
HAL Id: hal-03189828
https://hal.science/hal-03189828v2

Submitted on 7 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The build-up construction of quasi self-dual codes over a
non-unital ring

Adel Alahmadi, Alaa Altassan, Hatoon Shoaib, Amani Alkathiry, Alexis
Bonnecaze, Patrick Solé

To cite this version:
Adel Alahmadi, Alaa Altassan, Hatoon Shoaib, Amani Alkathiry, Alexis Bonnecaze, et al.. The build-
up construction of quasi self-dual codes over a non-unital ring. Journal of Algebra and Its Applications,
2021, �10.1142/S0219498822501432�. �hal-03189828v2�

https://hal.science/hal-03189828v2
https://hal.archives-ouvertes.fr


2nd Reading

April 2, 2021 15:54 WSPC/S0219-4988 171-JAA 2250143

Journal of Algebra and Its Applications
(2022) 2250143 (10 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0219498822501432

The build-up construction of quasi self-dual
codes over a non-unital ring

Adel Alahmadi∗, Alaa Altassan† and Hatoon Shoaib‡

The Department of Mathematics
King Abdulaziz University

Jeddah, Saudi Arabia
∗analahmadi@kau.edu.sa
†aaltassan@kau.edu.sa
‡hashoaib@kau.edu.sa

Amani Alkathiry

The Department of Mathematics
King Abdulaziz University

Jeddah, Saudi Arabia

Umm Al-Qura University, Makkah, Saudi Arabia

aakathiry@uqu.edu.sa

Alexis Bonnecaze§ and Patrick Solé¶
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There is a local ring E of order 4, without identity for the multiplication, defined by
generators and relations as

E = 〈a, b | 2a = 2b = 0, a2 = a, b2 = b, ab = a, ba = b〉.
We study a recursive construction of self-orthogonal codes over E. We classify, up to
permutation equivalence, self-orthogonal codes of length n and size 2n (called here quasi
self-dual codes or QSD) up to the length n = 12. In particular, we classify Type IV codes
(QSD codes with even weights) up to n = 12.
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1. Introduction

The build-up method is a powerful technique to construct self-dual codes over fields
and rings [7, 10]. Starting from a self-dual code of length n, it builds a self-dual
code of length n + 2 by a simple recursion. Under mild conditions, all codes sought
for can be generated in that way.

In this paper, we adapt this method to generate quasi self-dual (QSD) codes
over the ring E, a non-unital, non-commutative ring of order 4. While the four
unital rings of order four F4, Z4, F2 + uF2, F2 × F2 have been used as alphabets in
Coding Theory [14], the theory of codes over non-unital rings only started recently,
in [1]. The ring E is one of the few non-unital rings of order 4 to study [4]. The
importance of order 4 is the notion of Type IV codes. Over fields and unital rings,
these are divisible self-dual codes over an alphabet of size 4. They have been studied
over F4 since the 1970s [9], and for the last three of the four rings mentioned above
in [3]. To define them over E we need to replace self-dual codes by quasi self-dual
codes. These are defined in [1] as self-orthogonal codes of length n, and size 2n.

As explained in [1] some missing duality properties in non-unital rings make the
study of self-dual codes over these rings intractable. Type IV codes can then be
introduced as the subclass of QSD codes, all Hamming weights of which are even.

As in [10], only codes with dimension of residue code k1 > 1 are guaranteed to
be obtained by the build-up construction, but QSD codes with dimension of residue
code k1 ≤ 1 are easy to construct directly. In particular, this method preserves the
Type IV property. As a result, we classify QSD codes of length at most 12. We also
classify Type IV codes of length n ≤ 12.

This paper is organized as follows. Section 2 collects some necessary facts and
notations about rings, codes and duality. Section 3 derives the main construction.
Section 4 contains numerical data. Section 5 concludes the paper, and points out
some open problems.

2. Background Material

2.1. Binary codes

Denote by wt(x) the Hamming weight of x ∈ Fn
2 . The dual of a binary linear code

C is denoted by C⊥ and defined as

C⊥ = {y ∈ Fn
2 | ∀x ∈ C, (x, y) = 0},

where (x, y) =
∑n

i=1 xiyi, denotes the standard inner product. A code C is self-
orthogonal if it is included in its dual: C ⊆ C⊥. Two binary codes are equivalent
if there is a permutation of coordinates that maps one to the other.

