A Parametric Analysis of the State-Explosion
Problem in Model Checking *

S. Demri, F. Laroussinie and Ph. Schnoebelen !

Lab. Spécification € Vérification,
CNRS & Ecole Normale Supérieure de Cachan
61, av. Pdt. Wilson, 94235 Cachan Cedex France.

Abstract

In model checking, the state-explosion problem occurs when one checks a non-flat
system, i.e., a system implicitly described as a synchronized product of elementary
subsystems. In this paper, we investigate the complexity of a wide variety of model-
checking problems for non-flat systems under the light of parameterized complexity,
taking the number of synchronized components as a parameter. We provide precise
complexity measures (in the parameterized sense) for most of the problems we
investigate, and evidence that the results are robust.

1 Introduction

Model checking, i.e., the automated verification that (the formal model of) a
system satisfies some formal behavioral property, has proved to be a revolu-
tionary advance for the correctness of critical systems, see, e.g., [13,2].

Investigating the computational complexity of model checking started with [51],
and today the complexity of the main model-checking problems is known?,
see [50] for a survey. This led to the understanding that, in practice, the source

of intractability is the size of the model and not the size of the property to be

* Extended version of [14].

Email addresses: demri@lsv.ens-cachan.fr (S. Demri),
fl@lsv.ens-cachan.fr (F. Laroussinie), phs@lsv.ens-cachan.fr (Ph.
Schnoebelen).

L Contact author.

2 There are exceptions: for example, the exact complexity of model checking for the
branching p-calculus [21], or model checking over deterministic structures [15,43],
are still open.

Preprint submitted to Elsevier Science 17 December 2005

checked. LTL model checking provides a typical example: while the problem
is PSPACE-complete [51], it was observed in [42] that checking whether S = ¢
can be done in time O(|S| x 2¢!). In practice ¢ is small and S is huge, so that
“model checking is in linear time”, as is often stated.

State explosion. In practice, the main obstacle to model checking is the
state-explosion problem, i.e., the fact that the model S is described implicitly,
as a synchronized product of several components (with perhaps the addition of
boolean variables, clocks, etc.), so that |S| is usually exponentially larger than
the size of its implicit description. For example, if S is given as a synchronized
product A; x --- x A of elementary components, the input of the model-
checking problem has size n = % | |.A4;| while S has size O(HlelAi]), that is

O(n*), or 2° when k is not fixed.

From a theoretical viewpoint, the state-explosion problem seems inescapable
in the classical worst-case complexity paradigm (see also the complexity of
other problems with succinct representations in [54,23]). Indeed, studies cov-
ering all the main model-checking problems and the most common ways of
combining components have repeatedly shown that model-checking problems
are exponentially harder when S is given implicitly [22,31,34,39,46,47,41,52].

A parametric analysis. The state-explosion problem can be investigated
more finely through parameterized complexity, a theoretical framework devel-
oped by Downey and Fellows for studying problems where complexity depends
differently on the size n of the input and on some other parameter k that varies
less (in some sense) [17,19,18].

Any of the main model-checking problems where the input S is given implicitly
as a sequence Ay, ..., A, of components can be solved in polynomial-time for
every fived value of k, e.g., in time O(n*). That is, for every fixed k, the
problem is polynomial-time. However, Downey and Fellows consider O(n*)
as intractable for parameterized problems since the exponent k of n is not
bounded, while problems with algorithms running in time f(k) x n¢ for some
function f and constant ¢ are considered easier (see [17,19,18] for convincing
arguments) and are said to be fized-parameter tractable or, shortly, FPT.

Parameterized complexity adheres to the “worst-case complexity” viewpoint
but it leads to finer analysis. This can be illustrated on some graph-theoretical
problems: among the NP-complete problems with a natural algorithm running
in O(n*), many admit another algorithm in some f(k) x n¢ (e.g., the existence
in a graph of a cycle of size k, or the existence of a vertex cover of size k) while
many others seem not to have any such solution (e.g., the existence of a clique
of size k). This difference between the two kinds of problems may have a visible

impact when comparing the efficiency of the available algorithmic methods,
but this cannot be explained within the classical complexity paradigm where
the two kinds of problems are deemed “equivalent”.

