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Differential flatness based, full-order nonlinear
control of a Modular Multilevel Converter (MMC)

Pierre-Baptiste Steckler, Jean-Yves Gauthier, Xuefang Lin-Shi, and François Wallart

Abstract—Modular Multilevel Converter (MMC) is an attrac-
tive topology in industrial applications such as high voltage
direct current (HVDC) transmission system where a fast power
control is required. The most conventional control method for
MMC uses cascaded structures, where the power transmission
and internal energy dynamic (outer loops) is limited by the
”frequency separation” constraints, since the dynamic choice of
the currents (inner loops) must take into account the tradeoff
between rapidity and robustness. In this paper, we present a new
control method based on differential flatness theory. The main
interest of the proposed control is the possibility to obtain very
high dynamic performance of the MMC power flow, even under
noisy measurements and parametric disturbances. Using the well-
known average model of the MMC, a flat output is proposed,
proving the differential flatness property of the MMC. Trajectory
tracking controllers of AC grid active and reactive power are
proposed using input-state full-order linearization. Simulation
results including losses corresponding to a realistic case of on-
shore, point-to-point HVDC interconnection are presented to
show the performance of the proposed control scheme even with
strong measurement noise.

Index Terms—Flatness, non-linear control, state-input lin-
earization, trajectory planning, MMC, HVDC, multi-level in-
verter, power converter

I. INTRODUCTION

As the share of renewable energy and the need for flexibility
are constantly growing, transporting large amounts of energy at
low cost and with low losses becomes mandatory. To achieve
this goal, the High Voltage Direct Current (HVDC) technology,
especially through its Voltage Source Converter (VSC) branch,
appears today as a reference. However, despite their multiple
advantages, DC grids have a major drawback: their inertia is
extremely low compared to AC transmission systems [1]. From
the need of stabilization of these high-level systems comes a
need for fast and accurate converter-side control strategies.
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Compared to the traditional High Voltage Alternating Cur-
rent (HVAC) solution, a converter is needed at each end
of the transmission line, but the kilometric cost is much
lower. Other HVDC technologies are available, like the former
Line-Commutated Converter (LCC). Whereas the LCC has
a lower cost, higher efficiency and higher reliability, it has
several drawbacks compared to the VSC. The latter offers a
better controllability (separated active/reactive power control),
a better energy quality (low harmonics generation without
filtering) and can be extended to multi-terminal (meshed) grids
easily. Many VSC structures were proposed, but the most
used is certainly the Modular Multilevel Converter (MMC)
[2], which has been invented in 2001. In Fig. 1, a three-phase
MMC is presented in its half-bridge version. It consists of three
parallel-connected phase legs each contains an upper arm and
a lower arm. Each arm is constituted by a few hundreds of
sub-modules (SMs), series-connected with an air-core reactor.
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Fig. 1. MMC schematic including half-bridge submodules (HB-SM)

One drawback of the MMC compared to the former tech-
nologies, including previous VSC generations, lies in its mod-
eling and control complexity. The most conventional control
design of MMC can be separated in two main parts: a high
level control which controls power exchanges inside the MMC
depending on the mode operation and the control goal, and a
low level control called capacitor voltage ”Balancing Control
Algorithm” [3] [4], whose goal is to generate the switch
control signals to select the appropriate SMs to be inserted
in order to balance their voltages. This paper focuses only
on the high level control. Even if the so-called ”average
model” is used [5], greatly reducing the state variables count
from a few hundreds to 12 (6 arm inductor currents and 6
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equivalent capacitor voltages), it is still a high-order, Multi-
Input Multi-Output (MIMO) non-linear system. This often
leads to complex control schemes including a large number
of tuning parameters with non-straightforward impact on the
system behavior. The use of cascaded control [6] [7], which
constitutes the most common solution, includes the outer loops
(AC power, DC power and SM energy loops) and the inner
loops (AC and DC current loops). It is convenient from several
point of views, but comes with an inherent slowness, as it
forces the use of very fast inner loops to obtain a decent
rapidity on the outer ones. This need of fastness exposes
the control scheme to noise sensitivity and decreases its
overall robustness. As introduced before, the control of high-
power, grid-connected converters is challenging, because the
overall grid stability relies on fast and robust local controllers.
Consequently, a non-linear control system is presented here,
which allows a better tradeoff between tracking performance
and noise robustness.

Different class of control laws can be used to ensure stability
of non-linear systems, as the Lyapunov-based methods like
Backstepping [8], but the fulfillment of a given performance
indicator, based on response time or overshoot for instance,
is more difficult. A convenient way to satisfy this constraint
is the use of linearizing control. Feedback linearization is
certainly an option, but in the case of MMC, it leads to
the apparition of a so-called zero dynamics [9]. This has
several drawbacks: not the whole state vector is linearized,
a parasitic non-linear dynamics appears, and cascade control
is still needed to satisfy all the control objectives, with the
consequences given previously.