2.2. Rings

Following [4] we define a ring on two generators a, b by the relations

E = 〈a, b | 2a = 2b = 0, a2 = a, b2 = b, ab = a, ba = b〉.
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A model for this ring can be obtained by taking a, b to be matrices over F2 defined by

a =
(

0 0
0 1

)
, b =

(
0 1
0 1

)
.

Thus, E has characteristic two, and consists of four elements E = {0, a, b, c}, with
c = a + b. The addition table is immediate from these definitions.

+ 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

The multiplication table is as follows:

× 0 a b c

0 0 0 0 0
a 0 a a 0
b 0 b b 0
c 0 c c 0

From this table, we infer that this ring is not commutative, and without an identity
element for the multiplication. It is local with maximal ideal J = {0, c}, and residue
field F2 = {0, 1}, the finite field of order 2. Thus we have a c-adic decomposition
as follows. Every element e ∈ E can be written

e = as + ct,

where s, t ∈ F2 and where we have defined a natural action of F2 on E by the
rule r0 = 0r = 0 and r1 = 1r = r for all r ∈ E. Thus a = 1a, c = 1c and
b = a1 + c1. Note that for all r ∈ E, this action is “distributive” in the sense that
r(s ⊕ t) = rs + rt, where ⊕ denote the addition in F2. On occasion we will use the
inner product notation (x, r) for x ∈ Fn

2 , r ∈ En to denote

(x, r) =
n∑

i=1

xiri =
∑
xi=1

ri.

Denote by α : E → E/J 
 F2 the map of reduction modulo J. Thus
α(0) = α(c) = 0, and α(a) = α(b) = 1. This map is extended in the natural way in
a map from En to Fn

2 .

2.3. Modules

A linear E-code C of length n is a one-sided E-submodule of En. With that code
we associate two binary codes of length n :

(1) the residue code defined by res(C) = {α(y) | y ∈ C},
(2) the torsion code defined by tor(C) = {x ∈ Fn

2 | cx ∈ C}.
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It is easy to check that res(C) ⊆ tor(C) [1]. It is traditional to denote by k1 the
dimension of the residue code and k1 + k2 that of the torsion code.

A simple application of the first isomorphism theorem [1], shows that

|C| = |res(C)||tor(C)| = 22k1+k2 .

An additive code of length n over F4 is an additive subgroup of Fn
4 . It is an

F2 vector space with 4k elements for some k ≤ n (here 2k is an integer, but k may
be half-integral). Using a generator matrix G, such a code can be cast as the
F2-span of its rows. To every linear E-code C is attached an additive F4-code φ(C)
by the alphabet substitution

0 → 0, a → ω, b → ω2, c → 1,

where F4 = F2[ω], extended naturally to Fn
4 . It can be checked that for all x ∈ En,

we have Tr(φ(x)) = α(x), and thus res(C) = Tr(φ(C)), where Tr() denotes the
usual trace from F4 down to F2. Similarly, we see that tor(C) is the so-called
subfield subcode of φ(C) that is Fn

2 ∩ φ(C).
We use the Magma notation

[〈0, 1〉, . . . , 〈i, Ai〉, . . . , 〈n, An〉]
for the weight distribution of a quaternary code, where Ai is the number of
codewords of weight i [12]. Two E-codes are permutation equivalent if there is
a permutation of coordinates that maps one to the other.

2.4. Duality

Define an inner product on En by (x, y) =
∑n

i=1 xiyi.

The right dual C⊥R of C is the right module defined by

C⊥R = {y ∈ En | ∀x ∈ C, (x, y) = 0}.
The left dual C⊥L of C is the left module defined by

C⊥L = {y ∈ En | ∀x ∈ C, (y, x) = 0}.
Thus the left (respectively, right) dual of a left (respectively, right) module is

a left (respectively, right) module. A code is left (respectively, right) self-dual
if it is equal to its left (respectively, right) dual. A left self-dual code C satisfies
C⊥L = C. Likewise a right self-dual code C satisfies C⊥R = C. A code is self-dual
if it is equal to both of its duals.

