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Abstract

There is a local ring E of order 4, without identity for the multi-
plication, defined by generators and relations as

E = 〈a, b | 2a = 2b = 0, a2 = a, b2 = b, ab = a, ba = b〉.

We study a recursive construction of self-orthogonal codes over E.
We classify, up to permutation equivalence, self-orthogonal codes of
length n and size 2n (called here quasi self-dual codes or QSD) up
to the length n = 12. In particular, we classify Type IV codes (QSD
codes with even weights) up to n = 12.
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1 Introduction

The build-up method is a powerful technique to construct self-dual codes
over fields and rings [8, 11]. Starting from a self-dual code of length n, it
builds a self-dual code of length n + 2 by a simple recursion. Under mild
conditions, all codes sought for can be generated in that way.

In this article, we adapt this method to generate quasi self-dual (QSD)
codes over the ring E, a non-unital, non-commutative ring of order 4. While
the four unital rings of order four F4, Z4 ,F2 + uF2, F2 × F2 have been used
as alphabets in Coding Theory [15], the theory of codes over non-unital rings
only started recently, in [1]. The ring E is one of the few non-unital rings
of order 4 to study [5]. The importance of order 4 is the notion of Type IV
codes. Over fields and unital rings, these are divisible self-dual codes over an
alphabet of size 4. They have been studied over F4 since the 1970’s [10], and
for the last three of the four rings mentioned above in [4]. To define them
over E we need to replace self-dual codes by quasi self-dual codes. These are
defined in [1] as self-orthogonal codes of length n, and size 2n. As explained
in [1] some missing duality properties in non-unital rings make the study
of self-dual codes over these rings intractable. Type IV codes can then be
introduced as the subclass of QSD codes, all Hamming weights of which are
even.

As in [11], only codes with dimension of residue code k1 > 1 are guar-
anteed to be obtained by the build-up construction, but QSD codes with
dimension of residue code k1 ≤ 1 are easy to construct directly. In partic-
ular, this method preserves the Type IV property. As a result, we classify
QSD codes of length at most 12. We also classify Type IV codes of length
n ≤ 12.

The material is organized as follows. The next section collects some neces-
sary facts and notations about rings, codes and duality. Section 3 derives the
main construction. Section 4 contains numerical data. Section 5 concludes
the article, and points out some open problems.
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2 Background material

2.1 Binary codes

Denote by wt(x) the Hamming weight of x ∈ Fn
2 . The dual of a binary linear

code C is denoted by C⊥ and defined as

C⊥ = {y ∈ Fn
2 | ∀x ∈ C, (x, y) = 0},

where (x, y) =
∑n

i=1 xiyi, denotes the standard inner product. A code C is
self-orthogonal if it is included in its dual: C ⊆ C⊥. Two binary codes are
equivalent if there is a permutation of coordinates that maps one to the
other.

2.2 Rings

Following [5] we define a ring on two generators a, b by the relations

E = 〈a, b | 2a = 2b = 0, a2 = a, b2 = b, ab = a, ba = b〉.

A model for this ring can be obtained by taking a, b to be matrices over F2

defined by

a =

(
0 0
0 1

)
, b =

(
0 1
0 1

)
.

Thus, E has characteristic two, and consists of four elements E = {0, a, b, c},
with c = a+ b. The addition table is immediate from these definitions.

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

The multiplication table is as follows.

× 0 a b c
0 0 0 0 0
a 0 a a 0
b 0 b b 0
c 0 c c 0
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From this table, we infer that this ring is not commutative, and without
an identity element for the multiplication. It is local with maximal ideal
J = {0, c}, and residue field F2 = {0, 1}, the finite field of order 2. Thus
we have a c-adic decomposition as follows. Every element e ∈ E can be
written

e = as+ ct,

where s, t ∈ F2 and where we have defined a natural action of F2 on E by
the rule r0 = 0r = 0 and r1 = 1r = r for all r ∈ E. Thus a = 1a, c = 1c and
b = a1 + c1. Note that for all r ∈ E, this action is “distributive” in the sense
that r(s⊕ t) = rs + rt, where ⊕ denote the addition in F2. On occasion we
will use the inner product notation (x, r) for x ∈ Fn

2 , r ∈ En to denote

(x, r) =
n∑

i=1

xiri =
∑
xi=1

ri.

Denote by α : E → E/J ' F2 the map of reduction modulo J. Thus
α(0) = α(c) = 0, and α(a) = α(b) = 1. This map is extended in the natural
way in a map from En to Fn

2 .

2.3 Modules

A linear E-code C of length n is a one-sided E-submodule of En. With that
code we associate two binary codes of length n :

1. the residue code defined by res(C) = {α(y) | y ∈ C},

2. the torsion code defined by tor(C) = {x ∈ Fn
2 | cx ∈ C}.