An interesting candidate to solve this control problem is
based on Differential Flatness Theory (DFT). This principle
has been applied to many complex nonlinear systems, such
as fluid-powered actuators [10], power electronics [11] [24]
or electro-mechanical systems [12] [13]. An overview of its
application to the field of power electronics can be found in
[14]. It comes with the following strengths:

1) Naturally adapted to trajectory tracking
2) Fast response possible with low overall loop gain
3) Low tuning parameters count, straightforward effect
4) Full-order linearization, no zero dynamics
5) No need of cascaded loops

Note that points 4 and 5 together allow the use of an arbi-
trarily fast control dynamics, limited only by noise concerns,
as it removes the ”frequency separation” constraints. As flat
systems have a state-free inverse, the ideal trajectory tracking
is instantaneous through a feedforward-only controller. To
compensate disturbances, modeling errors and initial state er-
rors, a feedback gain is introduced. On the other hand, as DFT-
based control relies on exact feedforward, it requires a good
knowledge of the system. A trajectory planning principle that
keeps the physical meaning and with reasonable assumptions
will be presented. An other drawback of this kind of control is
its lack of system protection compared to cascaded controllers.
The trajectories can be chosen such that the safe operating area
is never exceeded in normal operation, but an excessive and
unpredictable load (or a short-circuit) will inevitably push the

system outside its limits, and taking corrective actions with
a DFT-based control law is difficult1. This is not a problem
for MMC, since capacitors are left floating and not directly
exposed to the load.

To our knowledge, only a few applications of full-order
non-linear control for MMC have been investigated. In [9],
feedback linearization is used but no proof of global stabiliza-
tion is given, and the resulting zero dynamics reduces overall
performance. In [15], the formalism of flatness-based control
was used, but the MMC was treated as a simple inverter - the
stabilization of its own state variables was not presented nor
achieved through differential flatness formalism. The original
contributions of our paper can be summarized as follows:

1) A proof of differential flatness property of the MMC;
2) A flat output proposition for the MMC;
3) A complete trajectory planning strategy, allowing active

and reactive power tracking and capacitor voltage bal-
ancing;

4) A full-order, flatness-based controller for the MMC,
with both a feedforward and a feedback action, ensuring
theoretical global exponential stability (GES) of the
operating point;

5) The validation of the proposed control scheme through
Matlab/Simulink simulations with losses under strong
measurement noises corresponding to a realistic case of
on-shore, point-to-point HVDC interconnection.

The paper is organized as follows: in section II, the equiv-
alent schematic and dynamic average model of the MMC is
derived. A flat output is proposed for one arm and extended
to the whole converter in section III, proving the differential
flatness property of the MMC. In section IV, the trajectory
generation for this flat output is detailed, resulting from high-
level references (AC grid active and reactive power refer-
ences). The proposed controller is presented in section V,
through its linearization layer, feedforward action and feed-
back action. Aggregating all the previous results, section VI
evaluates the performance of the proposed control scheme in
simulation. Finally, section VII is dedicated to the conclusions
and perspectives of this paper.

II. SYSTEM MODELLING

For the proposed work, the grid configuration shown in
Fig. 2 is considered. It corresponds to a high-power, re-
dundant VSC-HVDC corridor in bipolar configuration, with
intermediate substations in symmetrical monopole configura-
tion. This last choice has been made because of the lower
cost and footprint, at the expense of redundancy - hence,
only substations with either reduced power or lower strategic
importance are configured as monopoles. These monopoles
are connected across the DC lines : even though a metallic
return is present, allowing asymmetric connections, having
substation C connected between a DC pole and the metallic
return (ground) would load the latter, cause an unbalance in
substations A and B and increase the insulation constraint on
the transformer in substation C.

1The feedback action will naturally tend to maintain or worsen the overload,
for instance by regulating the output voltage of the converter during an
excessive loading condition.
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Fig. 2. Studied configuration. Only the substation C is modelled, others elements being assumed ideal.

In this paper, only VSC C is modelled and controlled and
all outer elements are assumed ideal, corresponding to the
assumption of strong AC and DC grids. E and Vg,abc are,
thus, modeled as ideal voltage sources.

As mentioned in Section I, a common method to reduce
the MMC model order is the so-called ”average” approach
[5]. It relies on the assumption that every capacitor in a given
stack have the same voltage, which is ensured by the low
level controller. Defining a stack as the series assembly of
submodules into each arm, each stack is replaced by a DC
transformer whose ratio is the equivalent control input of the
arm, feeding an equivalent capacitor. This ratio is called the
modulation index of the arm, noted m. Applying this approach
to the original converter, the resulting schematic is given in
Fig. 3. All the parameters correspond to those in this figure,
and the resulting model is similar to the one used in [16].
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Fig. 3. MMC - Equivalent average schematic. Indices a, b and c are omitted
for clarity purposes.

