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ABSTRACT

We introduce a family of temporal logics to specify the behavior of systems with Zeno
behaviors. We extend linear-time temporal logic LTL to authorize models admitting Zeno
sequences of actions and quantitative temporal operators indexed by ordinals replace the
standard next-time and until future-time operators. Our aim is to control such systems

by designing controllers that safely work on ω-sequences but interact synchronously
with the system in order to restrict their behaviors. We show that the satisfiability and
model-checking for the logics working on ω

k-sequences is expspace-complete when the
integers are represented in binary, and pspace-complete with a unary representation.
To do so, we substantially extend standard results about LTL by introducing a new
class of succinct ordinal automata that can encode the interaction between the different
quantitative temporal operators.

Keywords: temporal logic, Zeno behavior, control, physical system.

1. Introduction

Control of physical systems. Modelling interaction between a computer system

and a physical system has to overcome the difficulty of the different time scales.

For example, reasoning about the connection between the physical description of an
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TOS. The second author acknowledges partial support by the e-Society project of MEXT. Part of
this work was done while the second author was affiliated to LSV, CNRS & ENS de Cachan and
Department of Information Science, The University of Tokyo.
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electric circuit and its logical description in VHDL (standard language designed and

optimized for describing the behavior of digital systems) needs to take into account

that the two descriptions are dealing with objects running at distinct speeds. The

speeds can be so different that some abstraction consists in assuming one system

evolves infinitely quicker than the other one. Another kind of interaction consists

of controlling a physical system by a computer system. Usually, a physical system

is modelled by differential equations. Solving those equations can then involve

computations of limits. For instance, in the bouncing ball example [20], in a finite

amount of time an infinite number of actions can be performed. It is a Zeno sequence

of actions. Similar behaviors have also been considered to solve the car-bee problem

[26]. However, Zeno behaviors are usually excluded from the modelling of real-time

controllers, which is a reasonable requirement (see e.g. [10]), but also from the

modelling of the physical systems, see some exception in [8, 30]. This is a quite

drastic limitation, since Zeno sequences are often acceptable behaviors for physical

systems.

Beyond ω-sequences. Our main motivation in this paper is to model Zeno be-

haviors and ultimately to control physical systems admitting such behaviors. To do

so, we introduce a specification logical language that is interpreted on well-ordered

linear orderings. Reasoning problems based on this logical language should admit

efficient algorithms, as good as those for standard specification languages as linear-

time temporal logic LTL, see e.g. [19]. The ω-sequences are already familiar objects

in model-checking, see e.g. [45], even though such infinite objects are never manipu-

lated when model-checking finite-state programs. Indeed, most problems on Büchi

automata reduce to standard reachability questions on finite graphs. In a similar

fashion, the behaviors of physical systems are modeled in the paper by sequences

indexed by countable ordinals (see e.g. [41]), i.e. equivalence classes of well-ordered

linear orderings, even though as we will show most problems will also reduce to

questions on finite graphs. For instance, the law of movement of the bouncing ball

is modelled by a set of sequences of length ω2. The specification of the ball, i.e. the

set of acceptable behaviors, is also characterized as a set of sequences of the same

length ω2. On the other hand, the controller is a computer system whose complete

executions are ω-sequences. In this paper, we allow Zeno behaviors of physical sys-

tems and we will present a specification language working on sequences indexed by

ordinals greater than the usual first infinite ordinal ω.

Our contribution. We introduce a class of logics LTL(α) indexed by a countable

ordinal α closed under addition whose models are sequences of length α. Quanti-

tative extensions of the standard next-time X and until U operators are considered

by allowing operators of the form Xβ and Uβ with β smaller than α. As shown in

the paper, for every α ≤ ωω, LTL(α) can be viewed as a fragment of the monadic

second-order theory 〈ωω, <〉 known to be decidable, see e.g. [13]. For every k ≥ 1, we

show that LTL(ωk) satisfiability is pspace-complete with an unary encoding of inte-

gers and expspace-complete with a binary encoding. This generalizes non-trivially
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what is known about LTL. We reduce the satisfiability problem to the non-emptiness

problem of ordinal automata recognizing transfinite words [12, 18, 46, 28, 11]. The

reduction entails that the satisfiability problem has an elementary complexity (by

using [16]) but does not guarantee the optimal upper bound. We introduce a class

of succinct ordinal automata of level k, k ≥ 1 in which the LTL(ωk) formulae can be

translated into and we prove that the non-emptiness problem is in nlogspace. Suc-

cinctness allows us to reduce by one exponential the size of the automata obtained

by translation which provides us the optimal upper bound. Analogous complexity

results are shown for model checking. Finally, we introduce and motivate a control

problem with inputs a physical system S modelled by an ordinal automaton work-

ing on ωk-sequences, and an LTL(ωk) formula φ describing the desirable behaviors

of the system. The problem we introduce is the existence of a controller C working

on ω-sequences such that all the behaviors of S×C satisfy the property φ. The syn-

chronization operation × takes into account the different time scales between S and

C and the set of synchronization vectors depending on the set of observable actions

of the controller C. As a by-product of our results, checking whether a controller

satisfies the above conditions can be done effectively but we leave the question of

the existence and synthesis of such controllers for future work.

Related work. Our original motivation in this work is the control of systems with

legal Zeno behaviors by systems whose complete executions are ω-sequences. The

theory of control of discrete event systems was introduced in [38]. In this theory,

a process is a deterministic non-complete finite automaton over an alphabet of

events. The control problem consists in, given a process P and a set S of admissible

behaviors, finding a process Q such that the behaviors of P ×Q are in S and such

that Q reacts to all uncontrollable events and cannot detect unobservable events.

Extension to specifications from the modal µ-calculus can be found in [3] whereas

the control of timed systems (without Zeno behaviors) is for instance studied in [4,

29, 10]. It is plausible that the techniques from the above-mentioned works (see

also [36, 43, 2]) can be adapted to the control problem we have introduced but

the technical contribution of this paper is mainly oriented towards satisfiability and

model-checking issues.

The logics we have introduced belong to the long tradition of quantitative ver-

sions of LTL. LTL-like logics having models non isomorphic to ω can be found in

[1, 40, 39, 21, 32, 34]. Temporal operators in the real-time logics from [1, 32, 34] are

indexed by intervals as our logics LTL(α). However, among the above-mentioned

works, Rohde’s thesis [40] contains a LTL-like logic interpreted over α-sequences

with ordinal α but the temporal operators are simply the standard next-time and

until operators without any decoration. It is shown in [40] that the satisfiability

problem for such a logic can be decided in exponential-time when the inputs are

the formula to be tested and the countable ordinal from which the model is built.

Similarly, in [5] a temporal logic with next-time and sometimes operators but in-

terpreted over well-founded trees of ω-segments is shown decidable by designing a

cut-free sequent-style calculus. The concept of time gaps in [5] can be put naturally
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in correspondence with limits for ordinals. No complexity issues are discussed in [5]

even though the temporal logic with only temporal operator next-time is shown

equivalent to the famous modal logic S4 interpreted over reflexive and transitive

Kripke frames and known to be pspace-complete.

In the paper, we follow the automata-based approach for temporal logics from [45]

but we deal with ordinal automata recognizing words of length α for some countable

ordinal α. So, we extend the reduction from LTL into generalized Büchi automata to

the reduction from LTL(ωk) into ordinal automata recognizing words of length ωk.

Many classes of ordinal automata have been introduced in the literature. In [12, 18]

automata recognizing ωk-sequences for some k ≥ 1 are introduced making essential

the concept of layer. In [13, 46, 28], such automata are generalized to recognize α-

sequences for α countable. Correspondences between these different classes can be

found in [7]. In the paper, we mainly adopt the definitions from [28]. An elegant and

powerful extension to automata recognizing words indexed elements from a linear

ordering can be found in [11]. As far as we know, automata recognizing sequences

of length greater than ω designed to solve verification problems have been first used

in [25] to model concurrency by limiting the state explosion problem. Similarly,

timed automata accepting Zeno words are introduced in [8] in order to model phys-

ical phenomena with convergent executions. The non-emptiness problem for such

automata is shown to be decidable [8].

As LTL can be viewed as the first-order fragment of monadic second order theory

over 〈N, <〉, theories over 〈α,<〉 for some countable ordinal α have been also studied

by Büchi [12], see also [13, 7]. For instance, decidability of monadic second order

theories over 〈α,<〉 for some countable ordinal α is shown in [13]. Decidability status

of elementary theories over countable ordinals have been established in [9, 17].

Plan of the paper. In Sect. 2, we recall basic definitions about ordinals and

we introduce a class of linear-time temporal logics parameterized by the length of

the models. In Sect. 2.4, we show that any logic admitting models of length α

with α ≤ ωω is decidable by translation into the decidable monadic second order

theory 〈ωω, <〉. Sect. 3 shows how the class of models of a given formula from a

logic working on ωk-sequences (k < ω) can be recognized by an ordinal automa-

ton. To do so, we substantially extend what is known about LTL with generalized

Büchi automata. In order to fully characterize the complexity of logics working on

ωk-sequences (expspace-completeness or pspace-completeness depending on the

way integers are encoded), in Sect. 4 we introduce a class of succinct ordinal au-

tomata of level k, extending generalized Büchi automata, and we show that the

emptiness problem is nlogspace-complete. In Sect. 5, since we have at this point

all the necessary background, we present the control problem that motivates our

investigations. We prove that we can decide whether a given controller satisfies the

properties stated in our logical framework. Sect. 6 contains concluding remarks and

open problems.

This paper is a completed version of [22]. Full proofs can be found in the technical
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appendix

2. Temporal Logics on Transfinite Sequences

2.1. Ordinals

We recall basic definitions and properties about ordinals, see e.g. [41] for addi-

tional material. An ordinal is a totally ordered set which is well ordered, i.e. all its

non-empty subset have a least element. Order-isomorphic ordinals are considered

equal. They can be more conveniently defined inductively by: the empty set (writ-

ten 0) is an ordinal, if α is an ordinal, then α ∪ {α} (written α + 1) is an ordinal

and, if X is a set of ordinal, then
⋃

α∈X α is an ordinal. The ordering is obtained by

β < α iff β ∈ α. An ordinal α is a successor ordinal iff there exists an ordinal β such

that α = β + 1. An ordinal which is not 0 or a successor ordinal, is a limit ordinal.

The first limit ordinal is written ω. Addition, multiplication and exponentiation

can be defined on ordinals inductively: α + 0 = α, α + (β + 1) = (α + β) + 1 and

α + β = sup{α + γ : γ < β} where β is a limit ordinal. Multiplication and expo-

nentiation are defined similarly. ǫ0 is the closure of ω ∪{ω} under ordinal addition,

multiplication and exponentiation. By the Cantor Normal Form theorem, for any

ordinal α < ǫ0, there are unique ordinals β1, . . . , βp, and unique integers n1, . . . , np
such that α > β1 > · · · > βp and

α = ωβ1 × n1 + · · · + ωβp × np

If α < ωω, then the βi’s are integers.

Whenever α ≤ β, there is a unique ordinal γ such that α + γ = β. We write

β−α to denote γ. For instance, ω2 −ω = ω2, ω× 3−ω = ω× 2 and ω2 −ω3 is not

defined since ω3 > ω2.

Given an ordinal α ≤ ωk equal to ωkak + · · · + ω1a1 + ω0a0, we write sum(α)

to denote ak + · · · + a0, head(α) to denote the maximal i such that ai 6= 0 and

tail(α) to denote the minimal i such that ai 6= 0 (assuming α 6= 0). For instance,

tail(α+ ωn) = n.

An ordinal α is said to be closed under addition whenever β, β′ < α implies

β + β′ < α. For instance, 0, 1, ω, ω2, ω3, and ωω are closed under addition. In the

sequel, we shall consider logics whose models are α-sequences, i.e. mappings of the

form α→ Σ for some finite alphabet Σ and ordinal α closed under addition.

Lemma 1 For every ordinal α ≥ 1, α is closed under addition iff its Cantor normal

form is ωβ for some ordinal β.

The proof of Lemma 1 can be found in Appendix A.

