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The authors conduct experiments to locally stabilize a nonlinear system subject to actuator saturation. For that they utilize a real system of coupled tanks with a nonlinearity and sensors and actuators with industrial characteristics. Takagi-Sugeno's fuzzy modeling is adopted to obtain a representation of this system in discrete time. The studied controller is composed of a state feedback and a discrete integrator in time with fuzzy-type gains. However the adopted structure is not a PDC (parallel distributed compensation). The synthesis of the fuzzy gains is done via convex optimization procedures that aim to maximize the attraction region in the presence of exogenous signals limited in amplitude. This allows the implementation of the reference tracking, ensuring the convergence of the controlled variable to the desired reference value. A PLC (programmable logic controller) is used for safety interlocking and also as an interface between the controlled system and the computer that implements the fuzzy controller in the Python language. Several experiments are carried out that illustrate the feasibility of the proposal in an industrial environment without the need for greater investments in equipment.

Introdução

A presença de não linearidades em sistemas de controle reais é praticamente inevitável. Essas não linearidades são frequentemente descritas em modelos desenvolvidos a partir das equações físicas de balanço de massa e energia ou mesmo de modelos obtidos em diferentes pontos de operação. Para tratar tais não linearidades, diversas abordagens são encontradas na literatura. Dentre as mais populares está a linearização do modelo em torno de um ponto de operação [START_REF] Hespanha | Linear Systems Theory[END_REF]. Entretanto, a mudança de ponto de operação requer a correspondente mudança nos parâmetros do controlador baseado em um modelo em novo ponto de operação. Nesse contexto, a modelagem fuzzy Takagi-Sugeno (TS) tem se mostrado como uma alternativa bastante interessante ao descrever o sistema (ou modelo) não linear por uma combinação de modelos lineares locais ponderados por funções de pertinência [START_REF] Tanaka | Fuzzy control systems design and analysis: A linear matrix inequality approach[END_REF].

Essa abordagem permite a síntese de controladores fuzzy com uma estrutura distribuída paralela (PDC, do inglês parallel distributed compensation) em que a mesma regra de formação do modelo fuzzy é usada para construir o controlador. Conforme discutido por Gonzalez e Guerra (2014), leis de controle do tipo não-PDC podem levar a melhores resultados, por possuírem um maior grau de liberdade.

No âmbito dos sistemas discretos no tempo o problema de estabilização local de sistemas não lineares foi estudado em vários trabalhos. Veja, por exemplo, [START_REF] Silva | Local stabilization of nonlinear discrete-time system with uncertain time-delay using T-S models[END_REF] que considera sistemas com atrasos nos estados. Klug, Castelan, Leite e [START_REF] Klug | Fuzzy dynamic output feedback control through nonlinear Takagi-Sugeno models. fuzzy sets and systems[END_REF] apresentam uma abordagem convexa para o projeto de compensadores fuzzy dinâmicos via realimentação de saída. Em [START_REF] Klug | Interactive software for modeling and control of nonlinear systems: A T-S fuzzy approach[END_REF] é apresentado um software para realizar a modelagem e controle de sistemas não lineares. [START_REF] Tognetti | H∞ and H 2 nonquadratic stabilisation of discrete-time takagi-sugeno system based on multiinstant fuzzy Lyapunov functions[END_REF] in-XIII Simpósio Brasileiro de Automação Inteligente Porto Alegre -RS, 1 o -4 de Outubro de 2017 vestigam a síntese de controladores via realimentação de estados para sistemas fuzzy TS. Em [START_REF] Du | Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint[END_REF] é apresentada a aplicação do controle fuzzy em um sistema com restrição na entrada e não linearidades no modelo. Este trabalho traz como contribuição a aplicação de técnicas fuzzy TS discretas no tempo para a síntese de controladores do tipo não-PDC para a estabilização local de sistemas fuzzy TS sob restrição no atuador. Assim a não linearidade da saturação do sinal de controle é tratada separadamente, gerando modelos fuzzy TS locais que possuem saturação do controle. As condições de síntese são propostas como procedimentos convexos. É proposta e aplicada em um sistema real uma realimentação de estados e uma ação integral, ambas do tipo fuzzy TS não-PDC. A amplitude do sinal de referência (sinal exógeno) é considerada no projeto. As condições são aplicadas para o controle de nível em um sistema de tanques com características industriais inspirado em [START_REF] Johansson | The quadruple-tank process: A multivariable laboratory process with an adjustable zero[END_REF]. Em um dos tanques é incluída uma não linearidade e vários testes experimentais são realizados demonstrando os efeitos dos limites da saturação no atuador. Toda a instrumentação do sistema é concentrada em um controlador lógico programável (CLP) que é usado para realizar a) a aquisição de dados, b) o intertravamento de segurança, e c) enviar os comandos para o atuador. O controlador fuzzy é executado em linguagem Python em um computador utilizando um pacote de comunicação (Sousa, 2016). Os resultados demonstram a viabilidade da técnica proposta, inclusive em ambiente industrial. Notação: O conjunto dos reais é denotado por R. 0 e I dotam as matrizes nula e identidade, respectivamente, de dimensões apropriadas. x ∈ R n e M ∈ R n×q são um vetor real com n elementos e uma matriz de dimensões n × q e entradas reais, respectivamente. M T é a transposta de M . M > 0 é uma matriz definida positiva. x (ℓ) ou M (ℓ) denota a ℓ-ésima linha de x ou M . E(P,η) denota o conjunto elipsoidal de pontos no R n tais que x T P x ≤ η -1 .

