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A Modal Perspective on Path Constraints

Natasha Alechina
�

St́ephane Demri
�

Maarten de Rijke
�

Abstract

We analyze several classes of path constraints for semistructured data and
prove a umber of decidability and complexity results for such constraints. While
some of these decidability results were known before, we believe that our improved
complexity bounds are new. Our proofs are based on techniques from modal logic
and automata theory. We believe that our modal logic perspective sheds additional
light on the reasons for previously known decidability and complexity results.

Keywords: semistructured data, path constraints, modal logic, automata theory.

1 Introduction

In recent years, a lot of interesting work has been done to extend database techniques to
semistructured collections of data, in particular the World Wide Web or fragments of it;
an overview of this work can be found in [1]. It is generally agreed that the appropriate
data model for semistructured data is an edge-labeled graph. More specifically, the
web can be viewed as a set of objects linked by labeled edges; an object represents a
page, and the labeled edges represent hypertext links.

Query languages proposed for semistructured data and querying the web, such as
WebSQL [35], Lorel [2], and UnQL [11] are similar in spirit ifnot in syntax, and all
include a form of recursion (regular expressions). Making effective use of whatever
information is available about the format of data is obviously a very important issue. In
the context of the web, it is often useful to know that everything accessible by a given
sequence of links is cached, or available locally; or that the site reachable by a given
sequence of links is mirrored elsewhere, etc. To express such information, one can use
so-calledpath constraints, that is: statements about paths in the graph. It is reasonable
to expect that the language of constraints forms a well-behaved (preferably decidable)
sublanguage of the query language.

In this paper we build on results in [3, 13], and embed severalclasses of path
constraints that have been considered in the literature into well-known modal logics.
�
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Earlier work has considered the modal�-calculus, but we consider variants of PDL
(see e.g., [28]). Our embeddings into a flavor of PDL establish a number of things;
they shed light on known decidability results and give rise to new ones and to new
complexity bounds. In some cases, the complexity bounds obtained by translation are
not the tighest possible; in such cases we provide tighter bounds by using other methods
(see e.g., Theorems 14 and 15).

But perhaps more importantly, adopting a logical perspective on data modeling and
description languages often yields conceptual clarity, asdemonstrated, for instance by
Hayes’ paper on a model-theoretic semantics for RDF and RDFs[30]. In our case, we
think that the main benefit of our modal perspective on path constraints lies in the in-
sights it yields on the way various constraints relate to each other. Of course, rephrasing
reasoning tasks on constraints in terms reasoning inside a suitable logic will not always
give the sharpest possible complexity bounds: in some casesthe corresponding logic
simply has not been explored yet.

This paper is an extended and updated version of [4]. It is organized as follows.
Section 2 provides background information on data models and query languages and
it introduces several kinds of path constraints. In Section3 we introduce logical for-
malisms to capture such constraints. In Section 4 we state our complexity and decid-
ability results for logical problems. In Section 5, we establish corresponding results for
reasoning problems on path constraints. We conclude in Section 6.

2 Path Constraints

Semistructured data is often represented as an edge-labeled graph. In particular, the
World Wide Web can be modeled as a graph where the vertices areuniquely identified
by URLs and the labels are hypertext links between them [1]; richer structures able to
deal with the frame structure of the pages can be found in [5].An important special
class of graphs are deterministic graphs. A graph is calleddeterministicif for every
node�and label�there is at most one node�such that� ����holds. In the case of
the web (unlike the case of most object-oriented databases)it is reasonable to expect a
graph to be deterministic.

In this paper, we will restrict attention torooted connectedgraphs: that is, one of
the nodes in the graph is designated as the root and every other node is accessible from
the root by a directed path of edges. Intuitively, this is because we consider the web
from the point of view of browsing, i.e., only the sites accessible from the current site
(the root) really matter.

Languages for querying semistructured data use so-called path queries. These have
emerged as an important class of browsing-style queries, and in their simplest version
they are of the form ‘find all objects reachable by paths whoseedge labels form a
regular expression over some given alphabet of labels.’

Let us make things more formal. Let�be a countable set of edge labels. An�-
structure�is a tuple of the form�	
������������such that

�
is a set of nodes,�

is a distinguished element of
�

(the root), and�������is a family of binary relations
on
�

acting as links between nodes. We say that�is finite whenever
�

is finite and��is non-empty for only finitely many labels. In that case, the size of�, written ���,
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is ������������. In other words,�-structures are rooted labeled transitions systems
over the (possibly infinite) alphabet�.

Definition 1 Let�be a countable set of edge labels. A label���, the empty path�and wildcard�arepath expressions. If ��and��are path expressions, then so are
�����(sequential composition),�����(union), and�	(finite iteration).