Using the notations of Fig. 3, m corresponds to the ratio
of V to U (for instance, mu

a = V ua /U
u
a ). For modeling and

control purposes, the state and control vectors are respectively
given in (1) and (2). The former is composed of the six arm
inductor currents and the six arm equivalent capacitor voltages,
whereas the latter is made of the six modulation indexes of the
arms. The superscripts ”u” and ”l” are used for the upper and
lower arms and the subscripts ”a, b, c” correspond to phase

legs.
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The model is presented under the so-called MIMO
control-affine form, ẋ = f(x) + G(x)u, where f(x) and
G(x) are detailed in (3) and (4) with G(x) defined as[
g1(x) · · · g6(x)

]
. As the considered output depends on

the control strategy, no output equation is given at this step.

f(x) =



E
2L1
− Vga

L1
− R1·x1

L1−x2

R2·C2
E

2L1
+

Vga

L1
− R1·x3

L1−x4

R2·C2
E

2L1
− Vgb

L1
− R1·x5

L1−x6

R2·C2
E

2L1
+

Vgb

L1
− R1·x7

L1−x8

R2·C2
E

2L1
− Vgc

L1
− R1·x9

L1−x10

R2·C2
E

2L1
+

Vgc

L1
− R1·x11

L1−x12

R2·C2



(3)

G(x) =



−x2

L1
0 0 0 0 0

x1

C2
0 0 0 0 0

0 −x4

L1
0 0 0 0

0 x3

C2
0 0 0 0

0 0 −x6

L1
0 0 0

0 0 x5

C2
0 0 0

0 0 0 −x8

L1
0 0

0 0 0 x7

C2
0 0

0 0 0 0 −x10

L1
0

0 0 0 0 x9

C2
0

0 0 0 0 0 −x12

L1

0 0 0 0 0 x11

C2



(4)
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The previous quantities are defined over the following
space2, where i ∈ N, i = 1, . . . , 6 :

x2i−1 ∈ R , x2i ∈ R+\{0} , ui ∈ [0,+1] (5a)

R1, R2, L1, C2 ∈ R+ , Vg,abc ∈
(
−E

2
,+

E

2

)
(5b)

III. FLAT OUTPUT DETERMINATION

As it was demonstrated in [17], the MMC averaged model
of Fig. 3 configuration exhibits an arm-decoupled behaviour.
The flat output determination will thus be performed on one
arm, and verified on the complete system.

A. Flat output construction for a single arm

By definition, a flat system can be changed into a linear sys-
tem through the use of an endogenous feedback and a change
of coordinates [18], the new state vector being composed of
the flat output and its time-derivatives. As a consequence, both
state and control vectors can be expressed using the latter. It
is strongly related to full-order feedback linearization, which
is described in [19]. More information about this equivalence
are given in [20].

In the particular case where the relative degree of the system
is equal to the system’s order, the input–output linearization
becomes equivalent to the input-state linearization of the
system [25, p.34]. Thus, a necessary and sufficient condition
of flatness for a SISO (single-input, single-output) system of
state equation ẋ = f(x) + g(x)u and a candidate output
λ(x) is given in (6), where n is the system order, Lfg(x) =

[~∇g(x)] · f(x) is the Lie derivative of g(x) along f(x), and
Lkgf(x) = Lg[L

k−1
g f(x)] is the iterated Lie derivative [19].

LgL
k−1
f λ(x) = 0 , k < n (6a)

LgL
k−1
f λ(x) 6= 0 , k = n (6b)

As each arm is connected between two voltage sources, both
may be combined to obtain a general reduced equation. This
differential voltage, Vin, is defined as the difference between
top and bottom voltages of each arm. As an illustration, for
the upper arm of phase a, Vin equals E/2 − Vga. Defined
x̄ as the sub-vector of x contained the inductor current
and the equivalent capacitor voltage of an arm and ū the
corresponding modulation index, it can be seen, from (3),
that Vin appears clearly in this model. The arm dynamics can
then be generalized, independently of its position inside the
converter, as a second-order, SISO, affine subsystem (7).

˙̄x = f̄(x̄) + ḡ(x̄)ū =

[Vin

L1
− R1·x̄1

L1

− x̄2

R2·C2

]
+

[
− x̄2

L1
x̄1

C2

]
· ū (7)

For a given MMC arm, taking into account the time-varying
nature of Vin, the condition (6a) implies that:

x̄2

L1

∂λ(x̄)

∂x̄1
=
x̄1

C2

∂λ(x̄)

∂x̄2
(8)

2The capacitor voltages are physically limited to a much higher value than
0 because of the SM anti-parallel diodes, which act as a diode rectifier. This
effect allows, by the way, the start-up (precharge) procedure of the MMC.

An obvious solution to this partial derivative equation is
given in (9), where K ∈ R\{0} is an arbitrary constant.

