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Exchange equilibrium

Xe(g) + Kr(ads) = Xe(qds) + Kr(g)

. . Xe
gas phase Xe . . . . .

adsorption sites & Xve Xve Xve Xve

Figure S1: Representation of the fictitious exchange equilibrium between xenon and krypton
considered in our study.



Other correlations
It is possible to define an entropy of adsorption of a guest g for a given standard state (P°=1 atm):
1
AuSt = RIn(P°PM'K®) + TAz,dsHog (SH

where R is the ideal gas constant, 7" is the temperature equals to 298 K, P° is the pressure at

atmospheric pressure and M, is the framework’s molar mass in gmol~!, K* the Henry’s constant of

g and A, H¢ the adsorption enthalpy of g.
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Figure S2: Entropy pair-plots in both linear and log scale.
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Figure S3: Correlation between henry coefficient and enthalpy for both xenon and krypton



Difference of selectivity: the 90:10 composition case
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Figure S4: Overview at linear and log scale, comparison between s, and s,(90
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Figure S5: Overview at linear and log scale, comparison between s, (20 : 80) and s,(90 : 10)



Entropy and enthalpy between low an high selectivity
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Figure S6: Split view of the figures 4 and 5 of the article. The iso-selectivity lines for the limit
considered are represented with blue and orange lines.
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Figure S7: The energetic equivalent of exchange equilibrium entropy T'A.,.S, and enthalpy A, .H, at
ambient pressure labeled using the selectivity s, at ambient pressure.



Distribution of the exchange enthalpy and entropy
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Figure S8: Distribution of the enthalpy and entropy of exchange at low pressure on the 630 most
selective structures
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Figure S9: Distribution of the enthalpy and entropy of exchange at ambient pressure on the 630
most selective structures



Raw data for the archetypal structures presented in the main
article

Table S1: Raw thermodynamic quantities associated for a few representative examples of MOFs.
Henry’s constant K*, K* are in mmolg~! Pa~!, loadings ¢ and ¢*" are in mmolg~!, enthalpies
A H, Ay HY, Ay H and A, H are in kJ mol~!, and diameters D, and D, in A

CSD Refcode s KXe KX A HE® AwgsHE" st g AgHR®  AgHYX® Dy Dy
VOKJIQ 157  7.92107"  5.041073 —-53.9 —382 243 257 0.04 —61.1 —445 48 29
KAXQIL 104  3.011072 2901074 —446  —305 133 141 004 —41.5 -26.8 5.1 38
JUFBIX 106 1591072 1.5010°* —456  —31.4 115 0.80 0.03 —45.7 -313 50 27
FALQOA 162 2231072 1.38107* —47.3 -32.0 171 0.68 0.02 —48.6 -33.1 5.1 3.1
GOMREG 114 9.161072 8.0310°* —44.7 —31.1 74 259 0.14 —47.5 -33.8 54 36
JAVTAC 117 1.24107"  1.061073 —47.7 -335 67 150 0.09 —48.5 -349 51 39
GOMRAC 124 1.1710°' 9.4510* —456  —31.8 47 251 021 —47.3 —348 53 34
MISQIQ 139  6.87107! 4.941073 —51.9 —374 37 230 025 —45.6 —32.8 42 4.1
BAEDTAOI 154 1.39107% 9.04107° —47.7 -31.7 38 1.05 11 —34.0 —23.1 53 43
VIWMOF 81 7.871073 9.70107 —46.3 -30.1 13 299 0.90 —26.0 —17.8 9.8 52
LUDLAZ 166 9.04107% 5.4610°* —454 =309 16 159 0.39 —38.3 —283 6.6 42
WOIIOV 146 4191072 2.86107* —46.4  —307 14 282 081 -33.0 —244 78 64
VAPBIZ 147 3541072 24110 —46.4 =305 13 250 0.78 —34.1 -253 63 36

Lennard-Jones (L.J) potentials The van der Waals interaction can be approximately modeled

by the following potential V,,:

nese((2)" ()

where € is the depth of the well (minimal energy), o is the distance from which the interaction
becomes stabilizing and r is the distance between the two interacting atoms.
Lorentz-Berthelot rules From LJ parameters of interactions between the same type of atoms

we can determine interactions between different types of atoms:

& =& X §

o, + 0, 53)



where i and j are indexes corresponding to two different types of atoms (e.g., i=Xe and j=K)
Langmuir 1-site At given temperature, some mono-site materials’ isotherm can be described
by the following equation:

P =N KP
A= e e p

(54)
where ¢ is the loading of a given mono-component gas, K is the adsorption equilibrium constant
and P is the pressure.