Our contribution. In this paper, we apply the parameterized complexity
viewpoint to model-checking problems where the input is a synchronized prod-
uct of k components, k being the parameter. We investigate model-checking
problems ranging from reachability questions to temporal model checking for
several temporal logics, to equivalence checking for several behavioral equiva-
lences.

We provide precise complexity measures (in the parameterized sense) for most
of the problems we investigate, and informative lower and upper bounds for
the remaining ones. We show how the results are generally robust, i.e., in-
sensitive to slight modifications (e.g., size of the synchronization alphabet) or
restrictions (e.g., to deterministic systems).

Sadly, all the considered problems are shown intractable even in the param-
eterized viewpoint (but they may reach different levels of intractability). See
the summary of results on page 26. This shows that these problems (very
probably) do not admit solutions running in time f(k) x n¢ for some f and
¢, and strengthens the known results about the computational complexity of
the state-explosion problem.

We introduce, as a useful general tool, parameterized problems for Alternating
Turing machines and relate them to Downey and Fellows’ hierarchy. Finally,
we enrich the known catalog of parameterized problems with problems from
an important application field. While mainly aimed at model checking, our
study is also interesting for the field of parameterized complexity itself. For
example, we are able to sharpen the characterization of the complexity of FAI-
IT and FAI-III (from [17, p. 470]) that are basic parameterized problems from
automata theory (see section 5).

Related work. For the most part, model-checking of synchronized products
of systems has been studied within the classical computational complexity
paradigm [22,31,34,39,46,47,41,52]. These works consider model checking of

temporal logics and checking of behavioral equivalences.

In the parameterized complexity framework, works considering model-checking
problems depart from our investigation on either one of the following two main
points: the model is not given as a combination of k systems, k& being the pa-
rameter, or the property to be checked is not given as a temporal logic formula,

or in terms of behavioral equivalences:

e [3,55,8] investigate reachability problems on systems of k synchronized au-
tomata, where k is a parameter. Additional parameters, such as alphabet
size and number of states, are used in [55]. Problems complete for the classes
WI[1], W[2] and W[P] are investigated in [55,8]. Compared to our study,
these works mainly consider deterministic automata and are concerned with
automata-theoretic (or language-theoretic) questions rather than verifica-
tion and model-checking questions.

e Some works consider model-checking problems for (fragments of) first-order
logic where the parameter is the size of the property to be checked (or is de-
rived from it) and where the model is given explicitly: this has no relation
to the state-explosion problem and trivially leads to tractability in the pa-
rameterized sense for “temporal” logics. In [45], the evaluation problem over
conjunctive queries is shown W([1]-complete when the size of the query is
the parameter. The parameterized complexity of this problem over other
classes of queries (positive, first-order) is characterized leading to problems
WI[P]-hard and W[SAT]-hard. In the work [30] also inspired by database the-
ory, the above W[1]-hardness result is refined by proving that the evaluation
problem of conjunctive queries of bounded tree-width becomes FPT.

e In a series of papers Grohe and Flum consider model-checking problems
for first-order formulae over finite structures where the parameter is the
size of the formula, aiming at characterizations of parameterized complex-
ity problems in terms of first-order model-checking problems, for instance
by controlling the alternations of quantifiers, see, e.g., [24,26]. The proper-
ties we investigate, such as reachability, are out of the scope of first-order
logic. It is worth noting that in [26], characterizations of classes from the
W-hierarchy, the A-hierarchy and the AW-hierarchy, are shown leading to
alternative definitions of original classes introduced by Downey and Fel-
lows [17].

e Machine-based characterization of parameterized complexity classes has
probably started with the W[1]-completeness of SHORT NDTM Compu-
TATION, see, e.g., [17]. This result has been refined in [8] where W[2] and
WIP] are characterized by parameterized problems on Turing machines ei-
ther by considering multiple tapes machines or by taking as parameter the
number of nondeterministic steps. In [10,11], parameterized problems on
standard random access machines are introduced and shown complete for
classes such as WI[1], W[2], W[P]|, AW[P] or AW([x]. Even if our character-
ization of the classes XP and AW([1] in terms of problems on alternating
Turing machines is a by-product of our investigations on parameterized
model-checking problems, it nevertheless belongs to this trend that consists
in characterizing parameterized complexity classes in terms of machines
models.