λ(x̄) =
Kx̄2

1

2C2
+
Kx̄2

2

2L1
(9)

Condition (6b) can now be checked. The computation gives:

LḡLf̄λ(x̄) = −KVinx̄2

L2
1C2

+
2KR1x̄1x̄2

L2
1C2

− 2Kx̄1x̄2

R2L1C2
2

(10)

A singularity exists: LḡLf̄λ(x̄) is null for x̄1 = Vin

2L1

τ1τ2
τ2−τ1 ,

where τ1 = L1/R1 and τ2 = R2C2 are the time constants
of both storage elements. However, for the case study pre-
sented after, these singularities appear far beyond the physical
domain. So both conditions (6) are verified for the physical
domain and consequently, the MMC arm is differentially flat
and λ(x̄) is a flat output for this subsystem. The relative degree
ρ of the output λ(x̄) is two. According the the aforementioned
properties of flat systems, both u and x can be expressed as
a function of λ and its time-derivatives, as presented in (11),
neglecting R1 and R2 for conciseness.

x1 =
L1C2

KVin(t)
λ̇(t)

x2 =

(
2L1

K
λ(t)− L2

1

KV 2
in(t)

λ̇(t)2

)1/2

u =

Vin(t) +
L2

1C2V̇in(t)

KV 2
in(t)

λ̇(t)− L2
1C2

KVin(t)
λ̈(t)(

2L1

K
λ(t)− L2

1

KV 2
in(t)

λ̇(t)2

)1/2

(11)

B. Extension to the MIMO system

From the results of the previous section, a proposed flat
output vector Λ(x) for the global system is presented in (12).

Λ(x) =

λ1(x)
...

λ6(x)

 = K ·



x2
1

2C2
+

x2
2

2L1
x2
3

2C2
+

x2
4

2L1
x2
5

2C2
+

x2
6

2L1
x2
7

2C2
+

x2
8

2L1
x2
9

2C2
+

x2
10

2L1
x2
11

2C2
+

x2
12

2L1


(12)

The analysis shows that ∀(i, j) ∈ N2 , i, j = 1, ..., 6,
the properties (13) are verified. They constitute a sufficient
condition of differential flatness for the MMC converter in the
physical domain.

Lgiλj(x) = 0 (13a)

LgiLfλj(x) = 0 , i 6= j (13b)

LgiLfλj(x) 6= 0 , i = j (13c)

As for a single arm, the relative degree ρi of the output
λi is two, so

∑6
i=1 ρi = 12 = n. The complet MMC is

differentially flat with flat output λi, i = 1, ..., 6.
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IV. TRAJECTORY PLANNING

The trajectory vector for Λ(x), called Y (t), is composed
of six individual trajectories yi(t) as Λ(x) itself. Since the
relative degree of each output component is two, a trajectory
such that Y (t) and Ẏ (t) are continuous functions is reachable
at any time with a finite (but sometimes discontinuous) control
action u(t).

The proposed trajectory generation principle relies on the
following observation: for a suitable choice of K, namely K =
L1C2, each flat output component λi(x) describes the total
stored energy into the i− th MMC arm, as shown in (14).

λi(x) =
1

2
L1x

2
2i−1 +

1

2
C2x

2
2i (14)

To ease the link with this physical interpretation, for an
arm i, yi(t) will be noted ei(t) (energy) in this section, such
as pi(t) = yi

(1)(t) (power) and ṗi(t) = yi
(2)(t) (power

derivative).

A. Instantaneous power

The three-phase AC grid voltage expression is presented in
(15), where ω is the grid angular frequency and V̂g is the
line-to-neutral peak voltage of the AC grid.Vg,aVg,b

Vg,c

 =

V̂g · cos(ωt− 0π
3 )

V̂g · cos(ωt− 2π
3 )

V̂g · cos(ωt− 4π
3 )

 (15)

The resulting six arm voltages Vini
are given in (16).

Vini
=
E

2
− V̂g · cos(ωt+ θi) , θi =



0π/3 , i = 1

3π/3 , i = 2

4π/3 , i = 3

1π/3 , i = 4

2π/3 , i = 5

5π/3 , i = 6

(16)

First of all, the active and reactive power references are
translated into instantaneous current references. The AC grid
current reference is purely sinusoidal and has two components,
an active and a reactive one. The active and reactive powers,
Pref and Qref are defined for the whole converter and each
arm has the same contribution. Moreover, a DC component is
required in each arm, flowing vertically inside the converter,
to ensure energy balance inside the converter. After neglecting
the losses3, the instantaneous current trajectory inside each
arm is obtained and given in (17) [17].

Iri =
Pref (t)

3E
+
Pref (t) cos(ωt+ θi)

3V̂g
+
Qref (t) sin(ωt+ θi)

3V̂g
(17)

The instantaneous power can now be computed, decomposed
as (18):

pi(t) = Vini
(t) · Iri (t) = Pref (t) · γPi

(t) +Qref (t) · γQi
(t)
(18)

3It corresponds to energy conservation hypothesis, with powers at each
terminal being equal. As the efficiency of a full-scale MMC is typically around
99%, this hypothesis seems realistic.