It is easy to check that res(C) ⊆ tor(C) [1]. It is traditional to denote
by k1 the dimension of the residue code and k1 + k2 that of the torsion code.

A simple application of the first isomorphism theorem [1], shows that

|C| = |res(C)||tor(C)| = 22k1+k2 .

An additive code of length n over F4 is an additive subgroup of Fn
4 . It

is an F2 vector space with 4k elements for some k ≤ n (here 2k is an integer,
but k may be half-integral). Using a generator matrix G, such a code can
be cast as the F2-span of its rows. To every linear E-code C is attached an
additive F4-code φ(C) by the alphabet substitution

0→ 0, a→ ω, b→ ω2, c→ 1,
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where F4 = F2[ω], extended naturally to Fn
4 . It can be checked that for all

x ∈ En, we have Tr(φ(x)) = α(x), and thus res(C) = Tr(φ(C)), where Tr()
denotes the usual trace from F4 down to F2. Similarly, we see that tor(C) is
the so-called subfield subcode of φ(C) that is Fn

2 ∩ φ(C).
We use the Magma notation

[< 0, 1 >, · · · , < i, Ai >, · · · , < n,An >]

for the weight distribution of a quaternary code, where Ai is the number
of codewords of weight i [13]. Two E-codes are permutation equivalent
if there is a permutation of coordinates that maps one to the other.

2.4 Duality

Define an inner product on En by (x, y) =
∑n

i=1 xiyi.
The right dual C⊥R of C is the right module defined by

C⊥R = {y ∈ En | ∀x ∈ C, (x, y) = 0}.

The left dual C⊥L of C is the left module defined by

C⊥L = {y ∈ En | ∀x ∈ C, (y, x) = 0}.

Thus the left (resp. right) dual of a left (resp. right) module is a left
(resp. right) module. A code is left (resp. right) self-dual if it is equal to
its left (resp. right) dual. A left self-dual code C satisfies C⊥L = C. Likewise
a right self-dual code C satisfies C⊥R = C. A code is self-dual if it is equal
to both of its duals.

Remark 1 The repetition code of length 2 defined by R2 = {00, aa, bb, cc},
is left self-dual. Its right dual is R⊥R

2 = 〈aa, bb, ab〉, a supercode of R2 of size
8.

Observation: In length one, we have J⊥R = J. By taking direct sums
of J with itself, we see that (right) self-dual codes over E exist for all lengths.

Remark 1 shows that the product of the sizes of a code and its dual is not al-
ways 4n. A code C of length n is left nice (resp. right nice) if |C||C⊥L| = 4n

(resp. |C||C⊥R | = 4n). A code is nice if it is both left and right nice.
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Remark 2 J is a right nice code, but it is not a left nice code since n = 1,
and J⊥L = E. Similarly, R2 is not right nice since R⊥R

2 is of size 8.

A code C is self-orthogonal if

∀x, y ∈ C, (x, y) = 0.

Clearly, C is self-orthogonal iff C ⊆ C⊥L . Likewise, C is self-orthogonal
iff C ⊆ C⊥R . Thus, for a self-orthogonal code C, we always have C ⊆ C⊥L ∩
C⊥R . A code of length n is quasi self-dual if it is self-orthogonal and of size
2n.

Remark 3 Every one-sided nice self-dual code is quasi-self-dual but not con-
versely, as the next example shows.

Example 1 The code R2 as a right module is quasi self-dual but not self-
dual as R2 ( R⊥R

2 .

Following a terminology from [4], a quasi self-dual code over E with all
weights even is called a Type IV code.

3 Construction

The following result constructs a quasi self-dual code of length n+ 2 from a
quasi self-dual code of length n.

Theorem 1 Let C0 denote a quasi self-dual code of length n over E, with
generating set r1, . . . , rk. Let x be a fixed vector in Fn

2 satisfying (ax, ax) = a.
(Thus any x of odd Hamming weight works). Write yi = (x, ri) for 1 ≤ i ≤ k.
The row-span of the following k+1 vectors is a quasi self-dual code C of length
n+ 2.

(a, 0, ax), (y1, y1, r1), . . . , (yk, yk, rk).

Proof. First, we check that C is self-orthogonal.

• the first vector is orthogonal to itself by definition of x, since a2+a = 0.

• the last k vectors are orthogonal to each other and to themselves by
self-orthogonality of C0, since yiyj + yiyj + (ri, rj) = 0.
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• the first vector is orthogonal to the last k vectors by definition of the
yi’s since ayi + (ax, ri) = ayi + ayi = 0.

• Any of the last k vectors is orthogonal to the first vector since yia +
(ri, ax) = yi + (ri, x) = yi + (x, ri) = 0.