Given an�-structure�, we definetransition relations
����on

�
�
corresponding

to the path expressions�:
���� 	 ��for ������	� is the reflexive transitive closure of

����
���� 	 �

���
��

���� 	 �
���������������� 	 �
�������������������������������������� 	 �����������
As usual, given a binary relation

�
on
�

, we write
���� to denote the set of

�
-

successors of�: ���� 
�������.
In the absence of information about the format of data, evaluating queries with

regular expressions can be very inefficient. A natural way toexpress useful information
about the data represented as a graph is to impose constraints on possible paths in the
graph, such as ‘all objects reachable by a path�are also reachable by a path�,’ where
�and�are sequences of labels, possibly involving regular expressions. Examples of
constraints which may be useful for query optimization in the context of the web are
constraints saying that everything accessible by such-and-such sequence of labels is
also accessible locally; that the answer to such-and-such query is cached; that such-
and-such site is mirrored elsewhere, and so on. All these examples can be expressed
by means of path inclusion constraints as defined in [3] (see below).

The motivation of the work in [13] is more database-related than the work in [3].
Indeed, one important difference between the constraints considered in [3] and those
studied in [13] is that the former correspond to unary properties and are evaluated
relative to a node. The latter are closed sentences and can beevaluated anywhere and
don’t have to mention the root; the motivation for the latteris much more database-
related than the work in [3]. Another difference is that the constraints from [3] can
contain regular expressions, while those in [13] are strictly first-order definable.

Definition 2 Let �and�be two path expressions. Apath inclusion constraintis a
statement of the form��� �. Let�be an�-structure. A path inclusion constraint
��� �is true at�, written��	��� �, if

���������������: every node�
reachable from�by a path whose labels form a word described by�(i.e., a�-path),
is reachable from�by a path whose labels form a word described by�(i.e., a�-path).
See Figure 1 (a).

The path inclusion constraints defined above are sometimes referred to asforwardcon-
straints. In [13],backwardconstraints are introduced. We generalize their definitionto
a language containing regular expressions.
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(a) Inclusion constraint (b) Backward constraint (c) Lollipop constraint

Figure 1: Constraints.

Definition 3 Let �and�be two path expressions. Abackwardpath constraint is a
statement of the form����. Let�be an�-structure. A backward path constraint
��� �is true at�, written��	��� �, if

�������������������where�
�

denotes the converse operator on binary relations. See Figure 1 (b).

Notice that a backward constraint can be rewritten as an inclusion constraint, and vice
versa, by rewriting the regular expressions involved in thepresence of the converse
operator.

A standard path constraint(notation:���) is either a forward constraint or a
backward constraint. The next class of constraints is a generalization of path constraints
as defined in [13] to a language containing regular expressions:

Definition 4 Let �, �, andbe path expressions. Alollipop path constraintis an
expression of the form����. Let�	
������������be an�-structure. A
lollipop path constraint����is true at�, written��	����, if for every
��������, 
�������������	���. See Figure 1 (c).

Obviously, a forward constraint����is a lollilop path constraint�����with	�. In the sequel, a lollipop path constraint will simply be called a path constraint.
Our syntax for talking about path constraints is obviously much more abstract than,

for example, the XPath syntax [45, 29], which was designed todescribe paths in XML
trees. XPath involves predicates specific to attributes andnames, and it allows navi-
gation along the sibling axis. However, many constraints which are formulated using
XPath expressions are very similar to the path constraints we are interested in. Consider
the following example (taken from [15]):

<consistencyrule id="r1">
<description>
The product name of an advertised product must be
in the catalogue

</description>
<forall var="a" in="$adverts">

<exists var="p" in="$products">
<equal op1="$a/ProductName/text()"
op2="$p/Name/text()"/>

</exists>
</forall>

</consistencyrule>
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This is the same as the following path inclusion constraint:

������������	
����������	
�������
A further exploration of the formal logical aspects of XPathis beyond the scope of this
paper; we refer the reader to [25, 37].

Now that we have formulated path constraints, we take a closer look at important
reasoning tasks involving them.

�The query evaluationproblem for a classC of path constraints is defined as
follows:

instance: a finite�-structure�and a constraint�in C;

question: ��	�?
�A more difficult problem is thecontainmentproblem for the classC of path

constraints. It is defined as follows:

instance: constraints�����������,���, in C;

question: is it the case that for every�-structure�,��	��and . . . and��	��
imply��	����? (if so, we write��������������.)

Variants of the above problems can be defined by considering only (finite, determin-
istic, . . . )�-structures or/and by distinguishing the class of constraints for��, . . . ,��
and�separately (if applicable).

In the sequel we investigate the decidability and complexity issues of the problems
we have just introduced, mostly from a modal logic point of view.