Formulação do problema

Neste trabalho são tratados sistemas não lineares que podem ser descritos por ẋ 

(t) = f (x(t)) + g(x(t))sat(u(t)) y(t) = h(x(t)) (1 
i : Se z 1 (k) é M i1 e • • • e z p (k) é M ip , Então x k+1 = A i x k + B i sat(u k ), y k = C i x k ,
(2) em que z j (k), j = 1, . . . , p, são as variáveis escalares de premissa, dependentes apenas dos estados; M ij são os conjuntos fuzzy; p o número de variáveis de premissa. As matrizes A i ∈ R n×n , B i ∈ R n×m e C i ∈ R q×n , i = 1, . . . ,N , são conhecidas. Note que as regras (2) recuperam o sistema (1) por meio da defuzificação e resultando em [START_REF] Tanaka | Fuzzy control systems design and analysis: A linear matrix inequality approach[END_REF]:

x k+1 = A(α k )x k + B(α k )sat(u k ), y k = C(α k )x k , (3) 
em que α k(i) = w i (z(k))/ N j=1 w j (z(k)) é a fun- ção de pertinência com w i = p j=1 M ij (z j (k)) e z(k) = z 1 (k) z 2 (k) • • • z p (k) T . Portanto, o
vetor variante no tempo α k ∈ R N depende do estado e precisa ser calculado em tempo real. Esse vetor pertence ao simplex unitário:

Ξ = N i=1 α k(i) = 1, α k(i) ≥ 0, i = 1, . . . , N . (4)
Assim, as matrizes em (3) podem ser reescritas com M ∈ {A,B,C} como

M (α k ) = N i=1 α k(i) Mi, α k ∈ Ξ. (5) 
Com a finalidade de incluir o seguimento de referência, neste trabalho é assumida a topologia apresentada na Figura 1, em que a Lei de Controle é definida como

+ + + + - - ū -ū sat(u k ) z -1 Iq K(α k ) K I (α k ) r k y k x k u k u Ik u P k Sistema (1)
Figura 1: Topologia de controle usada.

u k = KI (α k )[(r k +r k-1 )-(y k +y k-1 )]-K(α k )x k (6) com K(α k ) e KI (α k ) os ganhos fuzzy a serem deter- minados.
Conforme a topologia apresentada na Figura 1 é imposta uma saturação ao sinal de controle, portanto é necessário levá-la em consideração, garantindo que as trajetórias dos estados não excursionem fora do conjunto E (P,η) sendo essa uma região de estabilidade assintótica conforme definido em (Tarbouriech et al., 2011, pág. 14). Neste trabalho é tratado o seguinte problema.
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Problema 1 Determinar os ganhos KI (α k ) e K(α k ) de tal forma que o sistema não linear (1) em malha fechada a partir da lei de controle ( 6) seja estável, com o rastreamento de uma classe de sinais de referência com o valor de amplitude máximo calculado e com as trajetórias dos estados resultantes sempre excursionando no interior da região E (P,η).