Hence C is self-orthogonal.
We claim that |C| = 4|C0| = 2n+2. Indeed define Ĉ0 as the row span of

the last k generators. Write Sy = (y, 0, yx), for all y ∈ E. Then it can be seen
that the construction in the theorem is equivalent to the following disjoint
union of four cosets of Ĉ0 :

C = ∪̇y∈E(Sy + Ĉ0).

Thus C is quasi self-dual of length n+ 2.

Remark 4 For a given C0 by varying x we can construct 2n−1 codes C.

Corollary 1 In the notation of the Theorem, if C0 is Type IV, so is C.
Proof. By [1] it is enough to check that res(C) contains the all-one vector.
Let jm denote the all-one vector of length m. By hypothesis res(C0) contains
jn. Thus jn =

∑k
i=1 aiα(ri), for some ai ∈ F2. Consider the same linear

combination of the last k generators of C.

k∑
i=1

aiα((yi, yi, ri)) = (
k∑

i=1

aiα(yi),
k∑

i=1

aiα(yi), jn).

To check that this combination equals jn+2, we note that

k∑
i=1

aiα(yi) = (x,
k∑

i=1

aiα(ri)).

But, by the defining equation of the ai’s we have

(x,
k∑

i=1

aiα(ri)) = (x, jn) = 1,

since x has odd Hamming weight. Thus jn+2 ∈ res(C), showing that C is
Type IV.

The next result shows that all QSD codes can be obtained from the build
up construction, subject to a mild condition.
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Theorem 2 If C is quasi self-dual code of length n + 2 with k1 > 1, then
there is a quasi self-dual code C0 of length n, such that the construction of
Theorem 1 applied to C0 produces C.
Proof. Let R1, R2, · · · , Rk+1 denote the generators of C viewed as an E-
module. Let R′i be Ri+1 with the first two columns removed for i = 0, . . . , k.

W.L.O.G. we may assume that R1 contains only zeros and a’s, by us-
ing a2 = ab = ac = a. We may also assume since k1 > 1, that R1 =
(a, 0, R′0), R2 = (a, a,R′1) and that, most importantly, that Ri+1 = (0, 0, R′i)
for i ≥ 2. The orthogonality relations (Ri+1, Rj+1) = 0 imply (R′i, R

′
j) = 0

for all 1 ≤ i, j ≤ k. Thus C0, spanned by R′1, . . . , R
′
k, is self-orthogonal.

It is also easy to check that, as in the proof of Theorem 1, we have
|C0| = |C|

4
= 2n.

The code obtained by applying Theorem 1 to the code C0 spanned by
R′1, . . . , R

′
k, with x defined by R′0 = ax, is row-equivalent to G. Indeed, with

this definition of x, it can be checked that y1 = a, and yi = 0 for i = 2, . . . , k.
Indeed, the two conditions (R1, R2) = (R2, R1) = 0 imply ay1 = y1a = a.
Taken together these two conditions imply y1 = a. Likewise, for 2 ≤ i ≤ k the
conditions (R1, Ri+1) = (Ri+1, R1) = 0 imply ayi = yia = 0. Taken together
these two conditions imply yi = 0.

It is easy to characterize codes where the hypothesis of this Theorem is
not satisfied, as the next result shows.

Theorem 3 1. If C is QSD with k1 = 0, then C = cFn
2 . Such a code is

not Type IV.

2. If C is QSD with k1 = 1, then C = aB⊕ cB⊥, with B a self-orthogonal
[n, 1] binary code. The code C is Type IV iff B is the repetition code
of length n for some even n.

Proof. By Theorem 6 of [1], we know that C = a res(C)⊕ c tor(C), with
res(C) ⊆ tor(C).

1. If C is QSD with k1 = 0, then C = c tor(C). Since n is both its
dimension and its length, the binary code tor(C) has to be the [n, n, 1]
“universe” code, denoted here by Fn

2 . The QSD code C is not Type IV
as it contains codewords of odd weight.

2. If C is QSD with k1 = 1, then C = a res(C)⊕ c tor(C), with res(C) a
self-orthogonal code of dimension one. By [1, Th. 4], the code C is Type
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IV iff res(C) contains the all-one vector, iff res(C) is the repetition code
of length n for some even n.

Example 2 • We obtain an infinite family of Type IV codes for each
even n by letting Kn = aUn +cU⊥n , with Un denoting the repetition code
of parameters [n, 1, n]. Thus Kn is the analogue of the Klemm code of
[2].

• For n = 5, if we take res(C) = 〈(1, 1, 0, 0, 0)〉, we obtain a non-Type
IV QSD code with weight distribution:

[< 0, 1 >,< 1, 3 >,< 2, 6 >,< 3, 10 >,< 4, 9 >,< 5, 3 >].

4 Numerical results

All the calculations in this section were performed in Magma [13]. When
classifying QSD codes or Type IV codes up to permutation equivalence, the
following result will be used.