With:

γPi
(t) =

1

6
+

(
E

6V̂g
− V̂g

3E
− cos(ωt+ θi)

3

)
cos(ωt+ θi)

(19a)

γQi
(t) =

(
E

6V̂g
− cos(ωt+ θi)

3

)
sin(ωt+ θi) (19b)

B. Instantaneous power derivative

The expressions given in the previous sections are varying
not only because of their harmonic terms (steady-state varia-
tion), but also because of the varying nature of Pref (t) and
Qref (t), which are given by the application. The inputs of the
proposed controller contain not only Pref (t) and Qref (t), but
also Ṗref (t) and Q̇ref (t).

With this consideration and from the time-derivative of
equation (18), ṗ(t) is expressed in (20):

ṗi(t) = Pref (t) · γ̇Pi(t) + Ṗref (t) · γPi(t)+

Qref (t) · γ̇Qi
(t) + Q̇ref (t) · γQi

(t)
(20)

With:

γ̇Pi
(t) =

(
−Eω

6V̂g
+
V̂gω

3E
+

2ω

3
cos(ωt+ θi)

)
sin(ωt+ θi)

(21a)

γ̇Qi(t) =
Eω cos(ωt+ θi)

6V̂g
− ω cos(2ωt+ 2θi)

3
(21b)

In order to have a finite ṗi(t), Pref (t) and Qref (t) have to be
at least continuous.

C. Instantaneous energy

ei(t) is the time-integral of pi(t), but the non-deterministic
nature of Pref (t) and Qref (t) eliminates the possibility of an
analytical calculation. This integration will be calculated as
(22), where E0 corresponds to the average value of ei(t) over
a 2π/ω period.

ei(t) =

∫ t

0

pi(τ)dτ + E0 (22)

Indirectly, as the energy is clearly dominated by its capacitive
component, with an average value almost equal to 1/2C2U

2
i ,

E0 is directly linked with the average arm capacitor voltage
Ui, which is of prime interest.

V. FLATNESS-BASED CONTROL

As the total losses are around 1% of the nominal power
for a real MMC [21] (see footnote 3), as explained before,
they may be negligeable and all the controller design will be
made under the assumption of zero-losses (thus R1 = 0 and
1/R2 = 0). It greatly simplifies the calculation by giving an
unique solution4. This assumption should be relevant for the

4If the losses are taken into account, several second-degree equations are
involved in the calculations, and the determination of the meaningful solution
is not always straightforward
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control design. Its validity will be tested in the simulation
results, where a lossy model is used.

The flatness-based controller contains both a feedback and
a feed-forward action, applied through a trajectory-based lin-
earization layer.

A. Linearization layer

The role of this layer, which is based on feedback lin-
earization theory, is to reconstruct the physical control u from
the state vector x and a pseudo-control v using a change of
coordinates z = Φ(x) and a feedback control u(x, v), such that
the transformed system is linear and decoupled. For a general
MIMO flat system with n states and m inputs, ż = σ+ τv is
composed only of integrator chains where σ and τ are given
by:

σ =



0 1
. . .

0 0

 0

. . .

0

0 1
. . .

0 0




, τ =



0
...
1

 0

. . .

0

0
...
1




(23)

The control law u(x, v) is written under the form (24). Its
components are detailed in (25) and (26) [19].

u(x, v) = ∆(x)−1 · (−Γ(x) + v) (24)

∆(x) =

Lg1L
ρ1−1
f λ1(x) · · · Lg1L

ρm−1
f λm(x)

...
. . .

...
LgnL

ρ1−1
f λ1(x) · · · LgnL

ρm−1
f λm(x)

 (25)

Γ(x) =
[
Lρ1f λ1(x) · · · Lρmf λm(x)

]T
(26)

For the MMC, ∆(x) and Γ(x) are shown in (27).

∆(x) =

− 1

L1


Vin1

x2 0 0 0 0 0
0 Vin2

x4 0 0 0 0
0 0 Vin3

x6 0 0 0
0 0 0 Vin4x8 0 0
0 0 0 0 Vin5x10 0
0 0 0 0 0 Vin6

x12


(27a)

Γ(x) =



V 2
in1
/L1 + V̇in1

x1

V 2
in2
/L1 + V̇in2

x3

V 2
in3
/L1 + V̇in3x5

V 2
in4
/L1 + V̇in4

x7

V 2
in5
/L1 + V̇in5x9

V 2
in6
/L1 + V̇in6

x11

 (27b)

The change of coordinates is defined in (28) for a general
MIMO system and in (29) for the MMC.

Φ(x) =



λ1(x)
Lfλ1(x)

...
Lρ1−1
f λ1(x)

...

