
HAL Id: hal-03189810
https://hal.science/hal-03189810

Submitted on 5 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LTL over Integer Periodicity Constraints
Stéphane Demri

To cite this version:
Stéphane Demri. LTL over Integer Periodicity Constraints. Theoretical Computer Science, 2006, 360
(1–3), pp.96-123. �10.1016/j.tcs.2006.02.019�. �hal-03189810�

https://hal.science/hal-03189810
https://hal.archives-ouvertes.fr

LTL over Integer Periodicity Constraints

Stéphane Demri

LSV/CNRS & INRIA Futurs projet SECSI & ENS Cachan
61, av. Pdt. Wilson, 94235 Cachan Cedex, France

email: demri@lsv.ens-cachan.fr

Abstract. Periodicity constraints are used in many logical formalisms,
in fragments of Presburger LTL, in calendar logics, and in logics for ac-
cess control, to quote a few examples. In the paper, we introduce the
logic PLTLmod, an extension of Linear-Time Temporal Logic LTL with
past-time operators whose atomic formulae are defined from a first-order
constraint language dealing with periodicity. Although the underlying
constraint language is a fragment of Presburger arithmetic shown to ad-
mit a pspace-complete satisfiability problem, we establish that PLTLmod

model-checking and satisfiability problems remain in pspace as plain
LTL (full Presburger LTL is known to be highly undecidable). This is
particularly interesting for dealing with periodicity constraints since the
language of PLTLmod has a language more concise than existing lan-
guages and the temporalization of our first-order language of periodicity
constraints has the same worst case complexity as the underlying con-
straint language. Finally, we show examples of introduction the quan-
tification in the logical language that provide to PLTLmod, expspace-
complete problems. As another application, we establish that the equiv-
alence problem for extended single-string automata, known to express
the equality of time granularities, is pspace-complete by designing a re-
duction from QBF and by using our results for PLTLmod.

Key-words: Presburger LTL, periodicity constraints, computational com-
plexity, Büchi automaton, QBF.

1 Introduction

Presburger Constraints. Presburger constraints (see e.g., [Pre29]) are present
in many logical formalisms including extensions of Linear-Time Logic LTL. We
quote below some examples:

– Timed Propositional Temporal Logic(s) [AH94],
– CTL* dedicated to automata with variables interpreted in Z [Čer94],
– Constrained LTL named CLTL defined with LTL models but with Pres-

burger occurrences constraints [BEH95],
– Flat fragment of Presburger LTL [CC00] (see also [CJ98]).

Other formalisms more dedicated to formal verification can be found in

– model-checking of (discrete) timed automata [CG00,DPK03],
– verification of infinite-state systems with linear arithmetic constraints, see

e.g. [BH99,WB00,Wol01,FS00,FL02,BB03].

In the paper, we are interested in models of Presburger LTL that are ω-
sequences of valuations for a given set VAR of integer variables taking their
values in Z and the atomic formulae are Presburger arithmetic constraints with
free variables in VAR (the models in [BEH95] are quite different since they are
just plain LTL models). For instance, φ = 2(Xx = x) states that the value of
the variable x is constant over the time line where Xx denotes the value of x at
the next state. A model of φ is simply an ω-sequence in (Z)ω. The counterpart
of the highly expressive power of Presburger LTL rests on its Σ1

1 -completeness,
shown by a standard encoding of the recurrence problem for nondeterministic
two-counter machines. However, to regain decidability one can either restrict
the underlying constraint language, see e.g. [AH94, Sect. 3] and [DD02], or re-
strict the logical language, see e.g. a decidable flat fragment of Presburger LTL
in [CC00]. Herein, we shall consider versions of LTL with Presburger constraints
with the full logical language (mainly LTL with past-time operators sometimes
augmented with first-order quantifiers) but with strict fragments of Presburger
arithmetic. As a consequence, all the constraint languages we will consider are
closed under Boolean operations.

Our motivations. Integer periodicity constraints, a special class of Presburger
constraints, have found applications in many logical formalisms such as

– DATALOG with integer periodicity constraints [TC98],
– logical formalisms dealing with calendars, see e.g. [Ohl94,Wij00,CFP02],
– temporal reasoning in database access control [BBFS96,BBFS98],
– periodic time in generalized databases, see e.g. [Wol01,NS92].

Moreover, abstracting programs with integer variables by constraint automata
with periodicity constraints can be viewed as a way to handle the analysis of
such programs. Although we will not elaborate on it in this paper, we believe
it is a promising continuation of the current paper, in the line of [MOS04] for
instance.
In view of the ubiquity of integer periodic constraints, the main motivation of the
current work is to design a variant of LTL over a language for integer periodicity
constraints that satisfies the following properties.

1. The logical language contains at least LTL (no flatness restriction).
2. The constrained language is expressive enough to capture most integer pe-

riodicity constraints used in calendar logics and in database access control.
For instance, in [CFP02], the authors advocate the need to design an ex-
tension of LTL that expresses quantitative temporal requirements, such as
periodicity constraints. We provide in the paper such an extension.

3. Model-checking and satisfiability remain in pspace. For this new extension
of LTL, we would like also to adapt the technique from [VW94] that has
been so successful in the past.

2

Last but not least, as a long-term project, we wish to understand what are
the decidable fragments of Presburger LTL by restricting the constraint language
but with the full logical language.

Our contribution. We introduce a decidable fragment of Presburger LTL that
satisfies the above-mentioned requirements. Let us be a bit more precise.

1. We introduce a first-order theory of integer periodicity constraints IPC++

and we show its pspace-completeness. This is a fragment of Presburger
arithmetic that extends the one from [TC98].

2. We show the pspace-completeness of PLTL (LTL with past-time operators)
over IPC++ using Büchi automata (logic denoted by PLTLmod in the paper)
along the lines of [VW94].

3. We demonstrate why adding the existential operator ∃ [resp. the freeze oper-
ator ↓] at the logical level (∃ is already present at the constraint level) leads
to an exponential blow-up of the complexity. IPC+ is a fragment of IPC++

without constraints of the form x = y. We show that PLTL over IPC+

constraints but augmented with ∃ [resp. with ↓] is expspace-complete.
It is difficult to get tighter decidability results in view of the recent re-
sults [DLN05,LP05].

4. As an application, we show the pspace-completeness of the equivalence prob-
lem for the extended single-string automata [LM01, Sect. 5]. Extended single-
string automata are Büchi automata that recognize exactly one ω-word and
guards involving periodicity constraints are present on the transitions. This
formalism has been introduced as a concise means to define time granulari-
ties and the equivalence problem for such automata is central to check the
equality of time granularities, see also [Wij00]. Roughly speaking, a time
granularity is a mapping from integer numbers to subsets of a time domain.

Related work. Apart from the above-mentioned works dealing with (fragments
of) Presburger LTL, we list below some related works involving periodicity con-
straints, fragments of Presburger arithmetic, versions of LTL over concrete do-
mains, and constraint automata.

1. In [TC98] a version of DATALOG with integer periodicity constraints is
studied. Our constraint language extends the one from [TC98] but is used
in a different way since it serves as a basis for the atomic formulae of our
studied fragment of Presburger LTL. Similar periodicity constraints can be
found in [BBFS96,BBFS98].

2. Complexity issues for versions of LTL over concrete domains have been
studied in [BC02,DD03,GKWZ03,GKK+03] (see also [Lut01,Lut04]). Unlike
most of these works, we use a computationally expensive constraint language
(satisfiability is pspace-complete) while preserving the pspace upper bound
of the corresponding fragment of Presburger LTL.

3. Various fragments of Presburger arithmetic have been introduced in the
literature, very often for quite different purposes. By way of example, let

3

us mention the pspace-complete fragment of Presburger arithmetic intro-
duced in [Kou94] with quantifier elimination. OCP “One counter Proper-
ties” [JKMS02] is also a fragment of Presburger arithmetic that is DP-hard
(see e.g. [Pap94]), and in Πp

2 (level 2 of polynomial hierarchy). A peculiarity
of OCP is that it lacks the closure under negation.

4. Constraint automata similar to the one we shall consider in this paper are in-
troduced in [LM01] (extended single-string automata). The underlying con-
straint language LI from [LM01] is actually a fragment of the language
IPC+ (see Sect. 6 for more details). Decidability of the equivalence prob-
lem between two such constraint automata is shown in [LM01] by using an
exponential space decision procedure. We shall explain why the extended
single-string automata can be viewed as a subclass of LTL(IPC+)-automata
(defined in Sect. 2.4).

5. First-order temporal logics of actions such as TLA [Lam94] (see also ex-
tensions in [Mer99,EK02]) can be viewed as variants of LTL over concrete
domains in which the domain is not fixed.

Plan of the paper. The rest of the paper is structured as follows. In Sect. 2 we in-
troduce fragments of Presburger arithmetic involving periodicity constraints and
the corresponding versions of LTL with past defined upon them. Sect. 3 is dedi-
cated to the most expressive constraint language considered in the paper, namely
IPC++. We show that IPC++ admits quantifier elimination in polynomial space,
satisfiability is pspace-complete and we provide a symbolic representation for
solutions of IPC++ constraints. In Sect. 4 we show that the satisfiability and
model-checking problems for our main logic PLTLmod are pspace-complete prob-
lems by taking advantage of results from Sect. 3 to abstract PLTLmod models of
a given PLTLmod formula. These problems are reduced to the emptiness problem
for Büchi automata. Sect. 5 analyses the complexity of the logic PLTL(IPC+),
a fragment of PLTLmod, augmented with the quantifier ∃ [resp. with ↓] at the
logical level. We show that PLTL(IPC+) augmented with ∃ [resp. with ↓] has
an expspace-complete satisfiability problem. Sect. 6 presents the proof of the
pspace-completeness of the equivalence problem for extended single-string au-
tomata. In Sect. 7, we provide concluding remarks.

This paper is a completed version of [Dem04b].

2 PLTL over periodicity constraints

2.1 Constraint languages

Let VAR = {x0, x1, . . .} be a countably infinite set of variables. We define be-
low languages of the first-order theory of integer periodicity constraints. The
constraint language IPC is defined by the grammar below:

p ::= x ≡k y + c | x ≡k c | p ∧ p | ¬p,

4

where k, c ∈ N, x, y ∈ VAR. A simple periodicity constraint is a conjunction
of constraints of the form either x ≡k y + c or x ≡k c for some k, c ∈ N and
x ∈ VAR. Given X ⊆ {∃, [], <,=}, we define an extension of IPC, namely IPCX ,
by adding clauses to the definition of IPC:

– if ∃ ∈ X, then the clause ∃ x p is added (existential quantification),

– if [] ∈ X, then the clause x ≡k y + [c1, c2] with c1, c2 ∈ N is added,

– if =∈ X, then the clause x = y with x, y ∈ VAR is added,

– if <∈ X, then the clauses x < d | x > d | x = d with x ∈ VAR and d ∈ Z

are added.

Below, IPC+ denotes IPC{∃,[],<} whereas IPC++ denotes IPC{∃,[],<,=}, which
is actually the richest constraint language considered in the paper. IPC++ is
the extension of the language of the first-order theory of integer periodicity con-
straints introduced in [TC98]1 but with the inclusion of negation as considered
in [BBFS96]. Unlike [TC98], we shall not use periodicity graphs as symbolic
representation of sets of tuples definable by constraints in IPC (see also the
complementation of periodicity graphs in [BBFS96]). Instead, we shall represent
periodicity constraints by sets of triples of natural numbers. The cardinality of
such sets will be exponential in the size of the corresponding constraints (see
details in Sect. 3).

Observe that constraints of the form x ∼ d with ∼∈ {=, >,<} allow to
compare variables to absolute time values. A semi-simple periodicity constraint
is a conjunction between a simple periodicity constraint and a conjunction of
atomic constraints of the form x ∼ d with ∼∈ {<,>,=}.

The interpretation of the constraints is the standard one. A valuation v is
a map v : VAR → Z. The satisfaction relation v |= p is inductively defined in
Figure 1.

– v |= x ∼ d
def
⇔ v(x) ∼ d with ∼∈ {<,>,=}, v |= x = y

def
⇔ v(x) = v(y),

– v |= x ≡k c
def
⇔ v(x) is equal to c modulo k, i.e. there is z ∈ Z such that v(x) −

v(y) = z × k + c,

– v |= x ≡k y + c
def
⇔ v(x)− v(y) is equal to c modulo k,

– v |= x ≡k y + [c1, c2]
def
⇔ v(x)− v(y) is equal to c modulo k for some c1 ≤ c ≤ c2,

– v |= p ∧ p′
def
⇔ v |= p and v |= p′, v |= ¬p

def
⇔ not v |= p,

– v |= ∃ x p
def
⇔ there is z ∈ Z such that v[x← z] |= p where v[x← z](x′) = v(x′) if

x′ 6= x, and v[x← z](x) = z.

Fig. 1. Standard semantics for IPC++ constraints

1 What is called “IPC” in [TC98] is precisely defined by p ::= x ≡k y+ c | x ≡k c |
p ∧ p | ∃x p.

5

It is worth observing that x ≡k y + [c1, c2] is not symmetrical with respect
to x and y. However, y ≡k x+ [c1, c2] is equivalent to x ≡k y + [k − c2, k − c1].

Given p in IPC++ with free variables x1, . . . , xk (in the order of enumeration
of the variables), sol(p) denotes the set of k-tuples 〈z1, . . . , zk〉 ∈ Z

k such that
[x1 ← z1, . . . , xk ← zk] |= p. sol(p) is a semilinear set of k-tuples since IPC++

is obviously a fragment of Presburger arithmetic [GS66]. Given a constraint
language L, the L-satisfiability problem is to decide given a constraint p ∈ L
whether sol(p) is non-empty. Without any loss of generality, we can assume that
p contains at least one free variable (otherwise consider (x1 ≡1 0) ∧ p and x1

does not occur in p), if ∃x1 p1 and ∃x2 p2 are distinct subconstraints of p, then
x1 is distinct from x2 and, in p a variable cannot occur both free and bounded.

The expressive power of a constraint language L can be measured by the
set {sol(p) : p ∈ L}. For instance, IPC{∃,<} is as expressive as IPC+ since
x ≡k y + [c1, c2] is equivalent to

∨

c1≤c≤c2
x ≡k y + c. However, because all the

natural numbers are encoded with a binary representation, IPC+ may be more
concise than IPC{∃,<}. The introduction of the succinct atomic constraints of
the form x ≡k y + [c1, c2] is motivated by the existence of similar constraints in
the calendar logic developed in [Ohl94].

2.2 Definition of PLTLmod

The atomic formulae of PLTLmod are the constraints of IPC++ except that
the variables are of the form X

jxi. A term X
jxi, the variable xi followed by j

“X” symbols, represents the value of xi at the jth next state and its size is in
O(j + log i). The atomic formulae of PLTLmod are expressions of the form

p[x1 ← X
i1xj1 , . . . , xk ← X

ikxjk
]

where p is a constraint of IPC++ with free variables x1, . . . , xk (in the order of
enumeration of the variables) and p[x1 ← X

i1xj1 , . . . , xk ← X
ikxjk

] is obtained
from p by replacing every occurrence of xu by xju

preceded by iu next symbols
for 1 ≤ u ≤ k. For instance, the formula x ≡2 0 ∧ 2(Xx ≡2 x + 1) states that
the value of x is even on states of even indices.