Remark 1. The repetition code of length 2 defined by R2 = {00, aa, bb, cc}, is left
self-dual. Its right dual is R⊥R

2 = 〈aa, bb, ab〉, a supercode of R2 of size 8.

Observation. In length one, we have J⊥R = J. By taking direct sums of J with
itself, we see that (right) self-dual codes over E exist for all lengths.

Remark 1 shows that the product of the sizes of a code and its dual is not always
4n. A code C of length n is left nice (respectively, right nice) if |C||C⊥L | = 4n

(respectively, |C||C⊥R | = 4n). A code is nice if it is both left and right nice.

2250143-4



2nd Reading

April 2, 2021 15:54 WSPC/S0219-4988 171-JAA 2250143

The build-up construction of quasi self-dual codes over a non-unital ring

Remark 2. J is a right nice code, but it is not a left nice code since n = 1, and
J⊥L = E. Similarly, R2 is not right nice since R⊥R

2 is of size 8.

A code C is self-orthogonal if

∀x, y ∈ C, (x, y) = 0.

Clearly, C is self-orthogonal iff C ⊆ C⊥L . Likewise, C is self-orthogonal iff
C ⊆ C⊥R . Thus, for a self-orthogonal code C, we always have C ⊆ C⊥L ∩ C⊥R . A
code of length n is quasi self-dual if it is self-orthogonal and of size 2n.

Remark 3. Every one-sided nice self-dual code is quasi-self-dual but not con-
versely, as the next example shows.

Example 1. The code R2 as a right module is quasi self-dual but not self-dual as
R2 � R⊥R

2 .

Following a terminology from [3], a quasi self-dual code over E with all weights
even is called a Type IV code.

3. Construction

The following result constructs a quasi self-dual code of length n + 2 from a quasi
self-dual code of length n.

Theorem 1. Let C0 denote a quasi self-dual code of length n over E, with gener-
ating set r1, . . . , rk. Let x be a fixed vector in Fn

2 satisfying (ax, ax) = a. (Thus any
x of odd Hamming weight works). Write yi = (x, ri) for 1 ≤ i ≤ k. The row-span
of the following k + 1 vectors is a quasi self-dual code C of length n + 2.

(a, 0, ax), (y1, y1, r1), . . . , (yk, yk, rk).

Proof. First, we check that C is self-orthogonal.

• the first vector is orthogonal to itself by definition of x, since a2 + a = 0.

• the last k vectors are orthogonal to each other and to themselves by self-
orthogonality of C0, since yiyj + yiyj + (ri, rj) = 0.

• the first vector is orthogonal to the last k vectors by definition of the yi’s since
ayi + (ax, ri) = ayi + ayi = 0.

• Any of the last k vectors is orthogonal to the first vector since yia + (ri, ax) =
yi + (ri, x) = yi + (x, ri) = 0.

Hence C is self-orthogonal.
We claim that |C| = 4|C0| = 2n+2. Indeed define Ĉ0 as the row span of the

last k generators. Write Sy = (y, 0, yx), for all y ∈ E. Then it can be seen that
the construction in the theorem is equivalent to the following disjoint union of four
cosets of Ĉ0 :

C = ∪̇y∈E(Sy + Ĉ0).

Thus C is quasi self-dual of length n + 2.
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Remark 4. For a given C0 by varying x we can construct 2n−1 codes C.

Corollary 1. In the notation of the Theorem, if C0 is Type IV, so is C.

Proof. By [1] it is enough to check that res(C) contains the all-one vector. Let
jm denote the all-one vector of length m. By hypothesis res(C0) contains jn. Thus
jn =

∑k
i=1 aiα(ri), for some ai ∈ F2. Consider the same linear combination of the

last k generators of C.

k∑
i=1

aiα((yi, yi, ri)) =

(
k∑

i=1

aiα(yi),
k∑

i=1

aiα(yi), jn

)
.

To check that this combination equals jn+2, we note that
k∑

i=1

aiα(yi) =

(
x,

k∑
i=1

aiα(ri)

)
.

But, by the defining equation of the ai’s we have(
x,

k∑
i=1

aiα(ri)

)
= (x, jn) = 1,

since x has odd Hamming weight. Thus jn+2 ∈ res(C), showing that C is
Type IV.