3 Capturing Path Constraints by Modal Means

To determine the computational costs of reasoning tasks on path constraints, we recast
them as model checking, validity, and satisfiability tasks in some logic. The logic used
for this purpose should be such that it can easily encode problems on path constraints,
especially the containment problem for the class of standard path constraints. More-
over, we wish to reduce the complexity gap between problems on path constraints and
logical problems. In this way, a model checker or a theorem prover for such a logic
will allow us to solve problems on path constraints in an efficient manner.

3.1 Choosing a Logic

A modal flavor. Which logic (or logics) should we use for capturing path constraints?
Many formalisms have been proposed for reasoning about graphs. As we will see be-
low, many decidable classes of constraints can be defined in terms of suitable modal
logics, while constraints that lack a modal flavor (such as the ones studied in [13]) are
generally undecidable. Rather than the presence or absenceof regular expressions or
even the need for two vs. three variables to express a constraint, the ‘modal flavor’
of constraints seems to be important. By this we mean the factthat modal formulas
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can only express local properties and the fact that the quantification implicit in modal
formulas is ‘guarded’ [6]. We opt for Propositional DynamicLogics (PDL, [28]) here
since these are modal logics that incorporate regular expressions. Thus, we translate
constraints into formulas of a flavor of PDL and reformulate reasoning tasks for con-
straints as reasoning tasks within this flavor of PDL.

PDL-like features. The language of PDL has two kinds of primitive symbols: propo-
sitional symbols and atomic transitions. Propositional symbols stand for properties that
are true or false of a node in a graph; we only need three propositional symbols:�(tau-
tology),�(falsum), and���(to denote the root of the graph). Atomic transitions are
used to label edges; we include a distinguished label�to denote the diagonal relation.
Compound transition terms correspond to path expressions and are built from atomic
ones using�, �and�. We indifferently use “path expression”, “transition term” and
“relational term” as synonyms.

In addition to these traditional ingredients of PDL, we add awildcard �and a
converse operator�����: �is a transition term, and if

�
is a transition term, then so

is �����. For instance, the satisfaction of the forward constraint�	����at�in
the�-structure�will be expressed as��� �	���
���������. The node� is the
only node�in �satisfying����	���. Hence, our symbol���is an example of a
so-callednominal(a proposition letter that is true of at most a single node of amodel).
PDL with converse is calledconverse PDL(CPDL). We obtainCPDL with nominals
(see e.g., [20]) by extending CPDL with nominals.

3.2 Defining the Logic PDL
�	
�

The logic PDL
���

we study is a fragment of CPDL with nominals augmented with the
wildcard�. Here’s a more precise definition.

Definition 5 (PDL
���

) The path expressions of PDL
���

considered are those intro-
duced in Definition 1 with the inclusion of the converse operator �����; they are denoted
by�, �and also by

�
. Formulas of PDL

���
are typically denoted by�:

� 	 ���������������
���������
Given a formula�, define ���, the length of �, as the number of symbols in�. A
formula


���is read as ‘after some transition
�
,�holds,’ or, more precisely, as ‘there is

a sequence of labels which forms a word in a regular language defined by
�

and it leads
to a node where�holds.’ Dually,

����is definable as�
����and means ‘after every
transition

�
,�holds,’ that is: ‘if labels of a path form a word in

�
, then at the end of the

path�holds.’

To give an example,

�	��
���means that after 0 or finitely many�links one can

reach a node which has no outgoing links labeled
�
.

Definition 6 (Semantics) PDL
���

is interpreted on�-structures. We now define truth
of a formula�at a node�in a structure�(notation:����	�). For atomic propo-
sitional symbols,�is true at all nodes,�is false at all nodes, and���is true only at
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the root of the graph. Further,��is true if�is false, and���is true if both�and
�

are true. For modalities, we shall use the transition relations
����. We just need to

extend
����such that

��������	�
����
����������.
We say that�is accessiblefrom �by a transition

�
if

���������. Then, for

modal formulas,

���is true at a node�if there exists a node�accessible from�by�

such that�is true at�. Dually,
����is true at�if for every�accessible from�by

�
,

�is true. A PDL
���

formula�is true on an�-structure�if it is true at the root of
�. A PDL

���
formula�is satisfiableif it is true on some�-structure�. A formula

is valid if it is true on all�-structures.

Roughly speaking,�-structures equipped with
���� for every relational term

�
in

PDL
���

can (almost) be viewed as PDL-models with a unique proposition letter in-
terpreted by a singleton. This is not quite true because of the presence of�, but we
will show below that it is correct when non-deterministic�-structures are considered
(see the proof of Theorem 11). Hence, modulo the presence of�, PDL

���
can be

viewed as a fragment of CPDL with nominals [20] or as a fragment of the hybrid�-
calculus [43]. Furthermore, the constructive�-calculus introduced in [5] also contains
nominals (i.e., proposition letters interpreted by singletons) as well as a form of re-
cursion. We don’t need the full expressive power of the�-calculus, however: we are
interested in path queries, and regular expressions from PDL are sufficient to express
standard path constraints.