The formulae of PLTLmod are defined by the following grammar:

φ ::= p[x1 ← X
i1xj1 , . . . , xk ← X

ikxjk
] | ¬φ | φ∧φ | Xφ | φUφ | X

−1φ | φSφ,

where p belongs to IPC++. As usual, X is the next-time operator, X
−1 is the

previous past-time operator, U is the until operator, and S is the since past-time
operator (see below the semantics). More generally, we write PLTL(L) to denote
the variant of PLTLmod where the atomic formulae are built from the constraint
language L. Hence, PLTLmod is simply PLTL(IPC++). We write LTL(L) to
denote the restriction of PLTL(L) to the future-time operators X and U. We
include past-time operators to the logic in order to capture the conciseness of
LTL with past considered in [CFP02,CFP04]. However, the addition of a finite
amount of MSO-definable temporal operators still guarantees the (forthcoming)
pspace upper bound thanks to more general results from [GK03].

6

A model σ for PLTLmod is an ω-sequence of valuations of the form σ : N ×
VAR→ Z. The satisfaction relation |= is inductively defined in Figure 2.

– σ, i |= p[x1 ← X
i1xj1 , . . . , xk ← X

ikxjk
] iff [x1 ← σ(i + i1, xj1), . . . , xk ←

σ(i+ ik, xjk
)] |= p (the second occurrence of |= denotes the satisfaction relation in

IPC++),
– σ, i |= φ ∧ φ′ iff σ, i |= φ and σ, i |= φ′; σ, i |= ¬φ iff not σ, i |= φ,
– σ, i |= Xφ iff σ, i+ 1 |= φ, σ, i |= X

−1φ iff i > 0 and σ, i− 1 |= φ,
– σ, i |= φUφ′ iff there is j ≥ i such that σ, j |= φ′ and for every i ≤ k < j, σ, k |= φ,
– σ, i |= φSφ′ iff there is 0 ≤ j ≤ i such that σ, j |= φ′ and for every j < k ≤ i,
σ, k |= φ.

Fig. 2. Semantics for PLTLmod formulae

A very important aspect of PLTLmod rests on the fact that the values of
variables at different states can be compared. We use the standard abbreviations
3φ, F

−1φ, 2φ, . . . The satisfiability problem for PLTLmod is to decide given a
formula φ whether there is σ such that σ, 0 |= φ. It is worth observing that
adding to IPC++ constraints of one of the forms below leads to undecidability
of the satisfiability problem of the corresponding extension of PLTLmod:

– x = y + 1 with x, y ∈ VAR, see e.g. [CC00],
– x < y with x, y ∈ VAR,
– x− y ≥ c with x, y ∈ VAR and c ∈ N \ {0}.

A few other remarks are in order. No propositional variables are part of
PLTLmod but they can be easily simulated, for instance each Pi can be encoded
by xi = 1 if xi is not used for other purposes in the formula. When complexity
issues are considered, all the integers are taken to be coded in binary represen-
tation.

Observe that because of the presence of the past-time operator X
−1, we can

also simulate the access to past values of variables (which we would write X
−nx

for instance if

n times
︷ ︸︸ ︷

X
−1 . . .X−1> holds true). Typically, X

−2x = x can be concisely
translated into X

−1
X
−1>∧X

−1
X
−1(x = X

2x) assuming that if X
−2x is undefined,

then the atomic constraint is interpreted by false.

2.3 PLTLmod and calendar formalisms

In [CFP02], LTL with past is used for reasoning about calendars based on consis-
tent granularities: this amounts to require that the truth values of propositional
variables along the time line encode consistent granularities. As a major draw-
back, the encoding a period of n units requires a formula of size O(n) whereas

7

the formula 2(Xx ≡n x+1) in PLTLmod does the job with only O(log(n)) sym-
bols (remember that we encode the integers with a binary representation). A
similar blow up occurs in the translation of pure Calendar Logic [Ohl94] into
propositional calculus with an exponential increase of the size of formulae, which
leads to a decision procedure in double exponential-time (to be compared with
our pspace decision procedure in Sect. 4). Other advantages of our formalism
in comparison with [Ohl94,CFP02] is that we specify in the logical language the
granularities.

Calendars. Formulae of PLTLmod can encode calendars and slices from [NS92].
For instance, a calendar C can be viewed as an ordered partition X1, X2, . . . of
N such that (the partition can be finite but we omit this case here)

(ordering) for all i, x and y, x ∈ Xi and y ∈ Xi+1 imply x < y,
(consecution) for every i, there are x ∈ Xi and y ∈ Xi+1 such that y = x+ 1.

A calendar C = X1, X2, . . . can be represented in PLTLmod by the interpretation
of a variable x in an PLTLmod model σ : N × VAR → Z such that consecutive
positions in σ having the same value for x belongs to the same class:

σ(0, x) = σ(1, x) = . . . = σ(i1, x)
︸ ︷︷ ︸

X1={0,...,i1}

6= σ(i1 + 1, x) = . . . = σ(i2, x)
︸ ︷︷ ︸

X2={i1+1,...,i2}

6= . . .

In most cases, {σ(i, x) : i ∈ N} is naturally finite (minuts, hours, days in a
week, months). This means that a class of such calendars can be alternatively
encoded as consecutive positions having the same value modulo some integer.
Assuming that the time unit is a second, let us define the calendar minuts using
the notations from [NS92]: duration(minuts / seconds) = [60] and synchroniza-
tion(minuts / seconds) = 1.

synchronization
︷ ︸︸ ︷

sec ≡60 0 ∧min ≡60 0∧2(Xsec ≡60 sec+ 1)∧

2(sec ≡60 59⇒ Xmin ≡60 min+ 1 ∧ (¬sec ≡60 59)⇒ Xmin ≡60 min).

More complex calendars can be encoded in a similar fashion, possibly by intro-
ducing auxiliary variables (apart from the one to define the calendars) in order
to be able to count in binary in some places.

Encoding Gregorian calendar. By way of example, we provide a partial encoding
of Gregorian calendar with PLTLmod formulae.

– sec ≡60 0∧2(Xsec ≡60 sec+ 1∧ 0 ≤ sec < 60). The second is the time unit
(granularity).

– min ≡60 0 ∧ 2(0 ≤ min < 60)∧
2((sec = 59⇒ Xmin ≡60 min+ 1) ∧ (sec 6= 59⇒ Xmin = min)).

– hour ≡24 0 ∧ 2(0 ≤ hour < 24)∧
2((min = 59 ∧ sec = 59⇒ Xhour ≡24 hour + 1) ∧ (min 6= 59 ∨ sec 6= 59⇒
Xhour = hour)).

8

– day ≡7 0 ∧2(0 ≤ day < 7)∧
2((min = 59 ∧ sec = 59 ∧ hour = 23⇒ Xday ≡7 day + 1)∧
2((min 6= 59 ∨ sec 6= 59 ∨ hour 6= 23⇒ Xday = day).

– Similarly, one can defined day-in-month, month, and year assuming that
there is some end dates. In many practical situations, the problem of in-
finiteness (for years for instance) can be circumverted by fixing some end
date far ahead. Indeed, with PLTLmod formalism this can be done concisely,
for instance x < 2n requires onlyO(n) symbols since the integers are encoded
with a binary representation.

– The sentence “φ holds sometime next monday” (where the time unit is the
second) is encoded by the following conjunction (depending whether the
current day is monday or not):

current day is monday
︷ ︸︸ ︷

p⇒ pU((¬p ∧ (¬pU(pU(p ∧ φ)))))

current day is not monday
︷ ︸︸ ︷

∧¬p⇒ (¬pU(pU(p ∧ φ)))

with p = day ≡7 0. It is easy to see that this can be easily generalized to
any interval of time (next year, next week, previous year, etc.).

Calendar logic. In [Ohl94], a calendar logic is introduced and studied in which
formulae of the form [τ]φ are interpreted by “for every point of the interval τ ,
the formula φ holds”. The expression τ is called a time term and a peculiarity of
such logic is to allow time terms at formula positions. The encoding of calendars
in PLTLmod allows to translate [τ]φ into 2(τ ′ ⇒ φ) where τ ′ is a constraint in
IPC++ encoding τ . For instance, consider the statement “if tomorrow’s lunch
time is at noon, I’ll ring you” that is formalized in calendar logic [Ohl94] by

〈xday + 1〉(noon(xday) ⊆ lunch− time(xday)⇒ ring).

One way to encode this statement in PLTLmod using the forthcoming encoding
of Gregorian calendar is the following:

(Xday ≡7 day)U(

next tick is tomorrow
︷ ︸︸ ︷

Xday ≡7 day + 1 ∧Xφ0)

with

φ0
def

= (day ≡7 XdayU

lunch time at noon
︷ ︸︸ ︷

(hour ≡24 12 ∧ lunch− time))⇒ X(day ≡7 XdayUring)

It is worth observing that this PLTLmod formula is in polynomial size in the size
of the original statement from Calendar Logic [Ohl94] even if one includes the
encoding of Gregorian calendar.

2.4 Model Checking

The languages of the form PLTL(L) are of course well-designed to perform
model checking of counter automata, similarly to what is done in [Čer94,DD03]

9

and [Rev02, Chap. 6]. Given a constraint language L (herein a fragment of
IPC++), a PLTL(L)-automaton is a Büchi automaton A over the alphabet Σ

made of a finite subset of PLTL(L) formulas: transitions are of the form q
φ
−→ q′

where q, q′ are control states and φ is an PLTL(L) formula . As in [Wol83,VW94],
we allow formulae on transitions. ω-words w = φ0φ1 · · · in Σω are indeed sym-
bolic models. A symbolic model w has a concrete model σ : N × VAR →

Z
def

⇔ for every i ≥ 0, σ, i |= φi. The model σ is simply a realization of
the ω-sequence φ0φ1 · · · . Let l(A) denote the set l(A) = {σ : N × VAR →
Z | ∃w accepted by A such that σ, i |= w(i) for each i}. The set l(A) is precisely
the set of models for which there is a symbolic model accepted by A.

The model-checking problem for PLTL(L) is defined as follows:

input : A PLTL(L)-automaton A and a PLTL(L) formula φ,
question : Is there a σ ∈ l(A) such that σ |= φ? (in symbols A |=∃ φ?)

A natural relaxed version of the problem consists in restricting the labels on
transitions to Boolean combinations of PLTL(L) atomic formulae.

Theorem 1. The model checking and satisfiability problems for PLTLmod are
inter-reducible with respect to logspace transformations.

From model checking to satisfiability, the proof is similar to the proof of [DD03,
Theorem 8.3] (which is itself based on a proof in [SC85]). Indeed, control states
of PLTL(L)-automata can be encoded by propositional variables, transitions by
PLTLmod formulae. From satisfiability to model-checking, one can observe that φ
is satisfiable iff A |=∃ φ whereA is a single-state automaton such that l(A) is pre-
cisely the set of all PLTLmod models. In Sect. 6 we shall show how LTL(IPC++)-
automata naturally encode extended single-string automata from [LM01, Sect.
5].

In the rest of the paper, only satisfiability problems are explicitly treated
thanks to Theorem 1.

3 First-order theory of integer periodicity constraints

Given p in IPC++ with free variables x1, . . . , xk, we shall construct a finite
partition of Z

k such that

– every region can be represented by a semi-simple periodicity constraint;
– for all k-tuples z and z′ in a given region of the partition, z ∈ sol(p) iff
z′ ∈ sol(p).

In this way, we shall be able to finitely represent the set of solutions sol(p)
and such a representation will be easy to manipulate since it can be viewed as
a disjunction of semi-simple periodicity constraints. This is actually a standard
requirement when an infinite set of tuples has to be finitely abstracted, see
e.g. the clock regions for timed automata in [AD94], the quantifier elimination
procedure for discrete point constraint language in [Kou94] and the reducibility
of extended single-string automata in [LM01], to quote a few examples (see also
the symbolic transition systems of the class one in [HMR05]).

10

3.1 Quantifier elimination

Quantifier elimination (QE) is a known method to show decidability of logical
theories, see e.g. [Pre29,Tar51,KK67,FR75]. In this section, we establish such a
property to prove the pspace upper bound of the IPC++-satisfiability problem.
Let p be a constraint in IPC++ such that

– d1 < . . . < dn are the constants in p occurring in constraints of the form
x ∼ d with ∼∈ {<,>,=}; we fix d0 = −∞ and dn+1 = +∞, this is done to
simplify the notations in some places,

– K is the least common multiple of every number k that appears in any ≡k

operator in the formula. K is in 2O(|p|).

We define from p an equivalence relation ∼p between elements of Z as follows:

z ∼p z
′ def

⇔

1. for all i ≤ j ∈ {0, . . . , n+ 1}, di ≤ z ≤ dj iff di ≤ z
′ ≤ dj ,

2. for every l ∈ {0, . . . ,K − 1}, z ≡K l iff z′ ≡K l.

Hence, the number of equivalence classes of ∼p is bounded by (n+ 1)×K, that
is in O(2|p|). The idea behind the definition of ∼p is simply that z ∼p z

′ iff z and
z′ cannot be distinguished by constraints of IPC+ that use only d1, . . . , dn and
k1, . . . , ku. For instance, it is easy to check that for every j ∈ {1, . . . , n}, {di}
is an equivalence class of ∼p. The relation ∼p extended to tuples will not be a
simple component-wise extension because of the presence of equality in IPC++.
For k ≥ 1, we say that 〈z1, . . . , zk〉 = z ∼k

p z
′ = 〈z′1, . . . , z

′
k〉 iff

– for every i ∈ {1, . . . , k}, zi ∼p z
′
i,

– for all i, j ∈ {1, . . . , k}, zi = zj iff z′i = z′j .

If x1, . . . , xk are the free variables in p, we write z ∼p z′ instead of z ∼k
p z

′.
The number of equivalence classes of ∼p (on k-tuples) is bounded by (n+ 1)×

K × 2k2

.

Given 1 ≤ i1 < . . . < il ≤ k, we write 〈z1, . . . , zk〉
{i1,...,il} to denote the

subsequence 〈zi1 , . . . , zil
〉.

Lemma 1. Let p be a constraint in IPC++ with k free variables and z, z′ ∈ Z
k.

z ∈ sol(p) and z ∼p z′ imply z′ ∈ sol(p).

Proof. Let p be a constraint in IPC++ with k free variables x1, . . . , xk and k′

bounded variables y1, . . . , yk′ . For any subconstraint p′ of p, we write sol′p(p
′)

to denote the set of (k + k′)-tuples 〈z1, . . . , zk+k′〉 ∈ Z
k+k′

such that [x1 ←
z1, . . . , xk ← zk, y1 ← zk+1, . . . , yk′ ← zk+k′] |= p′. The equivalence relation ∼p

on Z
k is extended on Z

k+k′

by considering ∼k+k′

p . By structural induction, we

shall show that for every subconstraint p′ of p, for all z, z′ ∈ Z
k+k′

, z ∈ sol′p(p
′)

and z ∼p z′ imply z′ ∈ sol′p(p
′). By taking p = p′, we then get the statement of

the lemma since sol′p(p) = sol(p)× Z
k′

.