2.2. Quantitative Extensions of LTL

For every ordinal α closed under addition, we introduce the logic LTL(α) whose

models are precisely sequences of the form σ : α→ 2AP for some countably infinite

set AP of atomic propositions. The formulae of LTL(α) are defined as follows:

φ ::= p | ¬φ | φ1 ∧ φ2 | Xβφ | φ1U
β′

φ2,
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where p ∈ AP, β < α and β′ ≤ α. The satisfaction relation is inductively defined

below where σ is a model for LTL(α) and β < α:

• σ, β |= p iff p ∈ σ(β),

• σ, β |= ¬φ iff not σ, β |= φ; σ, β |= φ1 ∧ φ2 iff σ, β |= φ1 and σ, β |= φ2,

• σ, β |= Xβ
′

φ iff σ, β + β′ |= φ,

• σ, β |= φ1U
β′

φ2 iff there is γ < β′ such that σ, β+γ |= φ2 and for every γ′ < γ,

σ, β + γ′ |= φ1.

Closure under addition of α guarantees that β+ β′ and β+ γ above are strictly

smaller than α. Moreover, in Xβ
′

φ, β′ ≤ α so that for any β < α, β + β′ < α.

By contrast, in φ1U
β′

φ2, β
′ ≤ α (not necessarily strictly) because satisfaction of

σ, β |= φ1U
β′

φ2 implies the existence of some γ (satisfying some conditions) that is

already strictly less than β′. The models of φ ∈ LTL(α) are defined as elements

of the set Mod(φ) = {σ : σ, 0 |= φ}. φ is said to be LTL(α)-satisfiable whenever

Mod(φ) is non-empty.

The operator Xβ is a natural generalization of the next-time operator from linear-

time temporal logic LTL that allows to perform a jump of fixed length β. Similarly,

the operator Uβ is a natural generalization of the until operator from LTL. We

extend the standard abbreviations as follows: Fβφ
def
= ⊤Uβφ and Gβφ

def
= ¬Fβ¬φ.

The logic LTL(1) is equivalent to the propositional calculus since φ1U
0φ2 is

equivalent to ⊥, φ1U
1φ2 is equivalent to φ2, and X0φ is equivalent to φ. LTL is

expressively equivalent to LTL(ω): the operators Xn and Un for n ≥ 0, and Uω can

be simply expressed with the LTL operators X and U. However, LTL(ω) is more

succinct than LTL if the natural numbers are encoded with a binary representation

(see Lemma 8).

Actually in order to study the decidability/complexity of LTL(α), we restrict

ourselves to countable limit ordinals α so that the set of formulae is itself countable.

Furthermore, for studying complexity issues, it is necessary to specify the encoding

of the ordinals β ≤ α occurring in LTL(α) formulae. In the sequel, we use Cantor

normal form to encode ordinals 1 ≤ β ≤ ωω, and the natural numbers occurring in

such normal forms are represented in binary.

We provide below properties dealing with limit states that can be easily ex-

pressed in LTL(ωk) (k ≥ 2)

1. “p holds in the states indexed by limit ordinals strictly less than ωk”:

Gω
k

(Xωp ∧ · · · ∧ Xω
k−1

p).

2. For 1 ≤ k′ ≤ k− 2, “if p holds infinitely often in states indexed by ordinals of

the form ωk
′

× n, n ≥ 1, then q holds in the state indexed by ωk
′+1”:

(Gω
k′+1

Fω
k′+1

Xω
k′

p) ⇒ (Xω
k′+1

q).

2.3. Model-checking

6



The model-checking checking for LTL(α) is defined as a natural extension of the

problem for LTL (its existential version) where the labelled transition systems are

replaced by automata recognizing α-sequences (see Definition 1).

Model-checking problem for LTL(α):

input : An ordinal automaton A with finite alphabet a subset of 2AP (see Sect. 3.1

for a definition) and an LTL(α) formula φ.

question: Is there an α-sequence σ accepted by A such that σ, 0 |= φ?

This is the existential version of model-checking (easier to relate with the sat-

isfiability problem). The universal variant of the problem asks whether for all the

α-sequences σ accepted by A, we have σ, 0 |= φ.

By standard arguments in computational complexity about deterministic classes

and since LTL(α) is closed under negation, the complexity results for the existential

variant of model checking about pspace-completeness and expspace-completeness,

holds also true for the universal variant. Moreover, it is worth observing that in

ordinal automata the labels are on one-step transitions and not on states as in

standard Kripke structures usually used for stating LTL model checking. However,

this is a superficial difference.

2.4. A Non-elementary Decision Procedure

Given LTL(α) models σ, σ′, we write σ ≈α′ σ′ for some α′ < α whenever for

every β < α′, σ(β) = σ′(β). Hence ≈α is exactly the equality relation between

LTL(α) models. Given a LTL(α) formula φ, we write exp(φ) to denote either α if

α occurs in φ or the smallest ordinal of the form ωβ such that for every ordinal β′

occurring in φ, β′ < ωβ.

Lemma 2 Let α be an ordinal closed under addition and φ be an LTL(α) formula.

If σ ∈ Mod(φ) and σ ≈exp(φ) σ
′, then σ′ ∈ Mod(φ).

The proof of Lemma 2 is by an easy verification by observing that φ does not

constraint states on positions greater than exp(φ).

Proposition 1 Satisfiability for LTL(ωα), 0 ≤ α ≤ ω, is decidable.

The proof of Proposition 1 can be found in Appendix B and it provides a non-

elementary complexity upper bound (a consequence of [35]). Furthermore, unlike

the translation for LTL into the first-order theory of 〈ω,<〉, the above translation

makes a substantial use of second-order quantification. A translation into first-order

logic has been found recently [14] but whether LTL(ωω) has an elementary bound

is still open. In the sequel, we considerably improve the bound for logics LTL(ωk),

k ∈ N \ {0}, by using an automata-based approach.

3. Automata-based Approach

In this section, we show how to construct an ordinal automaton Aφ such that

its set of accepted words is precisely the models of φ, extending the approach for

LTL from [45]. In the rest of this section, φ ∈ LTL(ωk) for some k ≥ 1.
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3.1. Ordinal Automata

We define ordinal automata as a generalization of Muller automata.

Definition 1 (Ordinal Automaton) An ordinal automaton is a tuple

〈Q,Σ, δ, E, I, F 〉 where:

• Q is a finite set of states, Σ is a finite alphabet,

• δ ⊆ Q× Σ ×Q is a one-step transition relation,

• E ⊆ 2Q ×Q is a limit transition relation,

• I ⊆ Q is a finite set of initial states, F ⊆ Q is a finite set of final states.

We write q
a
−→ q′ whenever 〈q, a, q′〉 ∈ δ and q −→ q′ iff q

a
−→ q′ for some a ∈ Σ. A

path of length α+ 1 is a map r : α+ 1 → Q such that

• for every β ∈ α, r(β) −→ r(β + 1),

• for every limit ordinal β ≤ α, there is P −→ r(β) ∈ E s.t. P = inf(β, r) with

inf(β, r)
def
= {q ∈ Q : for every γ ∈ β, there is γ′ such that

γ < γ′ < β and r(γ′) = q}.

A run of length α+ 1 is a path of length α + 1 such that r(0) ∈ I. If r(α) ∈ F

then r is said to be accepting. The set of sequences recognized by the automaton

A, denoted by L(A), is the set of α-sequences σ : α → Σ for which there is an

accepting run r of length α+ 1 verifying for every β ∈ α, r(β)
σ(β)
−−→ r(β + 1).

Ordinal automata from Definition 1 are those defined in [28]. They are also

exactly the B′-automata from [7, page 35], a variant of Wojciechowski’s automata

with no letter on limit transitions. The equivalence between these two formalisms

is shown in [7, Sect. 2.5]. In [15, Def. 17], a similar notion is introduced and

it is generalized in [11] to automata recognizing sequences over scattered linear

orderings.

Example. We present below an example of ordinal automaton A with limit

transitions {0} −→ 1 and {0, 1} −→ 2.

0 1 2
b

a

It is not difficult to show that L(A) contains only ω2-sequences and L(A) = (aω ·b)ω.

3.2. Synchronous Product

We define below the synchronous product of two ordinal automata w.r.t. a syn-

chronization alphabet. The purpose of this definition is to state the control problem

in Section 5. Given two ordinal automata Ai = 〈Qi,Σi, δi, Ei, Ii, Fi〉, for i = 1, 2,

their synchronous product with respect to the set X of synchronization vectors

8



in Σ1 × Σ2 × Σ (Σ is a third arbitrary alphabet) is defined as the automaton

A1 ×X A2 = 〈Q,Σ, δ, E, I, F 〉 where:

• Q = Q1 ×Q2.

• 〈q1, q2〉
c

−→ 〈q′1, q
′
2〉 ∈ δ iff there is 〈a, b, c〉 ∈ X such that q1

a
−→ q′1 ∈ δ1, and

q2
b
−→ q′2 ∈ δ2.

• P −→ 〈q1, q2〉 ∈ E iff there exist P1 −→ q1 ∈ E1 and P2 −→ q2 ∈ E2 such that

{q : 〈q, q′〉 ∈ P} = P1 and {q′ : 〈q, q′〉 ∈ P} = P2.

• I = I1 × I2, F = F1 × F2.

By default, we write A1×A2 instead of A1×IDA2 for the synchronized product

with Σ1 = Σ2 = Σ and ID = {〈a, a, a〉 : a ∈ Σ}.

Proposition 2 Let A1 and A2 be ordinal automata over the alphabet Σ = Σ1 = Σ2.

We have L(A1) ∩ L(A2) = L(A1 ×A2).

3.3. Hintikka Sequences

We define below a notion of closure which generalizes the Fischer-Ladner clo-

sure [23].

Definition 2 (Closure) The closure of φ, denoted by cl(φ), is the smallest set of

LTL(ωk) formulae such that

• ⊥, φ ∈ cl(φ),

• ¬ψ ∈ cl(φ) implies ψ ∈ cl(φ),

• ψ ∈ cl(φ) implies ¬ψ ∈ cl(φ) (we identify ¬¬ψ with ψ),

• ψ1 ∧ ψ2 ∈ cl(φ) implies ψ1, ψ2 ∈ cl(φ),

• Xβψ ∈ cl(φ) and β ≥ ωn (0 ≤ n < k) imply Xβ−ω
n

ψ ∈ cl(φ),

• ψ1U
βψ2 ∈ cl(φ) and β ≥ ωn (0 ≤ n ≤ k) imply the formulae below belong to

cl(φ): ψ1, ψ2, X
ωn

(ψ1U
β−ωn

ψ2), ⊤Uω
n

¬ψ1, ψ1U
ωn

ψ2.

It is not difficult to show that the notion of closure introduced above generalizes

what is done for LTL.

Lemma 3 Let φ be an LTL(ωk) formula for some k ≥ 1.

(I) There exists a polynomial such that card(cl(φ)) is in 2O(p(|φ|)) [resp. card(cl(φ))

is in O(p(|φ|))] when integers are encoded in binary [resp. in unary].

(II) For all Xβψ ∈ cl(φ) and γ ≤ β, Xβ−γψ ∈ cl(φ).

(III) For all ψ1U
βψ2 ∈ cl(φ) and γ ≤ β, ψ1U

β−γψ2 ∈ cl(φ).

From a formula φ, we build an ordinal automata Aφ such that L(Aφ) is precisely

the set of LTL(ωk) models satisfying φ. Following [45], the states of Aφ are subsets

of cl(φ) containing formulae to be satisfied in the future, including the current

position. Hence, cl(φ) is built in such a way that if either q′ −→ q or P −→ q are

transitions in Aφ, then all the formulae to be satisfied in q depending on q′ and P

are part of cl(φ).

9



Definition 3 A set X ⊆ cl(φ) is said to be locally maximally consistent with respect

to φ iff it satisfies the conditions below:

(mc1) ⊥ 6∈ X,

(mc2) for every ψ ∈ cl(φ), ψ ∈ X iff ¬ψ 6∈ X,

(mc3) for every ψ1 ∧ ψ2 ∈ cl(φ), ψ1 ∧ ψ2 ∈ X iff ψ1, ψ2 ∈ X,

(mc4) for every X0ψ ∈ cl(φ), X0ψ ∈ X iff ψ ∈ X,

(mc5) for every ψ1U
0ψ2 ∈ cl(φ), ψ1U

0ψ2 6∈ X,

(mc6) for all ψ1U
βψ2 ∈ cl(φ) and β ≥ ωn ≥ 1, ψ1U

βψ2 ∈ X iff either ψ1U
ωn

ψ2 ∈ X

or ¬(⊤Uω
n

¬ψ1), X
ωn

(ψ1U
β−ωn

ψ2) ∈ X,

(mc7) for all ψ1U
βψ2, ψ1U

β′

ψ2 ∈ cl(φ) with β ≤ β′, ψ1U
βψ2 ∈ X implies ψ1U

β′

ψ2 ∈

X,

(mc8) for every ψ1U
1ψ2 ∈ cl(φ), ψ1U

1ψ2 ∈ X iff ψ2 ∈ X.