The next result shows that all QSD codes can be obtained from the build-up
construction, subject to a mild condition.

Theorem 2. If C is quasi self-dual code of length n + 2 with k1 > 1, then there
is a quasi self-dual code C0 of length n, such that the construction of Theorem 1
applied to C0 produces C.

Proof. Let R1, R2, . . . , Rk+1 denote the generators of C viewed as an E-module.
Let R′

i be Ri+1 with the first two columns removed for i = 0, . . . , k.

W.L.O.G. we may assume that R1 contains only zeros and a’s, by using a2 =
ab = ac = a. We may also assume since k1 > 1, that R1 = (a, 0, R′

0), R2 = (a, a, R′
1)

and that, most importantly, that Ri+1 = (0, 0, R′
i) for i ≥ 2. The orthogonality

relations (Ri+1, Rj+1) = 0 imply (R′
i, R

′
j) = 0 for all 1 ≤ i, j ≤ k. Thus C0,

spanned by R′
1, . . . , R

′
k, is self-orthogonal.

It is also easy to check that, as in the proof of Theorem 1, we have |C0|= |C|
4 =2n.

The code obtained by applying Theorem 1 to the code C0 spanned by
R′

1, . . . , R
′
k, with x defined by R′

0 = ax, is row-equivalent to G. Indeed, with
this definition of x, it can be checked that y1 = a, and yi = 0 for i = 2, . . . , k.

Indeed, the two conditions (R1, R2) = (R2, R1) = 0 imply ay1 = y1a = a. Taken
together these two conditions imply y1 = a. Likewise, for 2 ≤ i ≤ k the condi-
tions (R1, Ri+1) = (Ri+1, R1) = 0 imply ayi = yia = 0. Taken together these two
conditions imply yi = 0.
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It is easy to characterize codes where the hypothesis of this Theorem is not
satisfied, as the next result shows.

Theorem 3. (1) If C is QSD with k1 = 0, then C = cFn
2 . Such a code is not Type IV.

(2) If C is QSD with k1 = 1, then C = aB ⊕ cB⊥, with B a self-orthogonal [n, 1]
binary code. The code C is Type IV iff B is the repetition code of length n for
some even n.

Proof. By [1, Theorem 6], we know that C = a res(C)⊕ c tor(C), with res(C) ⊆
tor(C).

(1) If C is QSD with k1 = 0, then C = c tor(C). Since n is both its dimension
and its length, the binary code tor(C) has to be the [n, n, 1] “universe” code,
denoted here by Fn

2 . The QSD code C is not Type IV as it contains codewords
of odd weight.

(2) If C is QSD with k1 = 1, then C = a res(C)⊕ c tor(C), with res(C) a self-
orthogonal code of dimension one. By [1, Theorem 4], the code C is Type IV
iff res(C) contains the all-one vector, iff res(C) is the repetition code of length
n for some even n.

Example 2. • We obtain an infinite family of Type IV codes for each even n

byletting Kn = aUn + cU⊥
n , with Un denoting the repetition code of parameters

[n, 1, n]. Thus Kn is the analogue of the Klemm code of [2].
• For n = 5, if we take res(C) = 〈(1, 1, 0, 0, 0)〉, we obtain a non-Type IV QSD

code with weight distribution:

[〈0, 1〉, 〈1, 3〉, 〈2, 6〉, 〈3, 10〉, 〈4, 9〉, 〈5, 3〉].

4. Numerical Results

All the calculations in this section were performed in Magma [12]. When classifying
QSD codes or Type IV codes up to permutation equivalence, the following result
will be used.

Theorem 4. Two QSD E-codes C and C′ are permutation equivalent iff their
residue codes are.

Proof. The condition is necessary, since the residue of the permuted code is a
permutation of the residue code.