Plan of the paper. Sections 2 and 3 recall the basic definitions about pa-
rameterized complexity and synchronized products of systems. We investigate
reachability problems in sections 4 and 5, temporal logic problems in section 6,
and behavioral equivalence problems in section 7. As a rule, proofs omitted
from the main text can be found in the appendix.

2 Parameterized complexity

We follow [17]. A parameterized language P is a set of pairs (z,k) where z
is a word over some finite alphabet and k, the parameter, is an integer. The
problem associated with P is to decide whether (x, k) € P for arbitrary (z, k).

A parameterized problem P is (strongly uniformly) fized-parameter tractable,
shortly “FPT”, & there exist a recursive function f : N — N and a constant
¢ € N such that the question (z, k) € P can be solved in time f(k) X |z| (see,
e.g., [17, Chapter 2]).

A parameterized problem P is fized-parameter m-reducible (fp-reducible) to
the parameterized problem P’ (in symbols P < P') & there exist recursive
total functions f; : k — k', fo : k — k", f3 : (z,k) — 2’/ and a constant
¢ € N such that (z,k) — 2/ is computable in time k”|z|° and (z,k) € P
iff («/,k') € P'. Clearly, when P < P" and P’ is FPT, then also P is FPT
because in the definition of fp-reduction k" only depends on k& (not on the input
x) and f3 can be viewed as an FPT function. P and P’ are fized-parameter
equivalent (fp-equivalent) & P <P p' <o p,

Parameterized complexity comes with an array of elaborate techniques to de-

vise fp-feasible algorithms, and another set of techniques to show that a prob-
lem is (very probably?) not FPT.

2.1 Downey and Fellows’s hierarchies

Downey and Fellows introduced the following hierarchy of classes of parame-
terized problems [17]:

FPT C W[1] C W[2] C --- C W[SAT] C AW[1] C AW[SAT] C AW[P] C XP,

3 Since proving that a PSPACE-complete problem is not FPT entails P # PSPACE,
most techniques for proving hardness of parameterized problems just show hardness
in a class of problems that are conjectured not FPT.

where it is known that the inclusion between FPT, the class of FPT prob-
lems, and XP is strict. All these classes are closed under fp-reductions. W/[1] is
usually considered as the parameterized analogue of NP (from classical com-
plexity theory) and a W[1]-hard problem is seen as intractable. Recent devel-
opments [16] indicate that the newly introduced class MINI[1] (between FPT
and WI1]) is the source of untractability. XP contains all problems that can be
solved in time O(n9®) for some function g and is considered as the parame-
terized analogue of EXPTIME. It should be stressed that the above analogies
are only useful heuristics: there is no known formal correspondence between
standard complexity classes (NP, PSPACE, EXPTIME, ...) and parameterized
complexity classes (W[1], AW[P], XP, ...)*.

We do not recall the formal definitions of these classes since they are not
required for understanding our results. It is enough to admit that W[1] is
intractable, and to understand the parameterized problems dealing with short
or compact computations we introduce in the next subsection. Most of the
parameterized model-checking problems we consider in this paper are easily
seen to be in XP.

2.2 Short and compact TM computations

Not surprisingly, some fundamental parameterized problems consider Turing
machines (shortly, “TMs”): SHORT COMPUTATION (resp. COMPACT COM-
PUTATION) is the parameterized problem where one is given a TM M and
where it is asked whether M accepts in at most k steps (resp. using at most
k work tape squares). These are the parameterized versions of the time and
space bounds from classical complexity theory.

We consider TMs with just one initially blank work-tape (an input word can
be encoded in the control states of the TM). One obtains different problems by
considering deterministic (DTM), non-deterministic (NDTM), or alternating
(ATM) machines. For instance, SHORT DTM COMPUTATION is defined as
follows:

Instance: a single-tape deterministic Turing machine M and a positive inte-
ger k (in unary);

Parameter: k;

Question: Does the computation of M on the empty string input reach an
accepting state in at most k steps?

The parameter is k. The other problems are defined analogously.