Although all these conditions are used in the forthcoming proofs, at the moment

we ignore whether Condition (mc7) is a consequence of the other conditions. We

denote by maxcons(φ) the set of locally maximally consistent subsets of cl(φ).

For standard LTL, an Hintikka sequence ρ for a formula φ is an ω-sequence of sets

of subformulae of φ such that φ is satisfiable iff φ has an Hintikka sequence. Local

conditions in ρ between two successive elements of the sequence are easy to handle

in Büchi automata with the transition relation. The only global condition, stating

that if ψ1Uψ2 occurs in the sequence, then some future element in the sequence

contains ψ2, is handled by the Büchi acceptance condition. Sometimes the non-

uniform treatment between local conditions and the global condition is the source

of confusion. The Hintikka sequences defined below are based on a similar principle

except that we can extend advantageously the notion of locality. The Hintikka

sequences ρ are of the form ρ : ωk → 2cl(φ). Encoding conditions between ρ(β) and

ρ(β + 1) can be performed by one-step transitions in ordinal automata. However,

the presence of limit transitions allows us also to admit conditions between ρ(β) and

ρ(β + ωn
′

) with 0 ≤ n′ < k. Hence, the global condition in Hintikka sequences of

LTL formulae is replaced by a condition between ρ(β) and ρ(β+ω). For transfinite

sequences, the local and global conditions can be treated uniformly.

Definition 4 (Hintikka Sequence) An Hintikka sequence for φ is a sequence ρ :

ωk → 2cl(φ) such that

(hin1) φ ∈ ρ(0),

(hin2) for every β < ωk, ρ(β) ∈ maxcons(φ),

(hin3) for all β < ωk, Xβ
′

ψ ∈ cl(φ) and 0 ≤ n′ < k such that β′ ≥ ωn
′

, Xβ
′

ψ ∈ ρ(β)

iff Xβ
′−ωn′

ψ ∈ ρ(β + ωn
′

),

(hin4) for all β < ωk and ψ1U
β′

ψ2 ∈ cl(φ), (A) ψ1U
β′

ψ2 ∈ ρ(β) iff (B) there is

β ≤ β′′ < β + β′ such that ψ2 ∈ ρ(β′′) and for every β ≤ γ < β′′, ψ1 ∈ ρ(γ).
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Given a model σ : ωk → 2AP and φ an LTL(ωk) formula, we write seq(σ, φ)

to denote the sequence seq(σ, φ) : ωk → 2cl(φ) such that for every β < ωk,

seq(σ, φ)(β)
def
= {ψ ∈ cl(φ) : σ, β |= ψ}.

Lemma 4 Let σ be a model such that σ, 0 |= φ. Then seq(σ, φ) is an Hintikka

sequence for φ.

The proof is by an easy verification.

Lemma 5 Let φ be a formula and ρ : ωk → 2cl(φ) be an Hintikka sequence. For

every β < ωk, for every ψ ∈ cl(φ), ψ ∈ ρ(β) iff σ, β |= ψ where σ : ωk → 2AP with

σ(β) = AP ∩ ρ(β).

The proof of Lemma 5 can be found in Appendix C. As a consequence of

Lemma 4 and Lemma 5, we obtain the following proposition.

Proposition 3 φ is LTL(ωk) satisfiable iff φ has an Hintikka sequence.

3.4. Automaton Construction

We build an ordinal automaton Aφ that recognizes only words of length ωk

over the alphabet 2AP (assuming that AP is the finite set of atomic propositions

occurring in φ).

As the automata built from LTL formulae, states of Aφ are locally maximally

consistent sets. Each formula in a state has to be satisfied at the current position and

this induces requirements for the future states of the run. Typically, if X1ψ belongs

to some state, then the next state obtained by a one-step transition should contain

the subformula ψ. However, the states in Aφ are also made of some n ∈ {0, . . . , k} in

order to remember the tail of the position of the state in the run. This stratification

of states is useful for defining limit transitions and this is possible only because k

is strictly less than ω.

The automaton Aφ = 〈Q,Σ, δ, E, I, F 〉 is defined as follows:

• Σ = 2AP, Q = maxcons(φ) × {0, . . . , k},

• I = {〈X, 0〉 ∈ Q : φ ∈ X}, F = {〈X,n〉 ∈ Q : n = k},

• 〈X,n〉
a
−→ 〈X ′, n′〉 ∈ δ iff (one-step transition)

(A1) n < k and n′ = 0,

(A2) X ∩ AP = a,

(A3) for every Xβψ ∈ cl(φ) such that β ≥ 1, Xβψ ∈ X iff Xβ−1ψ ∈ X ′.

• In order to define E, we introduce preliminary definitions. For every ψ1U
βψ2 ∈

cl(φ), we write Pψ1U
βψ2

to denote the set below:

{〈X,n〉 : either ψ2 ∈ X or ¬(ψ1U
βψ2) ∈ X}.

For every 〈X,n〉 ∈ Q we write Q〈X,n〉 to denote the subset of Q such that for

every 〈X ′, n′〉 ∈ Q, 〈X ′, n′〉 ∈ Q〈X,n〉
def
⇔

(A4) n′ < n,

11



(A5) for every Xαψ ∈ cl(φ) with α ≥ ωn, Xαψ ∈ X ′ iff Xα−ω
n

ψ ∈ X .

For every 〈X,n〉 ∈ Q, Z −→ 〈X,n〉 ∈ E iff

(A6) n ≥ 1,

(A7) Z ⊆ Q〈X,n〉,

(A8) Z contains a state of the form 〈Y, n− 1〉,

(A9) for all ψ1U
βψ2 ∈ cl(φ) and β ≥ ωn such that ¬(ψ1U

β−ωn

ψ2) ∈ X ,

Pψ1Uβψ2
∩ Z 6= ∅.

For LTL(ω), the above construction roughly corresponds to the Muller automa-

ton obtained from the generalized Büchi automaton for the LTL formula φ.

A state 〈X,n〉 ∈ Q is said to be of level n. Because of the strict discipline on

levels in Aφ it is not difficult to show the following result.

Lemma 6 Let r : ωk + 1 → Q be a run of Aφ. For every α < ωk + 1, r(α) is of

level tail(α).

It remains to prove the main lemma whose proof requires some careful analy-

sis. Indeed, it is the place where the conditions of the form (mc⋆) and (A⋆) are

technically justified.

Lemma 7 Mod(φ) is non-empty iff L(Aφ) is non-empty.

The proof of Lemma 7 can be found in Appendix D. The automaton Aφ has

22O(|φ|)

states and 222O(|φ|)

transitions. By [16, Proposition 6], the emptiness prob-

lem for ordinal automata is in P. So checking whether Aφ accepts at least one word

can be done in triple exponential time, which provides an elementary bound but

not optimal as shown in Section 4.

Proposition 4 L(Aφ) = Mod(φ).

Even though LTL(ωω) is decidable (by translation into the monadic second-order

theory of ωω), the proof of Lemma 7 cannot be extended to LTL(ωω). Indeed, by [46,

Sect. 8] (see also [28, Theorem 5.6]), there is no ordinal automaton accepting the

language {aα} for any countable ordinal α greater than or equal to ωω. However,

for LTL(ωω) it is open whether there exists a systematic construction of automata

from formulae that allows to state a result as Lemma 7 (only equivalence of non-

emptiness is required).

4. Computational Complexity

In this section, we show complexity results about satisfiability of LTL(ωk).

4.1. EXPSPACE-hardness

Lemma 8 below states that although LTL and LTL(ω) are expressively equiva-

lent, LTL(ω) is more concise than LTL mainly because Xnp is exponentially more

succinct than

n times
︷ ︸︸ ︷

X · · · X p when n is encoded in binary.

Lemma 8 Satisfiability for LTL(ω) is expspace-complete.

12



Lemma 8 seems to contradict that LTL satisfiability is only pspace-complete

but X2n

p can be represented with only O(n) bits. We prove the expspace-hardness

since it will be used also for characterizing the complexity of LTL(ωω). The proof

is an adaptation of the proof of [27, Theorem 4.7] showing the pspace-hardness

of LTL by reducing a pspace-complete tiling problem. In the case the natural

numbers are encoded in unary in LTL(ω), we regain the pspace-completeness (see

e.g. Section 3). The proof of Lemma 8 can be found in Appendix E.

As a consequence of Lemma 2 we obtain the following lower bound.

Theorem 1 For every ordinal α ≥ 1, satisfiability for LTL(ωα) is expspace-hard.

4.2. Succinct Ordinal Automata of Level k

In order to refine the complexity result from Sect. 3, we define below specialized

ordinal automata that recognize ωk-sequences. Similar automata can be found in

the literature, see e.g. [18, 28, 7]. The main merit of the definition below is to allow

easy manipulation in the forthcoming proofs.

Definition 5 (Ordinal Automaton of Level k) An ordinal automaton

A = 〈Q,Σ, δ, E, I, F 〉 is said to be of level k ≥ 1 iff there is a map l : Q→ {0, . . . , k}

such that

• for every q ∈ F , l(q) = k;

• q
a
−→ q′ ∈ δ implies l(q′) = 0 and l(q) < k;

• P −→ q ∈ E implies

1. l(q) ≥ 1,

2. for every q′ ∈ P , l(q′) < l(q),

3. there is q′ ∈ P such that l(q′) = l(q) − 1.

Hence, there is a partition of Q of size k + 1 such that if P −→ q ∈ E, then

max{l(q′) : q′ ∈ P} + 1 = l(q). Below, an ordinal automaton of level k is denoted

by 〈Q,Σ, δ, E, I, F, l〉 where l is the level function. Each set of states having the

same level corresponds to a layer in Choueka’s automata [18]. The automaton built

in Section 3 is of level k when the input formula is in LTL(ωk). However, Aφ is

of triple [resp. double] exponential size in |φ| when integer are encoded in binary

[resp. unary] which is still too much to characterize accurately the complexity of

LTL(ωk) satisfiability. That is why, we introduce below a special class of ordinal

automata which can represent succinctly an exponential amount of limit transitions

as the generalized Büchi automata can be viewed as a succinct representation of

Muller automata. Hence, we shall construct A′
φ such that L(A′

φ) = L(Aφ), and A′
φ

is “only” of double [resp. simple] exponential size in |φ| when integers are encoded

in binary [resp. unary].

Definition 6 (p(·)-Succinct Ordinal Automaton of Level k) Given

a polynomial p(·), a p(·)-succinct ordinal automaton of level k is a structure A =

〈Q,Σ, δ, E, I, F, l〉 defined as an ordinal automaton of level k except that E is a set

of tuples of the form 〈P0, P1, . . . , Pn, q〉 with n ≥ 0, q ∈ Q and P0, . . . , Pn ⊆ Q such

that
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• 〈P0, P1, . . . , Pn, q〉 ∈ E implies

1. 1 ≤ l(q) ≤ k,

2. each state in P0 is of level l(q) − 1,

3. each state in P1 ∪ · · · ∪ Pn is of level less than l(q) − 1,

4. n ≤ p(|Q|),

• for every state q of level strictly more than 0, there is at most one tuple in E

of the form 〈P0, P1, . . . , Pn, q〉.

Each tuple 〈P0, P1, . . . , Pn, q〉 encodes succinctly the set of limit transitions

trans(〈P0, P1, . . . , Pn, q〉)
def
=

{P −→ q : P ⊆ Q, ∀ i Pi ∩ P 6= ∅ and ∀q′ ∈ P, l(q′) < l(q)}.

Below, given a p(·)-succinct ordinal automaton A of level k, we write Ao to denote

the ordinal automaton of level k 〈Q,Σ, δ, E′, I, F, l〉 with E′ =
⋃

t∈E trans(t). The

language recognized by A is defined as the language recognized by Ao. In that way,

a p(·)-succinct ordinal automaton of level k is simply a succinct encoding of some

ordinal automaton of level k. An important property of such automata rests on the

fact that the size of E is in O(|Q|2 × p(|Q|)). By contrast, in an ordinary ordinal

automaton of level k, the cardinality of the set of limit transitions can be in the

worst case exponential in |Q|.