11

Base case 1: p′ is of the form x ∼ d with x ∈ {x1, . . . , xk, y1, . . . , yk′} and
∼∈ {<,>,=}.
Suppose z ∈ sol′p(x ∼ d), z ∼p z′ and x equals some xi. By definition of ∼p,

zi ∼ d iff z′i ∼ d. Hence, z′ ∈ sol′p(x ∼ d).
Base case 2: p′ is of the form x = x′ with x, x′ ∈ {x1, . . . , xk, y1, . . . , yk′}.
Suppose z ∈ sol′p(x = x′), z ∼p z′, x = xi and x′ = yj . By definition of ∼p,

zi = zk+j iff z′i = z′k+j . Hence, z′ ∈ sol′p(x = x′).
Base case 3: p′ is of the form x ≡l c with x ∈ {x1, . . . , xk, y1, . . . , yk′}.
Suppose z ∈ sol′p(x ≡l c), z ∼p z′ and x equals some yi. Let l1, . . . , ls be all the
numbers appearing in some ≡l′ operator of p. Recall that K is the lcm of all
such numbers. By definition of ∼p, zk+i ≡K z′k+i. By the Generalized Chinese
Remainder Theorem, (zk+i ≡l1 z

′
k+i and · · · and zk+i ≡ls z

′
k+i) iff zk+i ≡K z′k+i.

Consequently, zk+i ≡l z
′
k+i and therefore z′ ∈ sol′p(x ≡l c).

The other base cases are treated analogously. Now let us consider the differ-
ent cases of the induction step.

Case 1: p = p1 ∧ p2.
Suppose z ∈ sol′p(p1 ∧ p2) and z ∼p z′. Since each free variable occurring in

some pi, is also free in p1 ∧ p2, z ∈ sol′p(p1) and z ∈ sol′p(p2). By the induction

hypothesis, z′ ∈ sol′p(p1) and z′ ∈ sol′p(p2). Hence, z′ ∈ sol′p(p1 ∧ p2).
Case 2: p = ¬p1.
Suppose z ∈ sol′p(¬p1) and z ∼p z′. Hence, z 6∈ sol′p(p1). By the induction hy-

pothesis, z′ 6∈ sol′p(p1), whence z′ ∈ sol′p(¬p1).
Case 3: p = ∃ y p1 for some y ∈ {y1, . . . , yk′}.
Suppose z ∈ sol′p(∃ y p1), z ∼p z′ and y equals some yi. By definition of the
satisfaction relation |=, there is t ∈ Z such that [x1 ← z1, . . . , xk ← zk, y1 ←
zk+1, . . . , yi ← t, . . . yk′ ← zk+k′] |= p1. Let z0 = 〈z1, . . . , zk, . . . , zk+i−1, t, zk+i+1,
. . . , zk+k′〉 and z′0 = 〈z′1, . . . , z

′
k, . . . , z

′
k+i−1, t, z

′
k+i+1, . . . , z

′
k+k′〉. Since z0 ∼p z′0

and z0 ∈ sol′p(p1), by the induction hypothesis z′0 ∈ sol′p(p1). So every t′ ∈ Z,
[x1 ← z′1, . . . , xk ← z′k, y1 ← z′k+1, . . . , yi ← t′, . . . yk′ ← z′k+k′] |= ∃ y p1. In

particular, z′ ∈ sol′p(∃ y p1) by taking t′ = z′k+i.

Each equivalence class of ∼p on Z can be represented by a triple 〈i, j, l〉 with
i ∈ {0, . . . , n}, j ∈ {0, 1}, and l ∈ {0, . . . ,K − 1} such that

– if j = 0 and i ∈ {1, . . . , n}, then 〈i, j, l〉 represents the equivalence class {di},
– if j = 1 and i ∈ {0, . . . , n}, then 〈i, j, l〉 represents the equivalence class
{z ∈ Z : di < z < di+1, and z ≡K l} if this set is non empty.

We introduce the map [·] : Z→ {0, . . . , n}×{0, 1}×{0, . . . ,K−1} such that [z]
is the representation of the equivalence class of ∼p containing z. For instance, if
di ≡K 1, then [di] = 〈i, 0, 1〉. By extension, given Y a non-empty finite subset of
N of cardinality k representing a set of variable indices, we introduce the map

[·]Y : Z
k → ({0, . . . , n} × {0, 1} × {0, . . . ,K − 1})k × P(Y 2)

12

such that

[〈z1, . . . , zk〉]
Y = 〈〈[z1], . . . , [zk]〉, {〈Ji, Jj〉 ∈ Y

2 : zi = zj}〉,

where Y = {J1, . . . , Jk} and J1 < . . . < Jk. If p has free variables x1, . . . , xk, the
finite set ({0, . . . , n} × {0, 1} × {0, . . . ,K − 1})k × P({1, . . . , k}2) will represent
the equivalence classes of ∼p on k-tuples.

The proof of Lemma 2 below is by an easy verification.

Lemma 2. Let Y = {J1, . . . , Jk} be a non-empty finite subset of N with J1 <
. . . < Jk. Checking whether u ∈ ({0, . . . , n} × {0, 1} × {0, . . . ,K − 1})k ×P(Y 2)
belongs to the image of [·]Y can be done in polynomial-time in |p|+ |Y |.

In Lemma 2 above, |u| is of polynomial size in |p|+ |Y | with |Y | = Σk
i=1(1 +

log(Ji)).

If p contains k free variables x1, . . . , xk, we write Dp to denote the domain
({0, . . . , n} × {0, 1} × {0, . . . ,K − 1})k ×P({1, . . . , k}2) and Dsat

p to denote the

set {[z]{1,...,k} ∈ Dp : z ∈ sol(p)}. The set Dp is indeed a finite abstraction
of the infinite domain Z

k with respect to the constraint p (only depends on the
syntactic resources in p) andDsat

p is a finite representation of the possibly infinite
set sol(p).

To each 〈i, j, l〉 ∈ {0, . . . , n} × {0, 1} × {0, . . . ,K − 1}, and variable index
α ∈ N, we associate a semi-simple periodicity constraint IPC<(〈i, j, l〉, α) in
IPC{<} with free variable xα defined as follows:

IPC<(〈i, j, l〉, α) = (xα ≡K l) ∧







xα = di if j = 0 and i ∈ {1, . . . , n},
(di < xα) ∧ (xα < di+1)
if j = 1 and i ∈ {0, . . . , n},
⊥ otherwise.

The following lemma makes explicit the relationship between the constraints
generated by the map IPC< and the map [·].

Lemma 3. For all z ∈ Z and 〈i, j, l〉 ∈ {0, . . . , n} × {0, 1} × {0, . . . ,K − 1}, we
have [xα ← z] |= IPC<(〈i, j, l〉, α) iff [z] = 〈i, j, l〉.

We are now able to show that IPC++ satisfies (QE) by appropriately extend-
ing the map IPC<. To each 〈〈t1, . . . , tk〉, X〉 ∈ Dp we associate a semi-simple
periodicity constraints IPC++(〈〈t1, . . . , tk〉, X〉) defined by

(
∧

1≤i≤k

IPC<(ti, i)) ∧ (
∧

〈i,j〉∈X

xi = xj) ∧ (
∧

〈i,j〉6∈X

¬(xi = xj)).

The following lemma (also not difficult to show) makes explicit the relationship
between the constraints generated by the map IPC++(·) and the map [·]{1,...,k}.

Lemma 4. For all 〈z1, . . . , zk〉 ∈ Z
k and u ∈ Dp, we have [x1 ← z1, . . . , xk ←

zk] |= IPC++(u) iff [〈z1, . . . , zk〉]
{1,...,k} = u.

13

Theorem 2. IPC++ admits quantifier elimination.

Proof. Let p be a constraint in IPC++ with free variables x1, . . . , xk. We define
below a constraint p′ in IPC++ such that sol(p) = sol(p′):

p′ =
∨

〈〈t1,...,tk〉,X〉∈Dsat
p

IPC++(〈〈t1, . . . , tk〉, X〉).

Equality between sol(p) and sol(p′) can be proved by using Lemma 4.

3.2 PSPACE-complete satisfiability problem

We establish that IPC++-satisfiability is decidable in polynomial space.

Theorem 3. IPC++-satisfiability is pspace-complete.

Proof. pspace-hardness is obtained by reducing QBF. Let φ be an instance of
QBF of the form below:

∀ x1 ∃ x2 . . .∀ x2n−1 ∃ x2n

φ′

︷ ︸︸ ︷
m∧

i=1

(li1 ∨ l
i
2 ∨ l

i
3)

where the lij ’s are literals over the propositional variables in x1, . . . , x2n. In spite
of the prenex form of φ, the strict alternation between ∀ and ∃, and the fact that
φ′ is in 3CNF, QBF restricted to such QBF formulae can be easily shown to be
pspace-hard. We define, in logarithmic space in |φ|, a formula t(φ) such that φ
is QBF satisfiable iff x′0 = 0 ∧ t(φ) is IPC++ satisfiable (x′0 = 0 is artificially
added to have at least one free variable). To each propositional variable xi, we
associate an IPC++ variable x′i.

– t(∀ x ψ)
def

= ∀ x′ (x′ = 0) ∨ (x′ = 1)⇒ t(ψ),

– t(∃ x′ ψ)
def

= ∃ x′ ((x′ = 0) ∨ (x′ = 1)) ∧ t(ψ),

– t(ψ ∧ ψ′)
def

= t(ψ) ∧ t(ψ′), t(ψ ∨ ψ′)
def

= t(ψ) ∨ t(ψ′), t(¬ψ) = ¬t(ψ),

– t(x)
def

= x′ = 1,

– t(¬x)
def

= x′ = 0.

Satisfiability in pspace can be shown via a procedure similar to first-order
model-checking [CM77], details are given below.

First, some preliminary definitions. Given a sequence 〈s1, . . . , sk〉, we write
〈s1, . . . , sk〉[i1 ← t1, . . . , iu ← tu] to denote the sequence obtained from 〈s1, . . . , sk〉
by replacing sij

by tj for every j ∈ {1, . . . , u}. We shall define a function SAT(p)

that checks satisfiability of the constraint p in IPC++. To do so, we introduce
an auxiliary function MC which is indeed the core of our procedure. Let p be a
constraint in IPC++ with occurrences of the variables x1, . . . , xk. The free vari-
ables of p are xi1 , . . . , xis

with 1 ≤ i1 < i2 < . . . < is ≤ k. The function SAT is
defined in Figure 3.

14

SAT(p):

if there is 〈〈t1, . . . , ts〉,X〉 ∈ ({0, . . . , n}×{0, 1}×{0, . . . ,K−1})s×P({i1, . . . , is}
2)

such that
1. 〈〈t1, . . . , ts〉,X〉 belongs to the image of [·]{i1,...,is} and

2. MC(p, p, 〈

k times
z }| {

〈−, . . . ,−〉[i1 ← t1, . . . , is ← ts],X〉, {i1, . . . , is}) returns “Yes”;
then return “Yes” otherwise return “No”.

Fig. 3. Function SAT

Observe that condition 1. in the definition of SAT can be checked in polynomial-
time in |p| by Lemma 2. Moreover, it will not be difficult to show that MC
(defined below) runs in pspace: polynomial recursion depth and quantification
over exponential size sets (which requires only polynomial space) guarantees this
upper bound. MC has four arguments:

1. a constraint p of IPC++,
2. a subconstraint p′ of p,
3. an interpretation of the free variables of p′ represented in an abstract fashion

with the use of a padding symbol ’−’,
4. the set of indices of the free variables of p′.

There is certainly a bit of redundancy in the arguments: the positions of the
third argument with values different from the padding symbol ’−’ are precisely
the elements of the fourth argument. However, this is not crucial for the result
we want to establish. MC is indeed a model-checking procedure since the third
argument provides an interpretation for the free variables of the second argu-
ment. MC returns “Yes” iff this interpretation forces the second argument to
hold true. The function MC is defined by a simple case analysis as shown in
Figure 4.

In the case p′ = ∃xi p
′′, condition 1. can be checked in polynomial-time in

|p|.

In order to get a pspace-complete extension of LTL with a subclass of Pres-
burger constraints, the best we can do is to design a constraint language with a
pspace-hard satisfiability problem, like IPC++.

Corollary 1. Let p be a constraint in IPC++. Checking whether u ∈ Dp belongs
to Dsat

p can be done in pspace.

Proof. Let u ∈ Dp. One can show that u ∈ Dsat
p iff p ∧ IPC++(u) is satisfiable.

Hence, the pspace upper bound.

Observe also that IPC++(〈〈t1, . . . , tk〉, X〉) is indeed a set of signed atomic
constraints of the form s (xi = xj), s (xi ∼ dj), and s (xi ≡K l) with the sign s
in {ε,¬} and ∼∈ {<,>,=}.

15

MC(p, p′, 〈〈s1, . . . , sk〉,X〉, Y):

– if p′ = “xi = xj” and 〈i, j〉 ∈ X then return “Yes”;
– if p′ = “xi ≡α xj + [c1, c2]” and there is c ∈ [c1, c2] such that li ≡α lj + c then

return “Yes” (si = 〈mini,maxi, li〉 and sj = 〈minj ,maxj , lj〉);
– the other base cases from the atomic formulae of IPC++ are treated in a similar

fashion and one can check that this requires only polynomial-time in p;
– in the case p′ = p1 ∧ p2, let xi1 , . . . , xiα be the free variables of p1 and xj1 , . . . , xjβ

be the free variables of p2. If the two calls below returns “Yes”
1. MC(p, p1, 〈〈−, . . . ,−〉[i1 ← si1 , . . . , iα ← siα],X ∩ {i1, . . . , iα}

2〉, {i1, . . . , iα})
2. MC(p, p2, 〈〈−, . . . ,−〉[j1 ← sj1 , . . . , jβ ← sjβ

],X∩{j1, . . . , jβ}
2〉, {j1, . . . , jβ})

then return “Yes”.
– in the case p′ = ¬p′′, if MC(p, p′′, 〈〈s1, . . . , sk〉,X〉, Y) returns “No”, then return

“Yes”;
– if p′ = ∃xi p

′′ then if there are t ∈ {0, . . . , n} × {0, 1} × {0, . . . ,K − 1} and
X ⊆ X ′ ⊆ (Y ∪ {i})2 such that
1. X = X ′ ∩ Y 2;
2. 〈(〈s1, . . . , sk〉[i← t])Y ∪{i},X ′〉 belongs to the image of [·]Y ∪{i};
3. MC(p, p′′, 〈〈s1, . . . , sk〉[i← t], X ′〉, Y ∪ {i}) returns “Yes”;

then return “Yes”.

Return “No”.

Fig. 4. Function MC

16

The problem described in Corollary 1 is actually a model-checking problem
(easily solvable with the procedure MC) where the interpretation of the variables
is done modulo the equivalence classes of∼p. By Lemma 1, this reasoning modulo
is sufficient.

