such a shift and thus we must force it to be called. Thus, each step of the
asmmulti machine is simulated by exactly d = 2 + r + c +m steps of the impmulti machine.

3. A terminal state of the asmmulti machine is reached when Π has terminated for every processor
and the communication function commA changes nothing. In such a state, the while checks
b
end
commA

which was false during the entire execution, then the if checks that F end
Π is true, then

skip (r + c +m), then some nested communications are done and sets bend
commA

to true. Then the
while verifies that the execution is terminated, and the program reaches the end after e = d+1 steps.

□
Q59: And now?

According to the previous propositions, we obtain the following result.

Theorem 2 impmulti ≃ asmmulti

Q60: Could you sum up?

Our core imperative language impmulti is algorithmically equivalent to asmmulti which is the
set algomulti of multi-bsp algorithms. In that sense, the multi-bsp cost model is preserved by the
translation as it is discussed in [20] (for the bsp context). And any programming language with at least
the features of impmulti is multi-bsp complete that is it allows us to program any multi-bsp algorithm.
This result succeeds the work of [20], where it has been proved that impbsp ≃ asmbsp = algobsp, which
also succeeds the work of [19] where imp ≃ asmseq = algoseq.

Q61: It looks consistent. Now, it seems necessary to end this discussion.

Ok. We will first discuss the works that inspired this paper and then we will conclude this discussion
by summarizing what we can learn from this contribution and what we can do in the future.

4 Related Work

Q62: So, just a few more questions. You used a particular model to define the algorithms but would not
there be other ones?

Let us see. As a formalization of an intuitive notion, there can be no formal proof that asms truly
formalize what they are intended to. But the algorithms of all (small-steps, discrete time) sequential
computation models considered up to now have been proved to be faithfully emulated by asms [6, 14, 15].
asm is thus the most used model but right, some authors propose other models. To our knowledge, the
other models are the recursive equations of [21], the concrete data structures of [3] and the category of
algorithms of [28]. Unfortunately, there is no proof of equivalence between the aforementioned models.
We are here using asms in line with our previous works [19, 20] but it would require further investigation.
Notably, if we want results about functional languages.

Q63: Are you thinking of the bsml language (bsp functional programming) and your previous work
about multi-bsp that is multi-ml [2]?

There is also the work of [11] as a first bridge between algorithms and λ−calculus, the kernel of
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proof assistants such as coq
8
. multi-ml allows multi-bsp programming in ml. Proving its algorithm

completeness would be great. But that could be a difficult task. Indeed, even if it has to be feasible as
for the λ-calculus [11], some details such as the exchange of functions still pose a problem.

Q64: Are there the same difficulties for other multi-bsp-like languages?

If you are thinking of [17, 29] or [18], that is surely not the case. Mostly because only memory blocks
are communicated and they dot not have particular meaning. Perhaps the sending of objects can disturb
the semantics but the true difficulty is giving an operational semantics to the c++ language which is
an orthogonal work.

Q65: And for other bridging models? I have the impression that we could write an article by model,
which would not be finally very interesting in fact.

You are right. As said in [26]: “The goal here is to identify a bridging model on which the com-
munity can agree, one which would influence the design of both software and hardware. It will always
be possible to have performance models that reflect a particular architecture in greater detail than does
any bridging model, but such models are not among our goals here.”. There are thus many papers
about bridging models notably with subgroup synchronizations or hierarchical memories/networks such
as [8, 9, 10, 13, 25, 35]. Each has its own specificities and so having all of them in a single set of postulates
seems impossible except using the (too) most general ones for distributed computing of [5, 22].

Q66: So is it the end of this research?

The multi-bsp model is general enough to take into account most (rather) modern hierarchical hpc
architectures. For instance, the models of [13, 31, 32] can be seen as a two levels multi-bsp machine
without a global memory (the root node’s one). But as we have just seen, the multi-bsp model is not
clean about the potential computations on nodes. Moreover, gpus (that could induce an heterogeneous
d-tree) are not taken into account which is sad for modern hpc architectures. We can imagine an
interesting future work: designing another bridging model, giving its axiomatization and implementing
a programming language which is proven to be algorithmically complete with this model. And this new
language would have primitives to better manage the computation on the non-leaf parts.

Q67: In [13], the author criticizes multi-bsp for this overlayer of difficulty. So, would not that be too
complicated?

Hierarchical models have drawbacks. It is more difficult to prove optimally in hierarchical models
than in flat ones. [31] has also analyzed that some typical numerical algorithms cannot take advantage
of a 2-level model. This is due to too much communication in the slower networks. Portability can
also be more difficult when implementing languages dedicated to these models. Especially if we want
a framework/tool to be able to run a single algorithm on a cluster of multi-cores+gpus. For the case
of [13], we can argue that if we can scatter the data/computations in two folds (one for the machines,
another for the cores), we must be able to continue this decomposition for more levels (recursively).
On the other hand, in [1], we have analyzed that when algorithms need much more computation than
communication, hierarchical programs can be much more efficient than flat ones (but such programs are
still more difficult to write and design, which is not a surprise).

