N

N
N

HAL

open science

Exponentiable Streams and Prestreams

Jean Goubault-Larrecq

» To cite this version:

Jean Goubault-Larrecq. Exponentiable Streams and Prestreams.

2014, 22 (3), pp.515-549. 10.1007/510485-013-9315-x . hal-03189894

HAL Id: hal-03189894
https://hal.science/hal-03189894

Submitted on 24 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Applied Categorical Structures,


https://hal.science/hal-03189894
https://hal.archives-ouvertes.fr

Exponentiable Streams and Prestreams

Jean Goubault-Larrecq
LSV, ENS Cachan, 61 avenue du président Wilson, F-94230 Cachan

Tel.: +33-147 4022 60 Fax: +33-147 40 24 64
goubault@lsv.ens—-cachan.fr

July 2021

Abstract

Inspired by a construction of Escardd, Lawson, and Simpson, we give a general
construction of C-generated objects in a topological construct. When C consists of
exponentiable objects, the resulting category is Cartesian-closed. This generalizes
the familiar construction of compactly-generated spaces, and we apply this to Kr-
ishnan’s categories of streams and prestreams, as well as to Haucourt streams. For
that, we need to identify the exponentiable objects in these categories: for pre-
streams, we show that these are the preordered core-compact topological spaces,
and for streams, these are the core-compact streams.

This version fixes two mistakes in the original published version, one men-
tioned by Jérémy Dubut on February 24th, 2017, the other one by Stefano Nicotra
on January 29th, 2019.

1 Introduction

Streams and prestreams were introduced by Krishnan [Kri09] as a foundation for di-
rected algebraic topology, where topological spaces are equipped with a local notion
of direction, typically of time. There are several competing proposals, see [Hau09a],
and the references given therein. Streams are one of the most practical. Krishnan
(op.cit.) shows that streams for a complete and cocomplete category. He also identifies
a Cartesian-closed subcategory of so-called compactly flowing streams, modeled after
the Cartesian-closed category of compactly generated weak Hausdorff spaces.

Our objective is to show that there are many Cartesian-closed subcategories, both
of prestreams and of streams. The main construction is a more or less direct cate-
gorical generalization of a topological construction by Escard6, Lawson, and Simpson
[ELS04], which we describe in Section 3, right after having recapitulated a few notions
that we need in Section 2. Our initial motivation was to find Cartesian-closed subcat-
egories of prestreams, instead of Krishnan’s streams. Indeed, prestreams are simpler
objects, with a clearer definition. As a general element of style, and in the name of
clarity, one of our aims was to make all constructions as concrete as we could, and
while this seems to be contradicted by the abstract style of Section 3, in the remaining



sections we insist on giving explicit formulae for limits, colimits, and other notions.
This is needed anyway later.

The construction of Section 3 is parameterized by a class of exponentiable objects
(of prestreams, or of streams, in our case), and it is therefore interesting to charac-
terize exponentiable objects in each of the relevant categories. This is what we do
for prestreams in Section 5, and for streams in Section 6. We also study the re-
stricted, intuitive class of streams introduced by Haucourt [Haul2], because of their
intuitive appeal. In each case, we obtain Cartesian-closed categories: core-compactly
generated streams, core-compactly generated Haucourt streams, core-compactly gener-
ated prestreams, compactly generated streams, compactly generated Haucourt streams,
compactly generated prestreams, and orderly compactly generated prestreams all form
Cartesian-closed categories. We conclude in Section 7.

2 Preliminaries

Exponentiable objects. In a category C with finite products x, an exponential (from
the object X to the object Y) is an object Y X, together with a morphism App: Y X x
X — Y (application, evaluation), and a collection of morphisms A(f): Z — Y X, one
for each morphism f: Z x X — Y, where Z is an arbitrary object of C, satisfying the
equations:

(B) Appo(A(f) xidx) = f forevery f: Zx X —»Y
(n) A(App) = idyx
(o) Af)og = A(fol(gxidy)) forallf: Zx X —Y,q: Z' = Z.

This presentation is closest to the A-calculus [Cur86]. An object X is exponentiable in
C if and only if it has an exponential Y X for every object Y of C. Equivalently, X is
exponentiable if and only if the functor _ x X is left adjoint (to the functor _*). C is
Cartesian-closed if and only if all its objects are exponentiable.

For example, the exponentiable objects in Top, the category of topological spaces,
are exactly the core-compact spaces. (See [ELS04], or [GL13, Section 5.4], for a
comprehensive treatment.) These are defined as follows. Let O(X) denote the lattice
of open subsets of a topological space X. For U,V € O(X), write U € V if and
only if every open cover of V' contains a finite subcover of U. (This is the so-called
way-below relation familiar to domain theorists.) X is core-compact if and only if for
every open neighborhood V' of any point x € X, there is an open subset U such that
x € U € V. Every locally compact space (i.e., every space in which every point has a
neighborhood basis of compact subsets) is core-compact, where U € V if and only if
U C K C V for some compact subset K.

In Hausdorff spaces (and more generally, sober spaces), core-compactness coin-
cides with local compactness. In particular, a Hausdorff space that is not locally com-
pact cannot be exponentiable in Top. Examples include Q, the Sorgenfrey line, or
Baire space NN [GL13, Exercises 4.8.4, 4.8.5, Example 4.8.12]: Top is not Cartesian-
closed.

When X is core-compact, then YX can be taken to be the space of all continuous
maps from X to Y, with the Isbell topology. In this case, the description of the latter



simplifies to the following (see [EHO02, Theorem 4.3], or [GL13, Theorem 5.4.4]),
which we call the core-open topology: it is the coarsest topology that makes [U &
V] open for all opens U € O(X), V € O(Y), where [U € V] denotes the set of
continuous maps f such that U € f~1(V). When X is locally compact, the core-open
topology coincides with the more familiar compact-open topology.

Topological functors. We need to recall the notion of a ropological functor |-| [AHS09].
As an illustration in the sequel, think of C as Top, D as Set, |_| as the underlying set
functor. We shall call this the topological example.

Let |-| be a faithful functor from a category C to a category D. A morphism
g: |A| — |B| in D lifts to a (necessarily unique) f: A — B if and only if | f| = ¢. In
the topological example, the maps that have liftings are the continuous maps.

The fiber over an object D of D is the class of objects A of C such that |A| = D.
In the topological example, one may think as objects in the fiber of D as topologies
added on the set D. The fiber over D is preordered by A < B if and only if the identity
morphism on |A| = |B| = D has a lifting from A to B: if so, we say that A is finer
than B, and that B is coarser than A.

There are several equivalent definitions of a topological functor. One states that
|| is topological if and only if every |_|-source (g;: D — |A;|);c; (Where I is any
class of indices) has a unique |_|-initial lift (see [AHS09, Definition 21.1]). Such a
functor is automatically faithful, and amnestic, meaning that < is an ordering, not just
a preorder, on each fiber. It is also uniquely transportable: given an object A of C, and
an isomorphism g: |A| — D in D, there is a unique element B of the fiber of D such
that g lifts to an isomorphism between A and B. In the topological example, the latter
means that we can transport topologies along any bijection.

An equivalent definition, which matches topological uses better, is as follows. A
functor |_| is topological if and only if it is faithful, amnestic, and for every |_|-source
(gi: D — |Aj]),; ;- there is an object B in the fiber of D such that g; lifts to a morphism
fi: B — A, forevery i € I, and satisfying the following universal property: For every
morphism g: |C| — |B| in D, g lifts to a (unique) morphism from C' to B in C if and
only if g; o g lifts to a morphism from C to A; for every ¢ € I. In this case, B is the
coarsest object in the fiber of D such that g; lifts to a morphism f;: B — A; for every
el

This corresponds to the familiar construction in Top that there is a coarsest topol-
ogy B on D that makes all the functions g; continuous; and the universal property
states that to show that a map g with codomain D (with topology B) is continuous, it
is equivalent to show that g; o ¢ is continuous for every ¢ € I.

When every g; is an identity map, this also implies that every family of objects
in the fiber has a greatest lower bound. Consequently, < endows the fiber over each
object D with the structure of a complete lattice. The largest (coarsest) element in the
fiber is the indiscrete object over D, which we write D;, and the smallest (finest) one
is the discrete object D over D. In general, we define an indiscrete object over D as a
greatest lower bound D; of the empty |_|-source; explicitly, D is indiscrete over D iff
|D1| = D, and every morphism g: |B| — D lifts to one from B to D;. Similarly for
discrete objects.



In the definition of topological functors, we are not requiring the class I on which
the |_|-source is indexed to be a set. This does not make a difference for fiber-small
topological functors, i.e., those where every fiber is a set, not a proper class [AHS09,
Proposition 21.34]. In particular, a fiber-small functor is topological |_| if and only if it
is faithful, amnestic, and every small |_|-source (g;: D — |A;|);.; defines a coarsest
object B in the fiber of D such that every g; lifts to a morphism from B to A;, and
satisfying the same universal property as above. This is the case in the topological
example: the class of topologies on a set forms a set.

A dual statement exists, too. Let |_| be a topological functor from C to D. For
every ||-sink (g;: |Ai| — D),c; (where I is a class of indices), there is an object B
in the fiber of D such that g; lifts to a morphism f;: A; — B for every ¢ € I, and
satisfying the following universal property: For every morphism g: |B| — |C|in D, g
lifts to a (unique) morphism from B to C' in C if and only if g o g; lifts to a morphism
from A; to C for every i € I. B is the finest object in the fiber of D such that g; lifts
to a morphism f;: A; — B foreveryi € I.

A topological functor |_| is both left adjoint (to the indiscrete object functor) and
right adjoint (to the discrete object functor), and as such preserves both limits and
colimits. It also [ifts limits (uniquely), meaning that, given any functor F': J — C
such that |F| = || o F has a limit D in D, there is a (unique) limit A of F in C
such that |[A| = D. In fact, a functor |_| is topological if and only if it is faithful,
lifts limits uniquely, and has indiscrete objects D; over each object D of D [AHS09,
Theorem 21.18].

In the sequel, instead of saying that |_|: C — D is topological, or amnestic, or
has any other property, we shall say that C is topological, resp. amnestic, resp. has any
other property, over D, leaving the functor |_| implicit. For example, we say that Top
is topological over Set. We shall see that the categories of streams and prestreams are
topological over Top, hence also over Set.

A construct is a pair (C, |_|) where C is a category, and |_| is a faithful functor from
C to Set. The construct is topological if and only if the functor || is.

When D has a terminal object 1, and |_| is topological, then C also has a terminal
object, which happens to be 11, the indiscrete object on 1. A topological functor |_| has
discrete terminal objects if and only if 1, is discrete, iff 15 = 14, iff 1j is terminal, iff
the fiber over 1 contains only one element. A construct (C, |_|) is well-fibered if and
only if it is fiber-small and has discrete terminal objects [AHS09, Definition 27.20].
This is the case of the topological example.

3 The Escardé-Lawson-Simpson Construction

Escard6, Lawson and Simpson [ELS04] provide a useful construction of a Cartesian-
closed category Map,, from which one can easily derive construction of Cartesian-
closed categories Top, of Top. When C is the class of compact Hausdorff spaces,
Top, is the familiar category of compactly generated spaces.

We observe that the same constructions work, almost without modification, in case
we replace Top by a category C that is topological over Set.

Barr also provided a general categorical construction for building monoidal closed



categories, and in particular Cartesian-closed categories [Bar78]. The Map) | . and
C|_|,c constructions below rely on different assumptions, and are hopefully easier to

apply.

3.1 The Category Map .

Definition 1 (Map | o) Let || be a faithful functor from a category C to a category
D, and let C be a class of objects of C. Call C-probe (on X ) any morphism k: C — X
in C, where C € C.

For any two objects X andY of C, a C-map from X to'Y is a morphism g: | X| —
|Y'| such that, for every C-probe k: C — X, g o |k| has a (necessarily unique) lifting.
We write g e k for this lifting, so that |g e k| = g o |k|.

The category Map, | ¢ has all objects of C as objects, and as morphisms from X
to'Y all C-maps from X to Y. Identities and composition are given as in D.

This is clearly a category. Map | ¢ is like C, except with possibly more morphisms:

Lemma 1 Let || be a faithful functor from a category C to a category D, and let C be
a class of objects of C. Every morphism f: X —'Y of C defines a morphism | f| from
XtoYin MapH,C.

Proof. For every C-probe, f e kisjust f o k. d

Lemma 2 Let |_| be a topological functor from a category C to a category D, and let
C be a class of objects of C. Assume that D has all finite products.