Resultados preliminares

Seguindo o desenvolvimento proposto por Ogata (1995, p. 460-464), uma vez que o sistema (1) discretizado pode ser representado pelo modelo fuzzy TS dado por (3), o diagrama da Figura 1 pode ser reescrito como:

ξ k+1 = A(α k ) B(α k ) 0 0 Âk ξ k + 0 Iq Bk v k + 0 Iq Bw rk (7) v k = sat(ω k ), ω k = -K(α k )ξ k (8) em que ξ k = δx T k δu T k T , com δx k e δu k sendo os
desvios dos vetores de estado e de controle em relação a seus valores de equilíbrio, rk = KI (α k )r k relacionase à variação em torno do valor de referência usado no equilíbrio, e

K(α k ) = -K(α k ) -K(α k ) + KI (α k )C(α k ) A(α k ) Iq -K(α k ) + KI (α k )C(α k ) B(α k )
Portanto, os valores de ū(ℓ) , ℓ = 1, . . , m, referem-se agora ao desvio máximo do sinal de controle em relação ao valor de equilíbrio. Assim, o problema de rastreamento do sistema (1) pode ser resolvido como um problema de estabilização do sistema ( 7)-( 8) sob a perturbação rk . Uma vez determinado o ganho fuzzy K(α k ) podem ser recuperados os ganhos KI (α k ) e K(α k ) usados na topologia apresentada na Figura 1, por meio da relação

K(α k ) KI (α k ) = K(α k ) + 0 Iq × A(α k ) -Iq B(α k ) C(α k )A(α k ) C(α k )B(α k ) -1 (9)
Portanto, ainda que K(α k ) seja obtido como um ganho fuzzy PDC, os valores de K(α k ) e KI (α k ) não podem ser obtidos como uma PDC.

Portanto, busca-se a síntese do ganho

K(α k ) para o sistema ξ k+1 = Â(α k )ξ k + B(α k )sat(ω k ) + Bw rk de forma que para todo sinal r2 k ≤ δ -1
, suas trajetórias iniciadas na origem não deixem o conjunto E (P,η) e para rk = 0, E (P,η) é uma região de estabilidade assintótica. Fica claro, portanto, que a máxima amplitude de r k só pode ser determinada a posteriori, com o conhecimento do maior valor assumido por KI (α k ), ou seja max

α k ∈Ξ |r k | ≤ δ -1/2 max α k ∈Ξ KI (α k ) . ( 10 
)
Para lidar com a saturação do sinal de controle, utiliza-se a reescrita dessa não linearidade por meio da zona morta decentralizada, como é proposto por Gomes da [START_REF] Gomes Da | Application of hybrid and polytopic modeling to the stability analysis of linear systems with saturating inputs[END_REF]. Define-se Ψ(ω k ) = sat(ω k ) -ω k , sendo que Ψ(ω k ) corresponde à nãolinearidade de zona morta descentralizada. Assim,

ξ k+1 = ( Â(α k ) -B(α k ) K(α k ))ξ k + B(α k )Ψ(ω k ) + Bw rk . (11)
Na sequência, define-se o seguinte conjunto

S = {ξ k ∈ R n+q : |(-K(α k ) (ℓ) -Ĝ(α k ) (ℓ) )ξ k | ≤ ū(ℓ) }, em que Ĝ(α k ) ∈ R q×n+q dada por (5), com M = G
é uma matriz a ser calculada que introduz um nível de tolerância para a saturação do sinal de controle. Para tratar a não linearidade Ψ(ω k ), utiliza-se a condição de setor generalizada descrita a seguir [START_REF] Tarbouriech | Stability analysis and stabilization of systems presenting nested saturations[END_REF].

Lema 1 Se ξ k ∈ S, então a relação Ψ(ω k ) T T (Ψ(ω k ) + Ĝ(α k )ξ k ) ≤ 0 (12)
é verificada para toda matriz diagonal definida positiva T ∈ R q×q .

