N

N
N

HAL

open science

A Modal Perspective on Path Constraints
Natasha Alechina, Stéphane Demri, Maarten de Rijke

» To cite this version:

Natasha Alechina, Stéphane Demri, Maarten de Rijke. A Modal Perspective on Path Constraints.

Journal of Logic and Computation, 2003, 13 (6), pp.939-956. 10.1093/logcom/13.6.939 .

03189647

HAL Id: hal-03189647
https://hal.science/hal-03189647

Submitted on 7 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03189647
https://hal.archives-ouvertes.fr

A Modal Perspective on Path Constraints

Natasha Alechina  Stephane Demfi  Maarten de Rijké

Abstract

We analyze several classes of path constraints for sertigted data and
prove a umber of decidability and complexity results fortsaonstraints. While
some of these decidability results were known before, wiewrethat our improved
complexity bounds are new. Our proofs are based on techsifqu@ modal logic
and automata theory. We believe that our modal logic petiseesheds additional
light on the reasons for previously known decidability anthplexity results.

Keywords: semistructured data, path constraints, modal logic,raata theory.

1 Introduction

In recent years, a lot of interesting work has been done enebdatabase techniques to
semistructured collections of data, in particular the \Wovide Web or fragments of it;
an overview of this work can be found in [1]. It is generallyeed that the appropriate
data model for semistructured data is an edge-labeled grifare specifically, the
web can be viewed as a set of objects linked by labeled edgeshjact represents a
page, and the labeled edges represent hypertext links.

Query languages proposed for semistructured data andiggehe web, such as
WebSQL [35], Lorel [2], and UnQL [11] are similar in spirit ifot in syntax, and all
include a form of recursion (regular expressions). Makifigative use of whatever
information is available about the format of data is obvlpasvery important issue. In
the context of the web, it is often useful to know that evenglraccessible by a given
sequence of links is cached, or available locally; or thatdite reachable by a given
sequence of links is mirrored elsewhere, etc. To expregsiatmrmation, one can use
so-calledpath constraintsthat is: statements about paths in the graph. It is reas®nab
to expect that the language of constraints forms a wellapth§oreferably decidable)
sublanguage of the query language.

In this paper we build on results in [3, 13], and embed seveledses of path
constraints that have been considered in the literatucevirtl-known modal logics.
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Earlier work has considered the mogaktalculus, but we consider variants of PDL
(see e.g., [28]). Our embeddings into a flavor of PDL esthtdisiumber of things;
they shed light on known decidability results and give risenéw ones and to new
complexity bounds. In some cases, the complexity boundsiredd by translation are
not the tighest possible; in such cases we provide tightemt®by using other methods
(see e.g., Theorems 14 and 15).

But perhaps more importantly, adopting a logical perspean data modeling and
description languages often yields conceptual claritgjeaaonstrated, for instance by
Hayes’ paper on a model-theoretic semantics for RDF and RBI{sIn our case, we
think that the main benefit of our modal perspective on pattstaints lies in the in-
sights it yields on the way various constraints relate tdv@dloer. Of course, rephrasing
reasoning tasks on constraints in terms reasoning insidigdke logic will not always
give the sharpest possible complexity bounds: in some ¢heesorresponding logic
simply has not been explored yet.

This paper is an extended and updated version of [4]. It iarizgd as follows.
Section 2 provides background information on data modeafscarery languages and
it introduces several kinds of path constraints. In SecBawve introduce logical for-
malisms to capture such constraints. In Section 4 we stateamplexity and decid-
ability results for logical problems. In Section 5, we editbcorresponding results for
reasoning problems on path constraints. We conclude inddegt

2 Path Constraints

Semistructured data is often represented as an edgedadpelph. In particular, the
World Wide Web can be modeled as a graph where the verticasmareely identified
by URLs and the labels are hypertext links between them jdfjer structures able to
deal with the frame structure of the pages can be found inAB]important special
class of graphs are deterministic graphs. A graph is cal&drministicif for every
nodew and labek there is at most one nodesuch that: —= v holds. In the case of
the web (unlike the case of most object-oriented databidespasonable to expect a
graph to be deterministic.

In this paper, we will restrict attention tooted connectedraphs: that is, one of
the nodes in the graph is designated as the root and evenyrmttie is accessible from
the root by a directed path of edges. Intuitively, this iseaese we consider the web
from the point of view of browsing, i.e., only the sites acibke from the current site
(the root) really matter.