Corollary 2. Given a constraint p in IPC++, one can compute an equivalent
quantifier-free p′ in polynomial space in |p| (but |p′| is in O(2|p|)).

This is a mere consequence of the proof of Theorem 2, Corollary 1, and the
fact that all the elements of Dp can be enumerated using only polynomial space
in |p|.

4 Complexity of PLTLmod

Let φ be a PLTLmod formula with

– free variables x1, . . . , xs,
– constants d1 < . . . < dn (d0 = −∞ and dn+1 = +∞),
– natural numbers k1, . . . , ku occurring in the context of ≡-atomic formulae

and their lcm is denoted by K.

Without any loss of generality, we can assume that the above sets of inte-
gers/variables are non-empty. Let |φ|X be one plus the greatest i with some

term X
ixj occurring in φ. For instance, |φ|X with φ = 2(Xx ≡n x+ 1) is equal

to two. In the sequel, we let l = |φ|X. l is the maximal number of consecutive
states necessary to evaluate an atomic subformula of φ.

We shall provide in the sequel a procedure to decide satisfiability of φ using
polynomial space in |φ|.

4.1 Abstraction of PLTLmod models

By definition, a model σ of φ is a structure σ : N× {x1, . . . , xs} → Z such that
σ, 0 |= φ. However, each local valuation σ(i) : {x1, . . . , xs} → Z can take an
infinite amount of values. By contrast, for classical LTL, there is a finite amount
of interpretations over a finite set of propositional variables. That is why we shall
abstract such valuations as elements of a finite set, more precisely as elements
of the set

Σφ = ({0, . . . , n} × {0, 1} × {0, . . . ,K − 1})k × P({1, . . . , k}2)

with k = s× l. This provides evidence that PLTL(IPC++)-automata are in the
class one of symbolic transitions systems following the classification in [HMR05].
The rest of this section is dedicated to the construction of such abstractions by
using Sect. 3.

Another way to understand a structure σ : N × {x1, . . . , xs} → Z with the
PLTLmod semantics is to view it as a structure σ′ : N×({x1, . . . , xs}×{0, . . . , l−
1})→ Z such that

17

(C1) for all i ∈ N, α ∈ {1, . . . , s}, and β ∈ {1, . . . , l − 1}, σ′(i, 〈xα, β〉) =
σ′(i+ 1, 〈xα, β − 1〉).

In that way, the pair 〈xα, β〉 plays the rôle of the term X
βxα. So far, the profile

of σ′ depends on φ by the value l and by the number of variables s but one has
also to relate σ′ with σ. The condition (C2) below does the job:

(C2) for all i ∈ N and α ∈ {1, . . . , s}, σ′(i, 〈xj , 0〉) = σ(i, xj).

Each map σ′ satisfying conditions (C1) and (C2) can be viewed as a variant
of σ where the states are grouped by l consecutive states. The following lemma
is now easy to establish.

Lemma 5.

(I) Given σ : N × {x1, . . . , xs} → Z, there is a unique σ′ : N × ({x1, . . . , xs} ×
{0, . . . , l − 1})→ Z satisfying (C1) and (C2).

(II) Given σ′ : N× ({x1, . . . , xs} × {0, . . . , l− 1})→ Z satisfying (C1), there is
a unique σ : N× {x1, . . . , xs} → Z satisfying (C2).

By way of example, in the proof of Lemma 5(II), we define σ(i, xα) as the
value σ′(i, 〈xα, 0〉).

In order to state Lemma 6 below, a straightforward corollary of Lemma 5,
we need a preliminary definition. Let (PLTLmod)′ be the syntactic variant of
PLTLmod where each term X

βxα is replaced by the pair 〈xα, β〉. The models of
(PLTLmod)′ are maps of the form N× ({x1, . . . , xs} × {0, . . . , l − 1})→ Z. The
satisfaction relation is defined inductively as for PLTLmod except at the atomic
level where we require:

(*) σ′, i |= p[x1 ← 〈xj1 , β1〉, . . . , xd ← 〈xjd
, βd〉] holds true with p ∈ IPC++

and p has free variables x1, . . . , xd whenever [x1 ← σ′(i, 〈xj1 , β1〉), . . . , xd ←
σ′(i, 〈xjd

, βd〉)] |= p in IPC++.

Hence, (PLTLmod)′ is a variant of PLTLmod (depending on φ because of s and
l) for which the satisfiability problem is related to PLTLmod as shown below.

Lemma 6. φ is satisfiable iff there is a structure σ′ : N × ({x1, . . . , xs} ×
{0, . . . , l − 1}) → Z satisfying (C1) such that σ′, 0 |= φ′ where φ′ is obtained
from φ by replacing every occurrence of X

βxα by 〈xα, β〉.

Let us now abstract the structures of the form σ′ : N × ({x1, . . . , xs} ×
{0, . . . , l − 1}) → Z. We pose k = s × l and we write Σφ to denote the set
({0, . . . , n} × {0, 1} × {0, . . . ,K − 1})k ×P({1, . . . , k}2) by similarity to the de-
velopments made in Sect. 3. The set Σφ is a finite abstraction of maps σ′ :
{x1, . . . , xs} × {0, . . . , l − 1} → Z where σ′(xj , i) is the value of the variable xj

at the ith next state. Similarly, Σsat
φ is defined as the subset of Σφ that corre-

sponds to elements of Σφ that are really abstractions of maps σ′ : {x1, . . . , xs}×
{0, . . . , l−1} → Z (there are dummy abstract values in Σφ). Actually, Σsat

φ is the

18

codomain of [·]{1,...,k}. In order to relate terms of the form X
βxα and “new” vari-

ables xi (i ∈ {1, . . . , k}), we introduce the map f : {x1, . . . , xs}×{0, . . . , l−1} →
{1, . . . , k} as the bijection defined by f(〈xα, β〉) = s×β+α. The inverse function
f−1 can be easily defined with the operations of the Euclidean division. Details
are omitted here. One can check that f−1(1), f−1(2), . . . , f−1(k) is precisely the
sequence

〈x1, 0〉, 〈x2, 0〉, . . . , 〈xs, 0〉, 〈x1, 1〉, . . . , 〈x1, l − 1〉, 〈x2, l − 1〉, . . . , 〈xs, l − 1〉.

Hence, first the variables at the current state are enumerated, then the variables
at the next state are enumerated and so on.

Another way to understand a structure σ : N×({x1, . . . , xs}×{0, . . . , l−1})→
Z is to view it as a structure σ′ : N→ Σsat

φ such that

(C3) for every i ∈ N, if σ′(i) = 〈〈t1, . . . , tk〉, X〉 and σ′(i+1) = 〈〈t′1, . . . , t
′
k〉, X

′〉
then

1. 〈ts+1, . . . , tk〉 = 〈t′1, . . . , t
′
k−s〉 (shift of the values of s first variables)

2. X ∩ {s+ 1, . . . , k}2 = {〈u+ s, v+ s〉 : 〈u, v〉 ∈ X ′, u+ s ≤ k, v+ s ≤ k}
(preservation in X ′ of X restricted to the indices in {s+ 1, . . . , k}).

One has also to relate σ′ with σ. The condition (C4) below does the job. We
need again a preliminary definition. Given g : {x1, . . . , xs} × {0, . . . , l− 1} → Z,
we write gk to denote the k-tuple 〈g(f−1(1)), . . . , g(f−1(k))〉. gk is simply a
representation of g as a k-tuple of Z

k with k = s× l.

(C4) for all i ∈ N, σ′(i) = [σ(i)k]{1,...,k}.

The following lemma can be established.

Lemma 7.

(I) Given σ : N× ({x1, . . . , xs} × {0, . . . , l− 1})→ Z satisfying (C1), there is a
unique σ′ : N→ Σsat

φ satisfying (C3) and (C4).

(II) Given σ′ : N→ Σsat
φ satisfying (C3), there is a map σ : N× ({x1, . . . , xs}×

{0, . . . , l − 1})→ Z satisfying (C1) and (C4).

Lemma 7(I) is easily shown by using the equality in (C4) to construct σ′. Ob-
serve that in Lemma 7(II), σ is not necessarily unique. The proof of Lemma 7(II)
uses the existence of a map h : Σsat

φ → Z
k such that for every u ∈ Σsat

φ ,

[h(u)]{1,...,k} = u since Σsat
φ is the image of [·]{1,...,k} (Axiom of Choice).

In order to state Lemma 8 below, we need another preliminary definition.
Let (PLTLmod)′′ be the syntactic variant of PLTLmod where each term X

βxα is
replaced by the variable xf(〈xα,β〉). The models of (PLTLmod)′′ are maps of the

form N→ Σsat
φ . The satisfaction relation is defined inductively as for PLTLmod

except at the atomic level where we require:

19

(**) σ′, i |= p[x1 ← xf(〈xj1
,β1〉), . . . , xd ← xf(〈xjd

,βd〉)] holds true with p ∈

IPC++ and p has free variables x1, . . . , xd whenever

p

renaming
︷ ︸︸ ︷

[x1 ← xf(〈xj1
,β1〉), . . . , xd ← xf(〈xjd

,βd〉)]∧IPC++(σ′(i))

is IPC++ satisfiable where IPC++(.) is the map defined in Sect. 3.1.

Lemma 8. φ is satisfiable iff there is a structure σ′ : N→ Σsat
φ satisfying (C3)

such that σ′, 0 |= φ′ where φ′ is obtained from φ by replacing every occurrence
of X

βxα by xf(〈xα,β〉).

The abstraction of PLTLmod models is now satisfactory since the domain of
σ′ in Lemma 8 is finite and it is of exponential cardinality in |φ|.

4.2 Büchi automata

Using the approach for LTL reducing model-checking and satisfiability problems
to the emptiness problem for Büchi automata [VW94], we construct a Büchi
automaton Aφ on the alphabet Σφ such that L(Aφ), the language recognized to

Aφ, is non-empty iff φ is PLTLmod satisfiable. The automaton Aφ is defined as
the intersection of the following automata.

1. The Büchi automaton AΣsat
φ

recognizes all the ω-sequences in (Σsat
φ)ω. AΣsat

φ

is defined as the structure 〈Q,Q0,→, F 〉 such that Q = Q0 = F = Dφ and

u
u′′

−→ u′ iff u = u′′ and u ∈ Σsat
φ . By Lemma 2, one can check in polynomial

time in |φ| whether u
u′′

−→ u′.
2. The Büchi automaton A(C3) recognizes the ω-sequences satisfying (C3).
A(C3) is defined as the structure 〈Q,Q0,→, F 〉 such that Q = Q0 = F = Σφ

and u
u′′

−→ u′ iff u = u′′ and if u = 〈〈t1, . . . , tk〉, X〉 and u′ = 〈〈t′1, . . . , t
′
k〉, X

′〉
then 〈ts+1, . . . , tk〉 = 〈t

′
1, . . . , t

′
k−s〉 and X ∩{s+1, . . . , k}2 = {〈u+ s, v+ s〉 :

〈u, v〉 ∈ X ′, u+ s ≤ k, v + s ≤ k}. One can check in polynomial time in |φ|

whether u
u′′

−→ u′.
3. The Büchi automaton APLTL recognizes the ω-sequences in Σsat

φ satisfying

φ (with the extended version of the satisfaction relation |= for (PLTLmod)′′).

The rest of this section is dedicated to construct APLTL based on develop-
ments from [LMS02] and on the abstraction introduced in Sect. 4.1. As usual,
we define cl(φ), the closure of φ, as the smallest set of formulae such that

1. {φ,X−1>,>} ⊆ cl(φ) and cl(φ) is closed under subformulae,
2. cl(φ) is closed under negation (we identify ¬¬ψ with ψ),
3. ψUψ′ ∈ cl(φ) implies X(ψUψ′) ∈ cl(φ),
4. ψSψ′ ∈ cl(φ) implies X

−1(ψSψ′) ∈ cl(φ).

20

The cardinality of cl(φ) is polynomial in |φ|. We define an atom of φ to be a
maximally consistent subset of cl(φ) defined as follows. X is an atom of φ iff

– X ⊆ cl(φ) and > ∈ X,

– for every ψ ∈ cl(φ), ψ ∈ X iff not ¬ψ ∈ X;

– for every ψ ∧ ψ′ ∈ cl(φ), ψ ∧ ψ′ ∈ X iff ψ ∈ X and ψ′ ∈ X,

– for every ψUψ′ ∈ cl(φ), ψUψ′ ∈ X iff either ψ′ ∈ X or {ψ,X(ψUψ′)} ⊆ X,

– for every ψSψ′ ∈ cl(φ), ψSψ′ ∈ X iff either ψ′ ∈ X or {ψ,X−1(ψSψ′)} ⊆ X,

– for every X
−1ψ ∈ cl(φ), X

−1ψ ∈ X implies X
−1> ∈ X.

We can now define the generalized Büchi automaton APLTL = (Q,Q0,−→
,F) with F = {F1, . . . , Fm} ⊆ P(Q). A run ρ : N→ Q is accepting according to
F iff for each i ∈ {1, . . . ,m}, ρ(j) ∈ Fi for infinitely many j ∈ N. A generalized
Büchi condition can be easily converted to a Büchi condition by augmenting the
states with a 0–m counter, see e.g. [CGP00, Chapter 9]. The elements of APLTL

are defined as follows:

– Q = P(cl(φ)); Q0 = {X ∈ Q : {φ,¬X
−1>} ⊆ X}.

– X
u
−→ Y iff

(ATOM) X and Y are atoms of φ.

(IPC++) for every atomic p in X, p′∧ IPC++(u) is IPC++-satisfiable where
p′ is obtained from p by replacing the occurrences of X

βxα by xf(〈xα,β〉).

(NEXT) for each Xψ ∈ cl(φ), Xψ ∈ X iff ψ ∈ Y .

(PREVIOUS) for each X
−1ψ ∈ cl(φ), X

−1ψ ∈ Y iff ψ ∈ X.

– Let {ψ1Uϕ1, . . . , ψmUϕm} be the set of until formulae in cl(φ).
F = {F1, . . . , Fm} with for every i ∈ {1, . . . ,m}, Fi = {Z ∈ Q | ψiUϕi 6∈
Z or ϕi ∈ Z}.

In APLTL, one can check whether X
u
−→ Y holds true in polynomial space

in |φ|. The conditions (ATOM), (NEXT), and (PREVIOUS) can be checked in
polynomial-time in |φ|. However, the above condition (IPC++) requires polyno-
mial space by Corollary 1. The main difference with LTL with past remains in
the condition at the atomic level, involving here an IPC++-satisfiability check.

Theorem 4. φ is satisfiable iff L(Aφ) is non-empty.

This is a consequence of Lemma 8 and of the construction of Büchi automata
from formulae in LTL with past [LMS02].

Viewing a model of φ as an ω-sequence of elements from Σφ, every formula
φ defines an ω-regular subset of Σω

φ , which can be also viewed as an ω-regular

set of constraints by using the map IPC++(u). By contrast, in LTL({x = y, x <
y}), the extension of LTL where the atomic formulae are of the form X

n1x1 ∼
X

n2x2 with ∼∈ {<,=}, there exist formulae that define non ω-regular sets of
constraints [DD03].