The category Map) | ¢ has all finite products. For all objects X1, ..., X, the
product X1 X ... x X, in C is a product in Map, | ¢, and projections and pairing
maps are defined as in D.

Proof.  Since |_| lifts limits, C has all finite products, and |_| preserves them on the
nose.

Let Xy, ..., X, be n objects in Map, | ¢ (equivalently, in C). Write X3 x...x X,
for their product in C, ; for ith projection, and (g1, ...,gn): Z = X1 x ... x X, for
the pairing of g;: Z — X;, 1 < ¢ < n. We also use similar notations in D.

Let g; be morphisms from Z to X; in Map | ¢ (i.e., from |Z] to |X;| in D), 1 <
i < n. By the definition of products in D, (g1, ..., g,) is the unique morphism A in
Map| | c such that ;o h = g; forevery 4, 1 <4 < n. We must show that it is a C-map.
Let k: C — X be any C-probe. (g1 ® k,...,g, k) is a lifting of (g1,...,9n) ok,

since [(g1 ® k,....gn @ k)| = (g1 @ kl,....|gn @ kI) = (g1 0 |k[,... . gn o |k]) =
(91, -, 9n) o |k|: the first equality is since |_| preserves products (hence pairings), the
second equality is by definition of e, the third one because pairings always distribute
with composition on the right. a

In particular, there is no ambiguity in writing x for product, whether in C, D, or
MapH,C.

Let us write Y for the exponential object from X to Y when it exists, whether in
CorinD, and let App: YX x X — Y be the application (or evaluation) morphism,
A(Rh): Z — Y be the currification of h: Z x X — Y. Write x for the unique element



of the terminal object 1 in Set. When D = Set, for every object Z of C, for every
element 2 € |Z|, write 2! for the unique morphism from 1 to Z such that |z!| maps *
to z. This exists and is unique because 1 is the discrete object on {*}. We characterize
exponentials in a topological construct:

Lemma 3 Let (C,|_|) be a topological construct, and let C, X be two objects in C
such that some exponential from C to X exists.

There is a unique such exponential X © with | X¢| = Homg (1o x C, X). Applica-
tion App is such that |App|(h, c) = |h|(*,c) forall h € | X% | and c € |C|. Currifica-
tion is such that for every morphism f: Z x C — X in C, |A(f)|(z) = fo (2! xid¢).

Proof. We first fix an exponential A (we refrain from writing it X, so as to avoid
any possible confusion), and build an isomorphism with some element in the fiber of
Home (1o x C, X). To do so, we build its image 6 by |-|.

Let App: A x X — C be application, A(f): Z — A be the currification of
f:Z xC — X.Forevery h € |Al, let §(h) be the morphism App o (h! x id¢), i.e.,

htxid A . .. .
1o x C X Ax C PP X . We claim that its inverse is 6’, defined by

0'(f) = |A(f)|(x), forevery f: 1o x C — X. Note that ¢'(f)* = A(h), by definition
of 2! as the unique object such that |21 |(*) = z. We check the following:

0(0'(f)) = Appo (0'(f)' xide)
= Appo (A(h) xide)=h

by (/). Conversely,

0'(0(h)) = |A(Appo (h' xidc))|(x)
IA(App) o h'|(x)  (by (0))
= [h!|(x) (by (1))
h.

Therefore 6 is a bijection. Since |-| is topological, it is uniquely transportable, and
therefore there is a unique exponential object, call it X, in the fiber of Homg (1 x
C, X). This is isomorphic to A through (the unique lifting of) 6.

Applying ||, |0(h)| = |App| o (|h'| x id|c|), using the fact that |_| preserves
products on the nose. It follows that, for every ¢ € |C|, |8(h)|(x,¢) = |App|(h, ).
Moreover, for every morphism f: Z x C — X in C, forevery z € Z, A(f) o 2! =
A(f o (21 x ide)) by (0), 50 [A()](2) = [A(f) 0 21[(#) = A(f o (=] x ide))|(x) =
6= (fo (2! xid¢c)), by definition of =1 = #’. When A = X itself, 6 is the identity,
which allows us to conclude. O

In a topological construct with discrete terminal objects, 1 is terminal, and 19 X X
is naturally isomorphic to X, via ma: 19 x X — X in one direction, and (!,idx): X —
19 x X in the other (we write | : X — 14 for the unique morphism to the terminal object
1p).

Corollary 1 Ler (C, |_|) be a topological construct with discrete terminal objects, and
let C, X be two objects in C such that some exponential from C to X exists.



There is a unique such exponential X with | X¢| = Homg(C, X). Application
App is such that |App|(h,c) = |h|(c) forall h € | X| and c € |C|. Currification is
such that for every morphism f: Z x C — X in C, [A(f)|(z) = f o (z*o!,id¢).

The construction Map | ¢ is interesting when C is a strongly productive class,
defined below. We shall see later that we can instead require C to satisfy a weaker
requirement called productivity.

Definition 2 (Strongly Productive) Ler C be a category with finite products. A class
C of objects of C is strongly productive if and only if every object of C is exponentiable
in C, and products of pairs of elements of C are in C.

Theorem 1 Let (C, |_|) be a well-fibered topological construct, and let C be a strongly
productive class of objects of C. The category Map |  is Cartesian-closed.

More precisely, for any two objects X and'Y of C, let C[X,Y] be the set of all
C-maps from X to Y. Given any C-probe k: C — X, let _ e k be the map from
C[X,Y] to Homc(C,Y) that sends f to f e k. An exponential object from X to
Y is the coarsest object, written [YX]c, in the fiber of C[X,Y] such that the map

CIX,Y] =k Homg(C,Y) lifts to a morphism from [Y X to Y in C, for every
C-probe k: C — X.

Application Appe: [YX]e x X — Y (in Map, | ¢) is given by ordinary function
application (in Set), namely App.(f,x) = f(z). Currification Ac(f): Z — [Y¥]c
of amorphism f: Z x X — Y in Map) | ¢ (i.e, ofamap f: |Z| x |X| = |Y|) is the
map that sends each z € |Z| to f(z, ).

Proof. Every object C of C is exponentiable, so Y exists, and can be chosen in the
fiber of Homc (C, Y') by Corollary 1. Also, among the objects E in the fiber of C[X, Y]

such that C[X,Y] 2k Homc(C,Y) lifts to a morphism k, E from E to Y in
C, for every C-probe k: C — X, there is a coarsest one, because || is topological. So
[YX]c is well defined.

Let Appq: C[X,Y] x |X| — |Y] (in Set) be defined by Appq(f,x) = f(x).
To show that App, is a morphism in Map) | ¢, we must check that App; o |k| lifts
to a morphism App, @ k: C' — Y for every C-probe k: C — [Y¥]c x X. Let
ki =mok: C — [Y¥X]c, kg = mp 0 k: C — X. Both are C-probes. We claim that
App, e k is the composite:

(k1,idc) ko xide App
- >

C [YX]e x C Y¢ xC Y

where k, is the unique lifting of _e ky: C[X, Y] — Homg(C, Y). Temporary call this
composite f. We must check that | f| = Appe o |k|. For every ¢ € |C|,

1f1(e) |App|(|k1[(c) ® k2, c)
|\k1|(c) . k2|(c) (by Corollary 1 again)
[k1l(c)(k2[(c))



while, by definition,

(Appc © [k|)(c) = Appc([k1(c), [k2|(c)) = [ki](c)(|k2|(c))-

Let us turn to currification. Fix an arbitrary C-map f from Z x X to Y (i.e., f
is a map from |Z| x |X]| to |Y'| whose compositions with all relevant C-probes have
liftings).

For each z € |Z|, there is a map f(z,_) from | X| to |Y|. We first check that it is a
C-map. For every C-probe k: C' — X, (z'ol k): C — Z x X is a C-probe, and since
fisaC-map, f e (210!, k) exists. For every c € |C|,

|fe(ztolk)(c) = (fo{z'!,|k]))(c) (since || preserves products)
= [z kl(0) = (f(z,-) e [k[)(c).

This means that f e (z'o!, k) lifts f(z,_) o |k|, showing that f(z,_) is a C-map.

The map 2 +— f(z,-) is therefore one from |Z| to C[X,Y] = |[Y¥]c|. Call this
map Ac(f). We claim that this is a C-map, too. Fixing a C-probe k1: C; — Z, we
must show that A¢(f) o |k1] lifts to a morphism from C; to [YX]c. By the universal
property for |_|-sources, applied to the definition of [YX]¢, we only have to check
that (_ e k2) o Ac(f) o |ky] lifts to a morphism from C; to Y2 for every C-probe
kg: 02 — X.

We claim that the required lifting is A(f e (k1 X k2)). Note that this makes sense:
since C is strongly productive, C; x Cs isin C, so that k; X ko: C1 X Cy — Z X X is
a C-probe, whence f e (k1 x k) exists. Also, the latter can be currified, because C5 is
exponentiable.

Let us compute. For every ¢; € |C1],

IA(f ® (k1 % ko))|[(c1) = (fe (ki xk))o(ciol,idg,) (by Corollary 1)
and we must show that this is equal to:

(- k2) o Ac(f)olki]) (c1) = [f(kil(cr),-) @ ka.

Since both are elements of Home(Cs,Y), and || is faithful, it suffices to check that
their images under |_| are the same. For every ¢y € |Cs|,

IA(f o (k1 x k2))l(c1)[(e2) = [(f @ (k1 x k2)) o (ciol,ide, ) |(c2)

(f o (|k1| x [k2|))(c1, c2)
= f(k1|(c1), [k2|(c2)),

while

| (o ka)oAe(f) o lkal) (cr1)|(ca) = [f(krl(c1),-) @ ka|(ca)
= (f(lk1l(e1),-) o [kal)(c2)
= f(k1|(c1), [k2[(c2))

and we are done. We conclude that A¢(f) is a C-map from Z to [Y¥]c.



The equations (53), (), (o) are obvious from the fact that they hold in Set. E.g.,
for (3), we must show that Appe o (Ac(f) xidx) = f for every C-map f from Z x X
to Y. For every pair (z,z) in |Z] x |X]|, the left-hand side applied to (z,x) yields
Appe o (f(z,-),z) = f(z,x), hence equals the right-hand side (f) applied to (z, z).
O

3.2 (C-Generated Objects

Map) | ¢ is not a subcategory of C. We build a subcategory of C that is equivalent to
MapM C-

Definition 3 Ler |_| be a topological functor from a category C to a category D, and
let C be a class of objects of C. For every object X of C, let CX be the finest object in
the fiber of | X | such that, for every C-probe k: C' — X, |k| lifts to a morphism from C
toCX.

An object X of C is C-generated if and only if CX = X.

The category C| | ¢ is the full subcategory of C whose objects are the C-generated
objects.

The following properties hold:

e CX < X, i.e., there is a morphism 7x from CX to X that lifts the identity on
| X|. Indeed, X itself is among the objects X’ such that for every C-probe k to
X', |k| lifts to a probe to X’; CX is the finest such object, hence is finer than X.

e Every C-probe k: C' — X factors through ix: CX — X, i.e., there is a mor-
phism k': C' — CX such that k = i x ok’, namely the lifting of |k| to a morphism
from C'to CX.

Lemma 4 Under the assumptions of Definition 3, every object of C is C-generated.

Proof. Let X € C. The identity morphism on X is a C-probe, so |idx| lifts to a
morphism from X to CX, thatis, X < CX. We conclude since CX < X, and || is
amnestic. U

Lemma 5 Under the assumptions of Definition 3, for every C' € C, a morphism
g: |C| — |X]| in D lifts to one from C to X if and only if it lifts to one from C' to
CX.

Proof. If gliftsto f: C — CX, thenix o f: C'— X lifts g as well. Conversely, if g
lifts to f: C — X, then f is a C-probe, hence factors through i,, yielding a lifting of
g to a morphism from C to CX. ad

Lemma 6 Under the assumptions of Definition 3, every object of the form CX is C-
generated.

Proof. For every C-probe k: C — X, |k| lifts to a morphism from C to CX, hence
to one from C' to CCX by Lemma 5. That is, CCX is an object Y in the fiber of | X|
such that for every C-probe k: C — X, |k| lifts to a morphism from C'to Y. CX is the
finest, so CX < CCX. Since CCX < CX and |_| is amnestic, CX = CCX. m|



Lemma 7 Under the assumptions of Definition 3, the C-maps from X to Y are exactly
the morphisms in D that lift to a morphism from CX to Y in C.