Languages for querying semistructured data use so-calldderies. These have
emerged as an important class of browsing-style queriesinatineir simplest version
they are of the form ‘find all objects reachable by paths whedge labels form a
regular expression over some given alphabet of labels.’

Let us make things more formal. Létbe a countable set of edge labels. An
structureG is a tuple of the fornt? = (V, 7t, (Rqs)qeer) such thal/ is a set of nodest
is a distinguished element ®f (the root), and R, ).c, is a family of binary relations
onV acting as links between nodes. We say tfias finite whenevelV is finite and
R, is non-empty for only finitely many labels. In that case, tize ®f G, written |G|,



iS|V|+ Xqer|Ral. In other wordsL-structures are rooted labeled transitions systems
over the (possibly infinite) alphabét

Definition 1 Let L be a countable set of edge labels. A labet L, the empty path
e and wildcard# arepath expressiondf p; andp, are path expressions, then so are
p1 ; p2 (Sequential compositionp; + p2 (union), andp™* (finite iteration).

Given anL-structureGG, we defineransition relationstr(p) on V' x V corresponding
to the path expressions

tr(a) = RyforaelL
tr(p*) is the reflexive transitive closure 6f(p)
tr(#) = U R,
tr(e) = {(w,u):ueV}
tr(pr;p2) = {{u,v):3z(tr(p1)(y,2) Atr(p2)(z,v))}
tr(pr +p2) = tr(p1) Utr(pz)

As usual, given a binary relatioR on V, we write R(u) to denote the set aoR-
successors af: {v € V : (u,v) € R}.

In the absence of information about the format of data, etalg queries with
regular expressions can be very inefficient. A natural wagxtwress useful information
about the data represented as a graph is to impose corstraipbssible paths in the
graph, such as ‘all objects reachable by a pedine also reachable by a pathwhere
p andq are sequences of labels, possibly involving regular eswas. Examples of
constraints which may be useful for query optimization ia tdontext of the web are
constraints saying that everything accessible by suchsant sequence of labels is
also accessible locally; that the answer to such-and-suehyds cached; that such-
and-such site is mirrored elsewhere, and so on. All thesmpbes can be expressed
by means of path inclusion constraints as defined in [3] (sé@A).

The motivation of the work in [13] is more database-relateghtthe work in [3].
Indeed, one important difference between the constraorisidered in [3] and those
studied in [13] is that the former correspond to unary prtperand are evaluated
relative to a node. The latter are closed sentences and carahmmted anywhere and
don’t have to mention the root; the motivation for the laieemuch more database-
related than the work in [3]. Another difference is that tlemstraints from [3] can
contain regular expressions, while those in [13] are $rfast-order definable.

Definition 2 Let p and¢ be two path expressions. path inclusion constrainis a
statement of the forp C; ¢. Let G be anL-structure. A path inclusion constraint
p Cf gistrue atG, written G = p Cy g, if tr(p)(rt) C tr(q)(rt): every nodey
reachable fromt by a path whose labels form a word describedkiy.e., ap-path),
is reachable fromt by a path whose labels form a word describedliye., ag-path).
See Figure 1 (a).

The path inclusion constraints defined above are sometiefie@sed to agorward con-
straints. In [13]backwardconstraints are introduced. We generalize their definition
a language containing regular expressions.



(a) Inclusion constraint (b) Backward constraint (c) Lmdlp constraint
Figure 1: Constraints.

Definition 3 Let p andq¢ be two path expressions. Backwardpath constraint is a
statement of the formp Cp ¢. Let G be anL-structure. A backward path constraint
p Cp qistrue atG, written G |= p Cyp q, if tr(p)(rt) C (tr(q))~'(rt) where=!
denotes the converse operator on binary relations. SeesFlgib).

Notice that a backward constraint can be rewritten as ansiah constraint, and vice
versa, by rewriting the regular expressions involved in ghesence of the converse
operator.

A standard path constraintnotation: p C ¢) is either a forward constraint or a
backward constraint. The next class of constraints is argépation of path constraints
as defined in [13] to a language containing regular exprassio

Definition 4 Let p, ¢, andr be path expressions. Wllipop path constraintis an
expression of the form ~ p C ¢. LetG = (V,rt, (Ra)acL) be anL-structure. A
lollipop path constraint ~ p C g istrue atG, written G |= r ~ p C ¢, if for every
x € tr(r)(rt), (V,z,(Ras)acL) = p C g. See Figure 1 (c).