Just like the modal logic HML [33], PDL
���

has no proposition letters except the
truth constant�and the unique nominal���. Indeed, PDL

���
is designed to reason

about relations.
A final comment: one of our main aims is to reduce as much as possible the com-

plexity gaps between problems on path constraints and logical problems. We will show
that PDL

���
is well-designed in this respect.

3.3 Standard Logical Reasoning Tasks

For the purposes of this paper, the following logical reasoning tasks (involving PDL
���

)
are important:

�Themodel checkingproblem for PDL
���

is:

instance: a finite�-structure�and a formula�;

question: Is�true at�?

�Thevalidity problem for PDL
���

is defined as follows:

instance: a formula�;

question: Is it the case that for every�-structure�,�is true at�?

�Thesatisfiability problemis defined accordingly in the usual way.

Before we explore the computational costs of the above reasoning tasks for PDL
���

we will show that PDL
���

suffices for expressing the reasoning tasks on the standard
path constraints that we defined earlier.
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3.4 From Path Constraints to PDL
�	
�

and Back

Given a forward constraint�	��� �(or a backward constraint�	����), we
write��to denote the formula

���
���������(or
���
�����, respectively). Lemma 7

relates reasoning with path constraints to reasoning taskswith PDL
���

.

Lemma 7

1. Let�be an�-structure and�	���a standard path constraint. Then��	�
iff ��is true at�.

2. Let ��, . . . , ����be standard path constraints. Then�������������� iff
�������������������is PDL

���
valid.

The proof of Lemma 7 is by an easy verification.
By contrast, there is no way to express (lollipop) path constraints����by

PDL
���

formulas in a similar fashion since the containment problemfor the class of
(lollipop) path constraints is undecidable [13] and PDL

���
validity is decidable, as

we will see below. As an aside, (lollipop) path constraints can be expressed in modal
logics with reference pointers (see e.g., [24]), but the validity problem of such logics is
usually undecidable.

By using Lemma 7, one can easily establish the following results:

Lemma 8 Let C be either the full class of�-structures or the class of deterministic
�-structures.

1. The query evaluation problem for standard path constraints is LOGSPACE re-
ducible to the model checking problem for PDL

���
.

2. The containment problem for forward constraints restricted to�-structures inC
is LOGSPACE reducible to the validity problem for PDL

���
restricted to�-

structures inC.

3. The containment problem for backward constraints restricted to�-structures in
C is LOGSPACE reducible to the validity problem for PDL

���
without converse

and restricted to�-structures inC.

To conclude this section, we will briefly contrast our modal formalization of path con-
straints with others in the literature. In [37], a fragment of the Computation Tree Logic
CTL is shown to be equivalent to�

���	�		, a tree pattern language; more precisely, the
authors prove equivalence between the implication problemin this fragment of CTL
and the containment problem for�

���	�		. In addition, in [25], Core XPath is translated
into full CTL. It is important to notice that, unlike the authors of the papers just quoted,
we consider graph structures — and not just tree structures.

In [16], a spatial logic is introduced for reasoning about labelled directed graphs;
the logic is closely related to monadic second-order logic (MSO) for graphs (see e.g., [19]),
and its main use is in querying structures from the semistructured data model. Both
logics have a model checking problem in PSPACE, whereas satisfisability for MSO is
undecidable. By contrast, our logic PDL

���
is better attuned to the reasoning tasks
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about path constraints and we do not actually need the full power of MSO-like for-
malisms, especially if we wish to deduce complexity upper bounds of problems on
path constraints from translations into logical problems.

4 The Complexity of Reasoning with PDL���
�

We now consider complexity and decidability results for PDL
���

problems. In the
next section we will use these results, together with Lemma 8, to derive complexity
and decidability results for path constraints.

4.1 The Model Checking Problem

The model checking problem for PDL
���

is no more expensive than for PDL:

Theorem 9 Let �	
������������be an�-structure,���, and�a PDL
���

formula. Checking whether����	�can be done in time�����
����.
Proof. There is a simple linear reduction of the model checking problem for PDL

���
to the model checking problem for PDL. The latter problem is in time�����
����.
This follows from the fact that model checking for the alternation-free modal�-calculus
is in linear time (see e.g., [18]).

The linear time reduction works as follows. First, given�, we construct a new
�-structure��. ��has the same vertices and root, and contains all the edges which�
has plus, for every edge� ����in�we add three more edges to��:

�
����, �

��������, and�
��������.