Proof. Let g be a C-map from X to Y (in particular, a morphism from |X| to |Y|
in D). For every C-probe k: C — X, by definition g o |k| lifts to some morphism
gek: C — Y. By the universal property of |_|-sinks, and Definition 3, g lifts to a
morphism fromCX to Y.

Conversely, assume ¢ lifts to a morphism f from CX to Y. For every C-probe
k: C — X, one can write k as i x ok’ for some morphism k’: C' — CX, and |k'| = |k|,
so |f o k'| = g o |k|, showing that f o k' lifts g o |k|: ¢ is a C-map. ad

Proposition 1 Ler || be a topological functor from a category C to a category D, and
let C be a class of objects of C. The categories Map) | ¢ and C| | ¢ are equivalent.

The equivalence is given, in one direction, by the functor C: Map| | o — C ¢
that maps each object X to CX and each morphism g from X to Y in Map| | ¢ (i.e.,
Sfrom|X|to|Y|inD)toiyof where f is the unique lifting of g as a morphism from CX
to Y in the other direction, by the functor that is the identity on objects and coincides
with |-| on morphisms.

Proof. We must show that C is a well-defined functor. The existence and uniqueness
of f follow from Lemma 7, and the fact that |_| is faithful. The fact that C preserves
identities and composition is because |_| is faithful, again. In the converse direction,
the functor I that is the identity on objects and coincides with |_| on morphisms is
well-defined: we need to check that if f: X — Y is a morphism in C | ¢, then |f] is
a C-map from X to Y, and this is by Lemma 7, together with CX = X.

Finally, for every object X of Map| | ¢, id| x| is a (natural) isomorphism from X
to ICX (i.e., from |X| to |[ICX| = |X|in D): we need only check that id| x| is both
a C-map from X to ICX = CX and from CX to X. The first claim follows from
Lemma 7, and the second one from CX < X.

Finally, for every object X of C| ¢, idx is a (natural) isomorphism from X to
CIX = CX, since X is C-generated. a

Together with Theorem 1, we obtain:

Theorem 2 Let (C, |_|) be a well-fibered topological construct, and let C be a strongly
productive class of objects of C. The category C| | ¢ is Cartesian-closed.

The terminal object of C| ¢ is the terminal object of C, products X xc 'Y are
defined as C(X x Y') where X is product in C, and the exponential object from X to
Y is C[YX}C.

Proof. Only the second part remains to be checked. A terminal object of C| | ¢ is C1
where 1 is terminal in C. Observe that C1 = 1, since there is only one object in the
fiber of |1|, by well-fiberedness and amnesticity. For products, remember that product
in Map| | ¢ coincides with product in C. The rest is clear. a

The largest possible choice for C is the class of all exponentiable objects. We observe
that this is indeed a strongly productive class: for any two exponentiable objects X and
Y, - x (X x Y) is left adjoint to (_X)Y, or to (_¥)X, so X x Y is exponentiable as
well.
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Lemma 8 Let |_| be a topological functor from a category C to a category D, and let
C be a class of objects of C.

The category C| | ¢ is coreflective in C. The right adjoint to the inclusion functor
is the functor, again written C, that maps each object X to CX, and each morphism
f: X =Y to the unique lifting of | f| as a morphism from CX to CY'.

Proof.  We must first check that CX is indeed an object of C| | ¢: this is Lemma 6.
Then, we must check that for every morphism f: X — Y in C, | f| lifts to a morphism
from CX to CY. For every C-probe k: C' — X, iy o f o k is alifting of |f| o |k| to a
morphism from C' to CY’, so | f| is a C-map from X to CY. Lemma 7 then implies the
desired conclusion.

Write I for the inclusion functor. The unit of the coreflection is defined on each
object X as the identity morphism from X to CIX = X (since X is C-generated). The
counit is defined as i x : ICX — X on each object X of C. a

Since C is a left adjoint, it preserves all colimits, whence:

Lemma 9 Let (C,|.|) be a topological construct. Given any class C of topological
spaces, C|| ¢ has all colimits, and they are computed as in C. Every colimit of C-
generated objects in C is again C-generated.

3.3 (C-Generation as Colimits

It is well-known that the compactly generated spaces are exactly the quotients of com-
pact Hausdorff spaces. More generally, given a (strongly) productive class C of topo-
logical spaces containing a non-empty space, the C-generated spaces are exactly the
colimits of spaces from C [ELS04]. A similar phenomenon occurs here.

We say that an object A in C is non-empty, where (C, |_|) is a construct, if and only
if |A] is a non-empty set. In the sequel, we shall always consider that the elements of a
set-theoretic coproduct X = [[,; X; are pairs (i, ) where x € X;. This comes with
canonical injections ¢; : X; — X defines by ¢;(z) = (i, x).

Proposition 2 Ler (C, |_|) be a well-fibered topological construct, and let C be a class
of objects of C containing a non-empty object A.

The C-generated objects of C are exactly the small colimits, taken in C, of objects
of C.

Proof. First, C is also cocomplete and finitely complete, since Set is. Every small
colimit of objects in C is a colimit of C-generated objects by Lemma 4, hence is itself
C-generated, by Lemma 9.

Conversely, let X be a C-generated object of C. Let I be the set of objects X’ in
the fiber of | X| such that X £ X”: this is a set, since || is fiber-small. For every object
X’ € I, pick a C-probe kx/: Cx, — X such that |kx-| does not lift to a morphism
from C'x/ to X’. This exists: an object X’ in the fiber of |X| for which such a kx-
does not exist is by definition one such that for every C-probe k: C' — X, |k| lifts to a
morphism from C to X', which implies CX < X’ (Definition 3); since CX = X, this
would contradict the fact that X’ € I. Finally, we use the Axiom of Choice to collect
one C-probe k. per object X' in I.
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For every x € |X|, {z} is terminal in Set, and since || lifts limits, there is a
terminal object 1(z) in C such that |1(z)| = {«}. There is a unique morphism from
A to 1(z), and since || is well-fibered, 1(x) is discrete, so there is a lifting of the
inclusion map, from {z} to | X|, to a morphism from 1(x) to X. Their composition is
a morphism ¢, : A — X such that |c,| is the constant  map from | A| to | X|.

Let Z be the coproduct []y,c; Cx' U [],¢ x| A, and g be the unique morphism
from Z to X such that g o tx: = kx forevery X’ € I and g o 1, = ¢, Where tx/,
resp. Ly, is the canonical morphism from C'x/, resp. A, to the coproduct Z. We claim
that ¢ is a regular epi.

If it is, then it must be the coequalizer of its kernel pair. Form the latter; this is the
following pullback (=) of two morphisms equal to g:

(=) 2> 7

71

We must show that ¢ is a coequalizer of the pair of parallel maps 71, 72: (=) — Z. To
this end, let p: Z — Y be any other morphism such that p o 1y = p o 7. Applying ||,
we obtain the following diagram:

|72

where the upper left square is again a pullback, since |_| preserves limits. The existence
of the dotted g morphism is justified as follows. The elements of |Z| are the pairs
(X', z) with z € |Cx/|, plus the pairs (x,a) where z € |X| and @ € |A|. Since |q|
maps (X', z) to z, and (z, a) to x, |g| is surjective. In Set, the surjective maps are the
regular epis, which implies that g exists and is unique. (Concretely, we define g(z),
where x € | X|, as |p|(z, a), where a is any fixed element of |A|, which exists since A
is non-empty.)

Consider the one-morphism |_|-source (g). This lifts to a morphism f: X’ — Y,
where X’ is coarsest in the fiber of X with this property. The universal property of X’
is: for every morphism ¢’: | X”'| — |X’| in Set, ¢’ lifts to a morphism from X"’ to X’
iff g o ¢’ lifts to a morphism from X" to Y.

If X £ X', by definition X’ is in I, so kx/: Cx, — X is such that |kx-| does
not lift to a morphism from Cx to X’. Observing that kx» = ¢ o tx-, and taking
X" = Cx: and ¢’ = |kx/| in the above universal property, we see that, since g o ¢’ =
golglo|ux/| = |plofex/|liftsto porx:: Cxr =Y, ¢ = |kx/| must lift to a morphism
from Cx/ to X'. This is a contradiction, so X < X'.
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Since X < X', thereis alifting i: X — X’ of the identity. Note that |(f o) oq| =
|p|, which follows from || = id|x|, |f| = g, and g o |q| = |p|. Since || is faithful,
p = (f 0i)oq. The fact that f o is the unique morphism A such that p = ho g follows
from the fact that g is unique such that |p| = g o |¢| and that |_| is faithful. Therefore, g
is regular epi.

This exhibits X as a coequalizer of (=) :2; Z . Since Z is a small coproduct
T
of objects in C, X is a small colimit of objects of C. O

It is time we relaxed the strong productivity condition.

Definition 4 (Productive) Let |_| be a topological functor from a category C with fi-
nite products to a category D. A class C of objects of C is productive if and only if
every object of C is exponentiable in C, and products of pairs of elements of C are
C-generated.

As every object of C is C-generated (Lemma 4), strongly productive classes are pro-
ductive.

Proposition 3 Let (C, |_|) be a well-fibered topological construct, and C be a produc-
tive class of objects of C containing a non-empty object. The class C of all exponen-
tiable C-generated objects is the largest class C' of exponentiable objects such that the
C-generated objects are exactly the C'-generated objects.

Proof. If X is C-generated, then it is a colimit of objects in C by Proposition 2. Each
such space is exponentiable by definition, and C-generated by Lemma 4, hence in C.
Using Lemma 9, we conclude that X is C-generated. Conversely, if X is C-generated,
then it is a colimit of objects from C by Proposition 2, hence a colimit of C-generated
objects, so X is itself C-generated by Lemma 9.

If C’ is another class of exponentiable objects such that the C’-generated objects are
C-generated, then in particular every object of C’ is both exponentiable and C-generated
(Lemma 4), hence in C, whence the claim of maximality. O

We need the following proposition to prove Lemma 10 below, but this is of inde-
pendent interest. It describes a case where products X X Y are ordinary products in
C. This is analogous to (and generalizes) the fact that the product of two compactly
generated spaces X, Y in the category of compactly generated spaces is their ordinary
topological product as soon as X or Y is locally compact.

Proposition 4 Ler (C, |_|) be a well-fibered topological construct, and C be a produc-
tive class of objects of C containing a non-empty object. For any two C-generated
objects X and Y, the product X x Y in C is C-generated whenever X orY is expo-
nentiable.

Proof.  We first claim that X x C is C-generated for every C € C. Since X is
C-generated, it is a colimit of objects C;, ¢ € I, of C by Proposition 2. Since C' is
exponentiable (as every object of C is), - x C'is left adjoint, hence preserves colimits.
It follows that X x C'is a colimit of objects of the form C; x C'. Since the latter are all
C-generated by productivity, X x C'is C-generated, by Lemma 9.
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Without loss of generality, assume X is exponentiable. Since Y is C-generated, Y
is a colimit of objects C’, j € J, of C, by Proposition 2. Since X is exponentiable,
X x _is a left adjoint, hence preserves colimits. It follows that X x Y is a colimit of
objects X x (Y, j € J. We have seen that each was C-generated, so X x Y is, too, by
Lemma 9. a

Lemma 10 Let (C, |_|) be a well-fibered topological construct, and C be a productive
class of objects of C containing a non-empty object. The class C is strongly productive.

Proof. Every binary product X x Y of objects of C is C-generated by Proposition 4, and
exponentiable (the right adjoint to (X x Y') x _being (_¥')%, or equivalently (_X)Y).
O

This allows us to relax the conditions on Theorem 1.

Theorem 3 Ler (C,|_|) be a well-fibered topological construct, and let C be a pro-
ductive class of objects of C containing a non-empty object. The category Map, ¢
coincides with Map, | z, and is Cartesian-closed. The exponentials are as in Theo-
rem 1.

Proof. We must first show that the C-maps are exactly the C-maps. Since C C C, every
C-map is a C-map. Conversely, let g be a C-map from X to Y, and k: C — X be a
C-probe: we wish to show that g o |k| lifts to a morphism from C to Y. Since C'is C-
generated, by the universal property of |_|-sinks, it suffices to show that (g o |k]|) o ||
lifts to a morphism from C’ to Y for every C-probe k': C’ — C. Since ko k' is a
C-probe, and g is a C-map, g e (k o k') is a lifting of (g o |k|) o |K/|.

We have established that Map) | ¢ is the same category as Mapuf. It is, in
particular, Cartesian-closed.

It also follows that C[X,Y] = C[X,Y], and that application and currification are
given by the same formulas as in Theorem 1. Finally, we know that an exponential
of X and Y is [Y¥]5, but we wish to show that [Y*]¢ is one, too. It is enough to
check that [Y*]¢ is isomorphic to [YX]5. To this end, we first prove that C[Y ¥]¢ <
Yz < [Y¥e.