4 But see the recent work [25].

SHORT DTM COMPUTATION is FPT while SHORT NDTM COMPUTATION
is W[1]-complete [17]. COMPACT COMPUTATION is more complex and reaches
high levels in the W-hierarchy: CompACT DTM COMPUTATION is already
AW/[SAT]-hard [10]. Some of the parameterized problems on Turing machines
do not yet admit a full characterization in terms of parameterized complexity
classes (see, e.g., [6,9,8,11]) although the parameterized complexity classes
WI1], W[2] and W[P] are characterized by parameterized problems on TMs
in [8]. For instance, SHORT NDTM COMPUTATION with multiple tapes is
WI2]-complete [8].

Remark 2.1 More precise measures are still lacking and [17, Chapter 14]
recalls that it is not known whether CoMPACT DTM COMPUTATION and
CompAaCT NDTM COMPUTATION are fp-equivalent (it is not known whether
a parameterized version of Savitch’s theorem holds). A related question is that
it is not known whether coCOMPACT NDTM COMPUTATION (the comple-
ment parameterized problem of COMPACT NDTM COMPUTATION defined
in the obvious way) and COMPACT NDTM COMPUTATION are fp-equivalent.
Indeed, Lemma 2 of Immerman’s proof [33] does not provide an fp-reduction
from CoMPACT NDTM COMPUTATION to coCOMPACT NDTM ComPU-
TATION because the alphabet size has to be taken into account in an essential
way.

[17] does not consider parameterized problems with ATMs, but such problems
proved very useful in our study. Our first results show how they correspond
to existing levels of the W-hierarchy:

Theorem 2.2 SHORT ATM COMPUTATION is AW([1]-complete.

Theorem 2.2 is a corollary of the two reductions given in Lemmas 2.3 and
2.5 proving equivalence with PARAMETERIZED-QBFSAT,, a problem shown
AW/[1]-complete in [17, Chapter 14]. An instance of PARAMETERIZED-QBFSAT,
is a quantified boolean formula ¥ = 3= X ,vV=F2 X, .. .V:’“ZPXQPCD where ®, a
positive boolean combination of literals, has at most t alternations between
conjunctions and disjunctions. The literals use variables in X = X;U---U Xy,
and the quantifications “I=% X;” and “V=* X,” are relativized to valuations of
X; where exactly k; variables are set to true. The parameter k is k; + - - - + kg,

Lemma 2.3 For everyt > 0,
PARAMETERIZED-QBFSAT, < SHOrRT ATM COMPUTATION.

PROQOF. With an instance ¥ of PARAMETERIZED-QBFSAT;, we associate
an ATM My that picks k; + - -+ + kg, variables in X; U --- U Xy, and checks
that ® evaluates to true under the corresponding valuation. The structure of
® is reflected in the transition table of My, and we use universal states to
encode both the universal quantifications “V=*2¢ .. .” and the conjunctions in

®. The machine My can be made to answer in O(k + t) steps, which gives us
an fp-reduction since t is a constant. O

In order to show that SHORT ATM COMPUTATION is in AW([1], we intro-
duce below the parameterized problem STRICT SHORT ATM COMPUTATION
shown to be fp-equivalent to SHORT ATM COMPUTATION:

Instance: a single-tape ATM M = (Q7UQ", X, 6, qo, qr) such that qq, ¢r € Q7
and M has clean alternation (it moves from existential states to universal
states and vice versa), and a positive integer k (in unary);

Parameter: k;

Question: Does M on the empty string input has an accepting run using less
than k steps?

As usual, {Q?,Q"} forms a partition of the set of states and Q7 denotes the
set of existential states, and ¢ is the transition relation with 6 C) x X x @) x
Y x{L,R,—-}.

First, we show that STRICT SHORT ATM COMPUTATION is indeed equivalent
to SHORT ATM COMPUTATION.

Lemma 2.4
SHORT ATM CoMPUTATION < StRICT SHORT ATM COMPUTATION.

PROOF. (Idea) Let M = (Q?U Q",%,4,qo,qr) be an ATM and k be a
positive integer. One can build a strict ATM M’ = (Q7 U Q", %', ¢, g, ¢%)
such that M on the empty string input has an accepting run using less than
k steps iff M’ on the empty string input has an accepting run using less than
2 X k 4+ 2 steps. The idea of the reduction is simply to add intermediate states
when the alternation is not strict and to consider two counters, one to count
the number of steps in the original M and another one to count the number of
steps in M. Details are omitted herein since there is no technical difficulty. O

Lemma 2.5
STRICT SHORT ATM COMPUTATION <P PARAMETERIZED-QBFSAT,
for some t > 0.