The construction of�� is obviously linear in the size of�. Second, we rewrite�so
that all occurrences of�����are on the atomic labels. This can be done in linear time
by using the following standard equivalences:

������� 	 �����������
������� 	 �����������
��	��� 	 �������	

��������� 	 �
Note that the resulting formula�� is linear in the size of�. Finally, it is easy to show
that����	��	
���iff �����	��	��. �

Corollary 10 The model checking problem for PDL
���

is P-complete.

The polynomial upper bound is a consequence of Theorem 9 and the polynomial lower
bound can easily be obtained by a reduction from the P-complete problem SAM2CVP
(synchronous alternating monotone fanout 2 circuit value problem; see e.g., [26, page
123]), as has been done to show the P-hardness of CTL model-checking restricted to��

and
��

, a folklore result in model checking. The proof for CTL can easily be adapted
to the model-checking problem for PDL

���
restricted to deterministic�-structures, as

soon as�����.
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4.2 The Satisfiability Problem

The satisfiability problem for PDL
���

can be proved to be decidable by a reduction to
the (decidable) satisfiability problem of CPDL with nominals.

Theorem 11 The satisfiability and validity problems for PDL
���

are decidable in EX-
PTIME.

Proof. We use the fact that CPDL with nominals is decidable [20, Theorem 49] and
reduce satisfiability in PDL

���
to satisfiability in CPDL with nominals. If the set

of labels�is finite,�can be replaced by the finite union of labels from�and the
reduction to CPDL with nominals is immediate.

Suppose that�is infinite, in which case�is a non-trivial addition to the language.
We proceed as follows. Given a PDL

���
formula�which uses labels�����������

and possibly�, we construct a CPDL formula
�

by replacing�with �������������
in �, and we show that�is satisfiable (which means�is true at the root of some�-
structure) iff�����is.

Suppose�	
���������������	�. We will define an�-structure��and view
it as a partial description of a model for CPDL with nominals.Let��	
�������������
be the�-structure defined as follows:

1. for every�����,
����	���;

2.
������	

������.
It is easy to show that��� �	�iff ���� �	�����since

����in �is equal to��������������in��.
Now, suppose�	
��������������� �	�����for some partial description

of a model for CPDL with nominals. Let�	
������������be the�-structure
defined as follows:

1. for every��
��
�,
���	����;

2. for every�����������������,��	������.
It is now easy to show that�����	�����iff ����	�. �

By itself, Theorem 11 does not imply an analogous result for deterministic�-structures,
which remains an open problem to date. However, if the set of edge labels�is finite,
deterministic CPDL with nominals is decidable only if on deterministic�-structures,
the satisfiability problem for PDL

���
is decidable.

In the non-deterministic case, we can actually do better than Theorem 11, and ob-
tain matching lower and upper bounds for the complexity of the satisfiability problem
for PDL

���
.

Theorem 12 The satisfiability problem for PDL
���

is EXPTIME-complete whenever
�����.
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Proof. To see that the satisfiability problem for PDL
���

is decidable in exponential
time, recall that, by [20, page 98], the satisfiability problem for CPDL with nominals
is EXPTIME-complete. The reduction of the PDL

���
satisfiability problem to the

satisfiability problem for CPDL with nominals is polynomialin the size of the input
formula.

As to the lower bound, we use a reduction from the global satisfiability problem for
the standard modal logic K. A formula�is globally satisfiable if there exists a model
such that�is satisfied in every state of the model. The global satisfiablity problem for K
is known to be EXPTIME-hard, see e.g., [17, 31]. Our reduction only uses a restricted
form of the PDL

���
-satisfiability problem, viz. restricted to the modal operators


���
and


���� �. We use the spy-point technique as described in [10] by adapting the proof
of [7, Theorem 2]. As part of this technique, we introduce a node (the “spy point”) in
the model that can see any other node, and, therefore, universal quantification can be
simulated by exploring the successors of the spy point. The only difficulty is to use the
spy-point technique and simultaneously encode the proposition letters which occur in
the K-formula.

We set out to define a map
�

from K-formulas into PDL
���

-formulas such that
�is globally satisfiable iff

����is PDL
���

satisfiable. In order to show the ‘only-if’
direction, given a Kripke structure�	
������such that��	�, we construct an
�-structure�	
�	�������such that

����is true at�and the fact that����	��
is encoded by the existence of an edge

� �����in�where
�

is a node in�associated
with the proposition letter��. To simplify notation we now write��instead of

����.
The structure


�	�����consists of:

�a copy of

����, that is to say, the restriction of


�	�����to
�

is

����;

�an extra node�(the spy point) that can see any node in
�

(i.e., for every���,����in�);

�extra nodes�������that are used to encode the satisfaction of proposition letters
��, . . . ,��in such a way that����	�� iff ����is in�;

�a chain���������������
that allows us to identify the elements

of
�	��

:

1. �is the only element�in
�	

such that����	���(not related to the
chain);

2. �is the only element�of
�	

such that����and����;
3.
���(����

���) is the only element�in
�	

such that
����,

�		�(just here for the case
�	�), and not����.