21

4.3 Complexity bounds

It is now standard to prove Theorem 5 below.

Theorem 5. Satisfiability for PLTLmod is in pspace.

Proof. Aφ is defined as AΣsat
φ
∩A(C3)∩APLTL. By the above considerations even

though Aφ has an exponential amount of states in |φ|, checking the emptiness of
L(Aφ) can be done on the fly in polynomial space in |φ| with a non-deterministic
algorithm. As usual, by Savitch’s theorem, this provides the required pspace

upper bound.

The pspace-hardness of the satisfiability problem for PLTLmod is a mere
consequence of the pspace-hardness of plain LTL [SC85]. Moreover, it is worth
observing that all the temporal operators in PLTLmod are MSO-definable and
by using [GK03], it is not difficult to show that any extension of PLTLmod ob-
tained by adding a finite amount of MSO-definable temporal operators remains
in pspace.

This pspace upper bound is quite remarkable: in [BC02,DD02,DD03] pspace-
completeness has been mainly established for extensions of LTL over concrete
domains with satisfiability problem in P(only) at the constraint level.

Corollary 3. Model checking for PLTLmod is pspace-complete.

5 Adding logical first-order quantifiers

In this section, we investigate the extension of PLTL(IPC+) with the existential
quantifier ∃, i.e. temporal operators can be in the scope of the existential quanti-
fier ∃. This extension is denoted by PLTL∃(IPC+). In full generality, first-order
LTL is known to be highly undecidable [Aba89,Krö90] even in the case the un-
interpreted domains are finite [Tra63]. Similarly, first-order LTL over finite time
structures is highly undecidable [CMP99]. The decidability/complexity results
obtained in this section are due to the fact that we can interpret any first-order
formula φ of PLTL∃(IPC+) in a fixed concrete (infinite) domain that can be ab-
stracted by a finite domain whose cardinality is nevertheless exponential in |φ|.
A similar argument cannot be used for PLTLmod augmented with the quantifier
∃, denoted by PLTL∃(IPC++), as shown by the recent undecidability results
from [DLN05,LP05].

5.1 Existential quantifier

In order to define PLTL∃(IPC++) formally, we divide the set VAR into the
(countably infinite) set of rigid variables (VARr) and the (countably infinite)
set of flexible variables (VARf). The clause ∃ y φ with y ∈ VARr is added
to the definition of PLTL(IPC++) formulae in order to obtain PLTL∃(IPC++)
formulae. A model σ for PLTL∃(IPC++) is of the form σ : N × VAR → Z

22

where for every x ∈ VARr, for all i, j ∈ N, σ(i, x) = σ(j, x). In other words, the
rigid variables never change their value in a model. By contrast, the variables in
VARf for PLTL∃(IPC++) behave as the variables in VAR for PLTL(IPC++).
The definition of |= is extended as follows:

σ, i |= ∃ y φ
def

⇔ there exists z ∈ Z such that σ′, i |= φ,

where σ′ is defined as follows:

– for all j ∈ N and x ∈ VAR \ {y}, σ′(j, x) = σ(j, x),
– for every j ∈ N, σ′(j, y) = z.

Without any loss of generality, we can assume that for all the formulae φ
in PLTL∃(IPC++), the free variables in φ are necessarily flexible. The logic
PLTL∃(IPC+) is defined as the fragment of PLTL∃(IPC++) restricted to con-
traints in IPC+.

5.2 Freeze quantifier

A very interesting restriction of the existential operator consists of the so-called
freeze quantifier that acts as a mechanism to remember a past value (register).
In this section, we consider the freeze quantifier ↓ that allows to bind the val-
ues of variables to a fixed value. This is a powerful binder mechanism used in
real-time logics [AH93,AH94], in hybrid logics [Gor96,Bla00], in logics with λ-
abstraction [Fit02,LP05], and in temporal logics [LMS02,DLN05]. Adding this
kind of operator can easily lead to undecidability (see e.g., [Gor96]) when no
restriction is required on the Kripke structures. In this section, we treat a very
particular case with integer periodicity constraints for which decidability follows
from decidability of PLTLmod.

In order to define PLTL↓(IPC++), we also divide the set VAR into VARr

and VARf . The clause ↓
y=X

j
x
φ with y ∈ VARr and x ∈ VARf is added to the

definition of PLTL(IPC++) formulae in order to obtain PLTL↓(IPC++) formu-
lae. A model σ for PLTL↓(IPC++) is defined as a model for PLTL∃(IPC++).
The definition of |= is extended as follows:

σ, i |=↓
y=X

j
x
φ

def

⇔ σ′, i |= φ,

where σ′ is defined as follows:

– for all k ∈ N and x ∈ VAR \ {y}, σ′(k, x) = σ(k, x);
– for every k ∈ N, σ′(k, y) = σ(i+ j, x).

Without any loss of generality, we can also assume that for all the formu-
lae φ in PLTL↓(IPC++), the free variables in φ are necessarily flexible. The
logic PLTL↓(IPC+) is defined as the fragment of PLTL↓(IPC++) restricted to
contraints in IPC+.

The logic PLTL↓(IPC++) is a fragment of PLTL∃(IPC++) since ↓
y=X

j
x
φ

and ∃ y y = X
jx ∧ φ are equivalent formulae whatever the context is. Since

23

constraints of the form y = X
ix cannot be generated from IPC+ (IPC+ has no

equality between variables), PLTL↓(IPC+) is not a fragment of PLTL∃(IPC+).
It is however open whether PLTL↓(IPC+) is as expressive as PLTL∃(IPC+)
even through as shown below, both logics have the same complexity. Formally,

PLTL∃(IPC+) is as expressive as PLTL↓(IPC+)
def

⇔ for every φ in PLTL∃(IPC+),
there is φ′ in PLTL↓(IPC+) such that for every model σ : N×VAR→ Z, σ, 0 |= φ
iff σ, 0 |= φ′. The proof of Lemma 11 entails that PLTL↓(IPC+) is as expressive
as PLTL∃(IPC+) and for every φ in PLTL↓(IPC+), the equivalent formula φ′ in
PLTL∃(IPC+) can be computed in polynomial-time.

5.3 EXPSPACE lower bound

Adding the existential operator ∃ to PLTL(IPC+) leads to an exponential blow-
up even if only future-time operators and simple periodicity constraints are used.

Lemma 9. Satisfiability for PLTL∃(IPC+) and PLTL↓(IPC+) restricted to future-
time operators and simple periodicity constraints are expspace-hard.

Proof. In order to prove the result for PLTL∃(IPC+), we present a reduction
from the 2n-corridor tiling problem that is expspace-complete, see [vEB97]
and references therein. A tile is a unit square of one of the several tile-types
and the tiling problem we considered is specified by means of a finite set T
of tile-type (say T = {t1, . . . , tm}), two binary relations H and V over T and
two distinguished tile-types tinit, tfinal ∈ T . The tiling problem consists in
determining whether, for a given number n in unary, the region [0, . . . , 2n− 1]×
[0, . . . , k − 1] of the integer plane for some k can be tiled consistently with H
and V , tinit is the left bottom tile, and tfinal is the right upper tile.

Given an instance I = 〈T, tinit, tfinal, n〉 of the tiling problem, we build a
formula φI such that I = 〈T, tinit, tfinal, n〉 has a solution iff φI is PLTL∃(IPC+)
satisfiable. We introduce below the variables in PLTL∃(IPC+) used in the proof:

– pos is a flexible variable that allows to count until 2n. There is a corre-
sponding rigid variable pos′. Each element 〈α, i〉 of a row [0, . . . , 2n−1]×{i}
satisfies pos ≡2n α. The finite region [0, . . . , 2n − 1] × [0, . . . , k − 1] will be
encoded by the following prefix of a PLTL∃(IPC+) model

({pos ≡2n 0} · {pos ≡2n 1} · . . . · {pos ≡2n 2n − 1})k.

– For t ∈ T , zt is a flexible variable such that Dt := zt ≡2 0 is the formula
encoding the fact that at a certain position of the integer plane the tile t is

present. There is also a rigid variable z′t and D′
t

def

= (z′t ≡2 0).

– end is a flexible variable and we define END
def

= (end ≡2 0).

The formula φI is the conjunction of the following formulae:

– The region of the integer plane for the solution is finite:

¬END ∧ (¬ENDU(pos ≡2n 0 ∧2END)).

24

– Exactly one tile per element of the plane region:

2(¬END⇒
∨

t∈T

(Dt ∧
∧

t′ 6=t

¬Dt′)).

– Constraint on the right upper tile:

3(pos ≡2n (2n − 1) ∧ ¬END ∧Dtfinal
∧ XEND).

– Constraint on the left bottom tile:

pos ≡2n 0 ∧Dtinit
.

– Incrementation of the counter pos modulo 2n:

2(Xpos ≡2n pos+ 1).

– Horizontal consistency:

2((

not the last element of a row
︷ ︸︸ ︷

(¬pos ≡2n (2n − 1)) ∧¬END)⇒
∧

t∈T

(Dt ⇒
∨

〈t,thor〉∈H

XDthor
)).

– Vertical consistency:

2(
∧

t∈T

(Dt ∧

not on the last row
︷ ︸︸ ︷

¬END ∧3(X¬END ∧ pos ≡2n (2n − 1)))⇒

∀ x (x ≡2n pos⇒ X((¬x ≡2n pos)U

go to the same position one row above
︷ ︸︸ ︷

(x ≡2n pos ∧
∨

〈t,tver〉∈V

Dtver
)))).

The last part of the above formula allows us to go exactly to the cell above
a given cell and check the vertical consistency. Observe that ∃ is present in
φI only to express the vertical consistency.

One can show that the instance I = 〈T, tinit, tfinal, n〉 has a solution iff φI is
PLTL∃(IPC+) satisfiable.

In order to get the expspace-hardness for PLTL↓(IPC+), it is sufficient to
consider the above formula for PLTL∃(IPC+) and to replace the subformula
about the vertical consistency by the formula below:

2(
∧

t∈T

(Dt ∧

not on the last row
︷ ︸︸ ︷

¬END ∧3(X¬END ∧ pos ≡2n (2n − 1)))⇒

↓x=pos X((¬x ≡2n pos)U

go to the same position one row above
︷ ︸︸ ︷

x ≡2n pos ∧
∨

〈t,tver〉∈V

Dtver
)).

25

5.4 EXPSPACE upper bound

An exponential-time translation from PLTL∃(IPC+) to PLTL(IPC+) allows us
to show the following result.

Lemma 10. Satisfiability for PLTL∃(IPC+) is in expspace.

Proof. Let φ be a formula of PLTL∃(IPC+) with

– free variables x1, . . . , xk,
– d1 < . . . < dn are the constants in φ occurring in constraints of the form
x ∼ d with ∼∈ {<,>,=},

– natural numbers k1, . . . , ku occurring in the context of ≡-atomic formulae
and their lcm is denoted by K.

Let D be the set

{〈i, j, l〉 ∈ {0, . . . , n} × {0, 1} × {0, . . . ,K − 1} : IPC<(〈i, j, l〉, 1)) is satisfiable}.

To each 〈i, j, l〉 ∈ D, we associate a constant d〈i,j,l〉 such that |d〈i,j,l〉| is
polynomial in |φ| and [x1 ← d〈i,j,l〉] |= IPC<(〈i, j, l〉, 1).

We reduce PLTL∃(IPC+) satisfiability to PLTL(IPC+) satisfiability. Basi-
cally, we replace logical existential quantification ∃ xα ψ by a disjunction where
for each disjunct the variable xα takes a value d〈i,j,l〉 for some 〈i, j, l〉 ∈ D.
The number of disjuncts may be exponential in |φ|. The translation t is de-
fined as follows. Suppose we want to translate a formula φ in PLTL∃(IPC+)
with flexible variables x1, . . . , xk and rigid variables y1, . . . , ys. The transla-
tion of φ is defined from the map t(ψ, a) where ψ is a subformula of φ and
a ∈ ({d〈i,j,l〉 : 〈i, j, l〉 ∈ D} ∪ {⊥})s. The tuple a stands for a valuation of the
variables y1, . . . , ys. The element ⊥ is the undefined value. The translation of φ
is precisely t(φ, 〈⊥, . . . ,⊥〉).

– t(p, 〈a1, . . . , as〉) = p′ where p is atomic and p′ is obtained from p by replacing
each occurrence of yi by ai with adequate simplifications, see below.

1. The expression x ≡k ai + [c1, c2] with ai = s × k + c, s ∈ Z, and
c ∈ {0, . . . , k − 1} is simplified into

∨

c1≤α≤c2
x ≡k (c+ α).

2. The expression ai ≡k [c1, c2] with ai = s × k + c, s ∈ Z, and c ∈
{0, . . . , k − 1} is simplified into

∨

c1≤α≤c2
c = α.

3. The expression ai ∼ d
′ with ∼∈ {=, <,>} takes either the value > or ⊥

depending whether ai ∼ d
′ holds true.

– t(φ1 ∧ φ2, 〈a1, . . . , as〉) = t(φ1, 〈a1, . . . , as〉) ∧ t(φ2, 〈a1, . . . , as〉),
– t(¬φ1, 〈a1, . . . , as〉) = ¬t(φ1, 〈a1, . . . , as〉),
– t(φ1Uφ2, 〈a1, . . . , as〉) = t(φ1, 〈a1, . . . , as〉)Ut(φ2, 〈a1, . . . , as〉),
– t(φ1Sφ2, 〈a1, . . . , as〉) = t(φ1, 〈a1, . . . , as〉)St(φ2, 〈a1, . . . , as〉),
– t(Xφ1, 〈a1, . . . , as〉) = Xt(φ1, 〈a1, . . . , as〉),
– t(X−1φ1, 〈a1, . . . , as〉) = X

−1t(φ1, 〈a1, . . . , as〉),
– t(∃ yα φ1, 〈a1, . . . , as〉) =

∨

〈i,j,l〉∈D t(φ1, 〈a1, . . . , aα−1, d〈i,j,l〉, aα+1, . . . , as〉).

26

One can check that |t(φ)| is in 2O(|φ|2). Even if we add atomic constraints of
the form x ≡k [c1, c2] in the definition of IPC+ (with the obvious interpretation),

one cannot avoid the quadratic exponent in 2O(|φ|2).
We show that φ is PLTL∃(IPC+) satisfiable iff t(φ, 〈⊥, . . . ,⊥〉) is PLTL(IPC+)

satisfiable. We describe below the main steps of the proof. First observe that
there is σ : N × VAR → Z such that σ, 0 |= φ iff there is σ′ : N × VAR →
{d〈i,j,l〉 : 〈i, j, l〉 ∈ D} such that σ′, 0 |= φ. Indeed, atomic formulae in φ cannot
distinguished d〈i,j,l〉 from any d′ such that [x1 ← d′] |= IPC<(〈i, j, l〉, 1). Second,
one can show by structural induction that for every subformula ψ of φ, for every
〈a1, . . . , as〉 such that ai =⊥ implies yi is not free in ψ, for every PLTL∃(IPC+)
model σ, for every j ∈ N, σ, j |= ψ iff σx1,...,xk

, j |= t(ψ, 〈a1, . . . , as〉) where
σx1,...,xk

is the restriction of σ to the flexible variables x1, . . . , xk. As a conse-
quence, φ is PLTL∃(IPC+) satisfiable iff t(φ, 〈⊥, . . . ,⊥〉) is PLTL(IPC+) satis-
fiable.