Q68: Back to the postulates, what about the parallel thesis of [12]? Are there any possible connections
between your work and theirs?

As explained in [20], even if the work is impressive, we think that such postulates are too much
expressive: they can capture concurrent writing into a shared memory or asynchronous computations
with unbounded number of processors. They define much more complicated exploration witnesses to
manage that. Such witnesses are not necessary for the purpose of bsp-like bridging models and, if we
want to use such a work, we would have to introduce some new and artificial (ad-hoc) postulates in order
to limit the expressiveness which is not a natural way to capture algorithms as it is intended in [16].

Q69: Maybe just using the postulates (using sets of the form (a, πa) (where a is a process name and
πa a sequential asm) of [5, 22] for the axiomatizations is a simple solution. I mean, having such a pair
on leaves (simulating the processors) and only memory/structures on nodes. That would be closer to
the definition of a multi-bsp machine of [26]. But you say that these postulates are complex but yours

8
In such a calculus, a proof of ∀x ∶X ∃y ∶Y P (x, y) corresponds to a functional program that computes a y for any x

such that P (x, y); There is thus an underlying algorithm “inside” the program.
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become more and more complex. What can you say?

Because d-trees need recursive definitions, they are a little complex to define. But the ideas behind
them are not. A function of neighborhood is used in [5] to represent the network: a graph of commu-

nicating processes. But what is truly complex in [5, 22] is the use of infinite sets of processes
9
, a mix

between postulates and asms and, essentially, that the barriers must be exhibited as an implemented
function not as a primitive. We also discuss the problem in [20].

Q70: But in [33], they used such a solution for bsp and without such a mix. Can you compare you
approach to theirs?

Firstly and as explained in [20], the authors use complex postulates (those which are necessary to get
an axiomatization of all the distributed algorithms where each global step of computation manipulates
an infinite set) and then add new postulates to limit their work to bsp. That is not a natural way
to get an intuitive class: five postulates and a signature restriction are necessary compared to our 4
simple postulates. Secondly and as they explained in their conclusion “ It is also no problem to relax
the assumption of a fixed number of processors.” (necessary condition to get immortal algorithms). But
it will not be as easy as they say. Because they use a “share” barrier location which is “free” in the
environment. And such a location could be modified by the machine in a single step with the values
of p other locations. And the signature admitting p different symbols of location information about the
barrier. If p is not fixed, this will induce a problem for the exploration witness (finiteness). Thirdly, each
processor uses a monitored location which is not clearly defined. Fourthly, the sequence of the supersteps
(one crucial notion of the bsp model) is a consequence (theorem) of their postulates (implementation)
not in the natural definition as in our work. Finally, they only allow sending data and thus their model
of execution is, in order, a phase of computations, one of sending, one for receiving and doing a barrier.
But the bsp model does not force such an order between the data exchange: an h-relation is where
each processor sends or receives a maximum of h words of data. Thus, they have proven a functional
(input-output) but not an algorithmic (step-by-step) characterization, as opposed to gurevich’s claim to
capture classes of algorithms [15] , and not only classes of functions [14].

Q71: And their bsp-asm machine?

To perform a synchronization, an additional pair (a, πa) is used. It has an asm rule which is syntac-
tically bounded by p (read the p local information about the barrier). The only way to get an unbound
p is using the more “complex” witnesses of [12]. So, it is necessary to merge all these postulates to get
the “simple” bsp model of computations. Such witnesses are unnecessary in our work because of the use
of p-tuples (or d-trees). Note that our machines (asmbsp and asmmulti) abstract how the barrier is done
by the use of the comm function. This is not to be seen as cheating but as leaving the machines the
way to implement the bsp’s synchronization unit (software or real physical card).

Q72: They also criticize your own work with two objections. The first one is “In a nutshell marquer/gava
provide an axiomatisation with four postulates, the first three of which are essentially gurevich’s postu-
lates for sequential algorithms with the only change that states are restricted to a specific form. Hence,
these three postulates imply that bsp algorithms are special sequential algorithms...If bsp algorithms were
sequential, then by gurevich’s sequential asm thesis they would be captured by sequential asms.” [33].