The condition is sufficient. If A, B are binary codes, and P is a permutation
acting on their coordinate places, it is easy to check, by invariance of the inner
product, that P (A) = B iff P (A⊥) = B⊥ [9, Chap. 1, Example 35]. By [1, Theo-
rem 6], we have C = a res(C) ⊕ c res(C)⊥. Thus, if P (res(C)) = res(C′), then, by
that result with A = res(C) and B = res(C′), we obtain, by linearity of the action
of P, that P (C) = C′.
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In order to obtain all QSD codes of a given length, we recursively apply The-
orem 1 from different codes. For example, Theorem 1 applied to the code whose
generator matrix is cI2 (where I2 is an identity matrix of order 2) yields two QSD-
codes of length 4, not Type IV, and up to equivalence, it yields one QSD-code with
k1 = 1. Theorem 1 applied to these two codes yields sixteen QSD-codes of length
6 (not Type IV) and two QSD-codes up to equivalence with k1 = 2. In this way,
we obtain QSD-codes of length 2n with k1 = n − 1. The same construction using
generator matrix cI4 (where I4 is an identity matrix of order 4) yields QSD-codes
of length 2n with k1 = n − 2, and so on.

To make sure that enough equivalence classes of codes have been generated by
our algorithms, we have consulted the tables of number of equivalence classes of
self-orthogonal binary codes contained in [8].

The generator matrices of the classified codes up to n = 11, and the weight
distributions of QSD-codes up to n = 12 can be found at:
http://alexis.bonnecaze.perso.luminy.univ-amu.fr/publication/.

4.1. QSD codes of odd length

From one QSD code of length 3, the number of codes of length n generated by
Theorem 1, by the remark following Theorem 1, is

2
P(n−3)/2

m=0 (2m) = 2((n−2)2−1)/4.

In the following tables, the rows indicate, in order, the length, the dimension of
the residue code (k1), the number of equivalence classes of codes in that set, and
the largest minimum distance obtained. This convention is maintained for the next
tables.

n 3 5 7 9 11
k1 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5

# ∼ 1 2 1 3 3 2 4 6 6 3 5 10 14 12 4
d 2 1 1 1 1 3 1 1 2 2 1 1 2 2 3

4.2. QSD codes of even length not Type IV

From one QSD code of length 2 (Type IV or not), the number of codes of length n

generated by Theorem 1, by the remark following Theorem 1, is

2
P(n−4)/2

m=0 (2m+1) = 2n2/4−n+1.

For instance, we have for n = 2, a unique QSD non Type IV code with k1 = 0,

as described in Theorem 3. As for QSD non Type IV of even length, we have the
following table:

n 4 6 8 10 12
k1 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5

# ∼ 1 2 2 3 4 3 4 8 9 6 5 13 21 21 9
d 1 1 2 1 2 2 1 2 2 2 1 2 2 2 3
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4.3. Type IV codes of even length

As observed in [1], Type IV codes can only exist in even length as the residue code
must be self-orthogonal and contain the all-one vector. There is a unique Type IV
code of length 2 namely R2 defined in Sec. 2, since for such a code the weights must
be either 0 or 2. Theorem 1 applied to R2 gives two codes, whose images by φ are
F4-linear, and permutation equivalent to a [4, 2, 2] with generator matrix

(
1 0 1 0
0 1 0 1

)
.

The other Type IV code can be constructed in the form

a〈(1, 1, 1, 1)〉+ c〈(1, 1, 1, 1)〉⊥.

Its image by φ is an F4-additive code (not F4-linear) with generator matrix⎛⎜⎜⎝
1 0 0 1
w w w w

0 1 0 1
0 0 1 1

⎞⎟⎟⎠
and weight distribution [〈0, 1〉, 〈2, 6〉, 〈4, 9〉]. Note that even though they possess the
same weight distribution, these two codes are different, one being linear.

Information for lengths 4 to 12 is summarized in the following table:

n 4 6 8 10 12
k1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6

# ∼ 1 1 1 1 1 1 2 2 2 1 2 3 3 2 1 3 5 7 6 3
d 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 4

5. Conclusion and Open Problems

In this paper, we have applied the build-up method of construction of self-dual
codes to quasi self-dual codes over a non-unital ring of order 4. As a result, we have
been able to classify QSD codes, and Type IV QSD codes of length at most 12 up
to equivalence.

To study higher lengths, a mass formula similar to what exists already over
finite fields [11], or over Z4 [5] might be needed. In view of the super-exponential
number of codes generated by Theorem 1, more computing power might be needed
to extend the numerical results to lengths larger than 12.
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