Segundo [START_REF] Tarbouriech | Stability analysis and stabilization of systems presenting nested saturations[END_REF], uma condição suficiente para obter a solução para o Problema 1 é alcançada se a seguinte relação é satisfeita ∀ξ k ∈ E (P,η) e ∀r k ∈ W(R,δ), com τ1 > 0 e τ2 > 0, sendo

V (ξ k ) = ξ T k P ξ k e ∆V (ξ k ) = V (ξ k+1 ) -V (ξ k ). ∆V (ξ k ) + (1 -τ1)(ξ T k P ξ k -η -1 ) + τ2(δ -1 -rT k rk ) -2Ψ(ω k ) T T (Ψ(ω k ) -Ĝξ k ) < 0, (13) 

Síntese de controlador

O lema seguinte apresenta uma solução para o Problema 1.

Lema 2 Considere o sistema ( 7)-( 8) e um escalar η dado. Se existem uma matriz definida positiva W ∈ R n+q×n+q , uma matriz diagonal positiva S ∈ R q×q e as matrizes U ∈ R n+q×n+q , Yi ∈ R q×n+q e Z ∈ R q×n+q , para i = 1, . . . ,N , que satisfaçam as seguintes LMIs, para m = 1, . . . ,N , n = m, . . . ,N e ℓ = 1, . . . ,q

      -W ( Âm + Ân)U + ( BmYn + BnYm) 2 ⋆ τ1(W -U -U T ) ⋆ ⋆ ⋆ ⋆ ( Bm + Bn)S 2 (Bwm + Bwn) 2 Z T 0 -2S 0 ⋆ -τ2I       < 0, (14) W -U -U T Y T m (ℓ) + Z T (ℓ) Ym (ℓ) + Z (ℓ) -η ū(ℓ) 2 ≤ 0 (15) -(1 -τ1)δ + τ2 < 0 ( 16 
)
então as matrizes de ganho

Ki = -YiU -1 , ( 17 
)
aplicadas em ( 9) recuperam os ganhos da lei de controle estabilizante ( 6 

ξ T k+1 P ξ k+1 -ξ T k P ξ k -2Ψ(ω k ) T T (Ψ(ω k ) -Ĝξ k ) + (1 -τ1)ξ T k P ξ k -τ2 rT k rk < 0, ( 18 
)
em que P = W -1 e T = S -1 . Satisfazendo também ( 16), tem-se que (13) é verdadeira e, portanto, garante-se a estabilidade do sistema fuzzy em malha fechada. Com (15) verificada, essa pode ser multiplicada por α k(m) e somada para m = 1, . . . ,N ;o bloco (1,1) pode ser trocado por -U T W -1 U ≤ W -U -U T ; Y e Z substituídos por -KU e -GU ; e o resultado pré e pós multiplicado por diag{U -T ,1} e pelo seu transposto, respectivamente. Aplicando-se o complemento de Schur e pré e pós multiplicado-se por ξ T k e ξ k , tem-se que E (P,η) ⊆ S. Assim, E (P,η) é um conjunto invariante e, sendo que esse conjunto está contido em S, tem-se garantida a estabilidade do sistema não linear em malha fechada mesmo com o sinal de controle sob efeito de saturação [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF]. ✷ Uma condição similar a (14), apresentada no Lema 2, pode ser encontrada em [START_REF] Feng | Analysis and Synthesis of Fuzzy Control Systems: A Model-Based Approach[END_REF]) para a estabilização. Neste trabalho, além da estabilização foram incluídas os tratamentos para saturação do sinal de controle e o rastreamento de um sinal de referência a partir da inclusão de um integrador digital na malha de controle, sendo que esse sinal foi tratado como uma perturbação de amplitude limitada, veja [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF] para mais detalhes.

4 Estudo de caso: Sistema de tanques O sistema a ser tratado neste trabalho é o de tanques acoplados, que foi inspirado em [START_REF] Johansson | The quadruple-tank process: A multivariable laboratory process with an adjustable zero[END_REF]. Essa planta está disponível no Laboratório de Sinais e Sistemas da Unidade de Divinópolis do CEFET-MG e é composta por quatro tanques com capacidade de 200 litros, dois reservatórios de 400 litros cada e duas motobombas de 1 cv, que são acionadas por meio de inversores trifásicos independentes; os sinais de medição são enviados a um CLP Siemens que é responsável pelo intertravamento da planta e envio dos sinais de controle ao atuador (inversor trifásico). O controle é executado em linguagem Python em um computador que se comunica com o CLP por meio do driver (Sousa, 2016), com T = 4s. A configuração adotada neste trabalho utiliza dois tanques conforme apresentado na Figura 2. Os níveis nos tanques 1 e 2, q i (u(t))