By way of example, the case in the induction step with ψ = ∃ yα ψ
′ is treated

as follows. We have the following equivalences:

– σ, j |= ψ,
– there is d ∈ Z such that σ′, j |= ψ′ where σ equals σ′ except that σ′(l, yα) = d

for all l,
– there is d ∈ {d〈i,j,l〉 : 〈i, j, l〉 ∈ D} such that σ′

d, j |= ψ′ where σ equals σ′
d

except that σ′
d(l, yα) = d for all l,

– there is d ∈ {d〈i,j,l〉 : 〈i, j, l〉 ∈ D} such that
(σ′

d)x1,...,xk
|= t(ψ, 〈a1, . . . , aα−1, d, aα+1, . . . , as〉)

(by the induction hypothesis),
– σx1,...,xk

, j |=
∨

d∈{d〈i,j,l〉:〈i,j,l〉∈D} t(ψ, 〈a1, . . . , aα−1, d, aα+1, . . . , as〉) since

(σ′
d)x1,...,xk

= (σ′
d′)x1,...,xk

= σx1,...,xk
for all d, d′ ∈ {d〈i,j,l〉 : 〈i, j, l〉 ∈ D}.

As a corollary:

Theorem 6. PLTL∃(IPC+) satisfiability is expspace-complete.

The above reduction does not work if we allow atomic constraints of the
form x = y (belonging to IPC++) as in the formula 2 ↓x′=x X2(x 6= x′) that
characterizes models where all the values for x are different. Such a formula
is particularly interesting since in cryptographic protocols, nonces, ideally vari-
ables that never take twice the same value, are often used to guarantee freshness
properties. Hence, this can be specified in PLTLmod with ↓.

We show for PLTL↓(IPC+) a result analogous to Lemma 10.

Lemma 11. PLTL↓(IPC+) satisfiability is in expspace.

Proof. Let us reduce in logarithmic space PLTL↓(IPC+) satisfiability to PLTL∃(IPC+)
satisfiability. Let φ be a PLTL↓(IPC+) formula with

– d1 < . . . < dn are the constants in φ occurring in constraints of the form
x ∼ d with ∼∈ {<,>,=},

27

– natural numbers k1, . . . , ku occurring in the context of ≡-atomic formulae
and their lcm is denoted by K.

The translation t is defined as follows

– t(p) = p for p atomic,
– t(¬φ1) = ¬t(φ1), t(φ1 ∧ φ2) = t(φ1) ∧ t(φ2),
– t(Xφ1) = Xt(φ1), t(φ1Uφ2) = t(φ1)Ut(φ2),
– t(X−1φ1) = X

−1t(φ1), t(φ1Sφ2) = t(φ1)St(φ2),
– t(↓

y=X
j
x
φ1) = ∃ y ((y ≡K X

jx) ∧ (
∧n

i=1

∧

∼∈{<,>,=}(y ∼ di) ⇔ (Xjx ∼

di))) ∧ t(φ1)).

It is then easy to show that φ is PLTL↓(IPC+) satisfiable iff t(φ) is PLTL∃(IPC+)
satisfiable. We sketch below the main steps of the proof. Given a, b ∈ Z, we write

a ≡φ b
def

⇔ a ≡K b and for all j ∈ {1, . . . , n} and ∼∈ {<,>,=}, a ∼ dj iff b ∼ dj .
It is easy to show that

(*) for all σ, σ′ : N×VAR→ Z such that for all i ∈ N and x ∈ VAR, σ(i, x) ≡φ

σ′(i, x), we have that for every subformula ψ of φ, for every i ∈ N, σ, i |= ψ
iff σ′, i |= ψ.

The proof is by a simple structural induction. Based on (*), we show again by
structural induction that for every σ : N×VAR→ Z, for every i ∈ N, for every
subformula ψ of φ, σ, i |= ψ iff σ, i |= t(ψ). By way of example, we treat the case
with ψ =↓

y=X
j
x
ψ′. We have the following equivalences:

– σ, i |= ψ,
– σ′, i |= ψ′ where σ′ equals σ except that σ′(l, y) = σ(i+ j, x) for all l,
– for every σ′′ : N × VAR→ Z such that σ′′ equals σ except that σ′′(l, y) ≡φ

σ(i+ j, x) for all l, σ′′, i |= ψ′ (by the property (*)),
– for every σ′′ : N × VAR→ Z such that σ′′ equals σ except that σ′′(l, y) ≡φ

σ(i+ j, x) for all l, σ′′, i |= ψ′ ∧ (
∧n

i=1

∧

∼∈{<,>,=}(y ∼ di)⇔ (Xjx ∼ di))),

– for every σ′′ : N × VAR→ Z such that σ′′ equals σ except that σ′′(l, y) ≡φ

σ(i+ j, x) for all l, σ′′, i |= t(ψ′)∧ (
∧n

i=1

∧

∼∈{<,>,=}(y ∼ di)⇔ (Xjx ∼ di)))

(by the induction hypothesis),
– σ, i |= ∃ y t(ψ′) ∧ (

∧n

i=1

∧

∼∈{<,>,=}(y ∼ di)⇔ (Xjx ∼ di))).

As a corollary:

Theorem 7. PLTL↓(IPC+) satisfiability is expspace-complete.

6 Application to the equivalence problem for extended

single-string automata

In this section, we characterize the complexity of the equivalence problem for
extended single-string automata defined in [LM01, Sect. 5], see other related
automata in [BMP04]. This problem is central to check whether two time granu-
larities are equivalent (see also [Wij00]) when granularities are encoded by such

28

automata that can be viewed as Büchi automata recognizing exactly one ω-word.
Guards on transitions expressed by integer periodicity constraints and update
maps on transitions provide conciseness of such constraint automata. Unlike
timed automata, no synchronization between variables is performed and the lan-
guages for guards and update maps are quite different, see e.g. [AD94,BDFP00].
We improve the known expspace upper bound from [LM01] into a pspace upper
bound by reducing the equivalence problem to the model-checking problem for
PLTLmod-automata. Moreover, we also show the pspace-hardness by reducing
QBF.
Let IPC∗ be the fragment of IPC{∃} containing Boolean combinations of atomic
constraints of the form either x ≡k c or ∃z (x ≡k z ∧ y ≡k′ z). Elements
of IPC∗ will be guards on transitions. An update map g for the variable xi is
defined as an expression of the form either xi := xi + c or xi := c with c ∈ Z.
We write UPx1,...,xn

to denote the set of update maps that uses variables from
{x1, . . . , xn}.

An extended single-string automaton A (ESSA) over the finite set of variables
{x1, . . . , xn} [LM01] is a structure of the form 〈Q, q0, v0, Σ, δ〉 where

– Q is a finite set of states and q0 ∈ Q (initial state),
– v0 ∈ Z

n (initial value of the variables x1, . . . , xn),
– Σ is a finite alphabet,
– δ ⊆ Q×Σ ×Q× ({>} ∪ IPC∗)× P(UPx1,...,xn

) and for every q ∈ Q,
1. either there is a unique u such that 〈q, u〉 ∈ δ, u is of the form 〈a, q′,>, X〉,

and X contains exactly one update map per variable xi,
2. or there are exactly two u such that 〈q, u〉 ∈ δ, say u1 and u2, and in

that case u1 is of the form 〈a1, q1, p,X1〉, u2 is of the form 〈a2, q2,¬p,X2〉
where p is a constraint in IPC∗ built over variables in {x1, . . . , xn} and
in both X1 and X2 exactly one update map for xi is present.

Case 1. is subsumed by Case 2. by taking p = >. The elements of δ are also

denoted by q
a,p,X
−−−→ q′ (p is the guard and X is the global update map).

A configuration is a member 〈q, v〉 ∈ Q×Z
n. We define the one-step relation

a
−→ for a ∈ Σ as follows: 〈q, v〉

a
−→ 〈q′, v′〉 iff there is 〈q, a, q′, p,X〉 ∈ δ such that

[x1 ← v1, . . . , xn ← vn] |= p (in IPC++) and for every g ∈ X,

– if g is xi := xi + c then v′i = vi + c;
– if g is xi := c then v′i = c.

It is easy to check that there is exactly one sequence w = a1a2 . . . ∈ Σω

such that 〈q0, v0〉
a1−→ 〈q1, v1〉

a2−→ The unique ω-sequence generated from the
ESSA A is denoted by wA. The equivalence problem for ESSA consists in check-
ing whether wA = wA′ , given two ESSA A and A′. This problem introduced
in [LM01] is central to check the equivalence of time granularities when gran-
ularities are encoded by such automata. Condition 2. in the definition of the
transition relation δ has been introduced in [LM01] (in a slightly different form
but equivalent to ours) in order to handle priorities between transitions.

For instance, the ω-word associated with the ESSA below is a2n

· bω with
initial value 0:

29

q0, x0 = 0 q
a, x ≡2n 2n − 1, x := 0

a,¬x ≡2n 2n − 1, x := x+ 1 b,>, x := 0

Lemma 12. The equivalence problem for ESSA can be solved in pspace.

Proof. Given two ESSA A and A′, one can build an LTL(IPC{∃})-automaton
B in polynomial time such that l(B) is non-empty (equivalent to B |=∃ >) iff

wA = wA′ . Actually l(B) will contain at most one ω-word. The LTL(IPC{∃})-
automaton B is indeed a product between A and A′.

Let A = 〈Q, q0, v0, Σ, δ〉 and A′ = 〈Q′, q′0, v
′
0, Σ, δ

′〉 be ESSA over the (dis-
joint) sets of variables {x1, . . . , xn1

} and {xn1+1, . . . , xn1+n2
}, respectively. We

build an LTL(IPC{∃})-automaton B such that l(B) is non-empty iff wA = wA′ .
We write K to denote the lcm of all the constants k occurring in one of the
two input automata in the context of ≡k. The constructed automaton B has a
quite restricted form since the labels on transitions are atomic formulae from
LTL(IPC{∃}).

With each update map g occurring in one of the two input automata, we
associate an atomic formula PLTLmod(g) in PLTLmod as follows:

– if g is of the form xi := xi + c, then PLTLmod(g) is equal to Xxi ≡K xi + cK
where cK is the unique element of {0, . . . ,K − 1} such that c = cK +α×K
for some α ∈ Z;

– if g is of the form xi := c, then PLTLmod(g) is equal to Xxi ≡K cK .

Let B = 〈Q′′, init, F, δ′′〉 be the LTL(IPC{∃})-automaton defined as follows:

– Q′′ = (Q×Q′) ∪ {init} and F = Q′′;

– init
φ
−→ 〈q1, q

′
1〉 iff the following conditions are verified:

• 〈q0, a1, q1, p1, X1〉, 〈q
′
0, a2, q

′
1, p2, X2〉 ∈ δ with a1 = a2 (the same letter is

read);

• φ is the conjunction of the following formulae:

1.
∧n1

i=1 xi ≡K ci where for each i, ci ∈ {0, . . . ,K − 1} and v0,i ≡K ci
(initial condition of A);

2.
∧n2

i=n1+1 xi ≡K ci where for each i, ci ∈ {0, . . . ,K−1} and v′0,i−n1
≡K

ci (initial condition of A′);
3.

∧

g∈X1∪X2
PLTLmod(g) (synchronization of A and A′ for update

maps);
4. p1 ∧ p2 (synchronization of A and A′ for guards).

– 〈q1, q
′
1〉

φ
−→ 〈q2, q

′
2〉 iff the following conditions are verified:

• 〈q1, a1, q2, p1, X1〉, 〈q
′
1, a2, q

′
2, p2, X2〉 ∈ δ with a1 = a2;

• φ is
∧

g∈X1∪X2
PLTLmod(g) ∧ p1 ∧ p2.

30

It is easy to check that B can be built in polynomial-time in the size of A and
A′. Moreover, l(B) is non-empty iff wA = wA′ . Let us check this equivalence.
Suppose wA = wA′ = a1 · a2 · a3 · The accepting run of A is of the form

〈q0, v0〉
a1,p1,X1−−−−−→ 〈q1, v1〉

a2,p2,X2−−−−−→ 〈q2, v2〉 . . .

Similarly, the accepting run of A′ is of the form

〈q′0, v
′
0〉

a1,p′
1,X′

1−−−−−→ 〈q′1, v
′
1〉

a2,p′
2,X′

2−−−−−→ 〈q′2, v
′
2〉 . . .

This leads to the existence of symbolic model accepted by B as described by its
run below:

〈q0, q
′
0〉

φmod∧
V

g∈X1∪X′
1

PLTLmod(g)∧p1∧p′
1

−−−−−−−−−−−−−−−−−−−−−−−→ 〈q1, q
′
1〉

V

g∈X2∪X′
2

PLTLmod(g)∧p2∧p′
2

−−−−−−−−−−−−−−−−−−−→ 〈q2, q
′
2〉 . . .

where φmod is a conjunction of periodicity constraints satisfied by 〈v0, v′0〉 ac-
cording to the definition of B. A concrete model for this symbolic model can
be exactly 〈v0, v′0〉, 〈v1, v

′
1〉, 〈v2, v

′
2〉, Indeed, for all a, b, c ∈ Z, a = b + c im-

plies a ≡K b + cK where cK is the unique member of {0, . . . ,K − 1} such that
c = cK + α×K for some α ∈ Z. So l(B) is non-empty.
Now suppose that l(B) is non-empty. There is a concrete model of the form
σ = 〈u0, u′0〉, 〈u1, u′1〉, 〈u2, u′2〉, . . . in l(B) and an accepting run of the form

〈q0, q
′
0〉

φmod∧
V

g∈X1∪X′
1

PLTLmod(g)∧p1∧p′
1

−−−−−−−−−−−−−−−−−−−−−−−→ 〈q1, q
′
1〉

V

g∈X2∪X′
2

PLTLmod(g)∧p2∧p′
2

−−−−−−−−−−−−−−−−−−−→ 〈q2, q
′
2〉 . . .

such that

– σ, 0 |= φmod ∧
∧

g∈X1∪X′
1
PLTLmod(g) ∧ p1 ∧ p

′
1,

– σ, 1 |=
∧

g∈X2∪X′
2
PLTLmod(g) ∧ p2 ∧ p

′
2,

– etc.