[Y¥]z < [Y¥]c. [YX]z is an object in the fiber of C[X, Y] such that _e k lifts to a
morphism from [Y Xz to Y'¢ for every C-probe k: C' — X, and in particular for every
C-probe k: C — X. [YX]¢ is the coarsest, whence the inequality.

C[Y¥]e < [YX]s. This is the complicated part. By Lemma 7, it is enough to
show that the identity map idc[x,y] on C[X,Y] is a C-map from [Y¥]¢ to [Y¥]5.
We have seen that it was equivalent to show that it was a C-map, i.e., a morphism in
Map | ; from [Y*]c to [Y¥]5. Since Map, | 7 is Cartesian-closed, and since [Y¥]z
is the exponential from X to Y there (Theorem 1), we only have to exhibit idc[ X,Y]
as the currification of a morphism from [YX]c x X to Y in Mapr. The latter, as
a morphism in Set, must be the function app that maps (f,z) € C[X,Y] x |X]| to
f(z). To show that this is indeed a morphism in Mapuf’ we must show that app is a

C-map. Let k: C — [YX]¢ x X be a C-probe, which we write as (k1, k2). We must
show that app o |k|, the map that sends ¢ € |C| to |k1|(c)(|k2|(c)) € |Y], lifts to a
morphism from C to Y in C. Using Proposition 2, write C' as the colimit of a functor
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F:J — Csuch that FI(J) € C for every object J of J; let also ¢;: F'(J) — C be the
colimit maps.

Since ko 01 is a C-probe, from F(J) to X, _e (kg o) is a morphism from [Y %]
to YF(/) in C. Let f; be the morphism App o ((_e (kz 0ty))oki oy, idp(r)). We
claim that f;: F(J) — Y lifts app o |k| o |¢s|. To this end, we compute the following,
forevery a € |F(J)|:

[f5l(a) = [App[(|- e (k2 0 1)|(|k1|(|es](a))), @)
[App|([k1[(les[(a)) o [k2 0 15]; a)
= |kal(lesl(a))([B2|(les](a))) = (app o [E[)(|es](a))-

We check that fx o F(j) = f; for every morphism j: J — K in J. Since || is
faithful, it is enough to check that | fx| o |F'(5)| = |fs|, which follows from the fact
that |v7] o |[F(j)] = |es o F(j)| = |tk|- By the construction of C as a colimit of
F, there is a unique morphism f: C — Y such that f; = f o for every object
J of J. We claim that f is the desired lifting of app o |k|. It suffices to check that
|f|(c) = (app o |k|)(c) for every ¢ € |C|. Since |-| preserves colimits, it suffices
to show that |f|(|ts|(a)) = (app o |k|)(|es](a)) for every object J of J, and every
a € |F(J)|. We have seen that both sides of this equation were equal to | f;|(a). This
concludes the argument that C[Y ¥]¢ < [V X5

Now that we know that C[Y *]¢ < [YX]z < [Y¥]¢, we claim that the three objects
are isomorphic in Map) | ¢. There are liftings of id¢(x vy}, from C [YX]c to [Y¥]z, and
from [Y ]z to [Y*]¢. In particular, id¢x y) is a C-map from C[Y ¥]¢ to [Y¥]z, and
from [Y ]z to [Y¥]c. Itis also a C-map from [V ¥]¢ to C[Y ¥]¢, by Lemma 7. These
three identities therefore form a circle of three isomorphisms in Map) | » between
C[Y¥]e, [Y¥]z, and [Y¥]c. Since the second one is an exponential of X and Y, so is
the third one. a

Theorem 4 Let (C, |_|) be a well-fibered topological construct, and let C be a produc-
tive class of objects of C containing a non-empty object. The category C| | ¢ coincides
with lelf’ and is Cartesian-closed. The finite products and exponentials are as in
Theorem 2.

Proof.  We first show that C, | ¢ is the same category as lelf‘ This amounts to the
fact that an object is C-generated, i.e., a colimit of objects from C (Proposition 2), if
and only if it is a colimit of objects from C, which is clear.

It follows that C\,\,c is Cartesian-closed, by Theorem 2.

To check that the finite products and exponentials are as in Theorem 2 (e.g., that
C(X xY) = C(X xY)), we show that CX = CX for every object X of C. This
is obvious, since the functor C: MapH’C — C|| ¢ is inverse to the functor [ that is
the identity on objects and coincides with |_| on morphisms (Proposition 1), and so
is the functor C: MapH,E — C\flf' Since Map | = Mapr (Theorem 3) and
C|j.c = C| ¢ the two functors C and C are the same. O

When C = Top, we retrieve the results of [ELS04], and indeed our arguments
are categorical versions of theirs (up to our introduction of strongly productive classes,
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in an attempt to make the presentation simpler). In particular, if C is taken to be the
class of compact Hausdorff spaces, then Top, |  is the Cartesian-closed category of
compactly-generated spaces.

We shall now apply all this to streams and prestreams.

4 Streams, Prestreams

A prestream X’ is a topological space X with a precirculation, i.e., a collection (Cy7) ;) (X)’
indexed by open subsets U of X, where Ty, is a preorder on U, and such that when-
ever U C V then x Cy y implies ¢ Ty y. The space X itself is the carrier of the
prestream.
Prestreams form a category Prestr. The prestream morphisms f from X =
(X, (Ev)yeox)) 0V = (Y, (2v)yeo(y)) are those continuous maps f: X — Y
that are locally monotonic, in the sense that, for every open subset V' of Y, for all
z,y € f7YV),ifz Cs-1(v) y then f(z) 2v f(y).

Example 1 Call preordered space any topological space X with a partial ordering C.
Any preordered space defines a canonical prestream, where Ty, is the restriction of C
to U, for every open subset U of X.

Example 2 (ﬁ) Consider the real line R, and let E% be defined by t ;% t' if and only
if the whole interval [t,t'] is included in U. This is a prestream (which we shall denote

%
as R) that does not arise from a preordered space. E.g., for U = (=3,—1) U (1, 3),

the inequality —2 Eﬂg 2 fails. We define similar prestreams [a,b| on any compact
subinterval [a,b] of R: these prestreams were introduced by Haucourt [Hau09D, text
before Proposition 3.8]. This is a fundamental example. We shall come back to it again
later.

Proposition 5 Prestr is topological over Top. More precisely, the forgetful functor
that maps each prestream (X, (Cy) veo( X)) to the underlying topological space, and
each prestream morphism to the underlying continuous map, is topological.

Proof. This forgetful functor, call it |_|, is clearly faithful and amnestic. Given a |_|-
source (g;: X — |A;l);c > where X is a topological space (and each g; is continuous),
let (Ev)ye O(X) be the coarsest precirculation on X that makes every g; a prestream
morphism, namely: * Ty y if and only if, for every ¢ € I and every open subset V'
of | A;| such that U C g; ' (V), gi(z) <iv g:i(y), where (Ziv)veo(a,)) is the pre-
circulation on A;. Let Z = (Z, (Sw)yyco(z)) be a prestream. For every continuous
map g: Z — X, if g; o g is a prestream morphism (i.e., lifts to morphism in Prestr)
from Z to A; for every i € I, the definition of Cy; makes it clear that g is a prestream
morphism from Z to (X, (Ev)yeo(x))- O

Corollary 2 Prestr is both complete and cocomplete.

Moreover, the carrier of prestream limits (resp., colimits) are computed as the corre-
sponding topological limit (resp., colimit) of the carriers. We give explicit definitions
below.
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Prestream limits. We start with products. For any element & of a product X =
[1;c; X of sets, write x; for its ith component, so that & = (z;), ;. The ith projection
m;: X — X; maps Z to ;. When every X is a topological space, and X is equipped
with the product topology, ; is both continuous and open. We write f[A] for the image
of the set A under the map f. In particular, for every open subset V of [ [..; X;, m;[V]
is open.

The following is Example 3.25 of [Kri09].

el

Proposition 6 Given a family of prestreams, X; = (X; (EiU)er(Xi)), i € I, their
product in Prestr is [[;c; X;, defined as (X, (Tv )y co(x)) where X is the topolog-
ical product [[;.; X;, and ¥ Ty i if and only if for every i € I, x; Ciy, yi, where
Ui =T [V]

Prestream products are fairly strange. For instance, in a binary product X x ), to decide
whether (z,y) Cw (2/,y’), we need to find an enclosing open rectangle U x V 2 W
(U € O(X), V € O(Y)) such that = would be below 2’ relatively to U, and y below
y' relatively to V. Although streams are more complex beasts, stream products will be
more intuitive (see Lemma 16 below).

For every topological subspace A of a prestream X = (X, (EV)VGO( X)), define
the preorder C| 4 ¢y on the open subset U of Aby x T4 ¢ y if and only if z Ey y for
every open subset V of X suchthat U = V N A. (A, (Cja,0) is a prestream:
this is the subprestream of X with carrier A.

The following is easy to see.

UGO(A))

Proposition 7 Let X = (X, (Cv)yco(x)) be aprestream, A be a subspace of X, and
let A be the subprestream (A, (E\A,U)er(A)
is a prestream morphism, and for every prestream morphism f from a prestream Z =
(Z,(Z2w)weo(z)) 1o X such that f[Z] C A, there is a unique prestream morphism
f14 from Z to A such that Lo fI4 = f.

). The canonical injection 1: A — X

Now we can construct any (small) limit in Prestr as a subprestream of a product pre-
stream, just as in Top. Given any functor F': J — Prestr, where J is any small
category, the limit of F" is the subprestream of [ ] 4 e o 5 £(A) consisting of all vec-
tors & such that, for every morphism f: A — BinJ, g = F(f)(za).

Prestream colimits. Coproducts are particularly elementary.

Proposition 8 Given a family of prestreams X; = (X;, (EiU)er(Xi)), 1 € I, their
coproduct [ [, Xi is (X, (Ev)yco(x)) where X is the topological coproduct [ [, ; X,
and (i,x) Cy (j,y) if and only if i = j and x C, vy Y-

el

(Recall that the elements of [ [, A; are the pairs (4, z) withi € I, z € X;.)

Quotients are more interesting. Given an equivalence relation = on a space X,
X/= is the space of equivalence classes g=(x) of elements x of X under =, and the
topology of X /= is the finest that makes g= continuous. In other words, a subset V' of
X /= is open if and only if g=*(V') is open in X.
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Given a binary relation R on some set, its reflexive-transitive closure R* is the
preorder with smallest graph containing the graph of R. Equivalently, x R y if and
only if there is a path xg R z1 R ... R x,, for some n € N, such that xyp = x and
%, = y. We shall build a relation of the form (C U E)*, where C is a preorder and =
is an equivalence relation. It is easy to check that z (€ U =)" y if and only if there is
apathzg =21 C o =23 C ... C 29, = Topy41 for some n € N, with z = x¢ and
Y= Toan41-

For every equivalence relation = on the carrier X of a prestream X = (X, (Ev)y e ( X)),
define the preorder C§; on the open subset V' of X /= by ¢=(z) C}, ¢=(y) if and only
if x (Eq;(\/) U E‘q;1(v))* y. We call quotient prestream of X by = the prestream

X /= defined as (X/=, (EF)veo(x/=))

Proposition 9 The map q= is a prestream morphism, and for every prestream mor-
phism f from X to a prestream Z = (Z, (jW)WEO(Z))’ there is a unique prestream
morphism = from X /= to Z such that f= o q= = .

Proof. It is easy to see that Ty, is well defined, i.e., that ¢=(x) Cj; g=(y) does not
depend on the chosen representatives x and y in their equivalence classes.

To check that g= is a prestream morphism, we must verify that it is locally mono-
tonic. Let V be any open subset of X/=, and check that whenever z Eq; W) Y then
q=(z) Ev q=(y). This is clear since z & -1y, y implies © (£ -1y U E‘q;1(v))*

Y.