R 12 ( h) D q o (h (t)) 2 h 1 h 2
Figura 2: Sistema de tanques acoplados respectivamente h1(t) e h2(t), são os estados do sistema, sendo h2(t) a variável controlada. A ação de controle é imposta a partir da variação da velocidade da motobomba que manipula a vazão de entrada no Tanque 1, qi(u(t)). As duas válvulas, uma entre os tanques e outra na saída do tanque 2, têm suas aberturas mantidas constantes durante os experimentos.

A área do tanque 2 é constante, A2 = 0,3019m 2 . A não-linearidade inserida no tanque 1 foi proposta por [START_REF] Franco | Síntese convexa de ganhos para compensação robusta de sistemas linearizados por realimentação[END_REF] resultando em uma área útil dada por

A1(h1(t)) = 3r 5 ×(2,7r-cos(2,5π(h 1 (t)-µ)) σ √ 2π e - (h 1 (t)-µ) 2 2σ 2
), com µ = 0,4 , σ = 0,55 e r = 0,31. Para modelar o sistema, foram utilizadas equações de balanço de massa

ḣ1 = R12(h1(t),h2(t))K b u -h1(t) + h2(t) A1(h1(t))R12(h1(t),h2(t) (19) ḣ2 
= h1(t) -h2(t) R12(h1(t),h2(t))A2 - 1 A2 qo(h2(t)). (20) 
e os parâmetros foram determinados experimentalmente, sendo obtido: K b = 16,55 e R12(∆h) = (0,4321∆h + 12,4676) × 10 -3 , com ∆h = h1(t) -h2(t); a vazão de saída do tanque 2 é dada por qo = (14,2306h2 (t) + 800,2579) × 10 -4 m 3 /s. Utilizando o método de Euler com T = 4s, tem-se

h k+1 = 1 -z 1,k z 3,k z 1,k z 3,k z 1,k A 2 1 - z 1,k +z 2,k A 2 h k + K b T z 3,k 0 u k (21) em que h k = h1(kT ) h2(kT ) T , u k é um sinal sob saturação e as funções não lineares z 1,k = T R 12 , z 2,k = T qo h 2,k
e z 3,k = 1 A 1 podem ser descritas por meio de modelos fuzzy TS conforme metodologia apresentada em [START_REF] Tanaka | Fuzzy control systems design and analysis: A linear matrix inequality approach[END_REF]. Assim, podem ser determinadas as funções de pertinência como Mi(z1(h1,h2)), Ni(z2(h2)) e Oi(z3(h1)) tais que

z 1,k = 2 i=1 Mi(z 1,k )ai, z 2,k = 2 i=1 Nj (z 2,k )bi e z 3,k = 2 i=1 O k (z 3,k ))ci,
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em que M1(z 1,k ) = z 1,k -a2 a1 -a2 M2(z 1,k ) = a1 -z 1,k a1 -a2 N1(z 2,k ) = z 2,k -b2 b1 -b2 N2(z 2,k ) = b1 -z 2,k b1 -b2 O1(z 3,k ) = z 3,k -c2 c1 -c2 O2(z 3,k ) = c1 -z 3,k c1 -c2
e, para 0,30m ≤ h1 ≤ 0,80m e 0,17 ≤ h2 ≤ 0,80m, tem-se:

a1 = max h 1 ,h 2 {z1} = 205,46, a2 = min h 1 ,h 2 {z1} = 0,07, b1 = max h 2 {z2} = 245,22, b2 = min h 2 {z2} = 96,94, c1 = max h 1 {z3} = 0,0045, c2 = min h 1 {z3} = 0,0004. Definindo, α ijl,k = 2 i=1 2 j=1 2 l=1 Mi(z 1,k )Nj (z 2,k )O l (z 3,k
), as matrizes da equação discreta no tempo (3) podem ser descritas como