PROOF. With an ATM M and an odd k& = 2p + 1, we associate a for-
mula W,, that is true iff M accepts in & moves. The variables in ¥ are
all x[i,t,]] and mean “l is the ith symbol in the instantaneous description
(i.d.) of M at step t”. ¢ and ¢ range over 0,...,k, while [is any tape sym-
bol or pair (symbol, control state) of M. Assuming M starts with a uni-
versal move, W, has the general form I=FF1 X v=F+1X, V=1 X, ® where

X, = {x[i,t,1] | i,1...} and ® checks that the chosen valuations correspond
to a run, i.e., has the form

Dy E!

p p
(/\ (I)seq(XQty X2t+1)) = ((I)init(XO) A (I)acccpt<Xk> A /\ q)scq(X%—lv X2t))
t=0 t=1

where @goq(X, X’) checks that (the valuations of) X and X’ describe valid
i.d.’s in valid succession. The different treatment between ®y and P35 reflects
the fact that valid successions of existential states are only performed when
valid successions of universal states are done. Moreover, this way of grouping
the ®geq(Xi, Xi41)’s allows us to bound the number of and-or alternations.
The formula @ (X) [resp. Paceept (X)] expresses that X describes an initial
i.d. [resp. an accepting i.d.].

Finally, we observe that ® is equivalent to a positive boolean combination
of literals with 5 and-or alternations and therefore we obtain an instance of
PARAMETERIZED-QBFSAT; with &’ = (k 4+ 1)? and size n/ in O(k*n?). O

Theorem 2.6 ComMpacT ATM COMPUTATION is XP-complete.
Theorem 2.6 is a corollary of the two reductions given in Lemmas 2.7 and 2.8.

We show fp-equivalence with PEBBLE GAME, shown XP-complete in [17, The-
orem 15.5]. An instance of PEBBLE GAME is a set NV of nodes, a starting po-
sition S = {s1,...,s,} € N of k pebbles on k nodes, a terminal node 7" € N
and a set of possible moves R C N x N x N. Players I and II play in turn,
moving pebbles and trying to reach 7. A move (x,y,z) € R means that any
player can move a pebble from x to z if y is occupied (the pebble jumps over
y) and z is free. The problem is to determine whether player I has a winning
strategy. The parameter is k = |S|.

Lemma 2.7 ComPACT ATM COMPUTATION <P PEBBLE GAME.

PROOF. Immediate from [37]. Indeed, [37, Theorem 3.1] shows that PEBBLE
GAME is EXPTIME-hard by reducing space-bounded ATMs. Their reduction
can be turned into an fp-reduction where an ATM of size n running in space k
gives rise to a pebble game instance where £" is k+ 1, and where n’ is bounded
by a polynomial of n. O

Lemma 2.8 PEBBLE GAME gfg ComracT ATM COMPUTATION.

PROOF. Given an instance I = (N, S,T, R) with |S| = k, one constructs
an ATM M; that emulates the game and accepts iff player I wins. The al-

phabet of Mj is N and k work-tape squares are sufficient to store the current
configuration at any time in the game. Moves by player I are emulated with
existential states, moves by player II use universal states. Information about
R (the set of rules) and S is stored in the transition table of M;. This gives
an fp-reduction since |M;| is in O(|I]) and k' = k. O

3 Synchronized transition systems

3.1 Models

A labeled transition system (LTS) over some alphabet 3 = {a,b, ...} is a tuple
A =(Q,%,—) where Q = {s,t,...} is the set of states and -C Q x ¥ x @
is the set of transitions. We assume the standard notation s % ¢, s = ¢
(w e X*), s 5 t, s 5 t, ete. The size of a finite LTS A'is |A] & Q|+ 2|+ |—
|. Non-flat systems are products of (flat) component LTSs. Assuming A; =
(Qi, %, —) fori =1,... k, the product Ay X - - - X Ay denotes a LTS (Q, 2, —)
where Q & Hle Q;, > Ule >; and where —C) x X X () depends on the
synchronization protocol one considers: strong or binary synchronization. A
state 5 = (s1,...,8k) of Ay X --- x Ay is also called a configuration and it
corresponds to the state in the composed system A; x --- x A, in which for
every i € {1,...,k}, A; is in the state s;.