Let us check the universal property. The map f= is uniquely determined by f=(¢=(x)) =
f(z), is continuous, and we must check that it is locally monotonic. Let W be an open
subset of Z, and assume that g=(2) & y=-1(w) ¢=(y). Thereisapathazo = 1= 1 ()

1 Bzt r=rwy) T2 Szt =1 owy) T3 Bzt =1 owy) - Baztr= 1wy T Sjezi(p= 1 (w))
Y

Tons1 With 29 = 2 and 29,41 = y. Since ¢='(f= (W) = (f= o q=) }(W) =
(W), we have x9; = -1 (w) Z2i41 foreachi, 0 < i < n,so f(z2) = f=(¢=(22:)) =
fE(qE(xgi_H)) = f($2i+1); and T2i+1 Ef—l(W) T2i+2 for each ,0<t1<n—1,s0
f(z2i41) Cw f(z2i42). As a consequence, f(x) Cw f(y), which is what we wanted
to prove. O

It follows that given any functor F': J — Prestr, where J is a small category, the col-
imit of F is the quotient prestream of [ [ 4 jpiecr or 3 £'(A) by the equivalence relation =
defined as the smallest such that (A4, z) = (B, y) whenever f: A — B is a morphism
inJandy = F(f)(x).

Example 3 Define =5 on R by t =5 t' iff t — t' € Z. The prestream quotient
ﬁ} /=z (see Example 2 for R) is a good candidate for a directed circle, i.e., the one-
dimensional circle with a preferred direction of rotation, say counterclockwise. Equat-
ing points of the circle with complex numbers e, t € R, one can check that €'t is less
than or equal to et relatively to an open subset U if and only if one can pick t and
t' modulo 2 so that t < t' and U contains the arc {e/""' (1= | € [0,1]}. See
Figure 1 (left), where U is shown as a union of fat arcs. One can go from one point
e to another one ' provided we can reach the latter, turning counterclockwise while
remaining in the current fat arc.
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Figure 1: Two versions of the directed circle

Example 4 One might instead try and build a directed circle as (R, <)/=z, i.e., as
a quotient of R as a preordered space, but this is uninteresting. Its precirculation is
trivial: given any open subset U of R/=, x Ty y for all points x and y.

Example 5 Another directed circle candidate is the quotient ([0,1], <)/=z. (This is
due to Krishnan, using streams instead of prestreams. This difference is inconsequen-
tial: we shall see that quotients are the same in streams and in prestreams.) This one
is not trivial, but produces a prestream with a distinguished base point. Indeed, equate
the carrier of ([0, 1], <)/=z with [0,1). The quotient precirculation is then given as
(Ev)veo(o,y) where: if 0 ¢ U, then x Ty y iff v < y (one can jump from one fat
arc to the next one, see Figure 1, right); if 0 € U, then Cy; is trivial (x Ty y for all
x,y e U).

Streams. A stream [Kri09] is a prestream X' = (X, (Cv)y;eo(x)) Whose precircu-
lation (EU)UGO(X) is a circulation, i.e., satisfies Cu,.,v:= Uier Cy,)", for every
family (U;),.; of open subsets of X. Here is a definition that is operationally slightly
simpler.

Lemma 11 A precirculation (EU)UeO(X) on a topological space X is a circulation
if and only if, for every open subset U of X, for all points x,y in U such that x Ty y,
for every open cover (U;);c; of U, v (U;c;r Cunu,)* v

In other words, to compare two points x and y in Ty, one can divide U infinitely, by
taking an open cover (U;),;.; of U (with U = |J,; U;), and finding a path from z to y
such that any two consecutive points will be related by some Ty, .

Example 6 A preordered space (Example 1) is almost never a stream. For example, R
with its canonical ordering is not a stream. Consider U = (=3, —1) U (1, 3), with its
obvious two open covering. If R were a stream, since —2 < 2 in U, then there would
exist a point x such that —2 < x in (=3, —1) and © < 2 in (1, 3). This is impossible
since (—3,—1) N (1, 3) is empty.
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%
One can show that the prestream R = (R, (Zf)/¢ o(ry) of Example 2 is a stream.
It is more than that!:

Definition 5 A Haucourt circulation on X is a precirculation (EU)U co(X) such that,
for every open subset U, for all x,y € U, v Cy y if and only if there is a prestream
morphism~y: [0,1] = (X, (Cv)peo(x)) such that v(0) = z, (1) = y, and the image
of 7y lies entirely inside U. (Such a map ~ is called a directed path fromx toyinU.) A
Haucourt stream is a prestream whose precirculation is a Haucourt circulation.

Haucourt streams arise from work by Haucourt [Hau09b] on the comparison be-
tween streams and Grandis’ d-spaces [Gra03, Gra09]: see Appendix A. The following
justifies the names ‘Haucourt stream’ and ‘Haucourt circulation’, rather than ‘Haucourt
prestream’ and ‘Haucourt precirculation’.

Lemma 12 Every Haucourt stream is a stream.

Proof. Let (U;),.; be an open cover of an open subset U of X, and let z,y € U be
such that x Cy; y. Since X is a Haucourt stream, there is a directed path?  from x to y
in U. The open subset v~ (UNU;) can be written as the intersection of [0, 1] with some
union of open intervals of R, say as [0, 1] N U, s, (as;, bi;). Since [0,1] is compact,
there is a finite set £ of pairs (4, j), ¢ € I, j € J; such that [0,1] C U, ;(as;, bij). It
is easy to check that there is a finite, non-decreasing sequence of elements ¢ in [0, 1],
0 <k < N,withty = 0, txy = 1, and such that forevery k, 1 < k < N, 51
and ¢, both lie in some interval (a;;, b;;), (i,7) € E. In particular, the whole interval
[tk—1,tx] is included in (a;j,b;;) € v~H(U N U;), so y(tk—1) Cunw, Y(tk). This
implies that = ({J;c; Cunw,)* y. We conclude by Lemma 11. O

_>
Example 7 The prestream K = (R, (CF) ;e (r)) Of Example 2 is a Haucourt stream,

hence a stream. Indeed, if t T t, then [t,t'] € U, and it suffices to consider the
directed path® v defined by (r) = rt’ + (1 —r)t, r € [0, 1].

Together with stream morphisms (which are just prestream morphisms between
two streams), streams form a category Str. Krishnan shows that Str is complete and
cocomplete, as a consequence of the fact that the forgetful functor from Str to Top is
topological [Kri09, Lemma 3.22].

While this is more complicated than in Prestr, it is still instructive to obtain as
concrete a description of limits and colimits in Str. We start by examining the so-
called cosheafification functor, from Prestr to Str.

Definition 6 Given any precirculation () ;¢ o(x) onaspace X, its one-step cosheafi-
fication (EU)UeO(X) is defined by: for all z,y € U, © Ty y if and only if. for ev-
ery open cover (U;),c; of U, & (U;e; Evnw,)” vs equivalently, for every such open

IThe published version of Definition 5 incorrectly states that -y is a dipath, instead of a directed path,
namely that it was a prestream morphism from ([0, 1], <) instead of m to (X, (Ev)yeo(x))- The bug
was found by Jérémy Dubut, who mentioned it to me on February 24th, 2017, and whom I am thanking here.
The current version of Definition 5 should be correct.

2The published version incorrectly states “a dipath .

3Not dipath, as the published version incorrectly states.
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cover, there is a path x = xg Cuv,, #1 Cu,, -+~ Eu,, Tn = 9 for some n € N,
11,---,in € I, and x; € U;, NU;;, whenever 1 < j <mn — 1.

We write Sh* (X, (Ev)veox)) for (X, (EU)U€O(X)), all also call it the one-step
cosheafification of the prestream (X, (Cu)yeo(x))-

The one-step cosheafification map is a monotonic map on the complete lattice that is
the fiber of X. Moreover, if |X| = X, then Sh'(X) < X. By Tarski’s fixed point
theorem, Sh! has a largest fixed point Sh>°(X) below X, which one can obtain by
iterating Sh! transfinitely, starting from X". Alternatively, Sh>°(X) is the largest post-
fixed point of S h! below X, namely, the coarsest object ) in the fiber of X’ such that
Y < Xand) < Shl(D).

By definition Sh*°(X) is a stream, and its (pre)circulation is the coarsest circu-
lation finer than the precirculation of X. Therefore Sh>(X) is exactly Krishnan’s
cosheafification X' of X.

Lemma 13 Sh! defines a functor on Prestr, whose action on morphisms is the iden-
tity.
Proof. Let fbea prestreamAmorphism from (AX, (Ev)veox)) o (Y, (Zv)veon))-
We claim that whenever « C¢-1(vy v, f(x) =y f(y). For every open cover (V;),.;
of V, (f~*(Vi));c; is an open cover of f~1(V'), so, if z T s-1(y v, then there is a
path Tr = X9 E‘f—l(v)ﬁf—l(vil) Iy Ef_l(V)ﬂf_l(Viz) Ef—l(v)mf—l(vin) ITp =Y.
Clearly, f(z) = f(z0) 2vav;, f(21) 2vav,, - <vav,, flzn) = f(y). O
This is, of course, a categorical construction on any fiber-small topological functor
|.]: C — D. Let ||: C — D be a fiber-small topological functor. Call a functor
S from C to C deflationary if and only if S(X) < X for every object X of C (in
particular, |S(X)| = |X|), and |S(f)| = | f| for every morphism f. Let Fiiz:(S) be the
full subcategory of C whose objects are the fixed points of S.

Given any deflationary functor S! on C, S' is monotonic on the fibers, that is, if
X <Y, then S}(X) < SY(Y). Indeed, letting i be the lifting of the identity, from X
to Y, |S1(i)| = |i| is the identity. Since S*(X) < X, S! restricts to a monotonic map
on the complete lattice of objects Y such that Y < X. In particular, S! has a largest
fixed point S>°(X) below X; S°°(X) is the coarsest fixed point of S* finer than X in
the fiber of | X|.

Lemma 14 Let | |: C — D be a fiber-small topological functor, and S* be a defla-
tionary functor on C. For every object X of Fix(S*), for every object Y of C, and for
every morphism g: X — ), |g| lifts to a morphism from X to S ().

Proof. Let A be the set of objects Z in the fiber of |)| such that |g| lifts to a morphism
from X to Z. In particular, ) is in A. Also, for every Z € A, S'(Z) is in A, because
|g| lifts to S*(g): S*(X) = X — S'(Y). The family (idjy|: |V| — |Z]) ;_ isa |-
source, so we can build the coarsest object Zj in the fiber of || such that the identity
lifts from Z, to every object of A: this is the greatest lower bound of 4. By the
universal property for |_|-sources, |g| lifts to a morphism gg from X to Zy. This shows
that Zj is in A, and is therefore the smallest element of A.
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Since Zjisin A, S1(Zy)isalsoin A, so Zy < S*(Zp). In other words, Z; is a post
fixed point of S'. Since S>°(Y) is the largest, Zy < S*°(Y'). Write i: Z5 — S<())
for the lifting of the identity: then ¢ o gg: X — S°°(}) lifts |g]. O

Proposition 10 Let | |: C — D be a fiber-small topological functor, and S* be a
deflationary functor on C.

S defines a functor from C to Fix(S) such that |S*°(g)| = |g| for every mor-
phism g.

S°° is right adjoint to the inclusion functor. The unit at the object X of Fixz(S') is
the identity map from X to S (X) = X, the counit at the object X of C is the unique
lifting of the identity as a morphism from S (X) to X.

In particular, Fixz(S*) is a coreflective subcategory of C.

Proof. The action of the functor S on morphisms is as follows. For every morphism
g: X = Y in C, g o j is a morphism from S*°(X) — Y, where j: S°(X) — X lifts
the identity, and then |goj| = |j| lifts to a unique morphism from S°°(X’) to S*°()) by
Lemma 14. This is S°°(g). Checking that this defines an adjunction is straightforward:
as usual, we check identity of morphisms f = f’ by checking |f| = | f’|. O

Corollary 3 Coshedfification is right adjoint to inclusion. Str is a coreflective sub-
category of Prestr.

It follows that Str is complete, as shown by Krishnan [Kri09]. Another way of
arriving at this result is to show that Str is also topological over Top. This was
Krishnan’s way of proving completeness, and follows from a more general categorical
result:

Lemma 15 Let |_|: C — D be a fiber-small topological functor, and S* be a defla-
tionary functor on C. The functor |_|: Fiz(S') — D is topological.

Proof. To make things clearer, write |_|’ for the restriction of |_| to Fiiz:(S*). The func-
tor |_|" is clearly faithful and amnestic. Consider an arbitrary |_|"-source (g;: D — |A;|")
This means that A; is an object of Fiz(S") for each i € I, and (g;: D — |A;]),¢; is
a |_|-source. There is a coarsest object B in the |_|-fiber of D such that g; |_|-lifts to a
morphism f;: B — A; for each i € I. (We prefix “fiber” and “lift” with the intended
functor, for readability.) Let j: S°°(B) — B be the unique ||-lifting of the identity,
then g; |_|'-lifts to f; o j foreach i € I.