The automaton Aφ from Section 3.4 can be viewed as a p0(·)-succinct ordinal

automaton of level k with p0(x) = x. Indeed, let A′
φ be the p0(·)-succinct ordinal

automaton of level k defined as Aφ with l(〈X,n〉) = n and 〈P0, P1, . . . , Pm, 〈X,n〉〉 ∈

E iff

• n ≥ 1,

• P0 ∪ · · · ∪ Pm ⊆ Q〈X,n〉 (see the definition of Q〈X,n〉 in Section 3.4),

• P0 = Q〈X,n〉 ∩ {〈Y, n′〉 ∈ Q : n′ = n− 1}.

• Let us pose Z = {ψ1U
βψ2 ∈ cl(φ) : ¬(ψ1U

β−ωn

ψ2) ∈ X, β ≥ ωn}. We have

|Z| = m and for every ψ ∈ Z, {〈X,n〉 : either ψ2 ∈ X or ¬(ψ1U
βψ2) ∈ X} ∈

{P1, . . . , Pm} with ψ = ψ1U
βψ2.

It remains to check that m ≤ |Q| (because of p0(·)). It is sufficient to observe

that m < |cl(φ)| and |Q| is in O(2|cl(φ)|).

It is not difficult to show the following lemma:

Lemma 9

(I) L(Aφ) = L(A′
φ).

(II) In the unary [resp. binary] case, A′
φ is of size exponential [resp. doubly ex-

ponential] in |φ| and requires only polynomial [resp. exponential] space to be

built.
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4.3. Key Properties to Test Non-emptiness

In this section, we establish a few properties about runs in ordinal automata of

level k.

Lemma 10 Let A be an automata of level k and r be a run of length α + 1 with

normal form β + ωi × n, n ≥ 1. Then l(r(β + ωi × n)) = i.

The proof is by an easy verification (induction on i). Lemma 10 is a slight

generalization of Lemma 6. As a consequence, we obtain the following lemma.

Lemma 11 Let A be an automaton of level k. Then, its accepting runs are of

length ωk.

Lemma 12 below is the key property to obtain the nlogspace upper bound for

the non-emptiness problem of ordinal automata of level k, even in their succinct

versions. It generalizes substantially the property that entails that the graph acces-

sibility problem and the non-emptiness problem for generalized Büchi automata can

be solved in non-deterministic logarithmic space. A Büchi automaton 〈Q,Σ, δ, I, F 〉

accepts a non-empty language iff there exists a path q0
n
−→ qf

n′

−→ qf such that q0 ∈ I,

qf ∈ F , n ≤ |Q| and 1 ≤ n′ ≤ |Q|. As usual, two states are in the relation
i
−→ if there

is a path of length i between them. Similarly, a Muller automaton 〈Q,Σ, δ, I,F〉

accepts a non-empty language iff there exists a path q0
n
−→ q1 −→ q2 −→ · · · −→ qn′ such

that q0 ∈ I, q1 = qn′ , {q1, . . . , qn′} ∈ F and n′ ≤ |Q|2. Lemma 12 allows to gener-

alize what is known about automata recognizing ω-sequences: L(A) is non-empty

iff A has an accepting run composed of a prefix followed by a loop with bounded

length.

Lemma 12 Let A be an automaton of level k and r be a run of length ωk
′

+ 1 for

some 1 ≤ k′ ≤ k. Then, there is a run r′ of length ωk
′

+ 1 such that

• r′(0) = r(0) and r′(ωk
′

) = r(ωk
′

),

• there are K ≤ |Q| and K ′ ≤ |Q|2 such that for every α ≥ ωk
′−1×K such that

the normal form of α is ωk
′−1 × n+ β, r′(α) = r′(ωk

′−1 × (n+K ′) + β).

The proof of Lemma 12 can be found in Appendix F.

A consequence of Lemma 12 is that an automaton A = 〈Q,Σ, δ, E, I, F, l〉 of level

k accepts a non-empty language iff there exists a run r : ωk−1 × (K +K ′) + 1 → Q

for some K ≤ |Q| and K ′ ≤ |Q|2 such that r(ωk−1 ×K) = r(ωk−1 × (K +K ′)) and

{r(β) : ωk−1 ×K ≤ β ≤ ωk−1 × (K +K ′)} → qf ∈ E

for some state qf of level k.

More precisely, by taking k′ = k in Lemma 12, the automaton A accepts a non-

empty language iff there areK ≤ |Q| and K ′ ≤ |Q|2 and q00 , q
0
k−1, . . . , q

K+K′

0 , qK+K′

k−1

(these are landmark states of a run) such that

(level0) q10 , . . . , q
K+K′

0 are of level 0 and q00 ∈ I.

(levelk−1) q0k−1, . . . , q
K+K′

k−1 are of level k − 1 and qKk−1 = qK+K′

k−1 .
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(subruns) for every 0 ≤ i ≤ K +K ′, there is a path ri : ωk−1 + 1 → Q such that

ri(0) = qi0 and ri(ω
k−1
i ) = qik−1. Each ri is part of a run from (ωk−1 × i) + 1

to ωk−1 × (i+ 1).

(k − 1 → 0) for every 0 ≤ i < K +K ′, qik−1 −→ qi+1
0 .

(last-transition) {ri(β) : K ≤ i ≤ K + K ′, 0 ≤ β ≤ ωk−1} → qf ∈ E for some

state qf of level k.

Existence of the runs r0, . . . , rK+K′ above leads to the existence of an accepting run

of length ωk + 1 as described below:

prefix of length ωk−1×K
︷ ︸︸ ︷

q00 . . . q
0
k−1

︸ ︷︷ ︸

r0

−→ q10 . . . q
1
k−1

︸ ︷︷ ︸

r1

. . . . . . qK0 . . . qKk−1
︸ ︷︷ ︸

rK

−→

loop of length ωk−1×K′

︷ ︸︸ ︷

(qK+1
0 . . . . . . qK+K′−1

k−1 −→ qK+K′

0 . . . qK+K′

k−1
︸ ︷︷ ︸

rK+K′

)ω

In Condition (subruns), the existence of ri can be expressed recursively in a

similar fashion on which is based the forthcoming algorithm to test non-emptiness.

Even though is it obvious to see how the algorithm can work recursively, we have

decided to provide the pseudo-code of the algorithm to underline some of its delicate

aspects (in particular to get the proper amount of used space).

It is worth observing that Lemma 12 also holds for p(·)-succinct ordinal automata

of level k since they form a special subclass of ordinal automata of level k. The

succinctness of the representation of the set of limit transitions plays no role in

Lemma 12.

4.4. An Optimal Algorithm to Test Non-emptiness

As seen earlier, non-emptiness is equivalent to the existence of some landmark

states q00 , q
0
k−1, . . . , q

K+K′

0 , qK+K′

k−1 satisfying the five above-mentioned conditions. In

order to test non-emptiness of the language recognized by an automaton of level k,

we introduce a function acc(q, q′) (see Fig. 1) that returns ⊤ iff there is a path r

of length ωl(q
′) + 1 such that r(0) = q and r(ωl(q

′)) = q′. We design the following

non-deterministic algorithm:

Non-empty?(A)

Guess q0 ∈ I and qf ∈ F ;

acc(q0, qf ).

Non-determinism is also present in the definition of acc(q0, qf ). A few global

variables are used.

• The variables InLoop1, . . . , InLoopk are Boolean. Each variable InLoopi is

equal to true iff the algorithm is guessing the periodic part of a run of length

16



ωi (which itself can belong to the periodic part of ωj for some j > i). In

particular, InLoopk is equal to true if the algorithm is building the periodic

part of the global run, i.e. in the part rK+1, . . . , rK+K′ according to the

notations of Sect. 4.3. In that case, every state in the run from q to q′ has

to be recorded in order to be also able to fire the last limit transition (see

Condition (last-transition) in Sect. 4.3).

• Moreover, for every i ∈ {1, . . . , k}, the variable ↑i contains the address of

the occurrence of a state in the left part of a rule P → q′′ with l(q′′) = i:

O(k × log|A|) bits are needed in total.

Remember that A is encoded as a string and the address of the occurrence of

a state is simply a position in that string, which requires only O(log|A|) bits. The

variable ↑i is updated when the state whose address is ↑i is detected in the periodic

part of the run.

In the definition of acc(q, q′), in order to test whether there is a path r of length

ωl(q
′) + 1 such that l(q′) ≥ 1, r(0) = q and r(ωl(q

′)) = q′, Lemma 12 guarantees

that the periodic part of r is of length at most ωl(q
′)−1 × |Q|2 and the prefix is

of length at most ωl(q
′)−1 × |Q|. This explains the two main loops of acc(q, q′).

The two “for” loops guess respectively the prefix and the period. Observe that the

iteration variable i is only used to guarantee that the lengths of the subruns are

correct. When a state t is guessed in the periodic part of the global run, one has to

check that t indeed belongs to rules of the form P → q′′ with l(q′′) > l(qt) and one

updates the variables ↑i since t has been detected (see Fig. 2).

Lemma 13 Non-empty?(A) = ⊤ iff L(A) 6= ∅.

Let us briefly analyze the complexity of the algorithm. Global variables require

O(k × log|A|) space and the recursive depth is at most k. By passing the variables

by reference, the whole algorithm requires space O(k × log|A|).

As a consequence we obtain the following theorem.

Theorem 2 For every k ≥ 0, the non-emptiness problem for ordinal automata of

level k is nlogspace-complete.

It is worth observing that as a corollary of [16], the non-emptiness problem

for ordinal automata is in P. Herein, we refine this result for a subclass of ordinal

automata: for every k ≥ 1, the non-emptiness problem for ordinal automata of level

k is in nlogspace. However, our algorithm runs in time O(|A|2×k): in order to

save space, we do not keep in memory the outcomes of previous accessibility checks

(similarly to the proof establishing that logarithmic reductions are closed under

composition). It is open whether the non-emptiness problem for ordinal automata

of level k for some k ≥ 0 is P-hard (k is not fixed).

Corollary 1 The non-emptiness problem for Muller automata (k = 1) is nlogspace-

complete.

The nlogspace upper bound is a consequence of Theorem 2 and the nlogspace

lower bound can be obtained by reducing the graph accessibility problem.

Corollary 2 For all k ≥ 0 and polynomial p(·), the non-emptiness problem for

p(·)-succinct ordinal automata of level k is nlogspace-complete.
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acc(q, q′) (l(q′) ≤ k, l(q) = 0)

k′ := l(q′) − 1;

If k′ ≥ 0 then

(initial-guesses)

- InLoopk′+1 := false;
- Guess a rule P → q′;
- ↑k′+1 takes the value of the address of the first state in P ;
- Guess K ≤ |Q| and K ′ ≤ |Q|2;

(⋆) q0 := q;

(guess-prefix) For i = 1 to K do

- Guess qk′ ∈ P of level k′;
- Check&Update(qk′);
- If acc(q0, qk′) then guess q0 such that l(q0) = 0 and qk′ −→ q0 other-

wise abort;

(⋆) If qrepeat
k′ := qk′ (forthcoming repeating state);

(⋆) InLoopk′+1 = true;

(⋆) Guess qk′ ∈ P of level k′;

(⋆) Check&Update(q0);Check&Update(qk′);

(guess-period) For i = 1 to K ′ do

If acc(q0, qk′) then

- Guess q0 such that l(q0) = 0 and qk′ −→ q0;
- qaux

k′ := qk′ ;
- Guess qk′ ∈ P of level k′;
- If i 6= K ′ (not the last dummy guess) then

(Check&Update(q0);Check&Update(qk′));

otherwise abort;

(final-check) If one of the conditions below fails then abort otherwise
accept

(C1) ↑k′+1 6= nil (some state in P has not been visited),
(C2) qaux

k′ 6= qrepeat
k′ (wrong choice of the repeating state of level k′)

otherwise if q −→ q′ then accept otherwise abort.

Figure 1: Accessibility function
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Check&Update(q)

For 1 ≤ i ≤ k do

(q is desirable) If InLoopi = true and ↑i contains the address of an occur-
rence of q in the left part of a rule then ↑i takes the value of the next
state in the rule or nil if there is no such a remaining state;

(q is undesirable) If InLoopi = true and l(q) ≤ i− 1 and q does not occur
in the left part of the rule that is currently pointed by ↑i then abort.
(one needs another variable to visit the states in the left part of that
rule)

accept.