In strong synchronization, the components synchronize on common actions
and move in lockstep fashion: (si,...,s,) g (t1,...,t) iff 55 2, t; for all
1=1,...,k.

In binary synchronization, any two components synchronize while the rest
wait: (s1,...,8k) —bin (t1,...,t) iff there exist i and j (i # j) s.t. s; = &
and s; =, t; while s, = ¢, for all | & {4,7}.

Hence a transition 5 = ¢ in the composed system A; x --- x A;, corresponds
to a set of transitions from the underlying subsystems, depending on the syn-
chronization mode. In this paper, we consider strong synchronization as the
natural model for non-flat systems and the notation A; x --- x A, assumes
strong synchronization when we do not explicitly say otherwise. As shown in
Appendix B, adopting binary synchronization does not modify the complexity
in an essential way.

10

3.2 Behavioral equivalences

[53] surveys the main behavioral equivalences (and preorders) used in the
semantics of concurrent systems. We recall below the definition of bisimilarity
and trace inclusion since they are used in Sections 6 and 7. Other relations
can be found in [53].

Given two LTSs A = (@, %, —) and A" = (Q',%,—'), a bisimulation is any
relation R C @ x @' satisfying the following transfer properties:

e for all gR¢' and ¢ % T, there is ¢’ 2" v such that rRr’ ;
o for all gR¢' and ¢’ % 7', there is ¢ = r such that r Ry’

The largest bisimulation is called bisimilarity and is denoted by ~.

Givena LTS A = (@, X, —) and g € @, a trace from ¢ is a sequence a; . . . a, . .
(p0381b1y infinite) such that there exists qo,q1,...,¢, ... € Q with ¢ = qo and
Gi1 = q; for every i. Given two LTSs A = (Q, %, —) and A = (Q', ¥, =),
g€ Qand ¢ € @, we write A,q Cyp A, ¢ to denote that every trace from ¢
is a trace from ¢'.

4 Reachability for non-flat systems

Reachability problems are the most fundamental problems in model checking.
We define below four reachability problems.

Exact Reachability (Exact-Reach)
Instance: k LTSs Ay, --- ,Ai, two configurations 5 and ¢ of A; x -+ x Ay.
Question: Does 5 5 £ ?

Local Reachability (Local-Reach)

Instance: k LTSs Ay, --- , A, sets Iy, ..., F} of states with F; C @Q);, and a
configuration § of A; x -+ x Ay.

Question: Does § = ¢ for some ¢ € F where [' < F} x --- x F},?

Repeated Reachability (Rep-Reach)
Instance: As in LOCAL-REACH. B
Question: Does 5 = ¢ -5 f for some £ € F?

11

Fair Reachability (Fair-Reach)

Instance: k LTSs Ay, --- , Ay, sets (F/){;1,’; with F/ C @; for all 4, j, and
a configuration 5 of A; X --- x Ay. For all j we write Fi for FJ x --- x FJ.
Question: Does 55t Sty 5, £ #, for some (f1,..., L) € F1 x -+ . x
Fr?

The reachability criterion in the problem REP-REACH corresponds to the ac-
ceptance condition in Biichi automata. Repeated reachability asks that the
final state ¢ should be accessible from itself with a non-zero number of tran-
sitions. The reachability criterion in the problem FAIR-REACH introduces a
fairness condition.

We are interested in the parameterized versions k-EXACT-REACH, etc., where
k is the parameter. The choice of such a parameter is quite natural since k
varies less than ¥¥_,|4;|. Tt is well-known that the four non-flat reachability
problems are equivalent in the classical sense (i.e., via logspace reductions)
and are PSPACE-complete. These are folklore results for which some hints
can be found in [31,22]. However, in the setting of parameterized complexity,
reductions have to preserve more structure, so that Theorem 4.1 and other
forthcoming results require some more care®. Additionally, we shall consider
extra parameters and/or further restrictions on the LTSs which require some
new constructions in proofs.

Theorem 4.1 k-EXACT-REACH, k-LOCAL-REACH, k-REP-REACH and k-
FAIR-REACH are fp-equivalent.