...
λn(x)
Lfλn(x)

...
Lρn−1
f λn(x)



(28)

Φ(x) =



λ1(x)

λ̇1(x)
λ2(x)

λ̇2(x)
λ3(x)

λ̇3(x)
λ4(x)

λ̇4(x)
λ5(x)

λ̇5(x)
λ6(x)

λ̇6(x)



=



1/2 ·
(
L1x

2
1 + C2x

2
2

)
Vin1 · x1

1/2 ·
(
L1x

2
3 + C2x

2
4

)
Vin2 · x3

1/2 ·
(
L1x

2
5 + C2x

2
6

)
Vin3 · x5

1/2 ·
(
L1x

2
7 + C2x

2
8

)
Vin4

· x7

1/2 ·
(
L1x

2
9 + C2x

2
10

)
Vin5

· x9

1/2 ·
(
L1x

2
11 + C2x

2
12

)
Vin6

· x11



(29)

The Jacobian matrix JΦ(x) =
[
∂Φ(x)
∂x

]
of this change of

coordinates is not shown for reasons of conciseness, but its
determinant is given in (30):

detJΦ(x) = C6
2 ·

6∏
k=1

(Vink
x2k) (30)

Using the domain defined in (5), it can be seen that neither x2k

or Vink
reach zero, so the determinant of (30) never reaches

zero either. Consequently the change of coordinates Φ(x) is
a diffeomorphism, which was intuited through the flatness
property of Λ(x). Its inverse is then defined, and given in
(31).

Φ−1(z) =



z2/Vin1

1/
√
C2 ·

(
2z1 − L1z

2
2/V

2
in1

)1/2
z4/Vin2

1/
√
C2 ·

(
2z3 − L1z

2
4/V

2
in2

)1/2
z6/Vin3

1/
√
C2 ·

(
2z5 − L1z

2
6/V

2
in3

)1/2
z8/Vin4

1/
√
C2 ·

(
2z7 − L1z

2
8/V

2
in4

)1/2
z10/Vin5

1/
√
C2 ·

(
2z9 − L1z

2
10/V

2
in5

)1/2
z12/Vin6

1/
√
C2 ·

(
2z11 − L1z

2
12/V

2
in6

)1/2



(31)

It can be noted that the quantities found under the square root
are always positive since the MMC requires a sufficiently high
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reference voltage on the capacitors. From these expressions,
the linearizing control law can be calculated. The combination
of (24) and (31) gives the flatness-based control law, where
the linearization layer makes use of trajectories instead of
measurements. To do so, x is replaced by its trajectory xtraj
determined by (32).

xtraj = Φ−1(ztraj) (32a)

ztraj = [y1 ẏ1 · · · y6 ẏ6]T (32b)

B. Feedforward and feedback action

The pseudo-control v contains a feedforward action and a
feedback action. The feedforward action is taken from the ρ-
th derivative of the trajectory, as shown in (33) for a general
MIMO system.

vFF =
[
y

(ρ1)
1 y

(ρ2)
2 · · · y

(ρm)
m

]T
(33)

The expression for MMC is shown in (34) since ρi = 2 for
i = 1, ..., 6.

vFF =
[
ÿ1 ÿ2 ÿ3 ÿ4 ÿ5 ÿ6

]T
(34)

The feedback action is the only term which makes use of
the output measurements z. Assuming that the operating point
lies on the trajectory (i.e. Λ(x) = Y ), a corrective action
(35) is proposed, where KFB ∈ Rm×n. It acts as a nonlinear
proportional-derivative5 controller on δz = ztraj − z.

vFB(x) = KFB · δz = KFB · (ztraj − Φ(x)) (35)

It can be demonstrated that around the trajectory, the system
dynamics is described by δ̇z = (A−BKFB) · δz, with:

A =



[
0 1
0 0

]
0

. . .

0

[
0 1
0 0

]
 , B =



[
0
1

]
0

. . .

0

[
0
1

]
 (36)

It corresponds to six independent chain of two integrators, as
expected, and the pair [A,B] is inherently controllable, imply-
ing that the 12 closed-loop poles (eigenvalues of A−BKFB)
can be chosen arbitrarily. Even though the number of solutions
is infinite6, to maintain the decoupled behavior given by the
flatness-based control law, and to obtain the same dynamics
in each arm, the following gain matrix is used:

KFB =


KeKp 0 0 0 0 0 0 0 0 0 0
0 0 KeKp 0 0 0 0 0 0 0 0
0 0 0 0 KeKp 0 0 0 0 0 0
0 0 0 0 0 0 KeKp 0 0 0 0
0 0 0 0 0 0 0 0 KeKp 0 0
0 0 0 0 0 0 0 0 0 0 KeKp


(37)

5The derivative action comes from a proportional feedback on the 6 even
state variables, which are the derivatives of the 6 odd ones, from the structure
of Φ(x).