Figure 2: Update of the variables ↑is

Indeed, for ordinary ordinal automata, rules P −→ q′ in E are guessed (see Fig. 1)

whereas for p(·)-succinct ordinal automata of level k, we guess which element for

each Pi occurring in P0, . . . , Pm −→ q′ is repeated infinitely often. So we guess

q0, . . . , qm −→ q′ and ↓l(q′)−1 contains the address of the occurrence of some qi. Of

course we do not guess q0, . . . , qm −→ q′ at once for space saving but rather guess

each qi step by step. Because in succinct ordinal automata, we only specify the

existence of states repeated infinitely often (as in generalized Büchi automata), the

second condition can be deleted in Fig. 2.

4.5. Optimal Complexity Upper Bounds

We are now in position to characterize the computational complexity of satisfi-

ability and model-checking problems.

Theorem 3 For every k ≥ 1, the satisfiability problem for LTL(ωk) is pspace-

complete when the integers are encoded in unary and the problem is in expspace-

complete when the integers are encoded in binary.

The proof of Theorem 3 can be found in Appendix G. Another way to prove

Theorem 3 suggested to us in [37] consists in showing that LTL with strict Since

and Until over ωω-sequences is in pspace. Indeed, it is then possible to define

concisely a formula ϕi stating that the current position is a multiple of ωi for

i ∈ ω. Our operators Uω
i

and Xω
i

for some i ≥ 1 are then definable as follows:

ψUω
i

ψ′ ∼ ψ′ ∨ ((¬ϕi ∧ ψ)U(¬ϕi ∧ ψ
′)) and Xω

i

ψ ∼ ((¬ϕi)U(ϕi ∧ ψ)). Renaming of

subformulae are necessary to guarantee that the translation can be performed in

logarithmic space. It is however open whether for every countable ordinal α, LTL

with strict Since and Until over α-sequences is in pspace.

Complexity of the model-checking problem for LTL(ωk) can be now fully char-

acterized.

Theorem 4 For every k ≥ 1, the model-checking problem for LTL(ωk) is pspace-
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complete when the integers are encoded in unary and the problem is in expspace-

complete when the integers are encoded in binary.

The proof of Theorem 4 can be found in Appendix H and it is a slight variant

of what exists for LTL. Theorem 4 can be refined by admitting succinct ordinal

automata as inputs of the model-checking problem.

Theorem 5 For every k ≥ 1, the model-checking problem for LTL(ωk) restricted

to x-succinct ordinal automata of level k is pspace-complete when the integers

are encoded in unary and the problem is expspace-complete when the integers are

encoded in binary.

Hence, even if the system is defined succinctly, the worst-case complexity remains

identical. The proof of Theorem 5 can be found in Appendix I.

5. Application: Control of Physical Systems

In this section, we formalize the control problem of a physical system by a

computer system by using ordinal automata and the logics LTL(ωk). Even though

it is the original motivation of our investigations on the logics LTL(α), at this point

of the paper we have all the necessary definitions and results to state concisely the

problem. Physical systems are often modelled by differential equations. Solving

those equations can then involve computations of limits. For example, the law of

movement of a bouncing ball implies that, when it is lifted-up, it will bounce an

infinite number of times in a finite amount of time. It can be seen as a Zeno sequence

of actions. We model a system by an ordinal automaton recognizing ωk-sequences.

For instance, the law of movement of the bouncing ball corresponds to ω2-sequences

and the set of acceptable behaviors of the ball is modelled by a set of sequences

of the same length ω2. On the other hand, the controller is an operational model

working on ω-sequences.

Before stating the control problem, we need to give definitions about the way to

transform an ordinal automaton of level 1 into an ordinal automaton of level k ≥ 2

that has relevant actions only on states in positions of the form ωk−1 × n (lifting).

As usual, LTL(ωk) formulae can be viewed equivalently as ordinal automata of level

k and we shall use these different representations depending on the context (see [3]

for a similar standard treatment between formulae and automata).

5.1. Lifting

In order to synchronize the system S with a controller working on ω-sequences,

we need to transform the controller so that its product with S only constraints

states on positions ωk−1 × n, n ∈ N. The other positions are not constrained.

Definition 7 (Lifting) Let A = 〈Q,Σ, δ, E, I, F, l〉 be an automaton of level 1 (the

final states are the only states of level 1). We define its lifting liftk(A) at level k ≥ 2

to be the automaton 〈Q′,Σ, δ′, E′, I ′, F, l′〉 by:

• Q′ = ({0, . . . , k − 1} × (Q \ F )) ∪ F , I ′ = {k − 1} × I,

• l′(q) = k for q ∈ F and l′(〈i, q′〉) = i,
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• δ′ = {〈k − 1, q〉
a
−→ 〈0, q′〉 : q

a
−→ q′ ∈ δ}∪

{〈i, q〉
a
−→ 〈0, q〉 : 0 ≤ i < k, a ∈ Σ, q 6∈ F}

,

• E′ = {{〈0, q〉, . . . , 〈i− 1, q〉} −→ 〈i, q〉 : 1 ≤ i < k, q ∈ Q} ∪ {{〈0, q1〉, . . . , 〈k−

1, q1〉, . . . , 〈0, qn〉, . . . , 〈k − 1, qn〉} −→ q | {q1, . . . qn} −→ q ∈ E}.

Example. We present below an example of ordinal automaton A with limit

transition {q0, q1, q2} −→ q3 and the corresponding automaton lift2(A) with limit

transitions {〈0, q0〉} −→ 〈1, q0〉, {〈0, q1〉} −→ 〈1, q1〉, {〈0, q2〉} −→ 〈1, q2〉, and

{〈0, q0〉, 〈1, q0〉, 〈0, q1〉, 〈1, q1〉, 〈0, q2〉, 〈1, q2〉} −→ q3.

q0

q1 q2

q3

a a

b c

〈0, q0〉

〈1, q0〉

〈0, q1〉

〈1, q1〉

〈0, q2〉

〈1, q2〉

q3

Σ

Σ Σ

a a

b c

A lift2(A)

Proposition 5 For all w ∈ Σω
k

, w ∈ L(liftk(A)) iff the word w′ ∈ Σω, defined by

w′(i) = w(ωk−1 × i), is in L(A).

The proof of Proposition 5 can be found in Appendix J.

5.2. The Control Problem

Definition 8 (Physical system) A physical system S is modelled as a structure

〈A,Actc,Acto,Act〉 where

• A is an ordinal automaton of level k with alphabet 2Act where Act is a finite

non-empty set of actions,

• Acto ⊆ Act is the set of observable actions,

• Actc ⊆ Acto is the set of controllable actions. The set of uncontrollable actions

is denoted by Actnc.

A specification of the system S is naturally an LTL(ωk) formula ψ. A controller C

for the pair 〈S, ψ〉 is a system whose complete executions are ω-sequences (typically

ordinal automata of level 1) verifying the properties below.

• Only observable actions are present in the controller. Hence, thanks to the

synchronization mode, in the product system between S and C, unobservable

actions do not change the C-component of the current state. So,
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(obs) the alphabet of C is 2Acto and for every state q of C, there is a transition

q
∅
−→ q.

• From any state of C, uncontrollable actions can always be executed:

(unc) ∀q · ∀a ⊆ Acto \ Actc, there is a transition q
b
−→ q′ in C such that

b ∩ Actnc = a.

• Finally, the system S controlled by C satisfies ψ. Because S and C work

on sequences of different length, the controlled system is in fact equal to

liftk(C) ×Y S for some set Y of synchronization vectors. S and C synchronize

on observable actions:

(syn) Y = {〈X,X ′, X ′′〉 ∈ Act × Acto × Act : X ∩ Acto = X ′, X = X ′′}.

This is equivalent to check the emptiness of the language of the product au-

tomaton (S ×Y liftk(C)) × A¬ψ.

Hence, the control problem for LTL(ωk) is defined as follows:

input: a system S = 〈A,Actc,Acto,Act〉 with ordinal automaton A of level k and

an LTL(ωk) formula φ over atomic formulae in Act.

output: is there an ordinal automaton C of level 1 satisfying (obs) and (unc) and

such that all the words of length ωk accepted by S ×Y liftk(C) satisfy φ with

Y verifying (syn).

It is worth noting that the lifting construction oversimplifies the physical syn-

chronization between the system and the controller. Indeed, the fact that liftk(C)

synchronizes with S every ωk−1 step idealizes the ability of the controller. Assum-

ing that C interacts with S at the steps 0 < α1 < α2 < . . . with limi→wαi = ωk

is more realistic. With the construction liftk(C), it is implicitly assumed that αi is

precisely ωk−1 × i.

The very complexity of the control problem is open (see related results in the

recent [14]) but as a consequence of Theorem 4 we obtain the following result.

Proposition 6 The problem of checking whether the language accepted by (S ×Y
liftk(C)) × A¬ψ is non-empty, given a physical system S, a controller C and a

specification ψ is decidable.

We explained how to check that a controller is correct with respect to a specifi-

cation, but we do not address here the controller synthesis issue.

5.3. Example

Consider the system is a bouncing ball [20] with three actions lift-up, bounce

and stop, where only lift-up is controllable, and only stop and lift-up are observable.

The law of the ball is described by the following LTL(ω2) formula:

φ = Gω
2

(lift-up ⇒ X1(Gωbounce ∧ Xωstop))

22



Gαϕ is an abbreviation for ¬(⊤Uα¬ϕ). Informally, φ states that when the ball is

lifted-up, then it bounces an infinite number of times in a finite time and then

stops. An equivalent ordinal automaton Aφ working on ω2-sequences can be easily

defined. The specification is given by the following LTL(ω2) formula:

ψ = Gω
2

X1bounce

Informally, ψ states that the ball should almost always be bouncing.

A possible controller for this system is described by the following LTL formula:

ϕ = lift-up ∧ Gω(stop ⇒ lift-up)

Informally, ϕ states that the controller should lift-up the ball at the beginning and

then lift-up it again each time it stops. Similarly, an equivalent ordinal automaton

Aϕ working on ω-sequences can be easily defined.

6. Concluding Remarks

We have introduced a family of temporal logics to specify the behavior of sys-

tems by assuming that the sequence of actions is isomorphic to some well-ordered

linear ordering (see the bouncing ball example in Section 5). Our aim is to con-

trol such physical systems by designing controllers that safely work on ω-sequences

but interact synchronously with the physical system in order to restrict their be-

haviors. We have extended linear-time temporal logic LTL to α-sequences for any

countable ordinal α closed under addition, by considering quantitative operators in-

dexed by ordinals smaller than α. This is a new class of linear-time temporal logics

for which we have shown that LTL(ωω) is decidable by reduction to the monadic

second-order theory 〈ωω, <〉 and for every k ≥ 1, LTL(ωk) satisfiability problem

is pspace-complete [resp. expspace-complete] when the integers are encoded in

unary [resp. in binary] generalizing what is known about LTL. Our proof technique

is inspired from [45] with significant extensions in order to deal with the interaction

between arithmetics on ordinals and temporal operators. We have introduced a

new class of succinct ordinal automata in order to fully characterize the complexity

of the logics. The treatment of these aspects leads to the most difficult technical

parts of the paper. Finally, the complexity results for satisfiability can be lifted

to model-checking: the model checking problem for LTL(ωk) is pspace-complete

[resp. expspace-complete] when the integers are encoded in unary [resp. binary].

A lot of work remains to be done even though our logics working on ωk-sequences

have been shown to admit reasoning tasks of complexity similar to that of LTL.

Synthesis of controllers working on ω-sequences on the line of Section 5 is on the

top of our priority list as well as the search for well-motivated examples where

ordinals greater than ω2 are needed. It is also natural to wonder whether LTL(ωω)

satisfiability is an elementary problem and whether for every countable ordinal

α, LTL(α) is decidable. Observe that the monadic second-order theory of every

countable ordinal α is known to be decidable [13] but this theory has no addition

and we need it in some way in LTL(α) to deal with the operators Xβ . Finally, LTL

23



is known to be initially equivalent to the first-order theory of 〈ω,<〉 by Kamp’s

theorem [33] and by the separation theorem [24]. Is LTL(ωk) also initially equivalent

to the first-order theory of 〈ωk, <〉? It is unlikely the case since by [31], the future

fragment of MLO over the class of ordinals does not have the finite base property.
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Appendix A: Proof of Lemma 1

First suppose that α = ωβ and take β1 ≤ β2 < ωβ. The Cantor’s normal form

of β1 [resp. β2] is of the form ωγ1n1 + γ′1 [resp. ωγ2n2 + γ′2] with either γ2 > γ1 or

n2 ≥ n1. Hence,

β1 + β2 ≤ β2 + β2 < ωγ2 × n

for some n > 1. Consequently, β1 + β2 < ωβ since ωγ2 × n < ωγ2+1 ≤ ωβ.