Langmuir 2-site At given temperature, some two-site materials’ isotherm can be described by

the following equation:

(S5)

oP) =N (1= @) T o

1+kpP  ®T1KP

where ¢ is the loading of a given mono-component gas, K; and K are the adsorption equilibrium

constants in the respective sites, o, is the proportion of secondary sites, and P is the pressure.
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Figure S10: The LJ potentials for xenon and krypton interactions. The xenon-xenon interaction is
more stabilizing than the krypton-krypton interaction for inter-atomic distance higher than 4.2 A.



N
n

I xenon: GEMC
+  krypton: GCMC

Loading (mmol.g™1)
= = N
=} wn =)

o
5}

o
o

f—h o ga e Rl I 107! 10t 103 10°
Pressure (Pa) in logarithmic scale
Figure S11: VOKIJIQ: On the left side, an illustration of a clean version (all solvent removed)
of the open-framework aluminophosphate [HAI3P30;3]-C3NH| loaded with xenon and krypton
obtained by GCMC calculations. Color code: Al in silver, P in orange, O in red, H in white ; Xe in
transparent pink and Kr in cyan for the adsorbates. The mono-component isotherms fitted with a
1-site Langmuir model for both xenon and krypton at 298 K is represented on the right side.

nnnnn : GCMC
kryptor

t

107! 10! 10° 10°

Pressure (Pa) in logarithmic scale
Figure S12: KAXQIL: On the left side, an illustration of a clean version (all solvent removed) of
the calcium coordination framework [Ca(SDB)]-H,0, where SDB = 4,4'-sulfonyldibenzoate loaded
with xenon and krypton obtained by GCMC calculations. Color code: Ca in dark cyan, C in gray,
O in red, H in white, S in yellow ; Xe in transparent pink and Kr in cyan for the adsorbates. The

mono-component isotherms fitted with a 1-site Langmuir model for both xenon and krypton at
298 K is represented on the right side.

10



krypton: uir

" Npax= 0.8 mmol.g”!, K=1.8e-04 Pa~}
I xenon: GCMC
t  krypton: GCMC

Loading (mmol.g~1)
o
S

107t 10! 10° 10°
Pressure (Pa) in logarithmic scale

Figure S13: JUFBIX: Representation of a clean version (all solvent removed) of the cobalt(II)
coordination framework [Coy(L)(ppda);]>-H>O, where the ligand L is 2,8-di(1H-imidazol-1-
yl)dibenzofuran and the carboxylic acid ligand Hpppda is 4,4’-(perfluoropropane-2,2-diyl)dibenzoic
acid loaded with xenon and krypton obtained by GCMC calculations. Color code: Co in dark cyan,
Cin gray, O in red, H in white, N in blue, F in green ; Xe in transparent pink and Kr in cyan for the
adsorbates. The mono-component isotherms fitted with a 1-site Langmuir model for both xenon and
krypton at 298 K is represented on the right side.
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Figure S14: FALQOA: Representation of a clean version (all solvent removed) of the Nd-Cu
heterometallic coordination polymer [Nd;Cuz(ANMA)¢]-3(H20), where the ligand ANMA is the
deprotonated form of HANMA = L-alanine-N-monoacetic acid loaded with xenon and krypton
obtained by GCMC calculations. Color code: Cu in dark green, Nd in dark cyan, C in gray, O
in red, H in white, N in blue ; Xe in transparent pink and Kr in cyan for the adsorbates. The
mono-component isotherms fitted with a 1-site Langmuir model for both xenon and krypton at
298 K is represented on the right side.
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Figure S15: GOMREG: Representation of a clean version (all solvent removed) of this aluminophos-
phate AIPO4-n that has a zeotype LAU topology with one-dimensional 10-ring channels loaded
with xenon and krypton obtained by GCMC calculations. Color code: Al in silver, P in orange, O
in red ; Xe in transparent pink and Kr in cyan for the adsorbates. The mono-component isotherms
fitted with a 1-site Langmuir model for both xenon and krypton at 298 K is represented on the right
side.
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Figure S16: JAVTAC: Representation of a clean version (all solvent removed) of this open-
framework fluoroaluminophosphate SIZ-3 [AlsP50,0F;]-2(CgH 1 N») that has an AIPO-11 frame-
work structure loaded with xenon and krypton obtained by GCMC calculations. Color code: Al in
silver, P in orange, O in red, F in green ; Xe in transparent pink and Kr in cyan for the adsorbates.
The mono-component isotherms fitted with a 1-site Langmuir model for both xenon and krypton at
298 K is represented on the right side.
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Figure S17: GOMRAC: Representation of a clean version (all solvent removed) of this aluminophos-
phate AIPOy4-n that has a zeotype LAU topology with one-dimensional 10-ring channels loaded
with xenon and krypton obtained by GCMC calculations. Color code: Al in silver, P in orange, O
in red ; Xe in transparent pink and Kr in cyan for the adsorbates. The mono-component isotherms
fitted with a 1-site Langmuir model for both xenon and krypton at 298 K is represented on the right
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side. It seems that this aluminophosphate is just a smaller version of GOMREG.
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Figure S18: MISQIQ: Representation of a chiral