Consequently, the elements of
�

in �are precisely the elements�in
�	

such that����and not����.
Let us define a family�
�����of PDL

���
formulas encoding proposition letters.


� 	 
��
�� ��

“����������”� �� �
�������
���� �����
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� �
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Figure 2:�and�: an example.


��� 	 
���� ��
�������������”� �� �

������
���� �����
���
Encodings of proposition letters can be also found in [27, 32], but our encoding is of
a different nature since we tailor it to the spy-point technique. The mapping

�
is now

defined as follows:

����� 	 
� for
����

commutes with the Boolean connectives

����� 	 
����
“only true at elements of�”� �� �
��
�� ������
�������������

Now, let�be a K-formula. We will show that�is globally K-satisfiable iff the follow-
ing formula is PDL

���
-satisfiable:

�����
“only true at elements of�”� �� �
��
�� ������
�������������

Without loss of generality, we can assume that if
�

distinct proposition letters occur in
�, then they are���������.
(‘Only-if’) Assume that��	�for some Kripke structure�	
������. Let
�	
�	�������be the�-structure such that

��		���������������where��������������and
�����������	�

;
���� 	���
����������
���������
���������
�����
�������
��������	���;
� the interpretation of���is�.

In Figure 2, we give a simple example of the construction. Letus show that for all
���, for all

���	����(the set of subformulas of�),����	�iff ����	����.
For the base case (for

�����������,����	��iff ����	
�), one can easily show

12



by induction on
�

that����	����	
��	���� ����	�����������������.
We now turn to the case

�	���. Observe that����	��� iff there is�� �����such that���� �	�� iff (i) there is����such that

���������, 
��������, 
���� 	����, and���� �	��. Furthermore, (i) holds iff there is���������

such that���� �	������
���� ������
������iff ����	����. So for all���,
we have����	����since��	�. Moreover,

�����������	 ����	
��
�� ������
�������	�. So,����	�����
��

�� ������
������������.
(‘If’) Assume that����	�����
��

�� ������
������������for some�-structure
�	
��������. Define a model�	
�	�����such that

��		���� 
���������
���� 	�����;
��is the restriction of

���to
�	

;

� for every
�����������,�����	����	����	
��.

Let us show that for all���	and for
���	����, ����	����iff ����	�.

The base case is obvious. We treat the case
�	��� in a bit more detail. We have

����	
����������
���� ������
�������iff there is�� ���������	such
that���� �	�����iff there is�� �����such that���� �	�� iff ����	�.
Since��� �	�����
��

�� ������
������������, we obtain����	�for all
����������	s. Since

�	�������, it follows that����	�for all���	. �
The minimal tense logic (the logic� in [41]) is a bimodal logic with modal operators����, ���

�� �, and a countably infinite set of proposition letters. As a corollary to the proof
of Theorem 12, the minimal tense logic augmented with a single nominal but without
proposition letters has an EXPTIME-hard satisfiability problem. This improves the re-
sult in [7], which states that the minimal tense logic with one nominalandproposition
letters is EXPTIME-hard. From the proof of Theorem 12, it is clear that the main in-
gredient for EXPTIME-hardness is not the presence of regular expressions in PDL

���
but rather the presence of a unique nominal with future and past-time operators.

To conclude this section we summarize the results we have obtained so far, and
situate them amongst related results in the literature; seeTable 1.

5 The Complexity of Reasoning with Path Constraints

In order to characterize the complexity of reasoning problems on path constraints, we
will either use translations into PDL

���
(mainly via Lemma 8) or use direct methods.

5.1 The Query Evaluation Problem

An immediate corollary to Lemma 8, item 1, and Theorem 9 is that checking whether
��	���can be done in time�����
����������. The rest of this section is
devoted to showing that this tractability result can be improved significantly. We need
the following lemma.
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Model checking problem

non-deterministic graphs deterministic graphs
PDL P-complete; see e.g., [18] P-complete; see e.g., [18]
PDL��

��
P-complete; this P-complete; this
paper, Corollary 10 paper, Corollary 10

Satisfiability problem

non-deterministic graphs deterministic graphs
PDL EXPTIME-complete [22, 40] EXPTIME-complete [39, 9]
PDL with nominals EXPTIME-complete [23] EXPTIME-complete [23]
CPDL EXPTIME-complete [22, 40] EXPTIME-complete [44]
CPDL with nominals EXPTIME-complete [20, 7] open
PDL��

��
EXPTIME-complete; this open
paper, Theorem 12

Table 1: A summary of results on logical reasoning tasks.