A ijl,k = 2 i=1 2 j=1 2 l=1   1 -aic l aic l ai A2 1 - ai + bj A2   , (22) 
B ijl,k = 2 i=1 2 j=1 2 l=1 K b T c l 0 . (23) 
De forma equivalente, pode-se escrever que h k+1 = 8 p=1 α p,k k + Bpsat(u k )), em que p = l + 2(j -1) + 4(i -1), Ap = A ijl , e Bp = B ijl . Dessa maneira, foram determinados 8 modos locais que constituem a descrição fuzzy para o sistema ( 19)-(20) em sua versão discreta no tempo. Tendo em vista as características físicas da planta, foi escolhido um δ = 2,17 × 10 -4 gerando assim um max As duas leis de controle calculadas foram implementadas tanto no modelo não linear ( 19)-( 20), quanto na planta física. Os controladores calculados assim como as correspondentes matrizes de Lyapunov W = P -1 obtidas são apresentadas na sequência. Primeiramente, são apresentados os resultados de simulação e experimento obtidos para ū = 15 e em seguida, ū = 30.

W sat(15) =   5,1825
1,3054 -0,0612 1,3054 2,0296 -0,1290 -0,0612 -0,1290 7,2852 tram claramente a viabilidade da ação integral fuzzy proposta neste trabalho, assim como a possibilidade de utilização de equipamentos usuais do meio industrial para a implementação de ações de controle mais avançadas como é o caso da abordagem apresentada neste trabalho.

  ×10 5 Ksat(15) =             0,

Conclusões

Neste trabalho foram estudadas condições convexas para a síntese de compensadores fuzzy Takagi-Sugeno discretos no tempo, sem estrutura paralela distribuída, visando a estabilização local de sistemas não lineares com saturação de atuadores. Os modelos fuzzy TS locais possuem saturação na entrada. As condições propostas, que permitem a síntese de compensadores que maximizam a região de atração, incluem o tratamento de sinais exógenos com amplitude limitada. É proposto um seguimento de referência com um controlador com ganhos fuzzy para a realimentação de estados e para a ação integral. A implementação é feita em linguagem Python, executada em computador que se comunica com um CLP que realiza a implementação dos sinais de controle. A técnica é aplicada em um sistema real não linear para controle de nível. Os resultados experimentais são analisados e demonstram a viabilidade da aplicação da técnica em sistemas in-dustriais.
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  ), isto é, K(α k ) e KI (α k ). Além XIII Simpósio Brasileiro de Automação Inteligente Porto Alegre -RS, 1 o -4 de Outubro de 2017 disso, as seguintes afirmações são garantidas para o sistema não linear (1) em malha fechada, com condições iniciais nulas: i) para r k = 0, o conjunto elipsoidal E (P,1) é uma região de estabilidade assintótica para o sistema fuzzy (3) em malha fechada e, portanto, para o sistema não linear (1); e ii) para algum r k que verifique (10), as trajetórias do sistema em malha fechada não deixarão o conjunto elipsoidal E (P,η).Prova: Se (14) é verificada, então multiplique-a por α k(m) e α k(n) e some o resultado para m = 1, . . . ,N e n = m, . . . ,N .Substitua o bloco (2,2) por-U T W -1 U ≤ W -U -U T ,substitua Y e Z por -KU e -GU . Pré e pós multiplique o resultado por diag{I,U -T ,T,1} e pelo seu transposto, respectivamente. Ao final, aplica-se o complemento de Schur, pré e pós multiplica-se o resultado por ξ T k Ψ(ω k ) T rT k e pelo seu transposto, respectivamente, obtendo-se

  α k ∈Ξ |r k | = 11,35. Ou seja, admitese uma variação de ±11,35cm em torno do valor de referência escolhido para operação do sistema.

Figura 4 :Figura 6 :

 46 Figura 4: Sinal de Controle Saturado, ū = 15.

  Foram considerados os pontos de operação 22, 33 e 27. As figuras 3 e 5 apresentam os estados (h1 no topo e h2 em baixo), enquanto os sinais de controle são apresentados nas figuras 4 e 6, respectivamente. Nessas figuras, o gráfico superior corresponde ao sinal da realimentação de estados, K(α k )x k , o gráfico intermediário ao sinal do integrador e o gráfico inferior contém a subtração dos dois sinais (em azul) e o sinal saturado que foi enviado ao atuador (em vermelho). Nos dois casos pode-se perceber a saturação do sinal de controle. Nas figuras referente aos esta-
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