Given tuples z, z′ ∈ Z
n1+n2 , we write z ≡K z′

def

⇔ for every i ∈ {1, . . . , n1 +
n2}, zi ≡K z′i. We extend this definition to models in the natural way. Since K
is the lcm of all the integers k occurring in constraints using ≡k in B, by the Gen-
eralized Chinese Remainder Theorem, for every σ′ = 〈t0, t′0〉, 〈t1, t

′
1〉, 〈t2, t

′
2〉, . . .

such that for every i ∈ N, we have 〈ui, u′i〉 ≡K 〈ti, t
′
i〉. σ

′ ∈ l(B). Let us define a

model σ0 as follows. 〈t0, t′0〉
def

= 〈v0, v′0〉 and therefore 〈t0, t′0〉 ≡K 〈u0, u′0〉. Suppose
〈ti, t′i〉 is defined and let us define 〈ti+1, t′i+1〉. We update the variables according

to the elements of Xi+1 ∪X
′
i+1. One can easily check that if 〈ti, t′i〉 ≡K 〈ui, u′i〉,

then 〈ti+1, t′i+1〉 ≡K 〈ui+1, u′i+1〉. Consequently, σ0 ∈ l(B) and

〈q0, t0〉
a1,p1,X1
−−−−−→ 〈q1, t1〉

a2,p2,X2
−−−−−→ 〈q2, t2〉 . . .

is an accepting run of A for some wA = a1 · a2 · a3 · · · . Similarly,

〈q′0, t
′
0〉

a1,p′
1,X′

1−−−−−→ 〈q′1, t
′
1〉

a2,p′
2,X′

2−−−−−→ 〈q′2, t
′
2〉 . . .

is an accepting run of A′. Consequently, wA = wA′ .

31

The above result of pspace upper bound can be extended if in the definition
of ESSA, the constraint language IPC∗ is extended to IPC{∃,[]}. On the model
of the above proof, one can show that if σ ∈ l(B) for some LTL(IPC{∃,[]})-
automaton and σ ≡K σ′, then σ′ ∈ l(B). By contrast, adding constraints of the

form x = 0 (that are not in IPC{∃,[]}) would lead to undecidability by reduction
from the halting problem for two-counter machines.

On the other side, one can show that the equivalence problem for ESSA is
pspace-hard even if

– the constraints occurring in transitions are literals (conjunction and disjunc-
tion are disallowed) containing atomic constraints of the form x ≡k c,

– the update maps are restricted to either x := x -identity- or x := c (no
incrementation, no decrementation),

– the only k occurring in ≡k is 2,
– the alphabet Σ is binary (if Σ is unary, then the equivalence problem is

trivial). Observe that time granularities are encoded with only three symbols
� (fill), � (gap) and o (separator). in [Wij00].

Lemma 13. The equivalence problem for ESSA is pspace-hard.

Proof. We reduce QBF to the equivalence problem for ESSA. Let φ be an in-
stance of QBF of the form below:

∀ x1 ∃ x2 . . .∀ x2n−1 ∃ x2n

φ′

︷ ︸︸ ︷
m∧

i=1

(li1 ∨ l
i
2 ∨ l

i
3)

where the lij ’s are literals over the propositional variables in x1, . . . , x2n. We
shall define, in logarithmic space in |φ|, an ESSA A such that φ is satisfiable iff
wA = aω. This will lead to the pspace-hardness of the equivalence problem for
ESSA since it is easy to design an ESSA B such that wB = aω.
First, we recall in Figure 5 the standard recursive procedure EVAL(ψ, v) to
solve QBF. The first argument is a QBF formula and v is an interpretation of
propositional variables for a superset of the free variables in ψ.

φ is QBF satisfiable iff EVAL(φ, ∅) returns 1, see e.g. [HU79, Sect. 13.4] where
∅ denotes the empty interpretation. From the execution of EVAL(φ, ∅), we can
extract a sequence of the form

〈v1, A1〉, . . . , 〈vα, Aα〉,

that corresponds to the successive calls to EVAL with the first argument being
the formula φ′ (usually called the matrix of φ) from φ and Ai is the value re-
turns by EVAL(φ′, vi). Without any loss of generality, we can assume that each
vi belongs to {0, 1}2n. Observe that v1 = 02n, Aα = EVAL(φ, ∅), and v1, . . . , vα

is a strictly increasing sequence of natural numbers encoded by 2n bits.
Moreover, ifAi = 0 for some i < α and vi = b1 · · · b2n then vi+1 = b1 · · · bj−1102n−j

where j is the greatest element of {2, 4, . . . , 2n} such that bj = 0. Similarly, if

32

EVAL(ψ, v)

– if ψ = p, then return v(p);
– if ψ = ψ1 ∧ ψ2, then, if EVAL(ψ1, v) = 1, then return EVAL(ψ2, v), otherwise

return 0;
– if ψ = ψ1 ∨ ψ2, then, if EVAL(ψ1, v) = 1, then return 1, otherwise return

EVAL(ψ2, v);
– if ψ = ¬ψ1, then return 1− EVAL(ψ1, v);
– if ψ = ∃ p ψ1, then if EVAL(ψ1, v[p ← 0]) = 1, then return 1, otherwise return

EVAL(ψ1, v[p← 1]);
– if ψ = ∀ p ψ1, then if EVAL(ψ1, v[p ← 0]) = 0, then return 0, otherwise return

EVAL(ψ1, v[p← 1]);

Fig. 5. Standard procedure to solve QBF in polynomial space

Ai = 1 for some i < α and vi = b1 · · · b2n then vi+1 = b1 · · · bj−1102n−j where j
is the greatest element of {1, 3, . . . , 2n− 1} such that bj = 0.

We build an ESSA A that simulates the above-mentioned sequence of calls
of the form EVAL(φ′, v). Let A be the following structure 〈Q, q0, v0, Σ, δ〉;

– Q is the union of the following elements:
• {LITi

1,LITi
2,LITi

3 : 1 ≤ i ≤ m},
• {rdepthi : 1 ≤ i ≤ 2n} (rdepthi is reached when we go to recursion

depth i),
• {0, 1} (i stands for “EVAL(φ, ∅) returns i”).

– q0 = LIT1
1 and v0 = 02n.

– Σ = {a, b}.
– Before defining the transition table δ we need some preliminary definitions.

For every j ∈ {1, . . . , 2n + 1} we write UPDj to denote the following set of
update maps:

{xk := xk : 1 ≤ k < j} ∪ {xj := 1} ∪ {xk := 0 : j < k ≤ 2n}.

The set UPD2n+1 does not modify the values of the variables in {x1, . . . , x2n}
and therefore we denote it by ID. We define the map L that translates
naturally literals into atomic constraints in the following way: L(xi) = (xi ≡2

1) and L(¬xi) = (xi ≡2 0).
The encoding of the structure of φ′ is done via the following transitions:

• For j = 1, . . . ,m, LITj
1

a,L(lj1),ID−−−−−→ LITj+1
1 (satisfaction of the clause Cj =

lj1∨ l
j
2∨ l

j
3 thanks to the interpretation of lj1 with the current values of the

xis) and LITj
1

a,¬L(lj1),ID−−−−−−→ LITj
2 (otherwise, check whether Cj is satisfied

thanks to lj2). In the case j = m, the former transition is replaced by

LITm
1

a,L(lm1),ID
−−−−−−→ rdepth2n−1 (no more clauses need to be satisfied, start

the process for reducing the recursion depth).

33

• For j = 1, . . . ,m, LITj
2

a,L(lj2),ID−−−−−→ LITj+1
1 and LITj

2

a,¬L(lj2),ID
−−−−−−→ LITj

3. In

the case j = m, the former transition is replaced by LITm
2

a,L(lm2),ID
−−−−−−→

rdepth2n−1.

• For j = 1, . . . ,m, LITj
3

a,L(lj3),ID−−−−−→ LITj+1
1 (satisfaction of Cj thanks to the

interpretation of lj3) and LITj
3

a,¬L(lj3),ID
−−−−−−→ rdepth2n (the clause Cj is not

satisfied by the current interpretation, start the process for reducing the
recursion depth). In the case j = m, the former transition is replaced by

LITm
3

a,L(lm3),ID
−−−−−−→ rdepth2n−1.

The following transitions allow to branch to the appropriate recursion depth.

• for j ∈ {3, . . . , 2n}, rdepthj

a,xj≡21,ID
−−−−−−→ rdepthj−2 and rdepthj

a,xj≡20,UPDj

−−−−−−−−→

LIT1
1. Moreover, for j ∈ {1, 2}, we consider the following transitions:

rdepth1
a,x1≡20,UPD1
−−−−−−−−→ LIT1

1, rdepth1
a,x1≡21,ID
−−−−−−→ 1, rdepth2

a,x2≡20,UPD2
−−−−−−−−→

LIT1
1, and rdepth2

a,x2≡21,ID
−−−−−−→ 0. This part of δ mimicks the constraints

between vi and vi+1 described earlier in the proof.

• 0
b,ID,>
−−−→ 0 and 1

a,ID,>
−−−→ 1.

It is easy to check that

〈LIT1
1, v1〉

a+

−→ 〈LIT1
1, v2〉

a+

−→ . . . 〈LIT1
1, vα〉

and within each path 〈LIT1
1, vi〉

a+

−→ 〈LIT1
1, vi+1〉, there is no configuration of the

form 〈LIT1
1, v〉. Moreover, for every i ∈ {1, . . . , α}, if Ai = 1, then 〈LIT1

1, vi〉
a+

−→

rdepth2n−1, otherwise 〈LIT1
1, vi〉

a+

−→ rdepth2n.
One can check that if EVAL(φ, ∅) returns 1, then

〈LIT1
1, vα〉

a+

−→ rdepth2n−1
a+

−→ 1
a
−→ 1

a
−→ 1 . . . ,

otherwise

〈LIT1
1, vα〉

a+

−→ rdepth2n

a+

−→ 0
b
−→ 0

b
−→ 0

By way of example, we present in Figure 6, the ESSA for the QBF formula
ϕ below:

∀ x1 ∃ x2 ∀ x3 ∃ x4 (x1 ∨ x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ ¬x4).

Observe that in the ESSA associated with ϕ, only the incoming transitions of
LIT1

1 modify the values of the variables. In order to simplify the figure, for some
transition with letter a and set of update maps ID, we have only labelled the
transition by the guard. By the way, it is easy to check that ϕ is satisfiable,
by showing for instance that the run of the automaton explores the following
interpretations of x1, x2, x3, x4:

0000, 0001, 0010, 0011, 1000, 1010.

Moreover, the ESSA associated with ϕ is not flat in the sense of [CJ98,CC00].

34

LIT1
1

LIT1
2

LIT1
3

LIT2
1

LIT2
2

LIT2
3

rdepth4

rdepth2

0

rdepth3

rdepth1

1

x1 ≡2 0
x1 ≡2 1

x2 ≡2 0

x2 ≡2 1

x4 ≡2 1

x4 ≡2 0

x1 ≡2 1

x1 ≡2 0
x3 ≡2 0

x3 ≡2 1

x4 ≡2 1x4 ≡2 0

a, ID,> b, ID,>

x3 ≡2 1

a, x3 ≡2 0,UPD3

x1 ≡2 1

a, x1 ≡2 0,UPD1

x4 ≡2 1

a, x4 ≡2 0,UPD4

x2 ≡2 1

a, x1 ≡2 0,UPD2

Fig. 6. ESSA associated with ∀x1∃x2∀x3∃x4(x1 ∨ x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ ¬x4)

35

Corollary 4. The equivalence problem for ESSA is pspace-complete.

The proof of the pspace upper bound stated in Lemma 12 entails that check-
ing whether wA = wA′ can be done in time

O(22×maxsize2×n × |Q| × |Q′|),

where n is the number of variables used in A,A′ and maxsize is the size of
the greatest integer k in ≡k-guards occurring in A,A′. Hence, the greatest in-
teger occuring in A,A′ has value in O(2maxsize). Consequently, the parameter-
ized version of the equivalence problem for ESSA is fixed-parameter tractable
(FTP) when the parameters are the number of variables and the integers, see
e.g. [DF99,DFS99] for definitions and motivations about the parameterized com-
plexity paradigm. However, the proof of Lemma 13 entails that the problem
remains pspace-hard when the only integer k in ≡k-guards occurring in A,A′

is 2 or when the integers are encoded with a unary representation. Similarly,
the problem remains pspace-hard when only two distinct variables are used.
Indeed, by following the construction of the proof of Lemma 13, the binary en-
coding of a first variable encodes a propositional valuation whereas the second
variable is used as an auxiliary register to test the nullity of each bit of the first
variable. Details are omitted here. By contrast, we are only able to prove the
co-np-hardness of the problem restricted to a unique variable. Hence, it is open
whether the equivalence problem for ESSA restricted to a unique variable (but
without restriction on the size of integers) is pspace-hard.

Another simpler problem which arises when dealing with time granularities,
is to find the nth occurrence of a given symbol in a string [LMP03, Sect. 4]. Here
is the definition of the occurrence problem for ESSA:

input : An ESSA A, a ∈ Σ and n,m ∈ N (with a binary representation).
question Is the nth occurrence of a in wA in position less than m?

Theorem 8. The occurrence problem for ESSA is pspace-complete.

Proof. The proof of Lemma 13 entails the pspace-hardness when n,m are en-
coded with a binary representation. Indeed, φ is not QBF satisfiable iff the first
occurrence of b in wA is in position less than (28×|φ| × 4 × |φ|2) + 1. In order
to establish the pspace upper bound, let us define a nondeterministic algorithm
that runs in polynomial space (by Savitch’s theorem, we get pspace). Compute
on the fly a path starting from the initial configuration of length at most m:
at each step we need to remember the current configuration 〈q, v〉 the next one
〈q′, v′〉 and how many a have been seen so far. Since the length of the path is
less than m, encoding of 〈q, v〉 and 〈q′, v′〉 requires a polynomial amount of bits
and the counter for the number of a requires O(log(n)) bits. In order to get a
path of length at most m, a counter with O(log(m)) is sufficient. Finally, the
one-step relation between 〈q, v〉 and 〈q′, v′〉 can be checked in polynomial space
in the sum of the respective sizes of the configurations.

36

7 Concluding remarks

We have introduced a first-order theory of periodicity constraints IPC++ whose
satisfiability is pspace-complete and a version of LTL with past-time opera-
tors whose atomic formulae are constraints from IPC++ (with comparison of
variables at different states). PLTLmod is a very concise logical formalism to
deal with periodicity constraints for which model checking and satisfiability
are pspace-complete. Furthermore, we have shown that PLTL∃(IPC+) [resp.
PLTL↓(IPC+)], the fragment PLTL(IPC+) of PLTLmod extended with the quan-
tifier ∃ [resp. with the freeze operator ↓] is expspace-complete. As an applica-
tion, we have also proved that the equivalence problem for ESSA introduced
in [LM01, Sect. 5] is pspace-complete, even if restricted to two variables.

In Table 1, we recall our main results about LTL and PLTL over periodicity
constraints and we indicate how they relate to recent results. Each problem is
complete for the corresponding class appearing in the table. At the intersec-
tion of a line labeled by a constraint language L and a column labeled by the
logical languages L/L′, we provide the decidability/complexity status of the sat-
isfiability problem for the logics L(L) and L′(L), respectively. Since there is no
difference between LTL and PLTL, we provide a unique status.