Lemma 13 The problem below is in NLOGSPACE in���and���:
instance: a finite�-structure�, a path expression

�
, and�����;

question: is

���������?

Proof. Without loss of generality, we can assume that
�

does not contain�, since�
is finite. We write

������to denote the finite state automaton obtained from�in the
obvious way with initial state�and final state�. The following facts are known:

1. constructing a finite state automaton
����recognizing����(the language gener-

ated by
�
) can be done in LOGSPACE in���;

2. constructing a product automaton�recognizing the intersection of the languages
from

����and
������can be done in LOGSPACE in����������;

3. the class of LOGSPACE transformations is closed under composition (see e.g., [8,
Theorem 3.37]).

Now, note that the question whether

���������is equivalent to checking whether

���� is non-empty. By [8, Theorem 3.36], we get that the latter canbe done in
NLOGSPACE in���. �

Lemma 13 is an improvement of [36], which only states that theproblem formulated
in Lemma 13 is in P.

In the proof of Lemma 13, if
�

contains�, then we consider
��

instead of
�

by
replacing every occurrence of�by ���������	�, where either��occurs in

�
or
���

is non-empty in�. Hence,����is in �����
����which guarantees that we also have
an NLOGSPACE upper bound in this case.

Theorem 14 The query evaluation problem for the class of path constraints is NLOGSPACE-
complete in���and���.
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Proof. The Graph Accessibility Problem (GAP) can easily be reducedto the query
evaluation problem, which provides NLOGSPACE-hardness. Indeed, let�	
����
be a graph and�����. We have


������	iff ��	
�������������	�����	�
with

���	�and
���	�
�����.

Now, let us establish the NLOGSPACE upper bound. Let�	�� �� �
(respectively,�	�����) be a path constraint and�a finite�-structure. We
provide an NLOGSPACE algorithm to check whether�	�	�. Since NLOGSPACE =
co-NLOGSPACE, we are done. The steps are the following:

1. non-deterministically choose�and�in
�

;

2. check in NLOGSPACE whether

��������(see Lemma 13);

3. check in NLOGSPACE whether

���������(see Lemma 13);

4. check in NLOGSPACE whether

���� 	�����(respectively


���� 	�����).
To see that the final step can also be done in NLOGSPACE, use Lemma 13 together
with the fact that NLOGSPACE = co-NLOGSPACE. �

Notice that the proof for NLOGSPACE-hardness is actually a lower bound for forward
constraints. Moreover (and by taking

���	�
�����) it can be adapted for backward
constraints. In a similar manner, the proof can be adapted for deterministic structures.
Summarizing, then, we have the following:

Theorem 15 The query evaluation problems for the classes of forward constraints,
backward constraints, and path constraints�are all NLOGSPACE-complete in���and
���, for both deterministic and non-deterministic graphs�.

As an aside, we designed the logic PDL
���

in such a way that we can express rea-
soning problems for standard path constraints as easily as possible. We can ‘measure’
how well PDL

���
fits this purpose by comparing the complexity results of reasoning

in PDL
���

to those of reasoning in other logics, and hopefully gettingas close as pos-
sible to the complexity of the corresponding problem on standard path constraints. For
instance, the hybrid�-calculus has a model-checking problem in NP

�
co-NP; given

Theorems 14 and 15 this result disqualifies the hybrid�-calculus as a logic that nicely
fits the descriptive requirements of standard path constraints; on the other hand, the
alternation-free hybrid�-calculus would fit better.

5.2 The Containment Problem

Our next aim is to obtain sharp complexity results for containment problems for classes
of path constraints. We start by considering non-deterministic�-structures, and the first
step is to show the following.

Theorem 16 The containment problem for forward constraints is decidable in expo-
nential time, while it is at least PSPACE-hard whenever�����.
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Proof. The EXPTIME upper bound is a corollary of Lemma 8(2) and Theorem 12. As
to the lower bound PSPACE, each relational term

�
built with

����	over the atomic
terms���������can obviously be viewed as regular expressions and we write����to
denote the language generated by

�
. By [34, Theorem 2.12(c)], the problem of check-

ing whether���������	� 	�����, where
�

is a relational term built over�������, is
PSPACE-complete. The complement problem belongs to the same complexity class.
One can show that for any regular expression

����, ����������iff for any structure
�����������, ����������. Consequently, it is easily verified that for any rela-
tional term

�
built over�������,���������	������iff �	�������	���. Hence,

the containment problem restricted to two labels and without forward constraints as
premisses, is already PSPACE-hard. �

For backward constraints one can obtain results similar to those for forward constraints.