Now suppose that the Cantor normal form of α is ωβ1 .n1 + · · · + ωβp .np where

p > 1 and np 6= 0. The ordinals ωβ1 .n1 and ωβ1 are strictly less than α, but their

sum is strictly greater. 2

Appendix B: Proof of Proposition 1

By Lemma 2, it is sufficient to show that LTL(ωω) is decidable. We extend the

standard translation from LTL into the monadic second order theory of 〈ω,<〉 in

order to translate LTL(ωω) into the monadic second order theory of 〈ωω, <〉 since the

monadic second order theory of 〈α,<〉 for every countable ordinal α is decidable [13,

Theorem 4.12]. The main difficulty rests on the definition of a formula +β(x, y) for

some β < ωω such that 〈ωω, <〉 |=v +β(x, y) with v : {x, y} → ωω iff v(y) = v(x)+β.

The relation |=v is the standard satisfaction relation under the valuation v. It is

worth observing that addition is not present in the monadic second order theory

of 〈ωω, <〉. With the help of +β(x, y) we define a two-places map t(·, ·) such that

for any LTL(ωω) formula φ built over the propositional variables p1, . . . , pn, for

any σ : ωω → 2{p1,...,pn}, we have σ, 0 |= φ iff 〈ωω, <, P1, . . . , Pn〉 |=v t(φ, x0) with

v(x0) = 0 and for 1 ≤ l ≤ n, Pl = {β ∈ ωω : pl ∈ σ(β)}.

• t(p, x) = p(x), t(φ ∧ ψ, x) = t(φ, x) ∧ t(ψ, x), t(¬φ, x) = ¬t(φ, x),

• t(Xβφ, x) = ∃ y +β (x, y) ∧ t(φ, y),

• t(φUβψ, x) = ∃ y y′ +β (x, y′) ∧ (x ≤ y ∧ y < y′) ∧ t(ψ, y) ∧ (∀ z (x ≤ z ∧ z <

y) ⇒ t(φ, z)) if β < ωω.

• t(φUω
ω

ψ, x) = ∃ y (x ≤ y) ∧ t(ψ, y) ∧ (∀ z (x ≤ z ∧ z < y) ⇒ t(φ, z)).

The formulae of the form +β(x, y) with β < ωω are inductively defined as follows:

1. +0(x, y)
def
= (x = y),

2. +1(x, y)
def
= ∀ z (z > x⇒ y ≤ z) ∧ (x < y),

3. +ωkn+β(x, y)
def
= ∃ z +ωk (x, z) ∧ +ωk(n−1)+β(z, y) (n ≥ 1, k ≥ 0),

4. +ωk(x, y) (k ≥ 1) is defined as ∃ X φ1 ∧ · · · ∧ φ6 where the φis are defined as

follows.

(a) φ1
def
= ∀ z z ∈ X ⇒ x < z,

(b) φ2
def
= ∀ z, z′ (z ∈ X ∧ +ωk−1(z, z′)) ⇒ z′ ∈ X ,

(c) φ3
def
= ∃ z z ∈ X ∧ +ωk−1(x, z),

(d) φ4
def
= ∀ z z ∈ X ⇒ z < y,
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(e) φ5
def
= ∀ z (∀ z′ (z′ ∈ X ⇒ z′ < z)) ⇒ y ≤ z,

(f) φ6
def
= ∀ X ′ (X ′ ⊂ X) ⇒ φ¬2 ∨ φ¬3 where the φ¬i s are defined as follows.

i. φ¬2
def
= ¬(∀ z, z′ (z ∈ X ′ ∧ +ωk−1(z, z′)) ⇒ z′ ∈ X ′),

ii. φ¬3
def
= ¬(∃ z z ∈ X ′ ∧ +ωk−1(x, z)).

It is not difficult to show that the definition of +β(x, y) with β < ωω is correct since

the recursive steps involve only ordinals strictly less than β. Some explanations

are in order. In (4.), the variable X is enforced to be interpreted as the set {γ +

ωk−1, γ+ωk−1 × 2, γ+ωk−1 × 3, . . .} where the variable x is interpreted by γ. The

value of y is then the limit of this set. By satisfaction of φ4 and φ5, y is interpreted

as the least upper bound of {γ + ωk−1, γ + ωk−1 × 2, γ + ωk−1 × 3, . . .} which is

precisely γ + ωk. The formula φ6 states that X is interpreted as the smallest set

satisfying the formula φ1 ∧ φ2 ∧ φ3. 2

Appendix C: Proof of Lemma 5

Lemma C.1 below states a useful property about Hintikka sequences.

Lemma C.1 Let ρ : ωk → 2cl(φ) be a Hintikka sequence for φ. For all β < ωk and

Xβ
′

ψ ∈ cl(φ), Xβ
′

ψ ∈ ρ(β) iff ψ ∈ ρ(β + β′).

Proof. By using (hin3), it is easy to show by induction that for all β′′ ≤ β′,

Xβ
′

ψ ∈ ρ(β) iff Xβ
′−β′′

ψ ∈ ρ(β + β′′). Hence, ψ ∈ ρ(β + β′). 2

The proof of the lemma is by induction on the structure of ψ. The base case

with propositional variables and the cases with Boolean operators in the induction

step are by an easy verification.

Case 1: ψ = Xβ
′

ϕ with β′ ≥ 0

By Lemma C.1, ψ ∈ ρ(β) iff ϕ ∈ ρ(β + β′). By induction hypothesis, ϕ ∈ ρ(β + β′)

is equivalent to σ, β + β′ |= ϕ which is equivalent to σ, β |= ψ by definition of |=.

Case 2: ψ = ψ1U
β′

ψ2

The propositions below are equivalent:

1. ψ ∈ ρ(β),

2. there is β ≤ γ < β + β′ such that ψ2 ∈ ρ(γ) and for every β ≤ γ′ < γ,

ψ1 ∈ ρ(γ′) (by (hin4))

3. there is β ≤ γ < β + β′ such that σ, γ |= ψ2 and for every β ≤ γ′ < γ,

σ, γ′ |= ψ1 (by induction hypothesis)

4. σ, β |= ψ (by definition of |=).

2

Appendix D: Proof of Lemma 7
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We show that the set of sequences ρ : ωk → 2cl(φ) obtained from accepting runs

r : ωk + 1 → Q of Aφ as described below is precisely the set of Hintikka sequences

for φ. ρ is defined from r as follows: for every α < ωk + 1, ρ(α) = X where

r(α) = 〈X, tail(α)〉.

(I) First, we show that if r : ωk + 1 → Q is an accepting run, then ρ is an Hintikka

sequence for φ. Satisfaction of (hin1) and (hin2) is immediate.

(hin3) We want to show that for all α < ωk, Xα
′

ψ ∈ cl(φ) and 0 ≤ n ≤ k such that

α′ ≥ ωn, Xα
′

ψ ∈ ρ(α) iff Xα
′−ωn

ψ ∈ ρ(α+ωn). When n = 0, the property is satisfied

thanks to (A3) in Aφ. Otherwise suppose that Xα
′

ψ ∈ ρ(α) and α′ ≥ ωn with n ≥ 1.

We can show by transfinite induction, that for every β < ωn, Xα
′

ψ ∈ ρ(α+ β). The

base case β = 0 is obvious. In the induction step with β+ 1 < ωn, (A3) guarantees

that Xα
′

ψ ∈ ρ(α + β) implies Xα
′

ψ ∈ ρ(α + β + 1) since α′ − 1 = α′ (remember

α′ ≥ ω). Now suppose β is a limit ordinal strictly smaller than ωn and for every

β′ < β, Xα
′

ψ ∈ ρ(α + β′). By (A5), Xα
′−ωtail(β)

ψ ∈ ρ(α + β). Since β < ωn and

α′ ≥ ωn, α′ − ωtail(β) = α′. So, for every β < ωn, Xα
′

ψ ∈ ρ(α + β). By (A5), we

obtain Xα
′−ωn

ψ ∈ ρ(α+ ωn).

Now suppose that Xα
′−ωn

ψ ∈ ρ(α + ωn) with α′ ≥ ωn and n ≥ 1. So there is

a limit transition Z −→ 〈ρ(α + ωn), n〉 such that for every 〈Y, n′〉 ∈ Z, Xα
′

ψ ∈ Y .

Since Z = inf(α+ ωn, r), there is α ≤ β < α+ ωn such that Xα
′

ψ ∈ ρ(β). We can

now show that for every α ≤ β′ ≤ β, Xα
′

ψ ∈ ρ(β′). This can be proved as above by

observing that for such β′, tail(β′) < n and therefore α′ − ωtail(β
′) = α′.

(hin4) We show that for all α < ωk and ψ1U
α′

ψ2 ∈ cl(φ), (A) ψ1U
α′

ψ2 ∈ ρ(α) iff

(B) there is α ≤ α′′ < α + α′ such that ψ2 ∈ ρ(α′′) and for every α ≤ β < α′′,

ψ1 ∈ ρ(β).

If sum(α′) = 0 or α′ = 1, then the proof is immediate since ρ(α) satisfies (mc5)

and (mc8), respectively.

The proof is by induction on sum(α′) with obvious base case sum(α′) = 0.

Base case 1: sum(α′) = 1.

Suppose α′ = ωN for some 1 ≤ N ≤ k.

Proof of “(A) implies (B)”.

The proof is by induction on N .

Case 1: N = 1 (“LTL case”).

Suppose ψ1U
ωψ2 ∈ ρ(α). If ψ1U

1ψ2 ∈ ρ(α), then (B) trivially holds. Otherwise,

ψ1, X
1(ψ1U

ωψ2) ∈ ρ(α) and by (mc5) ψ1U
0ψ2 6∈ ρ(α + ω). By definition of limit

transitions, there is α ≤ α + i < α + ω such that r(α + i) ∈ Pψ1U
ωψ2 with i ≥ 0.

Take the minimal i satisfying this property. So for every 0 ≤ j < i, ψ1U
ωψ2,¬ψ2 ∈

ρ(α+ j).

Suppose that ψ1U
ωψ2 6∈ ρ(α + i) and not ψ2 ∈ ρ(α + i). If i = 0 this leads

immediately to a contradiction. Otherwise, by (mc6) ψ1U
ωψ2,¬ψ2 ∈ ρ(α+ (i− 1))
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implies X1(ψ1U
ωψ2) ∈ ρ(α+(i−1)) which is in contradiction with ψ1U

ωψ2 6∈ ρ(α+i).

So ψ2 ∈ ρ(α + i). By (mc6), for every 0 ≤ j < i, ψ1U
ωψ2,¬ψ2 ∈ ρ(α + j) implies

ψ1 ∈ ρ(α+ j). Hence, for every 0 ≤ j < i, ψ1 ∈ ρ(α+ j) and ψ2 ∈ ρ(α+ i). So (B)

holds true.

Case 2: N > 1.

Suppose ψ1U
ωN

ψ2 ∈ ρ(α). If there is N ′ < N such that ψ1U
ωN′

ψ2 ∈ ρ(α), then

by induction hypothesis, (B) holds true. Otherwise, let us treat the case when for

every N ′ < N , ψ1U
ωN′

ψ2 6∈ ρ(α). Since ψ1U
0ψ2 6∈ ρ(α+ ωN), there is α⋆ such that

α ≤ α + α⋆ < α + ωN and r(α + α⋆) ∩ P
ψ1UωN

ψ2
is non-empty. Take α⋆ to be the

minimal such an ordinal. It exists since the set of ordinals is well-ordered.

Case 2.1: ψ2 ∈ ρ(α+ α⋆).

By minimality, for every α ≤ β < α + α⋆, ψ1U
ωN

ψ2,¬ψ2 ∈ ρ(β). By (mc6), for

every α ≤ β < α+ α⋆, ψ1 ∈ ρ(β). So (B) holds true.

Case 2.2: ψ2 6∈ ρ(α+ α⋆).