They are thinking to a kind of diagonalization. But there is not a constant and fixed sized p (nor
for the d-trees in our works) in our initial sets of p-tuples. There are many p and our postulates only say
that an execution must not change the value of p defined by an initial state (as a p-tuple). So if we can
simulate an asmbsp with a sequential asm, there will be a contradiction. We can imagine an asm that
performs the assignments on each of the p structures of any of the p-tuple where p is unbound. But this
violates the exploration witness where only a constant number of assignments are allowed. On the other
hand, the algorithmic simulation works with constants in order to preserve the costs of the algorithms.
Thus p (unbounded) computations could not be algorithmically simulated by a single machine. By con-
tinuing such a reasoning , a sequential machine can also simulate all models of distribution by simulating
the non-determinism of concurrent send/received using finite sets of structures which is non-sense.

Q73: And for their second objection? “In particular, there would also be an asm rule capturing the

9
This permits the distributed algorithm to be added to a concurrent system, so working for correctness of systems and

not considering the algorithms as independent and abtract objects; We prefer programming languages for reasoning about
correctness.
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behaviour in a communication phase. However, their fourth postulate claims just an arbitrary state tran-
sition function for the communication phase, and this function appears again in the definition of an
asmbsp, i.e. no rule capturing the communication is derived.”

They define the communications using send/receiving operations on p
2

number of channels (p chan-
nels per processor). The barriers are simulated using a “protocol” with the use of different communica-
tions depending if the pid of a processor is even or odd. They are thus limited by bsp algorithms that
use such operations (that also allows them to simulate all collective routines à la mpi). But again, if
considering a bsp algorithm with drma routines (and shared memories), one processor could write in
its shared location and then the p other processors could read this value. Using their send/receiving
implementation only, the emitter processor will send p times the value. The bsp cost is the same but not
the algorithm. Because we could not know which bsp libraries will be available in the future, we use an
abstract function comm performing the communications step-by-step. We provide in [20] an example of
such a function for drma routines in the asm context: how the exploration witness could be exhibited
for such algorithms. For example, this forces to serialize the terms as finite lists of elementary data and
use such lists to estimate the h-relations.

Q74: Ok, but if your axiomatization admits (a, πa) on leaves and structures only on node, you can truly
exhibit the processors, which is not the case in your work?

Indeed. But when designing an algorithm, are you truly thinking about how does a processor
compute? We think that algorithm design is mainly independent from the processors. And finally, in
the original paper of multi-bsp [26], computing units are added as an abstract overlayer, as us in a
way. There is nothing said about how units compute locally. Only the global organization in (nested)
super-steps is described.

Q75: And what about the work of [34]? The authors define pram algorithms where each state is a finite
sets of “cells” (processors) accessing a global (share) memory using a single and replicated program. That
is closer to your axiomatization and your work. For the multi-bsp purpose, we can imagine that their
global memory is now organized in a tree-like fashion. Can you elaborate on that?

Indeed. But a detail (nevertheless important) separates us: their postulates limit the algorithms to
the use of a finite number of non-concurrent accesses to this finite share global memory of “localizations”
(kind of memory locations). Note that such postulates do not limit the memory size, only the number
of locations and thus the number of possible running cells to accesses to these localizations. Using our
postulates, we are not limited by such a number because we are using distributed memories (but each of
these memories is also locally limited by the number of locations) even if we are using drma locations
[20]. Nevertheless, by limiting the elementary operations (roughly only on algebraic data where the size
of each term is the number of constructors/letters), they give the possibility to study the complexity of
pram which is a nice result.

Q76: In both of these works [12, 34], shared memories are used. That is closer to the original model of
multi-bsp [26], so why not adapt them to multi-bsp?

As explain in [20], if any finite (in the number of locations) shared memory does not depend on
the number of processors, the memory should contain an unbounded amount of information accesses,
which seems unrealistic (as well as an infinite memory). Therefore, we think a shared memory can be
used only for a bounded number of processors, which is too restricted to model the parallel algorithms
if condidering exploration witnesses à la gurevich (otherwise, complex witnesses as in [12] must be con-
sidered). This should not be confused with the study of machines where it is obvious that each of them
has a finite number of processors or with some pram complexity results where any algorithm executing
on a machine with a given number of processors can also be executed on another machine with another
number of processors; algorithms should be defined for any number of processors. So, let us conclude.

5 Conclusion

5.1 Summary of the Contribution

A bridging model provides a common level of understanding between hardware and software engineers.
The bsp bridging model has been studied for a long time and many bsp algorithms have been designed
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Figure 3: Diagram of the models.

and used with success in many domains [4]. But it can no longer be considered sufficient for modern
architectures. If we consider a bridging model as a tool for the design of “immortal” algorithms, a more
complete model must be considered. The multi-bsp, a natural extension of bsp, is currently a better
candidate to do so.