Theorem 17 The containment problem for backward constraints is decidable in expo-
nential time, while it is at least PSPACE-hard whenever�����.
Proof. Since the converse construction�����is not present in the path expressions, we
cannot simply use the proof of Theorem 16. However, one can easily show that for
any regular expression�built over�������, (i) ���������	������iff (ii) for any
�-structure�,��	�����implies��	�������	����, and from this we easily
get our theorem. So let us prove that the equivalence (i) iff (ii) holds.
(Only-if) If ���������	������, then obviously for every�-structure�,��	���
��implies��	�������	����.
(If) Assume that (ii) holds and suppose that there is a finite word�����������	��
����such that�	���������for some�

��
(�	�if �	�). Let ��	
��������������������������be the structure such that

� for every
�������, for all ����������������, ������ iff ��	���and�		��;

���� 	�
��������������������������	������.
So�� �	�����but not��	�������	����since



����������������	and


�
����� 	����, a contradiction. �

We now restrict attention todeterministic�-structures, which makes a substantial
difference. The containment problem with (lollipop) path constraints of the form�����restricted to deterministic�-structures is undecidable even if�contains
only two labels [12]. However, in the lollipop constraints used in the proof, the opera-
tor
	

occurs in, and this is used to encode the word problem. Moreover by imposing
restrictions of, �, and�(for instance by forbidding

	
), decidable restrictions of the

containment problem on deterministic�-structures have been found (again, see [12]).
Using the results in this paper, we are able to identify a new decidable case. By com-
bining Lemma 8, item 3, and Theorem 11, we get

Lemma 18 The containment problem for backward constraints restricted to determin-
istic�-structures for finite sets of labels�is decidable in exponential time.
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Lemma 18 above provides a positive answer to an open questionfrom [12]. However,
in spite of Lemma 8 it is open whether the containment problemfor forward constraints
restricted to deterministic�-structures is decidable. Similarly, the decidability of the
containment problem for backward constraints restricted to deterministic�-structures
(without restrictions on�) is also open.

Query evaluation problem

non-deterministic graphs deterministic graphs
forward constraints NLOGSPACE-complete; NLOGSPACE-complete;

this paper, Theorem 15 this paper, Theorem 15
backward constraints NLOGSPACE-complete; NLOGSPACE-complete;

this paper, Theorem 15 this paper, Theorem 15
constraints NLOGSPACE-complete; NLOGSPACE-complete;

this paper, Theorem 14 this paper, Theorem 15

Containment problem

non-deterministic graphs deterministic graphs
forward constraints PSPACE-hard, in EXPTIME; open

this paper, Theorem 16
backward constraints PSPACE-hard, in EXPTIME; in EXPTIME (�finite);

this paper, Theorem 17 this paper, Lemma 18
constraints undecidable undecidable

[13, Theorem 3.1] [12, Theorem 6.1]

Table 2: A summary of results on reasoning tasks with path constraints.

6 Conclusions

By moving back and forth between reasoning tasks for PDL
���

and reasoning tasks
for semistructured data, we have given new and transparent decidability proofs for
the forward constraints proposed in [3] for optimizing queries on semistructured data,
mostly in the context of the web. In some cases we have obtained sharp upper and
lower bounds that are better than previously known ones (seee.g., Theorem 14 and 15),
and in other cases we have improved known bounds (Theorems 16and 17). Tables 1
and 2 summarize the complexity and (un-) decidability results for the reasoning tasks
considered in this paper.

It is worth observing that some of our decidability results were obtained by re-using
the results of [20]. More generally, there are many areas in computer science in which
describing and reasoning about finite graphs is a key issue. There exists a large body of
work in e.g., feature structures [42], process algebra [38], or knowledge representation
[21] which can be usefully applied in the theory of semistructured datas. But there
are differences in the kind of questions asked and in the emphasis in descriptions of
linguistic structures, processes, or knowledge on the one hand, and in descriptions of
database schemas on the other hand; these differences make the present application
interesting and non-trivial.
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Our modal logic perspective on standard path constraints moves many decidability
and complexity issues for semistructured data into the realm of PDL-like logics. Here
are just some of the many remaining open problems:

1. Complexity of the containment problem for the class of forward constraints
(respectively backward constraints) (we know PSPACE-hardness and the EX-
PTIME upper bound). The containment problem for the class offorward con-
straints cannot be expressed naturally by query containement between a con-
junctive two-way regular path query with constants and a tree two-way regular
path query with constants, although this problem is in PSPACE [14]. Query
containment between conjunctive two-way regular path queries with constants is
roughly about the validity of questions of the form�������������������.

2. Decidability of the containment problem for forward constraints restricted to
deterministic�-structures.

3. Decidability of PDL
���

restricted to deterministic�-structures; decidability of
PDL with converse and determinism is a long-standing open problem [43].

4. Extending our results to a richer path expressions language containing additional
predicates such as, for example, XPath [45].
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