Consequently, ψ1U
ωN

ψ2 6∈ ρ(α + α⋆) since r(α + α⋆) ∩ P
ψ1U

ωN
ψ2

neq∅. We shall

show that this case leads to a contradiction.

Case 2.2.1: α+ α⋆ is a successor ordinal, say α⋆ = α⋆0 + 1.

Since ψ1U
ωN

ψ2,¬ψ2 ∈ ρ(α + α⋆0) by minimality, satisfaction of (mc6) implies

X1(ψ1U
ωN

ψ2) ∈ ρ(α+ α⋆0).

Hence, ψ1U
ωN

ψ2 ∈ ρ(α+ α⋆0 + 1), a contradiction.

Case 2.2.2: α+ α⋆ is a limit ordinal.

There is a limit transition Z −→ r(α + α⋆) such that inf(α + α⋆, r) = Z. Since

ωN −ωtail(α
⋆) = ωN (α⋆ < ωN) and ψ1U

ωN

ψ2 6∈ ρ(α+α⋆), there is 〈Y, n′〉 ∈ Z such

that 〈Y, n′〉 ∈ P
ψ1UωN

ψ2
. As inf(α+ α⋆, r) = Z, there is α ≤ β < α+ α⋆ such that

r(β) ∈ P
ψ1UωN

ψ2
, a contradiction by minimality of α+ α⋆.

Proof of “(B) implies (A)” (in Base case 1).

We show a bit stronger property: for all α < ωk, ψ1U
α′

ψ2 ∈ cl(φ) and 0 ≤ α′′ < α′,

if ψ1U
α′−α′′

ψ2 ∈ ρ(α + α′′) and for every 0 ≤ γ < α′′, ψ1 ∈ ρ(α + γ), then

ψ1U
α′

ψ2 ∈ ρ(α). By Lemma 3(III), we know that ψ1U
α′−α′′

ψ2 ∈ cl(φ). So if

(B) holds true, that is, there is 0 ≤ α′′ < α′ such that ψ2 ∈ ρ(α + α′′) and for

every 0 ≤ β < α′′, ψ1 ∈ ρ(α + β), then ψ1U
α′

ψ2 ∈ ρ(α). Indeed, by (mc8),

ψ1U
1ψ2 ∈ ρ(α+ α′′) and by (mc7), ψ1U

α′−α′′

ψ2 ∈ ρ(α+ α′′).

The proof is by structural induction on α′′.

Base case 2: α′′ = 0.

Immediate.

Induction step 2.

We distinguish two cases depending whether α′′ is a limit ordinal or not.

Case 1: α′′ = α⋆ + 1.

Since α′ − (α⋆ + 1) = (α′ − α⋆) − 1 and by hypothesis, ψ1 ∈ ρ(α + α⋆) and

X1(ψ1U
(α′−α⋆)−1ψ2) ∈ ρ(α + α⋆). By (mc6), ψ1U

(α′−α⋆)ψ2 ∈ ρ(α + α⋆) and by

induction hypothesis, ψ1U
α′

ψ2 ∈ ρ(α).

Case 2: α′′ is a limit ordinal (tail(α′′) ≥ 1).
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Suppose that α′′ = α⋆ + ωtail(α
′′) × n for some n ≥ 1. There is a limit transi-

tion Z −→ 〈r(α + α′′), tail(α′′)〉 in Aφ such that inf(α + α′′, r) = Z. By (mc4),

X0(ψ1U
α′−α′′

ψ2) ∈ ρ(α+ α′′). By (A5), for every 〈Y, n′〉 ∈ Z,

Xω
tail(α′′)

(ψ1U
α′−α′′

ψ2) ∈ Y.

Since inf(α+ α′′, r) = Z, there is β ≥ α⋆ + ωtail(α
′′) × (n− 1) such that for every

β ≤ γ < α′′, r(α + γ) ∈ Z. Hence, for every β ≤ γ < α′′, Xω
tail(α′′)

(ψ1U
α′−α′′

ψ2) ∈

ρ(α + γ). Since (A) implies (B) and by hypothesis, for every β ≤ γ < α′′,

ψ1 ∈ ρ(α+γ), we have that for every β ≤ γ < α′′, ¬(⊤Uω
tail(α′′)

¬ψ1) ∈ ρ(α+γ). So

by (mc6), ψ1U
ωtail(α′′)+(α′−α′′)ψ2 ∈ ρ(α + γ) for every β ≤ γ < α′′. Since for every

β ≤ γ < α′′, γ + ωtail(α
′′) = α′′, we have ωtail(α

′′) + (α′ − α′′) = α′ − γ. Hence, for

every β ≤ γ < α′′, ψ1U
α′−γψ2 ∈ ρ(α+ γ). In particular, ψ1U

α′−βψ2 ∈ ρ(α+ β). By

induction hypothesis, ψ1U
α′

ψ2 ∈ ρ(α).

Induction step 1: sum(α′) > 2.

By (mc6), ψ1U
α′

ψ2 ∈ ρ(α) iff

• either ψ1U
ωN

ψ2 ∈ ρ(α),

• or ¬(⊤Uω
N

¬ψ1), X
ωN

(ψ1U
α′−ωN

ψ2) ∈ ρ(α)

where N = head(α′). Since sum(ωN) < sum(α′) and sum(α′−ωN ) < sum(α′), by

induction hypothesis we obtain that either there is α ≤ α′′ < α+ωN such that ψ2 ∈

ρ(α′′) and for every α ≤ β < α′′, ψ1 ∈ ρ(β) or for every α ≤ β < α+ωN , ψ1 ∈ ρ(β)

and Xω
N

(ψ1U
α′−ωN

ψ2) ∈ ρ(α). Since ρ satisfies (hin3), Xω
N

(ψ1U
α′−ωN

ψ2) ∈ ρ(α)

iff (ψ1U
α′−ωN

ψ2) ∈ ρ(α + ωN ). By induction hypothesis, we obtain that for every

α ≤ β < α + ωN , ψ1 ∈ ρ(β) and Xω
N

(ψ1U
α′−ωN

ψ2) ∈ ρ(α) is equivalent to: for

every α ≤ β < α + ωN , ψ1 ∈ ρ(β) and there is α + ωN ≤ α′′ < α + α′ such that

ψ2 ∈ ρ(α′′) and for every α+ ωN ≤ β < α′′, ψ1 ∈ ρ(β). Hence, (B) holds true.

(II) Now we show that for every Hintikka sequence ρ for φ, the sequence r : ωk+1 →

Q defined by r(α) = 〈ρ(α), tail(α)〉 is an accepting run of Aφ. For technical reason,

suppose also that r(ωk + 1) takes an arbitrary value of the form 〈X, k〉. Observe

that

• 〈ρ(0), 0〉 ∈ I since φ ∈ ρ(0) by (hin1),

• 〈ρ(ωk), k〉 ∈ F ,

• for every 0 ≤ α < ωk, 〈ρ(α), tail(α)〉 −→ 〈ρ(α+ 1), 0〉 since ρ satisfies (hin3).

The only property that really deserves to be checked is that for every limit ordinal

α, inf(α, r) −→ 〈ρ(α), tail(α)〉 is a valid limit transition of Aφ. We write α =

α⋆+ωtail(α)×n for some n ≥ 1. Since α is a limit ordinal, we also have tail(α) ≥ 1:

condition (A6) is satisfied.

Observe that

inf(α, r) ⊆ {r(β) : α⋆ + ωtail(α) × (n− 1) < β < α}.
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So for every 〈Y, n′〉 ∈ inf(α, r), n′ ≤ n− 1: condition (A4) is satisfied.

Since

{r(α⋆ + ωtail(α) × (n− 1) + ωtail(α)−1 × i) : i ≥ 0}

is finite, there ism ≥ 0 such that r(α⋆+ωtail(α)×(n−1)+ωtail(α)−1×m) ∈ inf(α, r):

condition (A8) is therefore satisfied.

Let β be such that α⋆ + ωtail(α) × (n − 1) < β and r(β) ∈ inf(α, r). We have

β+ωtail(α) = α and by satisfaction of (hin3), for all α′ ≥ ωtail(α) and Xα
′

ψ ∈ cl(φ),

Xα
′

ψ ∈ ρ(β) iff Xα
′−ωtail(α)

ψ ∈ ρ(α). Hence, condition (A5) is satisfied.

It remains to check that condition (A9) holds true. Let β be such that α⋆+ωtail(α)×

(n−1) < β and r(β) ∈ inf(α, r), α′ be such that α′ ≥ ωtail(α) and ψ1U
α′

ψ2 ∈ cl(φ).

Since r(β) ∈ inf(α, r), there is a countable family of ordinals (βi)i∈N such that

• β0 = β,

• for every i ≥ 0,

– r(βi) = r(β),

– βi < βi+1 < α.

• for every γ such that α⋆ +ωtail(α) × (n− 1) < γ < α, there is j ≥ 0 such that

γ < βj .

By satisfaction of (mc6), ψ1U
α′

ψ2 ∈ ρ(β) iff either

ψ1U
ωtail(α)

ψ2 ∈ ρ(β), or

¬(⊤Uω
tail(α)

¬ψ1), X
ωtail(α)

(ψ1U
α′−ωtail(α)

ψ2) ∈ ρ(β).

Suppose that ψ1U
α′−ωtail(α)

ψ2 6∈ ρ(α). By satisfaction of (A5), we get

Xω
tail(α)

(ψ1U
α′−ωtail(α)

ψ2) 6∈ ρ(β).

So ψ1U
α′

ψ2 ∈ ρ(β) iff ψ1U
ωtail(α)

ψ2 ∈ ρ(β). If ψ1U
α′

ψ2 6∈ ρ(β) then r(β) ∈ Pψ1U
α′
ψ2

.

Otherwise, for every i ≥ 0, ψ1U
α′

ψ2 ∈ ρ(βi) and therefore for every i ≥ 0,

ψ1U
ωtail(α)

ψ2 ∈ ρ(βi). Since for every i ≥ 0, βi + ωtail(α) = α, by satisfaction

of (hin4), we obtain that for every i ≥ 0, there is βi ≤ β′
i < α such that ψ2 ∈ ρ(β′

i).

So there is a family of ordinals (β′
ti

)i∈N such that

• β′
t0

= β′
l for some l ≥ 0,

• for every i ≥ 0,

– r(β′
ti

) = r(β′
l),

– β′
ti
< β′

ti+1
< α.

• for every γ such that α⋆ +ωtail(α) × (n− 1) < γ < α, there is j ≥ 0 such that

γ < β′
tj

.
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Consequently, r(β′
l) ∈ inf(α, r) and ψ2 ∈ r(β′

l), which means that r(β′
l) ∈ Pψ1U

α′
ψ2

.

Hence, condition (A9) is satisfied. 2

Appendix E: Proof of Lemma 8

The expspace upper bound can be obtained by designing an obvious exponen-

tial space translation into LTL which is known to be pspace-complete [42]. Indeed,

1. Xnφ is equivalent to

n times
︷ ︸︸ ︷

X · · · X φ,

2. φ1U
ωφ2 is equivalent to φ1Uφ2, and

3. φ1U
nφ2 (n ≥ 1) is equivalent φ2∨(φ1∧X(φ1U

n−1φ2)) and φ1U
0φ2 is equivalent

to ⊥.

In order to show the expspace lower bound, we present a reduction from the 2n-

corridor tiling problem that is expspace-complete, see [44] and references therein.

A tile is a unit square of one of the several tile-types and the tiling problem we

considered is specified by means of a finite set T of tile-type (say T = {t1, . . . , tl}),

two binary relations H and V over T and two distinguished tile-types tinit, tfinal ∈

T . The tiling problem consists in determining whether, for a given number n in

unary, the region [0, . . . , 2n − 1] × [0, . . . , k − 1] of the integer plane for some k can

be tiled consistently with H and V , tinit is the left bottom tile, and tfinal is the

right upper tile.

Given an instance I = 〈T, tinit, tfinal, n〉 of the tiling problem, we build a formula

φI such that I = 〈T, tinit, tfinal, n〉 has a solution iff φI is LTL(ω) satisfiable. For

t ∈ T , we introduce the propositional variable pt. Additionally, we introduce the

variable pend stating that the end of the tiling plane is reached and pnewline stating

that a new line starts. The formula φI is the conjunction of the following formulae:

• The region of the integer plane for the solution is finite:

¬pend ∧ (¬pendU
ω(pnewline ∧ Gωpend)).