In this discussion we showed how to extend the work of [20] in order to take into account the specifies of
the multi-bsp model, notably the recursive decomposition of the components and thus of the supersteps.
We give four postulates only to axiomatize the set of the multi-bsp algorithms by slightly modifying
those for bsp [20]. This allows a greater confidence in the results; we also give the operational point of
view in the form of asms and finally prove the algorithmical completeness of a core multi-bsp language
by using an algorithmic simulation of the programs with the aforementioned asms. We can deduce from
this that the cost model is preserved because of the algorithmic simulation: the number of small steps of
the algorithms are identical, up to a constant factor. This is the main novelty and specificity of this work
compared to the traditional work about distributed or concurrent asms. We also show the problems
of how to manage computations on nodes that are only memories; notably, this requires an uncommon
reading of data at any level from the computing units. Fig. 3 illustrates the result diagram and the
following theorem summarizes the results of this work:

Theorem 3 impmulti ≃ asmmulti = algomulti

Q77: Do you keep the seq(par) and par( seq) [7] designs of your past work?

Of course. The asm program still contains the algorithm and, following the machine, defines the com-
putations to perform on the leaves. On the other hand, each impmulti program performs (independently)
some computations on the leaves and some subparts of the programs manage the communications.

Q78: Without wishing to be demeaning, your contribution contains an obvious flaw: the multi-bsp
model makes the hypothesis of limited memories (ms) but the first-order structures do not. Can you
elaborate on that?

We have to admit. But this limitation of memories poses other problems such as: how to compute
the size of the objects? What size do the programs take in the memories? What is the extra cost for
miss-caches? And above all, can we really prohibit an excessive consumption within all these memories
without it becoming unmanageable? For the size of the objects, as in the computation of the h-relations
in [20], we can count the size of first-order terms using their number of letters. We can also prohibit the
use of too big terms (or too many of them) by always counting their sizes. But forbidding computing
(performing an update) because of a lack of memory (and thus, returning undef or leaving the structure
unchanged) seems meaningless especially when using terms in place of block of memories; that it is too
much dependent on the underlying used programming language and thus we cannot obtain any general
result on this subject. It seems thus an unrealistic solution and for the future, the only pragmatic way
seems to trust the algorithmists.

Q79: Finally, you are still working up to elementary operations. So, could you be sure that the cost model
is not too abstract? And you do not provide any constructive example of a function of communication
as in [20].

Algorithms are inherently oracular and so are multi-bsp ones. We do not care if one of the prim-
itives has too high an execution time or is unrealistic (in that case, the algorithm is just not defined at
the right level of abstraction), we count the number of steps only. Some works have begun in this area
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[15]. For the communication, we observe that there is a cruel lack of standard multi-bsp libraries and
so we prefer to wait rather than to work on a function that will not reflect a real implementation.

5.2 Future Work

Q80: Let us imagine possible future work. Why do you bother not to have truly computations on the
nodes? It seems to be more of an unnecessary constraint. Can we imagine a better hierarchical model?

There is no computation on nodes and our use of any communication function is a trick that is
not satisfactory in general: for high-level languages such as java or ml, scattering or gathering data is
performed on complex data-structures. That needs specific computations that need to be exhibited. So
yes, it is indeed a constraint because how it is carried out such computation seems to happen for free.
[26] remarks that we can use the Gi for distant reading (from computing units to nodes) but that is
also not satisfactory because the Gi constants are used for global (synchronous) communication inside
a component rather than for reading on distant components.

Another solution is possible: having d-trees recursively inside d-tree nodes (in place of memories only).
That can allow us to better take into account computations that could be needed on nodes because a deep
d-tree can be a single leaf which could handle the role of a representative computing unit (and assuming
a special parameter to this memory access). Moreover, if a deep d-tree can contain by itself some nodes,
we freely get a natural model of gpus used at a specific level (case of modern hpc architectures).

Q81: This gives the impression that there will always be a need for new bridging models. I mean, adding
gpus, fgpas, etc.

And to our knowledge, nobody has proved the equivalence (if it exists) of the different models of
formalization of the sequential algorithms (and even more for bsp/multi-bsp algorithms). Nor formally
defined interesting sub-classes of the aforementioned models: polynomial times, communication-oblivious
[24], etc. It is actually quite motivating.

Q82: And could we imagine a proof of such results using a theorem prover such as coq?

That is a good idea. Notice that we are not aware of such a work even for the sequential case. There
are surely interesting things to perform.

Q83: Yes. A lot of work to do. A final question. Again, you admit never to use the memory sizes.
What are your plans to solve this problem?

In the real world, the unlimited-resources abstraction is absurd (and that explains the use of memory
sizes in the multi-bsp model) but it remains hard to limit memories. But for restricted models (e.g.
real-time programs or those that were statically analysised) we can surely obtain an estimation of the
memory consumption and some finer results.
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