Theorem 4.1 allows us to write k-*-REACH to denote any of the four problems,
as we do below. For a proof, observe first that EXACT-REACH is the restriction
of LOCAL-REACH where |F| = 1, and REP-REACH is the restriction of FAIR-
REACH where p = 1. We prove below that k-FATR-REACH <P k-REP-REACH,
refer to Appendix A for k-REP-REACH <P k-EXACT-REACH, and omit the
easy k-LOCAL-REACH <P k-REP-REACH.

Lemma 4.2 k-FAIR-REACH <P k-REP-REACH.

PROOF. (Sketch) Consider an instance Ay, ..., Ay, (F/)1Z7, 5 of k-FAIR-
REACH and write F7 for FJ x --- x FJ. Assume w.l.o.g. that the A;s are over
some common X.

® For simplicity, we consider that the size n of the input is simply _,|.4;| since the
extra inputs (designated states, etc.) are O(n) anyway. There is one exception with
FAIR-REACH where n is considered to be p x) .|.4;|, an innocuous approximation

of 3l Ail + 32, 30, 1F .

12

We reduce this to an instance Aj, A}, --- , A} of k-REP-REACH where Aj is
a special “controller” LTS and where A}, ..., A} are obtained from the A;s.
Let 3" be X U{1,...,p}. For any i, A} is obtained from 4; by adding all
transitions s % s for s € Fij for every j € {1,...,p}. Hence, 5 € FJ iff 5 ENE
in A} x - x Aj. The controller A} has aloop 0 =1 522 . p £ 0 with

local loops i =N i forany ¢ = 1,...,p. (“s = ¢ is short for “s % ¢ for all
a€e€X”). Weset "= {0} x Fr.

Clearly, there exist y,...,6, € F',... FP with 5§ 5 & S iy... 56, 5 ¢ in
Ay X - x Ay iff thereis a ¥/ € F' s.t. 0,5 57 5 77 in A x A x - x AL

There remains to check that this classical construction is indeed an fp-reduction:
for i = 1,...,k, |Aj] is in O(p x |Ai]), |Ap| is in O(p x |X]). Hence, with
n =Yl + X 3| F7 | and #' = 3[4, we have K =k + 1, || = p+ [2],
and n’ in O(n?). O

5 Parameterized complexity of non-flat reachability
5.1 Fquivalence with CoOMPACT NDTM COMPUTATION

In this section we give two reductions (Lemmas 5.2 and 5.3) that allow the
following characterization:

Theorem 5.1 k-x-REACH is fp-equivalent to CoMPACT NDTM COMPUTA-
TION.

Hence all the parameterized reachability problems are AW[SAT]|-hard.

Lemma 5.2 CoMPACT NDTM COMPUTATION < k-LOCAL-REACH.

PROOF. (Sketch) With an NDTM M and an integer k we associate a prod-
uct Ay X -+ - X A X Agtate X Aneaa 0f k+2 LTSs that emulate the behavior of M
on a k-bounded tape. An A; stores the current content of the i-th tape square,
Astate stores the current control-state of M and Ay.q stores the position of the
TM head. These LTSs synchronize on labels of the form (t,4) that stand for
“rule t of M is fired while head is in position i”. Successful acceptance by M
is directly encoded as a local reachability criterion. Altogether, we translate
our instance to a k-LOCAL-REACH instance with k' = k+2 and n’ in O(kn?).
Details are on the line of the proof of Theorem 6.6. O

13

The proof of Lemma 5.2 is similar to either the proof of the PSPACE-hardness
of the finite automaton intersection problem [28,38] (see also a generalization
in [40]) or the proof of the PSPACE-hardness of REACHABLE DEADLOCK
for a system of communicating processes [44, Theorem 19.10] (see also [29,
Appendix AL6]). One can also prove in a similar way that a linearly bounded
automaton of size n can be simulated by a 1-safe Petri net of size O(n?) [35].
Such a similarity does not prevent us from checking that we are in presence
of an fp-reduction.

Lemma 5.3 k-ExacT-REACH <P CompacT NDTM COMPUTATION.