Let us show the universal property for |_|'-sources. Let g: |C|" — D (where C is
an object of Fiiz(S')), and assume that g; o g |_|'-lifts to a morphism h; from C' to A;
in Fix(SY) for every i € I. The morphism g; o g trivially |_|-lifts to &; in C, and by
the universal property for |_|-sources, g |-|-lifts to a morphism from C to B in C. By
Lemma 14, g also |_|-lifts to a morphism A from C to S°°(B) in C. It follows that h is
a morphism in Fiz(S'), and |_|'-lifts g. O

iel”

We therefore retrieve:

Proposition 11 (Krishnan) Str is topological over Top, and therefore complete and
cocomplete.
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Figure 2: The construction of Lemma 16

Corollary 3 tells us a bit more: Sh> preserves limits. Since Sh*°(X) = X for ev-
ery stream X', one deduces immediately that limits of streams are computed as the
cosheafification of the corresponding prestream limits. This is how Krishnan builds
them [Kri09, Section 3.2]. For example, the stream product of the streams X and )
is Sh>°(X x ), where X denotes prestream product. In this case, we only need one
iteration of Sh' to reach the fixpoint defining Sh>, as we shall see.

Recall that the open subsets W of a product X xY are the unions of open rectangles
UxV,UeOX),VeOy).

Lemma 16 Let X = (X, (Cv)peox)) and Y = (Y, (2v)yeo(y)) be two streams.
Define (C ® X)w, for every W € O(X x Y), as the following preorder on W :
(z,y) (C ® X))y, (2',y') if and only if there are finitely many open rectangles Uy x V1,
oo, Uy X Vo included in W, and paths x = z9 Cy, 1 Cpy, ... Cy, @, = @/,
Y=1% Cv, 11 Cv, ... Cv., yn =/, of the same length.

The family (T ® X)w)weo(xxy) I8 a circulation.

Proof. That it is a precirculation is obvious. Let (Wj)j s be an open covering of
W. Each W; is a union of open rectangles, so one can refine this covering by another
one, (Uj, x V)), c k- consisting of open rectangles. (By refining, we mean that every
Uj, x V| is included in some W;.) Assume (z,y) (E ® <)y, (2’,3’), and consider
paths v = z0 Ly, 21 Cp, --- Cu, o =2,y = Evy y1 Bv, - Cv, Yn = ¥,
where Uy x V4, ..., U, x V,, are open rectangles included in W.

The idea of the construction below is given in Figure 2, where U; x Vj is the
gray rectangle, and some of the rectangles U; x V/ are shown as smaller rectan-
gles covering U; x V;. For each i, 1 < ¢ < n, we have z;,_1 Cpy, x;. Now
Usx Vi €W C Uper(Ug x Vi), and y; ;1 is in V;, so U; C UkeKF1 Uj., where
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K,1 = {k € K | yi-1 € V/}. (The rectangles U; x V; with k € K,_; are
shown with fat borders, at the bottom of the figure.) Since X is a stream, there is a
path x;_4 (U%Kji1 EUmU,;)* x;. By pairing all the points on this path with y;_1,
we obtain a path (z;_1,y;—1) (UkeKjfl(EUiﬂU,; X 5VmV,;))* (zi,yi—1). In partic-
ular, (2i-1,9i-1) (Uper(E © Dwnwixvy)” (@i, yi-1), and since (U} x Vi),
refines (W), (wi—1,¥i-1) (Uje 7 (E © Dwew,)™ (@4, yi-1)-

Symmetrically, (x;, yi—1) (U;c;(E ® X)wnw,)” (i, y:). By concatenating these
paths, we obtain (z,y) (U,c;(E ® 2)waw,)" (2, y). o

Proposition 12 Given any two streams X and Y, their product in Str is given by the
construction C ® = of Lemma 16, and coincides with Sh* (X x Y).

Proof. Let X be the carrier of X', Y be that of ). Let Z denote X x Y with the
circulation given in Lemma 16. Clearly, Z < X x ), and since Z is a circulation, it
follows that Z < Sh>*°(X x ).

Conversely, let Z’ be any stream such that Z' < X' x ). Write (qw )weo(x xv)
for the circulation on Z’. If = <y y, then = (U;c; <, xvi))™ ¥» where (U; x V;),;
is the collection of open rectangles included in W, since Z’ is a stream. Any two pairs
related by du, xVv;) are related by Cy, X =y, since 2/ < X x Y. It follows that
z (C ® X)w y, where we take the notation from Lemma 16. We have proved that
Z' < Z. As this holds for every stream Z/ < X x ), it holds for the largest one,
Sh>®(X x Y). We conclude that Z = Sh>(X x ).

Finally, Sh>° (X x Y) < Sh1(X x V) < Z, so all three are equal. m|

While we are considering explicit constructions, we note that the situation is ex-
tremely simple for colimits.

Proposition 13 Colimits in Str are computed as in Prestr: any colimit in of streams
taken in Prestr is a stream.

Proof. 1Tt suffices to show this for coproducts and for quotients. This is clear for
coproducts, in the light of Proposition 8. For quotients, let X = (X, (Cv)yep(x)) be
a stream, and recall that the precirculation on X /= is defined by g=(z) Cj; ¢=(y) if
and only if z (E -1y, U E‘q;(v))* y. If so, then there is a path z = xq =zt v)
1 Emryy T2 =2y T3 Egziyy - Egziry Tan Sjgzi(vy T2ns1 = Y in V. For
every open cover (V;) el of V, we observe that: for j odd, z; C gt (v) Tj+l implies
that z; (Uje; Eyztvavy)” @415 50 4=(25) (Uier Evnvy)” a=(41); for j even,
Tj =|,zt(v) Ti+1 implies that ¢=(z;) = g=(z;+1) is in V, hence in some V;, i € 1,
whence g=(z;) EFny, ¢=(2;41). Combining these results, g=(z) (U;c; Evay,)”
4=(y)- O
One can play exactly the same game with Haucourt streams, and the situation is even
simpler. One possibility is to define S*(X, (Cy) veo(x)) now as X together with the
precirculation (ElU)UGO(X) defined by: for all z,y € U, x T}, y if and only if there

is a directed path* from z to y inside U, and replay the arguments above.

4Not a dipath, as the published version incorrectly states.
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Lemma 17 (Removed’.)

Definition 7 Given any precirculation (Cy) ;¢ o(x) on a space X, its haucourtifica-

tion (iU)UGO(X) is defined by: for all x,y € U, x Ty y if and only if there is a
directed path from x to y inside U.

We write H(X, (Cv)yeo(x)) for (X, (ﬁU)UeO(X))’ and also call it the haucour-
tification of the prestream (X, (Cv)yeo(x))-

H %
Example 8 The haucourtification of ([0,1], <) is [0,1]. Similarly, H(R,<) = R.

Indeed, we have seen in Example 7 that [0,1] and R are Haucourt streams, and one
easily checks that any Haucourt stream finer that ([0, 1], <), resp., (R, <), must be

%
finer than [0, 1], resp., R.

The following says in particular that any iteration of H starting from X will stop
after the first step, i.e., H(H (X)) = H(X). We are in the nice case where, by taking
St = H, S is equal to S itself.

Lemma 18 The haucourtification of a prestream X is a Haucourt stream.

—
Proof. Assume x ﬁU y. By definition there is a directed path v: [0, 1] — X from =
to y in U. We must show that it is a prestream morphism from [0, 1] to H(X). Let V

be any open subset of the carrier of X', and write (C7)y ¢y (x) for the precirculation
on X. We must show that for all ¢, € [0,1] such that t < ¢ and [t,t] C v~ 1(V),

~(¢) iv ~(t'), i.e., we must find a directed path v": [0, 1] — X from () to v(¢') in
v~ Y(V). We just take the reparameterization 7' () = ~(rt’ + (1 — r)t). O

It is clear that #H defines a deflationary functor on Prestr. The fact that it is a
functor such that |H(f)| = |f| follows from the fact that if there is a directed path
from z to y in f~1(V'), where V is open in )V, and f is a prestream morphism from X’
to ), then f o~ is a directed path from f(z) to f(y) in V. Lemma 15 then applies, so:

Proposition 14 HStr is ropological over Top, and therefore complete and cocom-
plete.

Proposition 10 also applies:

Proposition 15 Haucourtification, as a functor from Prestr to the category HStr of
Haucourt streams, is right adjoint to inclusion. HStr is a coreflective subcategory of
Prestr.

In particular, HStr is complete, and limits are computed as the haucourtifications of
the corresponding prestream limits. This time, H (X x )) is directly the product in
HStr of the two Haucourt streams X and ), and we do not need an intermediate
result such as Lemma 16. The latter, nonetheless, has an analog here.

SThe corresponding result in the published version is wrong. It is never used.
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Lemma 19 Let X = (X, (Ev)yeo(x)) and Y = (Y, (2v)yco(y)) be two Haucourt
streams. The circulation ((C ® j)W)WGO(XxY) defined in Lemma 16 is a Haucourt
circulation, and coincides with the circulation on H(X X ).

Proof. It suffices to prove the second claim. Write (dw )y o(x <y for the circulation
onH(X x V). Let W € O(X xY), and assume (x,y) <w (2, y’). Since H(X x ))
is a Haucourt stream (Lemma 18), hence a stream (Lemma 12), there is a path (x,y) =
(wo,90) <vyxvi (T1,¥1) Woxvy -+ Woxv, (Tn,Yn) = (2',3y"). It follows easily
that () (C ® <),y (/..

Conversely, if (z,y) (E ® =)y, («/,y), then by definition there are finitely many
open rectangles U; x Vi, ..., U, x V,, included in W, and two paths z = x9 Cy,
21 Cy, ... Cp, zn =2,y =% Cv, 11 Cv, ... Cv, yn = ¥'. (Without loss of
generality, assume n > 1.) Since X and ) are Haucourt streams, foreach ¢, 1 <7 < n,
there is a directed path ~y; from x;_; to z; in U;, and a directed path §; from y;_1 to y;
in V;. The pairing (7;,d;): [0,1] — X x ) is then a directed path from (x;_1, ;) to
(yi—1,y:) in U; x V;, hence in W. Build the concatenation of these directed paths. By
definition, this is the map : [0,1] — X X Y such that (t) = (~;, d;)(nt — i+ 1) for
allt € [(i—1)/n,i/n], 1 <i < n.Itis easy to see that « is a directed path from (x, y)
to (z/,y’) in W, so (x,y) <w (z',y"). O

We finish with colimits.

Proposition 16 Colimits in HStr are computed as in Prestr: any colimit in of Hau-
court streams taken in Prestr is a Haucourt stream.

Proof.  This is clear for coproducts. For quotients, let X = (X, (Ev)yeo(x)) be a
stream, and recall that the precirculation on X/= is defined by ¢=(z) C5; ¢=(y) if
and only if & (5 -1y, U E‘q;(v))* y. If so, then there is a path z = x¢ =1z (V)
T Egztvy P2 Sty B3 B2ty -0 Bgztn) Ton Szt vy Tannn = yin Ve
Since X is a Haucourt stream, there are directed paths® ; from z; to x4 in ¢=* (V)
for each odd j. They induce directed paths g= o y; from ¢=(z;) to g=(x;41) in V. For
jeven, g=(x;) = g=(xj4+1). By concatenating the directed paths g= 0 y1, g= 073, ...,
g= © Y2n—1, We obtain a directed path from ¢=(z) to g=(y) in V. m]

5 Exponentiable Prestreams

Since Prestr is topological over Top, hence over Set, and there is only one pre-
stream in the fiber over the terminal object {x}, Corollary 1 applies: for all prestreams
X, Y such that the exponential J)* exists in Prestr, up to isomorphism this expo-
nential must be the set [X — )] of all prestream morphisms from X’ to )/, with some
topology, and some precirculation. Moreover, and omitting any explicit mention of the
functor |-|, App must be ordinary function application, and A(f) must be defined by

A(f)(2) = f(z ).

SNot dipaths, as the published version incorrectly states. All other occurrences of “dipath” in the original
proof have been replaced by “directed path”.
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Let S be Sierpiriski space, i.e., {0, 1} with opens all subsets except {0}. This has the
important property that a subset U of a space X is open if and only if the characteristic
map xy: X — S is continuous.

Let the Sierpiriski stream be S with the trivial precirculation at all open subsets.
Since any open cover of a non-empty open subset V' of S must contain V, S is trivially
a stream, not just a prestream. The following lemma therefore applies to both Prestr
and Str.

Lemma 20 Let C be any full subcategory of Prestr with finite products. Assume that
1 = {x}, with the obvious topology and precirculation, is an object of C, and that the
Sierpiriski stream is an object of C.