• There is exactly one tile per element of the plane region:

Gω(¬pend ⇒
∨

t∈T

(pt ∧
∧

t′ 6=t

¬pt′)).

• Constraint on the right upper tile:

Fω(ptfinal
∧ X1pend).

• Constraint on the left bottom tile:

pnewline ∧ ptinit
.

• New line:

Gω(pnewline ⇔ X2n

pnewline) ∧ X1¬(⊤U2n−1pnewline)
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• Horizontal consistency:

Gω((

not the last element of a row
︷ ︸︸ ︷

(¬X1pnewline) ∧¬pend) ⇒
∧

t∈T

(pt ⇒
∨

〈t,thor〉∈H

X1pthor
)).

• Vertical consistency:

Gω(
∧

t∈T

(pt ∧

not on the last row
︷ ︸︸ ︷

¬pend ∧ Fω(X1¬pend ∧ X1pnewline)) ⇒
∨

〈t,tver〉∈V

X2n

ptver
).

One can show that the instance I = 〈T, tinit, tfinal, n〉 has a solution iff φI is LTL(ω)

satisfiable. 2

Appendix F: Proof of Lemma 12

Let r be a run of length ωk
′

(r(0) ∈ I). There is a rule P → q′ ∈ E such that

• l(q′) = k′ and r(ωk
′

) = q′ (by Lemma 10),

• inf(ωk
′

, r) = P ,

• there is n > 0 such that P = {q ∈ Q : β ≥ ωk
′−1 × n, r(β) = q}.

ωk
′−1×n is the ordinal after which all states r(β) with β ≥ ωk

′−1×n occurs infinitely

often. Suppose there exist n1, n2 ≥ 0 such that n1 < n2 < n and r(ωk
′−1 × n1) =

r(ωk
′−1 × n2). Then r′ defined below is also a run of length ωk

′

with r′(0) ∈ I:

• for every β < ωk
′−1 × n1, r

′(β)
def
= r(β).

• for every β ≥ ωk
′−1 ×n1 such that its normal form is ωk

′−1 ×n′
1 + γ, r′(β)

def
=

r(ωk
′−1 × (n′

1 + (n2 − n1)) + γ). We still have P = {q ∈ Q : β ≥ ωk
′−1 × (n−

(n2 − n1)), r
′(β) = q}.

By applying this transformation an adequate number of times (at most n times),

we can assume that n ≤ |Q| and we fix K = n.

Now we shall define K ′. Assume that P = {q0, . . . , qs}. We order the members

of P by decreasing level and the states with identical level are arbitrarily ordered.

We introduce for technical reasons an artificial state qs+1 equal to q0. Without any

loss of generality, we can assume that r(ωk
′−1 × n) = q0. We define

• a family (ni)0≤i≤s+1 of natural numbers such that 0 ≤ ni+1 − ni ≤ |Q|,

• families (βi)0≤i≤s+1 and (β′
i)0≤i≤s+1 of ordinals smaller than ωk

′

such that

the normal form of βi is ωk
′−1 × ni + β′

i.

The base case i = 0 is defined as follows: β0 = ωk
′−1 × n, n0 = n and β′

0 = 0.

Then, let us define ni+1, βi+1 and β′
i+1 assuming that ni, βi and β′

i are already

defined. Since inf(ωk
′

, r) = P and qi+1 ∈ P , there is βi+1 ≥ ωk
′−1 × ni such that
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r(βi+1) = qi+1 and βi+1 = ωk
′−1 × ni+1 + β′

i+1. By applying a reasoning similar to

the one showing that K ≤ |Q|, we can assume that ni+1 − ni ≤ |Q|.

Consequently, there are families (ni)0≤i≤s+1, (βi)0≤i≤s+1 and (β′
i)0≤i≤s+1 such

that for every i ∈ {0, . . . , s+ 1}

• βi = ωk
′−1 × ni + β′

i,

• r(βi) = qi,

• 0 ≤ ni+1 − ni ≤ |Q| for every 0 ≤ i ≤ s.

Hence ns+1 − n0 ≤ |Q|2. We fix K ′ = ns+1 − n0. Then r′ defined below is also a

run of length ωk
′

(r(0) ∈ I):

• for every β < ωk
′−1 × (K +K ′), r′(β)

def
= r(β).

• for every β ≥ ωk
′−1 × (K +K ′) such that its normal form is ωk

′−1 × n′ + γ,

r′(β)
def
= r(ωk

′−1× (K+m)+γ) with n′−K ≡K′ m for some 0 ≤ m ≤ K ′−1.

Observe that P = {q : K ≤ β′′ ≤ K + K ′, r′(β′′) = q}. Hence r′ satisfies the

properties stated in Lemma 12. 2

Appendix G: Proof of Theorem 3

In the unary case, the pspace lower bound is a consequence of the pspace-

hardness of LTL [42] whereas in the binary, expspace-hardness is a corollary of

Lemma 8.

As far as the upper bound is concerned, in the unary [resp. binary] case, A′
φ is

of size exponential [resp. doubly exponential] in |φ| and requires only polynomial

[resp. exponential] space to be built. By adapting the proof of [6, Corollary 3.36]

and by considering Corollary 2 and Lemma 7, we obtain that given φ, testing the

emptiness of L(Aφ) can be done in pspace [resp. expspace]. 2

Appendix H: Proof of Theorem 4

We show expspace-completeness with the binary encoding, the proof of the

pspace-completeness with unary encoding being quite similar.

In order to establish, expspace-hardness, let us consider a deterministic Turing

machine M = 〈Σ, Q, q0, δ〉 with transition function δ : Q×Σ → Q×Σ×{−1, 0, 1}.

Q contains the special states for acceptance (called accept here), rejection and

halting. Similarly, we assume that the alphabet Σ contains the blank symbol blank

and the left marker �. Finally, we assume that once the machine enters in the

acceptance state, it loops on it without moving the read/write head and without

changing the tape content. In order to show expspace-hardness, we suppose that

M runs in space 2n
K

with n the size of the input for some K ≥ 1.

Let Σ′ be the new alphabet Σ × (Q× Σ) for the automaton A below:
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0

Σ′

with unique limit transition {0} → 0. The ordinal automaton A recognizes all

the α-sequences α→ Σ′ and in particular all the sequences ωk → Σ.

Let x = x1, . . . , xn be an input over the alphabet Σ \ {�, blank}. The conjunc-

tion φ of the formulae below encodes the existence of an accepting run of M on

input x so that A |= φ iff M has an accepting run on input x. The formula φ is the

conjunction of the formulae below.

• Input word is x:

� ∧ X1〈q0, x1〉 ∧ X2x2 ∧ . . . ∧ Xnxn ∧ XnG2nK
−nblank.

• Reaching accepting configuration:

Fω(
∨

a∈Σ

〈accept, a〉)

• Updating configuration (“the head is far away”):

Gω(
∧

a,b,c∈Σ

(a ∧ X1b ∧ X2c) ⇒ X2nK
+1b).

• Move of the head to the right:

Gω(
∧

a,b,c,q,δ(q,b)=〈q′,b′,1〉

(a∧X1〈q, b〉∧X2c) ⇒ X2nK

a∧X2nK
+1b′ ∧X2nK

+2〈q′, b′〉).

• Similar formulae for the move to the left and for no move.

Now, let us show that model-checking for LTL(ωk) is in expspace by reducing

model-checking to satisfiability in logarithmic space. Let A = 〈Q,Σ, δ, E, I, F 〉 be

an ordinal automaton and φ be an LTL(ωk) formula such that Σ is a subset of

2AP(φ) and AP(φ) is the set of propositional variables occurring in φ. Let A′ =

〈Q′,Σ′, δ′, E′, I ′, F ′〉 be the ordinal automaton below:

• Q′ = Q× {0, . . . , k}, Σ′ = Σ,

• I ′ = I × {0}, F ′ = F × {k},

• 〈q, i〉
a
−→ 〈q′, i′〉 ∈ δ′

def
⇔ q

a
−→ q′ ∈ δ, i′ = 0,

• P → 〈q, i〉 ∈ E′ def
⇔ i > 0, max{j : 〈q′, j〉 ∈ P} = i − 1 and {q′ : 〈q′, j〉 ∈

P} → q ∈ E.
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This stratification of the states in A′ guarantees that L(A′) = L(A)∩Σω
k

. Observe

that card(E′) is less than card(E)× card(Q)k which is still polynomial (k is fixed).

Hence, A′ can be computed in logarithmic space in |A|. Now let us encode the

accepting runs of A′ by an LTL(ωk) formula φA′ that is a conjunction of the formulae

below over the propositional variables in AP(φ) ∪Q′. For a ∈ Σ, by the formula a

we mean
∧

p∈a p ∧
∧

p∈(AP(φ)\a) ¬p.

• Initial state:
∨

q∈I′

q

• Final state:
∨

P→q∈E′,q∈F ′

(
∧

q′∈P

Gω
k

Fω
k

q′) ∧ (
∧

q′∈(Q′\P )

¬Gω
k

Fω
k

q′)

• Any position is labelled by a unique state:

Gω
k

∨

q∈Q′

(q ∧
∧

q′ 6=q

¬q′)

• Any position is labelled by a letter in Σ:

Gω
k

∨

a∈Σ

a

• One-step transitions:

Gω
k

(
∧

q∈Q′,a∈Σ

q ∧ a⇒
∨

q
a−→q′∈δ′

X1q′)

• For each set of states P with limit transitions P → 〈q1, i〉, . . . , P → 〈qN , i〉

and i > 0, we have:

Gω
k

((
∧

q′∈P

Gω
i

Fω
i

q′) ∧ (
∧

q′∈(Q′\P )

¬Gω
i

Fω
i

q′) ⇒ Xω
i

(q1 ∨ . . . ∨ qN ))

We have A |= φ iff φA′ ∧ φ is LTL(ωk) satisfiable, whence the expspace upper

bound. 2

Appendix I: Proof of Theorem 5

In order to establish Theorem 5, we first show the lemma below.

Lemma I.1 The class of languages recognized by x-succinct ordinal automata of

level k is closed under intersection.

Proof.

Let A1 = 〈Q1,Σ, δ1, E1, I1, F1, l1〉 and A′ = 〈Q2,Σ, δ2, E2, I2, F2, l2〉 be x-succinct

ordinal automata of level k over the alphabet Σ. We define the intersection x-

succinct ordinal automaton A = 〈Q,Σ, δ, E, I, F, l〉 as follows:
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• Q = Q1 ×Q2, I = I1 × I2,F = F1 × F2.

• 〈q1, q2〉
a

−→ 〈q′1, q
′
2〉 ∈ δ iff q1

a
−→ q′1 ∈ δ1, and q2

a
−→ q′2 ∈ δ2.

• For every 〈P0, P1, . . . , Pn, q〉 ∈ E1 and 〈R0, R1, . . . , Rm, q〉 ∈ E2 such that

l1(q) = l2(q
′), 〈P ′

0, P
′
1, . . . , P

′
n, R

′
0, R

′
1, . . . , R

′
m, 〈q, q

′〉〉 ∈ E with

– P ′
i = {〈r, r′〉 ∈ Q : r ∈ Pi, r

′ ∈ Q2, l1(r) = l2(r
′)},

– R′
i = {〈r, r′〉 ∈ Q : r′ ∈ Ri, r ∈ Q1, l1(r) = l2(r

′)}.

Observe that n+m ≤ |Q|.

The automaton A can be viewed as the synchronized product between A1 and A2

and L(A) = L(A1) ∩ L(A2). 2

Hardness is by an easy verification from the complexity of the standard com-

plexity results for the model checking fo LTL(ωk).

As far as the upper bound is concerned, in the unary [resp. binary] case, A×A′
φ

is of size exponential [resp. doubly exponential] in |φ| and requires only polynomial

[resp. exponential] space to be built, see Lemma I.1. By adapting the proof of [6,

Corollary 3.36] and by considering Corollary 2 and Lemma 7, we obtain that given

an x-succinct ordinal automata A of level k and a formula φ in LTL(ωk), testing

the emptiness of A×A′
φ can be done in pspace [resp. expspace]. 2

Appendix J: Proof of Proposition 5

The proof is by an easy verification by observing that q
a
−→ q′ in A iff there is

a path r : ωk−1 + 1 → Q in liftk(A) such that r(0) = 〈k − 1, q〉, r(1) = 〈0, q′〉 and

r(ωk−1) = 〈k − 1, q′〉. 2
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