PROOF. (Sketch) An instance of k~-EXACT-REACH of the form Ay, ..., Ay,
5, t, is easily reduced to an instance of CoMPACT NDTM COMPUTATION.
The TM M emulates the behavior of the product A; x --- x A by writing
the initial configuration § on its tape (one component per tape square, the
tape alphabet contains all control states of the A;’s). Then M picks non-
deterministically a synchronization letter a, updates all local states of the A;s
by firing one of their a-transitions (M blocks if some local state has no a-
transition), and repeats until the configuration ¢ is reached. This yields an
fp-reduction: ¥' = k and n’ is in O(kn). O

Hence, k-EXACT-REACH is fp-equivalent to one of the most natural parame-
terized problems on Turing machines: CompPACT NDTM COMPUTATION.

5.2 Variants of non-flat reachability problems

In Theorem 4.1, we state that the four parameterized non-flat reachability
problems are fp-equivalent, and in Theorem 5.1 we show that they are fp-
equivalent to CoMmPACT NDTM CoOMPUTATION. This characterization is
quite robust: It stays unchanged when we consider binary synchronization
or when we restrict to a binary alphabet or to deterministic L'TSs.

5.2.1 Binary synchronization.

We write k-x-REACH 1, the variants of the k-x-REACH problems where the
LTSs are combined using binary synchronization instead of strong synchro-
nization. Similarly, we write k, ¥-*x-REACH;, to denote the variants of the
k-+-REACH y;, problems with parameters k and |X|. By definition, there is
an fp-reduction from k,Y-%-REACH,;, into k-x-REACH 4, as it is the case
whenever a parameter is added to a parameterized problem.

14

Theorem 5.4 k-+-REACH y;, and k, X-x-REACHy;, are fp-equivalent to COM-
PACT NDTM COMPUTATION.

The proof of Theorem 5.4 can be found in Appendix B.

5.2.2 Bounded size alphabet.

Obviously, k-*-REACH |5|—2, the restriction of k-x-REACH to binary alphabet
reduces to k,X-#-REACH, the variant of k-x-REACH with parameters k, |3,
which itself reduces to k-x-REACH. We show the following result:

Theorem 5.5 k,X-*-REACH and k-+-REACHg— are fp-equivalent to COM-
PACT NDTM COMPUTATION.

In order to prove Theorem 5.5, first we reduce reachability properties over
any LTS to reachability properties over a LTS using an alphabet >’ = {0, 1}.
This is done by the following construction. Note that a simpler construction
is possible but the current one is used again in Section 7 where stronger prop-
erties are required. Let A = (@, X, —) be a LTS over some ¥ = {ay,...,a,}
and | = [log, m|. With each a; € ¥ we associate a bit-string w,, of length [
in {0,1}*, representing the binary writing of i. Let A = (Q,{0,1}, —) be the
LTS defined as follows:

e Q¥ {{g,v):qeQ, ve {01}, 0<i <}

o forie {0,1}, (¢, v) = (¢, v) &

(1) either ¢ = ¢’ and v = i,

(2) ori=0,|v| =1, v =¢and ¢ = ¢ in A with w,, = v.

An illustration of the construction can be found in Fig. 1. Basically, with each
state in () we associate a binary tree of depth [in A. By construction, we
guarantee that ¢ = ¢’ in A iff (g, w,,) 9, (¢, ¢e), where (q,w,,) is the leaf in
the binary tree associated with ¢ that is reached via the path w,,. (¢, €) is the
root of the binary tree associated with ¢'.

Lemma 5.6 states that A; x --- x A and «/4\1 X oo X .//4; are equivalent as far
as reachability is concerned.

Lemma 5.6 Let A; x --- x A be a product of LTSs over some X. Then,

at...an . . Waq 0...wq,, 0
<517"'75k> - <t17"/'\7tk> m A1/_i< XAk Zﬁ<<817€>7"’) <8k7€>> ——

<<t1,5>, Ceey <tk,€>> m ./41 X e X .Ak
Consequently,

Lemma 5.7 k-#-REACH <? k-+-REACHy_,.

15

A:

apoo ap11

Fig. 1. A and A: an example

PROOF. Let A; x --- X A; be a product of LTSs over some ¥. Consider

at...an

the product A; x --- x A. By Lemma 5.6, (s1,...,s,) —— (t1,...,tg) in

walo...wano

Avxc o x A A (