The carrier X of any exponentiable object in C is core-compact.

Proof. Let X = (X, (Cuv)peo(x)) be exponentiable in C. The continuous maps
from X to S are the characteristic maps xy of open subsets of X, and they all define
prestream morphisms. Up to isomorphism, the exponential object, which is [X — V],
must be the set O(X), with some topology and some precirculation.

The application map App: [X — Y] x X — Y is then continuous, and A(f) is
continuous from Z to [X — Y] = O(X) for every continuous map f: Z x X — Y.
In this case, X must be core-compact [GL13, Proposition 5.3.3]; see also [GHK 03,
Theorem I1.4.12] (for Ty spaces) or [EH02, Theorem 4.3]. a

Recall that X is exponentiable in Top if and only if it is core-compact. The unique
exponential object Y is [X — Y, the space of all continuous maps from X to Y’
with the core-open topology. For a prestream X with core-compact carrier X and a
prestream Y with carrier Y, write [X — Y]° for [X — )] with the subspace topology
induced from [X — Y]°. This is generated by subbasic opens sets that we again write
[UeV]U € O(X),V € O()), now denoting the set of prestream morphisms f
such that U € f~1(V).

Theorem 5 The exponentiable objects in Prestr are the preordered core-compact
spaces, i.e., the prestreams X = (X, (Cv)yeo(x)) such that X is core-compact and
Cy is the restriction to U of the preorder C x, for every open subset U of X.

For every prestream Y = (Y, (jV)VEO(Y)),for every open subset V of Y, let OV
be the set of prestream morphisms f from X to Y whose image f[X] intersects V. The
exponential object Y™ in Prestr is (up to isomorphism) ([X — Y]°, (S?,V)Weo([x_)y]o)),
where <3, is defined by:

forall f,g € W, f <3, g iff for every open subset V of Y such that W C OV, for all
x,2" € X such that f(x) and g(x') are in V and x Cx o/, f(z) <y g(z’).

Proof.  Let X = (X, (Ev)yeo(x)) be an exponentiable object in Prestr, and
Y = (Y,(2v)veo(y)) be a prestream. Let Y be the exponential object. We can
assume that its carrier is [X¥ — )], with some topology, and we decide to write
(Sw)weo(jx—yy forits precirculation.

Since the application map App: Y x X — ) is a prestream morphism, and recall-
ing the definition of products in Prestr (Proposition 6), we have that for all opens V'
of Y, forall f,g € [X — V], if f and g are in 7r; [App ™' (V)] then f <m[App—1(V)] I
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implies that for all =, 2’ € mo[App (V)] such that (f,z) and (g, z') are in App~* (V)
and © ETrz[App’l(V)] xl’ f(.’l?) =v g(x/)

This definition is simplified slightly once we realize that, whenever V' is non-empty,
mo[App ' (V)] is the whole of X. Indeed, pick € V, and note that for every = € X,
there is a prestream morphism % such that App(h,x) = h(z) is in V, namely, the
constant map with value y. Also, 7, [App ™! (V)] is the set of all b € [X — )] whose
image h[X] intersects V. We have decided to write OV for this set. It follows that for
every open subset W of [X — Y], if f <y gthen f <3, g.

We now examine currifications. Given any third prestream Z = (Z, (<0)peo(2))-
and any prestream morphism h: Z x X — ), A(h) should be a prestream morphism
from Z to Y. Recall that A(h) = h(z,_). If this is a prestream morphism, then for
every open subset W of [X — )|, we must have:

for all z <p (py-1(w) 2, h(z,2) <w h(Z,.),
in particular,
for all z <y (py-1(w) 2’5 h(z, ) < h(Z', ).

The latter expands to the following formula, where z and 2’ are arbitrary points of Z,
V is an arbitrary open subset of Y, x and z’ are arbitrary points of X:

if z AR -1(W) Z/, (a)

W C oV, (b)

ifx Cx a, (c)

and if h(z,z) € Vand h(2',2") € V, (d)
then h(z,x) <y h(Z,2'). (e)

We claim that this implies that & is a preordered space, i.e., that Cy; is the restric-
tion to U of the preorder C x, for every open subset U of X. Assume the contrary.
Let Z be the terminal object 1, Y = X, and h be the map that sends (x,x) to x.
This is just second projection 7y, hence is a prestream morphism. Since X is not a
preordered space, there is an open subset U of X and there are two points z, 2’ € U
such that x Cx 2’ but ¢ Ly z’. Take z = 2z’ = x, so that condition (a) is trivially
satisfied. Take V' = U, and W = OU, so that (b) holds. By assumption, (¢) holds.
Also, h(z,z) = z, h(z',2') = o’ are in V = U, so (d) holds. Since z Ly 2/,
h(z,z) Cy h(2,2’) fails.

It follows that X is a preordered space. X is core-compact by Lemma 20.

In the other direction, assume that X is a preordered core-compact space. We claim
that ([X — )]°, (S(‘)/V)WEO([X—))}]“)) is an exponential from X" to ). This reduces to
showing that the usual formulas for application and for currification define prestream
morphisms.

In the case of application, we must first show that ordinary function application
App is continuous from [X — Y]° x X to Y. This is because App is continuous from
the larger space [X — Y]° x X (X is core-compact), and [X — Y]° has the subspace
topology from [X — Y]°. We proceed to local monotonicity, and show that for every
open subset V of Y, for all (f,z), (g,2') € App *(V) (i.e., if f(x) and g(z') are in

V), if f S;I[Appfl(v)] gand x T iapp-1(v)] a', then f(z) <y g(z'). Recall that
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mi[App (V)] = OV, and that if V' is non-empty, then m[App~*(V)] = X. Since
f S;I[App—l(v)] g, [ <%y g. In particular, OV is non-empty, so V' is non-empty, so
m[App 1 (V)] = X. Since f <%y g, ¢ Cx ', and f(x) and g(z') are in V, the
definition of <%, yields f(z) <y g¢(2') immediately.

In the case of currification, for every prestream morphism h: Z x X — ), the
map A(h): z — h(z,_) is continuous, again because X is core-compact and [X —
Y]° has the subspace topology from [X — Y]°. It remains to show that A(h) is
locally monotonic, i.e., that for all z <p )1 (wy 25 h(z,-) <% h(2',_). We have
seen that this amounts to showing (e) from assumptions (a)—(d). From (a) and (b),
Z A)-1(ovy 2. Note that A(h) " (OV) ={z € Z |z € X -h(z,2) e V} =
m1[h~Y(V)]. By (d), z and 2’ are in mo[h~1(V)], and by (c), z Ex a’. Since X is
a preordered space, ., 1, —1(vy is the restriction to 7 [h=1(V)] of the preorder Cx,
$0x Cryp-1(v) @' Together with 2z < 1 (v 2" and the fact that & is a prestream
morphism, we obtain (e). O

We now return to the construction of Section 3. Theorem 4, together with Theo-
rem 5, immediately implies the following. (We write || for the forgetful functor from
Prestr to Set here. The part about small colimits is by Proposition 2.)

Theorem 6 Let C be any class of preordered core-compact spaces, and such that any
binary prestream product of objects in C is C-generated (equivalently, when C contains
at least one non-empty space, such that every binary product of objects of C is a small
colimit in Prestr of objects of C).

The category Prestr| | ¢ is Cartesian-closed.

In this category, product of X’ and ) is given by C(X x V). When X or ) is core-
compact (e.g., locally compact), this is just ordinary prestream product X' x ) (Propo-
sition 4).

We have the following examples, inter alia. All are in fact strongly productive: the
product of any two objects of C will always be in C.

Example 9 The largest example of this construction is obtained by taking C to be the
class of all preordered core-compact spaces. It is fair to call these spaces, a.k.a.,
the prestream quotients of coproducts of preordered core-compact spaces, the core-
compactly generated prestreams.

Example 10 Instead, take C to be the class of all preordered compact Hausdor{f spaces.
Call compactly generated prestreams those prestreams that are C-generated. This is
again a Cartesian-closed category. Every coproduct of compact Hausdorff spaces is
locally compact Hausdorff. Since the carriers of coproducts of prestreams are the co-
products of the carriers, and since coproducts in Prestr of preordered spaces are
preordered spaces, every compactly generated prestream is the quotient in Prestr
of a preordered locally compact Hausdorff space. An argument similar to Proposi-
tion 17 below shows that the compactly generated prestreams are exactly the quotients
in Prestr of preordered locally compact Hausdorff spaces.

Example 11 We can restrict C further, and take it to be the class of all compact
pospaces. A pospace is a preordered topological space whose preorder is an order-
ing, and also one whose graph is closed in the product. (They are all Hausdorff.)
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Compact pospaces have a rich theory, see [Nac65], or [GLI3, Chapter 9]. We call the
objects of Prestr, | ¢ the orderly compactly generated prestreams in this case. These
again form a Cartesian-closed category, and one whose objects are easy to describe,
as the following Proposition shows. Moreover, despite the fact that it is smaller than
all the previous categories, it is large enough to build geometric realizations of cubical
sets, since all the standard directed cubes are compact pospaces [Haul2].

Proposition 17 The orderly compactly generated prestreams are exactly the quotients,
taken in Prestr, of the locally compact pospaces.

Proof. Let X be an orderly compactly generated prestream, i.e., a quotient of some
coproduct [ [;.; &; in Prestr, where each &; = (X, <;) is a compact pospace. By
Proposition 8, [[,.; A; is obtained as the topological coproduct [, ; X;, with the
coproduct ordering [[,.; <;, defined by (i,z) [[,c; <i (j,y) iff i = jand 2 <; j.
We show that the graph of [,.; < is closed in ([[;.; <;)? by showing that its
complement W is open. Let ((¢,x), (j,y)) be a pair of points in W. Either i # j,
in which case ({1} x X;) x ({j} x X;) is an open neighborhood of the pair that is
included in W, or ¢ = j, in which case the set of all pairs of points ((¢, '), (i,3")) such
that 2’ £; y' is an open neighborhood of ((%, ), (j,y)) included in W.

Conversely, we claim that every prestream quotient of a locally compact pospace
is orderly compactly generated. By Proposition 2, it suffices to show that every locally
compact pospace (X, <) is orderly compactly generated, or equivalently, is a quotient
of a coproduct of compact pospaces. Since X is locally compact Hausdorff, pick a
compact neighborhood K, of x, for each point € X, and consider the equivalence
relation = on [ [, K given by (z,y) = (', 2) iff y = 2. We equip each K, with
the restriction of < to K, and claim that the map f=: (HIEX K,, S‘KI)/E — X
defined by f=(g=(z,y)) = y is a prestream isomorphism. (The notation f= is from
Proposition 9, with f: ([, cx Kz, <|xy) — X defined by f(z,y) = y.) Clearly, f=
is bijective, and its inverse is given by f= ~1(x) = ¢=(z, z).

To check that f= is a prestream morphism, we only need to check that f is, and by
the universal property of coproducts, this boils down to checking that, for every x € X,
the function that maps (x, y) to y is a prestream morphism from (K, <x, ) to (X, <),
i.e., a continuous monotonic map. This is obvious.

To check that f= ~! is a prestream morphism, we first check that it is continuous.
Let V' be any open subset of [] . K,/=, and x be a point in the inverse image
of V, i.e., such that g=(z,2) € V. Note that +;;*(¢=(V)) is an open subset of K,
meaning that one can write it as K, NU for some open subset U of X. The intersection
W of the interior of K, with U is then an open neighborhood of z in X (since K,
is a neighborhood of ). W is included in the inverse image of V, i.e., for every
point y € W, f= ~1(y) is in V: indeed, f= ~*(y) = ¢=(v,y) = q=(x,y) (since
x =y, and (x,y) makes sense since y € K,) = g=(t»(y)) isin V since y € K, N
U =1;1(g=*(V)). We conclude that the inverse image of V by f= ~! contains open
neighborhoods of each of its points, and is therefore open.

Finally, we check that for every open subset V' of [[ .y K,/=, for all z,y in
the inverse image U of V by f= ~1, if z < y then f= ~(z) CF f= ~'(y), where
(E‘E/)VGO((LIIE)( Ko r<iic,)/=) is the quotient precirculation. Using Proposition 9, f= ~1(z) C§
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f= 7!y is equivalent to (z,2) (5 =1y U=|,211)* (y,y), where T is the co-
product ordering ((z1,22) C (x3,x4) iff x1 = x3 and 29 < x4). If x < g, then
(@,2) T 1y (@,9) =21y (4,y) (where the only subtlety to check is (z,y) €
q=*(V), which follows from g=(x,y) = q=(y,y) = f= ~*(y) € V), hence (z, z) (Czron Y= zi0n)”

(Y, y)- O

6 Exponentiable Streams

As for prestreams, Corollary 1 implies that for all streams &', ) such that the exponen-
tial Y exists in Str, ¥ must be the set [X — )] of all stream morphisms from X’
to Y, with some topology, and some circulation (up to isomorphism). By Lemma 20,
if V¥ exists then the carrier of X’ must be core-compact.