LTL/PLTL LTL/PLTL + ↓ LTL/PLTL + ∃

{x < y, x = y} pspace Σ1
1 Σ1

1

[DD02] [Dem04a, Sect. 7] (with past)
[DLN05,LP05] (without past)

{x− y = c, x = c} Σ1
1 Σ1

1 Σ1
1

[CC00]

IPC + {x < y, x = y} pspace Σ1
1 Σ1

1

[DG05]

IPC+
pspace expspace expspace

Theorem 5 Theorem 7 Theorem 6

IPC++
pspace Σ1

1 Σ1
1

Theorem 5 [DLN05,LP05]

Table 1. Summary

All undecidability results with {x − y = c, x = c} are consequences of
the fact that LTL over the constraint language allowing atomic constraint of
the form x = y and x = y + 1 is undecidable by simulation of two-counter
machines [CC00]. The recent results from [DLN05,DG05,LP05] answer to the
questions left open in [Dem04b] and are evidence that our results are opti-
mal. For instance, PLTL(IPC+) extended with the freeze operator is expspace-
complete whereas PLTL(IPC++) extended with the freeze operator is already
Σ1

1 -hard. Indeed, LTL({x = y}) with the freeze operator is shown Σ1
1 -complete

in [DLN05,LP05]

37

The pspace-completeness of PLTLmod leaves open for which constraint sys-
tem D (not necessarily fragment of Presburger arithmetic), LTL over D is de-
cidable in pspace. Necessary conditions are provided in [DD03] to guarantee
the polynomial space upper bound (completion property and frame checking in
pspace) and similar conditions are also introduced in [BC02,LM05]. The ques-
tion is however open in full generality. In particular, fragments of Presburger
arithmetic usually do not satisfy the completion property.

Acknowledgments: Thanks are due to the anonymous referees for their
numerous useful suggestions to improve the quality of the paper.

References

[Aba89] M. Abadi. The power of temporal proofs. Theoretical Computer Science,
65:35–83, 1989.

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[AH93] R. Alur and Th. Henzinger. Real-time logics: complexity and expressive-
ness. Information and Computation, 104(1):35–77, 1993.

[AH94] R. Alur and Th. Henzinger. A really temporal logic. Journal of the Asso-
ciation for Computing Machinery, 41(1):181–204, 1994.

[BB03] C. Bartzis and T. Bultan. Efficient symbolic representation for arithmetic
constraints in verification. International Journal of Foundations of Com-
puter Science, 14(4):605–624, 2003.

[BBFS96] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. Supporting periodic
authorizations and temporal reasoning in database access control. In 22nd
VLDB, Bombay, India, pages 472–483, 1996.

[BBFS98] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An access control
model supporting periodicity constraints and temporal reasoning. ACM
Transactions on Databases Systems, 23(3):231–285, 1998.

[BC02] Ph. Balbiani and J.F. Condotta. Computational complexity of proposi-
tional linear temporal logics based on qualitative spatial or temporal rea-
soning. In A. Armando, editor, Frontiers of Combining Systems (Fro-
CoS’02), volume 2309 of Lecture Notes in Artificial Intelligence, pages 162–
173. Springer, Berlin, 2002.

[BDFP00] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Are timed automata up-
datable? In CAV’00, volume 1855 of Lecture Notes in Computer Science,
pages 464–479. Springer, Berlin, 2000.

[BEH95] A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem
of nonregular properties for nonregular processes. In LICS’95, pages 123–
133, 1995.

[BH99] A. Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO-
channel systems with nonregular sets of configurations. Theoretical Com-
puter Science, 221(1–2):211–250, 1999.

[Bla00] P. Blackburn. Representation, reasoning, and relational structures: a hybrid
logic manifesto. Logic Journal of the IGPL, 8(3):339–365, 2000.

[BMP04] D. Bresolin, A. Montanari, and G. Puppis. Time granularities and ulti-
mately periodic automata. In JELIA’04, volume 3229 of Lecture Notes in
Computer Science, pages 513–525. Springer, 2004.

38

[CC00] H. Comon and V. Cortier. Flatness is not a weakness. In 14 Int. Work-
shop Computer Science Logic, volume 1862 of Lecture Notes in Computer
Science, pages 262–276. Springer-Verlag, 2000.

[Čer94] K. Čerans. Deciding properties of integral relational automata. In
ICALP-21, volume 820 of Lecture Notes in Computer Science, pages 35–46.
Springer, Berlin, 1994.

[CFP02] C. Combi, M. Franceschet, and A. Peron. A logical approach to represent
and reason about calendars. In Int. Symposium on Temporal Representation
and Reasoning, pages 134–140. IEEE Computer Society Press, 2002.

[CFP04] C. Combi, M. Franceschet, and A. Peron. Representing and reasoning about
temporal granularities. Journal of Logic and Computation, 14(1):51–77,
2004.

[CG00] C. Choffrut and M. Goldwurm. Timed automata with periodicity clock
constraints. Journal of Automata, Languages and Combinatorics, 5(4):371–
404, 2000.

[CGP00] E. Clarke, O. Grumberg, and D. Peled. Model checking. The MIT Press
Books, 2000.

[CJ98] H. Comon and Y. Jurski. Multiple counters automata, safety analysis and
Presburger arithmetic. In A. Hu and M. Vardi, editors, Proc. Computer
Aided Verification, Vancouver, volume 1427 of Lecture Notes in Computer
Science, pages 268–279. Springer, Berlin, 1998.

[CM77] A. Chandra and P. Merlin. Optimal implementation of conjunctive queries
in relational databases. In 9th ACM Symposium on Theory of Computing,
pages 77–90, 1977.

[CMP99] S. Cerrito, M. Cialdea Mayer, and S. Praud. First-order linear tempo-
ral logic over finite time structures. In H. Ganzinger, D. McAllester, and
A. Voronkov, editors, 6th Int. Conference on Logic Programming and Au-
tomated Reasoning, Tbilisi, Republic of Georgia (LPAR’99), volume 1705
of Lecture Notes in Computer Science, pages 62–76. Springer, 1999.

[DD02] S. Demri and D. D’Souza. An automata-theoretic approach to constraint
LTL. In M. Agrawal and A. Seth, editors, FST&TCS’02, Kanpur, volume
2556 of Lecture Notes in Computer Science, pages 121–132. Springer, Berlin,
2002.

[DD03] S. Demri and D. D’Souza. An automata-theoretic approach to constraint
LTL. Technical Report LSV-03-11, LSV, August 2003. 40 pages. Extended
version of [DD02].

[Dem04a] S. Demri. LTL over Integer Periodicity Constraints. Technical Report
LSV-04-6, LSV, February 2004. 35 pages. Extended version of [Dem04b].

[Dem04b] S. Demri. LTL over integer periodicity constraints (extended abstract).
In I. Walukiewicz, editor, FOSSACS’04, volume 2987 of Lecture Notes in
Computer Science, pages 121–135. Springer, Berlin, 2004.

[DF99] R. Downey and M. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999.

[DFS99] R. Downey, M. Fellows, and U. Stege. Computational tractability: The
view from Mars. Bulletin of EATCS, 69:73–97, 1999.

[DG05] S. Demri and R. Gascon. Verification of qualitative Z-constraints. In
M. Abadi and de L. Alfaro, editors, Proceedings of the 16th International
Conference on Concurrency Theory (CONCUR’05), volume 3653 of Lec-
ture Notes in Computer Science, pages 518–532, San Francisco, CA, USA,
August 2005. Springer.

39

[DLN05] S. Demri, R. Lazić, and D. Nowak. On the freeze quantifier in constraint
LTL: decidability and complexity. In 12th Int. Symp. on Temporal Repre-
sentation and Reasoning, Burlington, Vermont, pages 113–121. IEEE Com-
puter Society Press, 2005.

[DPK03] Z. Dang, P. San Pietro, and R. Kemmerer. Presburger liveness verification
of discrete timed automata. Theoretical Computer Science, 299:413–438,
2003.

[EK02] A. Estrin and M. Kaminski. The expressive power of temporal logic of
actions. Journal of Logic and Computation, 12:839–859, 2002.

[Fit02] M. Fitting. Modal logic between propositional and first-order. Journal of
Logic and Computation, 12(6):1017–1026, 2002.

[FL02] A. Finkel and J. Leroux. How to compose Presburger accelerations: Ap-
plications to broadcast protocols. In M. Agrawal and A. Seth, editors,
FST&TCS’02, Kanpur, volume 2256 of Lecture Notes in Computer Sci-
ence, pages 145–156. Springer, Berlin, 2002.

[FR75] J. Ferrante and Ch. Rackoff. A decision procedure for the first order theory
of real addition with order. SIAM Journal of Computing, 4(1):69–76, 1975.

[FS00] A. Finkel and G. Sutre. Decidability of reachability problems for classes of
two counters automata. In 17th Ann. Symp. Theoretical Aspects of Com-
puter Science, volume 2256 of Lecture Notes in Computer Science, pages
346–357. Springer-Verlag, 2000.

[GHR94] D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic - Mathemati-
cal Foundations and Computational Aspects, Volume 1. Oxford University
Press, 1994.

[GK03] P. Gastin and D. Kuske. Satisfiability and model checking for MSO-
definable temporal logics are in PSPACE. In CONCUR’03, volume 2761 of
Lecture Notes in Computer Science, pages 222–236. Springer, 2003.

[GKK+03] D. Gabelaia, R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev.
On the computational complexity of spatio-temporal logics. In FLAIRS’03,
St Augustine, Florida, pages 460–464, 2003.

[GKWZ03] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-
dimensional modal logics: theory and practice. Cambridge University Press,
2003.

[Gor96] V. Goranko. Hierarchies of modal and temporal logics with references point-
ers. Journal of Logic, Language and Information, 5:1–24, 1996.

[GS66] S. Ginsburg and E. Spanier. Semigroups, Presburger formulas and lan-
guages. Pacific Journal of Mathematics, 16(2):285–296, 1966.

[HMR05] Th. Henzinger, R. Majumdar, and J.F. Raskin. A classification of symbolic
transitions systems. ACM Transactions on Computational Logic, 6(1):1–32,
2005.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

[JKMS02] P. Jančar, A. Kučera, F. Möller, and Z. Sawa. Equivalence-checking with
one-counter automata: a generic method for proving lower bounds. In FOS-
SACS’02, volume 2256 of Lecture Notes in Computer Science, pages 172–
186. Springer, Berlin, 2002.

[KK67] G. Kreisel and J.L. Krivine. Elements of Mathematical Logic. Studies
in Logic and the Foundations of Mathematics. North-Holland Publishing
Company, 1967.

40

[Kou94] M. Koubarakis. Complexity results for first-order theories of temporal con-
straints. In J. Doyle, E. Sandewall, and P. Torasso, editors, 4th Interna-
tional Conference on Principles of Knowledge Representation and Reason-
ing (KR’94), pages 379–390, 1994.

[Krö90] F. Kröger. On the interpretability of arithmetic in temporal logic. Theo-
retical Computer Science, 73:47–61, 1990.

[Lam94] L. Lamport. The temporal logic of actions. ACM Transactions on Pro-
gramming Languages, 16:872–923, 1994.

[LM01] U. Dal Lago and A. Montanari. Calendars, time granularities, and au-
tomata. In Int. Symposium on Spatial and Temporal Databases, volume
2121 of Lecture Notes in Computer Science, pages 279–298. Springer, Berlin,
2001.

[LM05] C. Lutz and M. Miličić. A tableau algorithm for description logics with
concrete domains and GCIs. In TABLEAUX’05, volume 3702 of Lecture
Notes in Computer Science, pages 201–216. Springer, 2005.

[LMP03] U. Dal Lago, A. Montanari, and G. Puppis. Towards compact and tractable
automaton-based representations of time granularities. In ICTCS 2003,
volume 2841 of Lecture Notes in Computer Science, pages 72–85. Springer,
Berlin, 2003.

[LMS02] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Temporal logic with for-
gettable past. In LICS’02, pages 383–392. IEEE Computer Society, 2002.

[LP05] A. Lisitsa and I. Potapov. Temporal logic with predicate λ-abstraction. In
12th Int. Symp. on Temporal Representation and Reasoning, Burlington,
Vermont, pages 147–155. IEEE Computer Society Press, 2005.

[Lut01] C. Lutz. Interval-based temporal reasoning with general TBoxes. In 17th
International Joint Conference on Artificial Intelligence (IJCAI’01), pages
89–94. Morgan-Kaufmann, 2001.

[Lut04] C. Lutz. NEXPTIME-complete description logics with concrete domains.
ACM Transactions on Computational Logic, 5(4):669–705, 2004.

[Mer99] S. Merz. A more complete TLA. In J.M. Wing, J. Woodlock, and J. Davies,
editors, FM’99, volume 1709 of Lecture Notes in Computer Science, pages
1226–1244. Springer-Verlag, 1999.

[MOS04] M. Müller-Olm and H. Seidl. Program analysis through linear algebra.
In ACM Symposium on Principles of Programming Languages (POPL’04),
pages 330–341, 2004.

[NS92] M. Niezette and J. Stevenne. An efficient symbolic representation of pe-
riodic time. In Proc. of the International Conference on Information and
Knowledge Management, Baltimore, Maryland, volume 752 of Lecture Notes
in Computer Science, pages 161–168. Springer, 1992.

[Ohl94] H.J. Ohlbach. Calendar logic. In [GHR94], chapter 19. 1994.
[Pap94] Ch. Papadimitriou. Computational Complexity. Addison-Wesley Publishing

Company, 1994.
[Pre29] M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arith-

metik ganzer Zahlen, in welchem die Addition als einzige Operation her-
vortritt. Comptes Rendus du premier congrès de mathématiciens des Pays
Slaves, Warszawa, pages 92–101, 1929.

[Rev02] P. Revesz. Introduction to Constraint Databases. Springer, New York, 2002.
[SC85] A. Sistla and E. Clarke. The complexity of propositional linear temporal

logic. Journal of the Association for Computing Machinery, 32(3):733–749,
1985.

41

[Tar51] A. Tarski. A Decision Method for Elementary Algebra and Geometry. Uni-
versity of California Press, 1951.

[TC98] D. Toman and J. Chomicki. DATALOG with integer periodicity con-
straints. Journal of Logic Programming, 35(3):263–290, 1998.

[Tra63] B. Trahtenbrot. Impossibility of an algorithm for the decision problem in
finite classes. American Mathematical Society - Translation Series, 23(2):1–
5, 1963.

[vEB97] P. van Emde Boas. The convenience of tilings. In A. Sorbi, editor, Com-
plexity, Logic, and recursion Theory, volume 187 of Lecture Notes in Pure
and Applied Logic, pages 331–363. Marcel Dekker, Inc., 1997.

[VW94] M. Vardi and P. Wolper. Reasoning about infinite computations. Informa-
tion and Computation, 115:1–37, 1994.

[WB00] P. Wolper and B. Boigelot. On the construction of automata from lin-
ear arithmetic constraints. In 6th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, volume 1785 of
Lecture Notes in Computer Science, pages 1–19. Springer, Berlin, 2000.

[Wij00] J. Wijsen. A string based-model for infinite granularities. In AAAI Work-
shop on Spatial and Temporal Granularity, pages 9–16. AAAI Press, 2000.

[Wol83] P. Wolper. Temporal logic can be more expressive. Information and Com-
putation, 56:72–99, 1983.

[Wol01] P. Wolper. Representing periodic temporal information with automata. In
8th International Symposium on Temporal Representation and Reasoning
(TIME’01), page 179. IEEE Computer Society, 2001.

42