6KFB is a [6 × 12] matrix, having thus 72 degrees of freedom for only
12 equations in the eigenvalue assignment problem

The resulting closed-loop eigenvalues are given in (38).

eig(A−BKFB) = {η1; η2; η1; η2; η1; η2; η1; η2; η1; η2; η1; η2}

η1 = −1

2
·
(
Kp +

√
K2
p − 4Ke

)
η2 = −1

2
·
(
Kp −

√
K2
p − 4Ke

)
(38)

It is fundamental to notice that these eigenvalues do not
describe the planned trajectory dynamics. Their role is only to
reach the trajectory from a possibly unknown initial state, and
to force the system to remain on it during operation despite
the unmodelled disturbances. The ideal planned trajectory
dynamics is governed only by the nature of Pref (t), Ṗref (t),
Qref (t) and Q̇ref (t). This kind of control law is able to follow
instantly an arbitrary trajectory, as long as it is mathematically
(required continuity class) and physically (actuator saturation)
feasible. KFB should be set as low as possible, whereas
control gains are generally set as large as possible for classical
control laws to improve tracking performance. An intuitive
explanation for this property would be the following: the
feedforward action governs the system perfectly as long as
it is on the trajectory, and the feedback action ensures that it
never strays from it.

C. Global control law

The two formed expressions are used to construct v =
vFF + vFB , then v is applied through the linearization layer
and u is obtained. Combining all the elements, the global
flatness-based control scheme is shown in Fig. 4.

As the flat output is free from zero dynamics, the typical
right-half-plane zero does not appear, neither does its inherent
bandwidth limit. Moreover, the frequency separation constraint
between loops that comes from classical cascaded control is
also removed, since only one (second-order) controller is used
per arm. The tuning of the gain is easy (only two parameters
for the whole 12-th order system) and its consequence on
the system behavior is straightforward. The theoretical global
exponential stability of the operating point is guaranteed as
the former eigenvalues lie into the open left half plane, thanks
to DFT properties, because of the full-order linearization of
the system.

VI. SIMULATION RESULTS

To validate the proposed control law, simulations based on
a three-phase MMC average model have been made through
Matlab/Simulink.

A. Simulation conditions

The simulation is done with Runge-Kutta 4 (ODE4) solver
with 10µs of timestep. The parameters of the studied MMC,
shown in Fig. 3, are summarized in Tab. I. It corresponds to
a realistic case for on-shore, point-to-point HVDC intercon-
nections. It can be noted that the losses are not neglected in
the model in order to validate the robustness of the proposed
control against parameter uncertainties. For a typical applica-
tion, request active and reactive power references are constant
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Pobj

Qobj

Pref

Pref

Qref

Qref

.

.
Pref

Pref

Qref

Qref

.

. p(t)

e(t)

 .

M
U

X

Trajectory 
Generator

Reference
Generator

(Optionnal)

+
-

Φ(x)

Φ
-1(z)

KFB

+
+

Δ
-1(xtraj) · [ -Γ(xtraj) + v ]

xtraj(t)

ztraj(t) Δz(t)

z(t)x(t)

u(t)

Diffeomorphism

Inverse
Diffeomorphism

vFB(t) v(t)

vFF(t)

Trajectory-based 
Linearization layer

p(t)

Fig. 4. Proposed control law schematic. The trajectory generator builds ṗ(t) = [ṗ1(t) · · · ṗ6(t)]T , p(t) = [p1(t) · · · p6(t)]T and e(t) = [e1(t) · · · e6(t)]T

from (18), (20) and (22). The linearization layer is built on (27). The feedforward and feedback controllers are respectively based on (34) and (35).

TABLE I
SIMULATED MODEL PARAMETERS

Parameter Value Parameter Value
E 640kV L1 50mH
V̂g 250kV R1 1Ω
Sn 1GVA C2 25µF
fn 50Hz R2 1MΩ

in steady-state. To ensure C1 references, Ṗref (t) and Q̇ref (t)
are defined first (piecewise-constant) and integrated. As shown
in Fig. 5, active power reference changes between ±800 MW
and reactive power reference changes between ±400 MVAR
(nominal values). Each change is performed by a 20ms ramp.

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

t [s]

-1

-0.5

0

0.5

1

P
 [G

W
], 

Q
 [G

V
A

R
]

Active and reactive power references

P
REF

Q
REF

Fig. 5. Power references used into the simulations

B. Choice of the feedback gain

As mentioned previously, the feedback gain KFB are deter-
mined by two control parameters Ke and Kp. They are chosen
such that η1 = η2 = −ω0, leading to Kp = 2ω0 and Ke = ω2

0

according to (38).
To choose ω0, a comparison is made under defined simu-

lation conditions as in VI-A for w0 = 10π, w0 = 100π and
w0 = 1000π, in both transient and steady-state conditions.
Since in noise-free conditions, the feedback gain has only a
minor impact on the overall performance, its choice will be
made under strong measurement noise conditions.