We must keep in mind that binary products in Str are very different from binary
products in Prestr (compare Proposition 12 with Proposition 6). As a result, the
exponentiable objects are very different, too. Remarkably, no condition at all on the
circulation is required for exponentiability.

Theorem 7 The exponentiable objects in Str are exactly the core-compact streams,
i.e., the streams X = (X, (Ev)yeo(x)) whose carrier X is core-compact.

For every stream Y = (Y, (jV)VeO(Y))’ the exponential object Y in Str is (up
to isomorphism) the coshedfification of ([X — Y]°, (gh{}v)WGO([X—)y]“))’ where <3,
is defined by:

forall f,g € W, f <3y, g iff for all open subsets U of X and V of Y such that
W x U C App *(V), forall z,x' € U such that x Ty 2, f(x) <y g(a').

Proof. The only thing left to prove is that App is a stream morphism, and that A(f)
is a stream morphism for every stream morphism f: Sh*°(Z x X) — ), using the
above definition, and assuming X core-compact. (Recall that we write x for product in
Prestr, so the product of Z and X in Str is Sh*°(Z x X).) Continuity follows from
general topology (and the fact that cosheafification does not change the topology), and
we only need to check local monotonicity.

For short, write [X — Y]’ for ([X — Y]°, (<)
Sh>([X = YV]).

Application. We first show that App is locally monotonic from Sh!([X — Y] x
X)to Y. Let V € O(Y) and assume that (f, x) is less than or equal to (g, ') relatively
to App (V) in Sh!([X — Y]’ x X). There is apath (f,z) = (fo, o) (<3, X Cu,)
(f1,21) (S, X Cuy) -+ (S, X Ev,) (fn,n) = (g,2'), for some n € N, and
some open rectangles W; x U; included in Appfl(V), 1 <4 < n. By definition of
<y, for each 4, fic1(zi—1) =v fi(zg), so f(x) Ry g(2’).

Since V¥ = Sh**([X — V]') < [X¥ — V), App is also locally monotonic from
Sh(Y* x X) to Y. We conclude since Sh'(Y* x X) is the product of Y and X in
Str, by Proposition 12.

Currification. Let Z = (Z, (10)peo(z)) be a third stream, and assume a stream
morphism h: Z x X — ). We must show that A(h) is locally monotonic from Z to

WEO([X—>3)]°))’ so that V¥ is
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Y¥ = Sh>([X — V]’). By Lemma 14 applied to S' = Sh!, it suffices to show that
A(h) is locally monotonic from Z to [X — Y]’. Let W be an open subset of [X — V]'.
Assume z< (p)-1(w) 2’ . We wish to show that for all opens U € O(X)and V € O(Y)
such that W x U C App Y(V), for all z Ty a/, h(z,x) <y h(z',2). Fix U and
V as above, i.e., W x U C App (V). It is easy to check that A(h) =1 (W) x U C
h=1(V). Since h is a stream morphism, and Z2<pm)-1(w) 2, forall x Ty @” we obtain
h(z,z) <y h(Z',2'). O

We deal with Haucourt streams right away. Let ¢: [0,1] — S map 0 to 0 and all
other points to 1. This is a continuous map, and in fact a prestream morphism from

[0,1] to S. Similarly, the map ¢*: [0,1] — S that maps 1 to 0 and all other points to 1

defines a path from 1 to 0, and a prestream morphism from [0, 1] to S. Using those two
morphisms, we see that the Sierpiiski stream is a Haucourt stream, so we can apply
Lemma 207,

Theorem 8 The exponential objects in HStr are exactly the core-compact Haucourt
streams, i.e., the Haucourt streams X = (X, (Ev)yeo(x)) whose carrier X is core-
compact.

For every core-compact Haucourt stream X = (X, (EU)UGO(X)), and every Hau-
court stream Y = (Y, (2v)yco(y)) the exponential object V¥ in Str is (up to iso-
morphism) the haucourtification of ([X — Y|°, (S{V)Weo([x_)y],,)).

Proof. The proof is the same as for Theorem 7. We only give indications of changes.
As before, App is locally monotonic from Shl([X — Y] x X) to Y, so it is also
locally monotonic from .S hl(yX x X) to ), where V¥ is now the exponential in
HStr. This is because Y* = H([X — V]') < [X¥ — V. Since H(Z) is a stream
and H(Z) < Z for every Haucourt stream Z, H(Z) < Sh*(Z) < Sh!(Z), so App
is locally monotonic from H()* x X) to X'. We show that currification maps stream
morphisms to stream morphisms as in Theorem 7, replacing Sh' by H. a

As for Theorem 9, we apply the constructions of Section 3 and obtain the follow-
ing. Recall that the colimits in Str and in HStr are computed exactly as in Prestr
(Proposition 13, Proposition 16).

Theorem 9 Let C be any class of core-compact streams (resp., core-compact Haucourt

streams), and such that any binary product (in Str, resp. HStr) of objects in C is C-

generated (equivalently, when C contains at least one non-empty space, such that every

binary product in Str, resp. HStr, of objects of C is a small colimit of objects of C).
The category Str| | ¢ (resp., HStr| | ¢) is Cartesian-closed.

In this category, product of X and Y is given by C(Sh'(X x V)), resp., C(H(X x V)).
When & or Y is core-compact (e.g., locally compact), this is just ordinary stream
product Shl(X %)) (Proposition 4, Proposition 12, Lemma 19).

TThe published version of this paper incorrectly states: “We deal with Haucourt streams right away.
Lemma 20 does not apply in this setting, since the Sierpifiski stream is not a Haucourt stream. Indeed,
because [0, 1] is connected, there is no directed path from O to 1, or from 1 to 0, in S. As a result, it may well
be that there are exponentiable Haucourt streams with non-core-compact carriers.” The error was found by
Stefano Nicotra, and communicated to me on January 29th, 2019. Let me thank him here. As a consequence,
the following Theorem 8 is stronger than its published version.
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Example 12 The largest example of this construction is obtained by taking C to be the
class of all core-compact streams. It is fair to call these spaces, namely the quotients
of coproducts of core-compact streams (in Str, equivalently, in Prestr), the core-
compactly generated streams. There is no a priori relationship with the core-compactly
generated prestreams of Example 9, in particular a core-compactly generated stream
need not be a core-compactly generated prestream.

Similarly, the core-compactly generated Haucourt streams are the quotients of co-
products of core-compact Haucourt streams, and form again a Cartesian-closed cate-
gory. Every core-compactly generated Haucourt stream is a core-compactly generated
stream.

Example 13 When C is the class of all compact Hausdorff streams, we call the C-
generated streams compactly generated streams. This is again a Cartesian-closed cat-
egory, and again is unrelated to the compactly generated prestreams of Example 10.
Reasoning as in that example, we see that the compactly generated streams are the
quotients (in Str, equivalently in Prestr) of locally compact Hausdorff streams.

Similarly, the compactly generated Haucourt streams are the quotients of locally
compact Hausdorff Haucourt streams. They are generated by the compact Hausdorff
Haucourt streams, and form a Cartesian-closed category. Every compactly generated
Haucourt stream is a compactly generated stream.

Example 14 Krishnan defines compactly flowing streams [Kri09, Section 5] as the
streams whose carrier X is weak Hausdorff (i.e., such that continuous images of com-
pact Hausdorff spaces in X are closed) and whose circulation (EU)UeO( X) is such

that Cy= (Ugx T )", where K ranges over the compact Hausdorff subspaces of U.
The notation &k denotes the preorder <, where (SV)VGO(K) is the circulation of
the coshedfification of K, seen as a subprestream of X (see Proposition 7). Compactly
flowing streams form a Cartesian-closed category [Kri09]. Using weak Hausdorffness,
it is fairly easy to see that a weak Hausdorff stream is compactly flowing if and only if
it is C-generated, where C is the class of all its compact Hausdor{f substreams. (A sub-
stream is the cosheafification of a subprestream.) It follows that Krishnan’s compactly
flowing streams are exactly those compactly generated streams (Example 13) that are
weak Hausdorff.

7 Conclusion

We have given a categorical reformulation of a construction due to Escardé, Lawson,
and Simpson [ELS04]. This construction allows us to build (many) Cartesian-closed
subcategories of certain topological constructs. The original Escardé-Lawson-Simp-
son construction allows one to build Cartesian-closed categories of Top, including the
prominent category of compactly-generated spaces, but also many more.

We have applied this to categories of prestreams, Krishnan and Haucourt streams,
providing several examples of Cartesian-closed subcategories, of which Krishnan’s
construction of compactly flowing streams is one instance. Rather fortunately, all these
categories share the same notion of colimit, so that taking a geometric realization, say
of cubical sets, in any of these categories, always yields the same prestream.
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The main import of our work, and that which made the above results possible, is
our characterization of those prestreams, and of those streams, that are exponentiable:
the exponentiable prestreams are the preordered core-compact spaces, and the expo-
nentiable streams are the core-compact streams.

We leave the following problems open:

1. (Removed, thanks to Stefan Nicotra, see Theorem 8 and footnote there.)

2. The cosheafification Sh>(X) of a prestream X was built as a fixed point of Sh*,
therefore a priori requiring transfinitely many iterations of Sh'. All our examples
of cosheafifications were obtained in one step, as Sh!(X). Is there any example
of a prestream such that Sh'(X) is not a stream? Where no finite iteration of
Sh! on X ever yields a stream? What is the least ordinal number o at which
iterating Sh! a-times yields the cosheafification? Recall that haucourtification
always produces a Haucourt stream in one step.

3. The notions of (core-compactly, resp. compactly) generated streams and pre-
streams appear unrelated. What inclusions do hold between these classes of
objects?
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A Haucourt Streams and d-Spaces

The notion of Haucourt streams arises from Haucourt’s work [Hau09b] on comparing
two models of directed algebraic topology, Krishnan’s streams [Kri09] on the one hand,
and Grandis’ d-spaces [Gra03, Gra09] on the other hand.

A d-space is a pair (X, dX) of a topological space X and a family dX of contin-
uous maps v from [0, 1] to X containing all the constant maps, and stable under repa-
rameterization and concatenation. (A reparameterization of -y is any map - o , where
d:[0,1] — [0, 1] is continuous and increasing.) The elements of dX are called the d-
paths. A d-space morphism from (X, dX) to (Y,dY') is a continuous map f: X — Y
such that f oy € dY for every v € dX. The d-spaces and their morphisms form a
category dTop.

For every prestream X = (X, (EU)Uﬂ%X))’ Haucourt defines the directed paths

[0

in X' as the prestream morphisms from [0,1] to X’ (not from ([0, 1], <) to X', which
would define dipaths instead). Taking dX to consist exactly of the directed paths in
X, we obtain a d-space D(X). This defines the object part of a functor D: Prestr —
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dTop. Conversely, given a d-space (X, dX), one defines a precirculation (Cv ) e x)
on X by x Cy y if and only if there is a d-path v € dX such that y(0) = uz,
7(1) = y, and the image of ~ lies entirely in U. (X, (Ev)peo(x)) is a stream
[Hau09b, Lemma 5.1], which one writes S(X,dX). This defines the object part of
a functor S: dTop — Str.

Haucourt shows that S is left adjoint to D [Hau09b, Lemma 5.9], whether these are
considered as functors between dTop and Prestr, or as functors between dTop and
Str.

Moreover, DSD = D and SDS = S [Hau09b, Proposition 5.10]. This implies
that the full subcategory Str* of Str whose objects are those of the form S(X, dX) for
some d-space (X, dX), is isomorphic to the full subcategory dTop™ of dTop whose
objects are those of the form D(X) for some stream X [Hau09b, Theorem 5.13].

By definition, the objects of Str” are the prestreams X' = (X, (Cv)yco(x)) such
that for eﬂ open subset U, for all z,y € U, x Cy y if and only if there is a directed
path v: [0,1] — X such that v(0) = z, v(1) = y, and the image of ~ lies entirely
inside U. So the objects of Str* are exactly what we have called the Haucourt streams.

Since Str* = HStr is a subcategory of Str, this also provides another proof that
every Haucourt stream is a stream.

36