Theorem 4 Two QSD E-codes C and C ′ are permutation equivalent iff their
residue codes are.
Proof. The condition is necessary, since the residue of the permuted code
is a permutation of the residue code.

The condition is sufficient. If A,B are binary codes, and P is a permuta-
tion acting on their coordinate places, it is easy to check, by invariance of the
inner product, that P (A) = B iff P (A⊥) = B⊥ [10, chap. 1, ex 35]. By Theo-
rem 6 of [1], we have C = a res(C)⊕c res(C)⊥. Thus, if P (res(C)) = res(C ′),
then, by that result with A = res(C) and B = res(C ′), we obtain, by linear-
ity of the action of P, that P (C) = C ′.

In order to obtain all QSD codes of a given length, we recursively apply
Theorem 1 from different codes. For example, Theorem 1 applied to the
code whose generator matrix is cI2 (where I2 is an identity matrix of order
2) yields two QSD-codes of length 4, not Type IV, and up to equivalence,
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it yields one QSD-code with k1 = 1. Theorem 1 applied to these two codes
yields sixteen QSD-codes of length 6 (not Type IV) and two QSD-codes up to
equivalence with k1 = 2. In this way, we obtain QSD-codes of length 2n with
k1 = n − 1. The same construction using generator matrix cI4 (where I4 is
an identity matrix of order 4) yields QSD-codes of length 2n with k1 = n−2,
and so on.

To make sure that enough equivalence classes of codes have been gener-
ated by our algorithms, we have consulted the tables of number of equivalence
classes of self-orthogonal binary codes contained in [9].

The generator matrices of the classified codes up to n = 11, and the
weight distributions of QSD-codes up to n = 12 can be found at:
http://alexis.bonnecaze.perso.luminy.univ-amu.fr/publication/.

4.1 QSD codes of odd length

From one QSD code of length 3, the number of codes of length n generated
by Theorem 1, by the remark following Theorem 1, is

2
∑(n−3)/2

m=0 (2m) = 2((n−2)2−1)/4.

In the following tables, the rows indicate, in order, the length, the di-
mension of the residue code (k1), the number of equivalence classes of codes
in that set, and the largest minimum distance obtained. This convention is
maintained for the next tables.

n 3 5 7 9 11
k1 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5

# ∼ 1 2 1 3 3 2 4 6 6 3 5 10 14 12 4
d 2 1 1 1 1 3 1 1 2 2 1 1 2 2 3

4.2 QSD codes of even length not Type IV

From one QSD code of length 2 (Type IV or not), the number of codes of
length n generated by Theorem 1, by the remark following Theorem 1, is

2
∑(n−4)/2

m=0 (2m+1) = 2n2/4−n+1.
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For instance, we have for n = 2, a unique QSD non Type IV code with
k1 = 0, as described in Theorem 3. As for QSD non Type IV of even length,
we have the following table:

n 4 6 8 10 12
k1 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5

# ∼ 1 2 2 3 4 3 4 8 9 6 5 13 21 21 9
d 1 1 2 1 2 2 1 2 2 2 1 2 2 2 3

4.3 Type IV codes of even length

As observed in [1], Type IV codes can only exist in even length as the residue
code must be self-orthogonal and contain the all-one vector. There is a unique
Type IV code of length 2 namely R2 defined in Section 2, since for such a
code the weights must be either 0 or 2. Theorem 1 applied to R2 gives two
codes, whose images by φ are F4-linear, and permutation equivalent to a

[4, 2, 2] with generator matrix

(
1 0 1 0
0 1 0 1

)
.

The other Type IV code can be constructed in the form

a〈(1, 1, 1, 1)〉+ c〈(1, 1, 1, 1)〉⊥.

Its image by φ is an F4-additive code (not F4-linear) with generator matrix
1 0 0 1
w w w w
0 1 0 1
0 0 1 1


and weight distribution [< 0, 1 >,< 2, 6 >,< 4, 9 >]. Note that even though
they possess the same weight distribution, these two codes are different, one
being linear.

Information for lengths 4 to 12 is summarized in the following table:

n 4 6 8 10 12
k1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6

# ∼ 1 1 1 1 1 1 2 2 2 1 2 3 3 2 1 3 5 7 6 3
d 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 4
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5 Conclusion and open problems

In this article, we have applied the build-up method of construction of self-
dual codes to quasi self-dual codes over a non-unital ring of order 4. As a
result, we have been able to classify QSD codes, and Type IV QSD codes of
length at most 12 up to equivalence.

To study higher lengths, a mass formula similar to what exists already
over finite fields [12], or over Z4 [6] might be needed. In view of the super-
exponential number of codes generated by Theorem 1, more computing power
might be needed to extend the numerical results to lengths larger than 12.
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