for both xenon and krypton at 298 K on the right side.
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open-framework fluoroaluminophosphate
[AlgP301,F¢(OH)g]-C4N3H ¢ denoted AIPO-JU89 on the left side. Color code: Al in silver, P
in orange, O in red, H in white and F in green for the framework ; and Xe in transparent pink and
Kr in cyan for the adsorbates. The mono-component isotherms fitted with a 2-site Langmuir model
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Figure S19: BAEDTAO1: Representation of a baryum-based MOF [Bay(EDTA)]-2.5(H,0), where
EDTA is the deprotonated form of HyEDTA = ethylenediaminetetraacetic acid, on the left side.
Color code: Ba in dark green, C in gray, O in red, H in white, N in blue for the framework ; and Xe
in transparent pink and Kr in cyan for the adsorbates. The mono-component isotherms fitted with a
2-site Langmuir model for both xenon and krypton at 298 K, on the right side.
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Figure S20: VIWMOF: Representation of a chiral cadmium-based MOF conglomerate [Cd(tipa)(t3-
OH)]-NO3-EtOH-DMF where tipa is tris(4-(1 H-imidazol-1-yl)phenyl)amine and DMF is dimethyl-
formamide, on the left side. Color code: Cd in dark pink, C in gray, H in white, N in blue for the
framework ; and Xe in transparent pink and Kr in cyan for the adsorbates. The mono-component

isotherms fitted with a 2-site Langmuir model for both xenon and krypton at 298 K, on the right
side.
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Figure S21: LUDLAZ: Representation of a copper-based MOF known as STAM-1
[Cu3z071C30H24]-5(H20), on the left side. Color code: Cu in dark cyan, C in gray, O in red,
H in white for the framework ; and Xe in transparent pink and Kr in cyan for the adsorbates. The
mono-component isotherms fitted with a 2-site Langmuir model for both xenon and krypton at

298 K, on the right side.
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Figure S22: WOJJOV: Representation of an aluminium-based MOF [AI(OH)(1,4-NDC)]-2(H,0)
where NDC means naphthalenedicarboxylate, on the left side. Color code: Cu in dark cyan, C in
gray, O in red, H in white for the framework ; and Xe in transparent pink and Kr in cyan for the
adsorbates. The mono-component isotherms fitted with a 2-site Langmuir model for both xenon and

krypton at 298 K, on the right side.
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xenon: 2-site Langmuir fit
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Ki1=2.4e-02 Pa~?, K,=5.6e-05 Pa~!
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Figure S23: VAPBIZ: Representation of a europium-based homochiral MOF
[EuL(NO3)3(H20)]-13(H,0) where L is an achiral hexacarboxylic ligand, on the left side.
Color code: Cu in dark cyan, C in gray, O in red, H in white for the framework ; and Xe in
transparent pink and Kr in cyan for the adsorbates. The mono-component isotherms fitted with a
2-site Langmuir model for both xenon and krypton at 298 K, on the right side.
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