To emulate the behaviour of both switching effects and
actual measurement noises, a random noise is superimposed

at the output of the converter model. It is built from a random
number generator with a variance of 107 for the voltages and
102 for the currents. In both cases, the average value is 0 (no
sensor offset) and the sampling time is equal to the simulation
timestep (10µs). The seed of each generator is chosen equal
to an arbitrary but different value in order to avoid unrealistic
cancellations effects7.

For a better visualization, only a zoom on a transient
condition is shown, namely for t ∈ [0.38, 0.40]. For the level
of noise involved, Fig. 6 shows the measurement of the arm
currents and capacitor voltages.

0.38 0.39 0.4 0.41 0.42 0.43

t [s]

-2

-1

0

1

2

I 
[k

A
]

Measured arm current (x1)

0
= 10

0
= 100

0
= 1000

0.38 0.39 0.4 0.41 0.42 0.43

t [s]

5.6

5.8

6

6.2

6.4

6.6

6.8

7

U
 [1

0
0
k
V

]

Measured arm voltage (x2)

Fig. 6. Zoom of the current and voltage measurements with additional noise

Fig. 7 shows the control evolution of the upper arm of phase
A. vFF and vFB are presented in the left-hand side of the
figure, and u is shown on the right-hand side. The results
enlighten the most important upper physical limit of the loop
gain, as a high gain inexorably increases noise sensitivity.
However, thanks to the intrinsic dynamic feedforward and
linearization of flatness-based control, it is possible to use a
low-enough gain from noise aspects, while allowing a good
overall transient response and steady-state accuracy. With a
feedback-only controller8 and for given noise conditions, this
tradeoff would impose a much stronger limit on the overall
performance. For our example, ω0 = 100π seen to be a good
tradeoff choice and will be used for the following simulations.

7Typically, if the same noise is applied to Iu and Il, then IAC = Iu− Il
and the active power P are noise-free

8Or feedback and static feedforward
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Fig. 7. Zoom of the control evolutions for 3 values of ω0 with measurement
noise

C. Power trajectory tracking performance
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Fig. 8. Simulation results: nominal case, Pref = ±800MW, Qref =
±400MVAR, 200ms stairs including 20ms ramps.

The tracking performance of the whole control is shown in
Fig. 8, as the nominal power is established in only one grid
period (20 ms). Small errors are present, mainly because R1

and R2 effects were neglected for the controller design. The
average value of capacitor voltages is well controlled during
these transients, with no perceptible undershot or overshoot.

Fig. 9. Zoom for t ∈ [0, 40ms]

This constitutes a strength of the proposed control scheme, as
fast response is ensured for all the state vector, and not only for
an given internal (often current) loop. During this simulation,
the modulation index m is always comprised between 0 and
1, hence no saturation effects are noticeable.

In Fig. 9, the shape of the 6 arm currents and capacitor
voltages can be observed, with their DC component, whereas
the steady-state condition (t > 20ms) allows to verify both
the absence of DC component in Ig,abc and its alignment with
the corresponding grid voltage, Vg,abc, needed to operate at
Pref 6= 0, Qref = 0.

In order to better appreciate the obtained dynamic perfor-
mance, the same simulation as Fig. 9 is performed without
noise (Fig. 10).

VII. CONCLUSIONS AND PERSPECTIVES

In this paper, the high-level control of a MMC is investi-
gated. Based on the averaged model of MMC in its natural
coordinates instead of the dq or Σ/∆ coordinates, the flatness
property of an MMC arm has been proven, then extended
to the full-order system. A trajectory planning method was
proposed, and used to develop a full order, linearizing control
law, thanks to differential flatness theory. Contrary to the state
of the art, this method does not involve cascaded loop and
it does not suffer from its common drawbacks, especially its
need for frequency separation between the loops. Moreover,
the theoretical global exponential stability is guaranteed thanks
to DFT properties. Moreover, the proposed control system
is simple to set since the number of tuning parameters is
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Fig. 10. Zoom for t ∈ [0, 40ms], noise-free conditions

very low (2 in the proposed form). The proposed control was
validated in simulation with measurement noise and modeling
errors (presence of losses). The results show that the proposed
control offers good performance with fast response for all the
states, implying excellent dynamic response for both active
and reactive powers.

Whereas the low sensitivity to losses (R1 and R2) of the
proposed control was proven, no results were shown in the
paper about the arm inductor (L1) and the capacitor of the
submodules (C2) for the sake of conciseness. This study was
conducted and shown that contrary to L1, the sensitivity to
C2 could be an issue. Indeed the value of the capacitance can
evolve during the converter operation due to aging and post-
failure submodule elimination. Fortunately, C2 is observable
most of the time and its estimation is possible as shown
in [22] [23]. Future works includes the combined use of
the proposed control scheme and capacitance observer for
both performance assessment and stability analysis. Moreover,
detection of model inconsistencies and parametric changes
with the use of a disturbance observer can be used. Finally,
in the model of the converter, the impedance of the AC side
(mainly due to the transformer) has been neglected. Taking
into account this impedance is another work perspective.
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