Obviously, a forward constraint C ¢ ¢ is a lollilop path constraint ~» p C ¢ with
r = €. In the sequel, a lollipop path constraint will simply beledla path constraint.
Our syntax for talking about path constraints is obviouslyclnmore abstract than,
for example, the XPath syntax [45, 29], which was designetkszribe paths in XML
trees. XPath involves predicates specific to attributesremdes, and it allows navi-
gation along the sibling axis. However, many constraintictvlare formulated using
XPath expressions are very similar to the path constraietare interested in. Consider
the following example (taken from [15]):

<consi stencyrule id="r1">
<descri pti on>
The product name of an advertised product nust be
in the catal ogue
</ descri ption>
<forall var="a" in="$adverts">
<exi sts var="p" in="$products">
<equal opl="$a/Product Nane/text ()"
op2="%$p/ Nane/text ()"/>
</ exi st s>
</forall>
</ consi st encyr ul e>



This is the same as the following path inclusion constraint:
Adverts; ProductName C ¢ Products; Name.

A further exploration of the formal logical aspects of XP&theyond the scope of this
paper; we refer the reader to [25, 37].

Now that we have formulated path constraints, we take a clos& at important
reasoning tasks involving them.

e The query evaluatiorproblem for a clas€ of path constraints is defined as
follows:

instance: a finite L-structureG and a constraint in C;
question: G = ¢?

e A more difficult problem is thecontainmentproblem for the clas€ of path
constraints. It is defined as follows:

instance: constraints;, ..., cp+1, 7 > 0,in C;

question: isitthe case that for every-structure?, G = c; and ... and7 | ¢,
imply G = ¢n417? (if so, we writecy, ..., ¢ — Cnt1.)

Variants of the above problems can be defined by considenihg(finite, determin-
istic, ...) L-structures or/and by distinguishing the class of constsdorc,, ..., c,
andc separately (if applicable).

In the sequel we investigate the decidability and compjdasiues of the problems
we have just introduced, mostly from a modal logic point @wi

3 Capturing Path Constraints by Modal Means

To determine the computational costs of reasoning taskatinqonstraints, we recast
them as model checking, validity, and satisfiability tagsksome logic. The logic used
for this purpose should be such that it can easily encoddgrehon path constraints,
especially the containment problem for the class of stahgath constraints. More-
over, we wish to reduce the complexity gap between problemsath constraints and
logical problems. In this way, a model checker or a theoreavaarfor such a logic
will allow us to solve problems on path constraints in an effitmanner.

3.1 Choosing a Logic

A modal flavor. Which logic (or logics) should we use for capturing path ¢iats?

Many formalisms have been proposed for reasoning abouhgrajs we will see be-
low, many decidable classes of constraints can be defineztimstof suitable modal
logics, while constraints that lack a modal flavor (such asahes studied in [13]) are
generally undecidable. Rather than the presence or absénegular expressions or
even the need for two vs. three variables to express a constiil@e ‘modal flavor’

of constraints seems to be important. By this we mean thetfiattmodal formulas



can only express local properties and the fact that the dication implicit in modal
formulas is ‘guarded’ [6]. We opt for Propositional Dynanhiagics (PDL, [28]) here
since these are modal logics that incorporate regular egfmes. Thus, we translate
constraints into formulas of a flavor of PDL and reformulaasoning tasks for con-
straints as reasoning tasks within this flavor of PDL.

PDL-like features. The language of PDL has two kinds of primitive symbols: propo
sitional symbols and atomic transitions. Propositionatlsgls stand for properties that
are true or false of a node in a graph; we only need three pitogpea symbols:T (tau-
tology), L (falsum), androot (to denote the root of the graph). Atomic transitions are
used to label edges; we include a distinguished lalbeldenote the diagonal relation.
Compound transition terms correspond to path expressiothsu@ built from atomic
ones using, + andx. We indifferently use “path expression”, “transition téramd
“relational term” as synonyms.

In addition to these traditional ingredients of PDL, we addilicard # and a
converse operato-) 1: # is a transition term, and if is a transition term, then so
is (t)~!. For instance, the satisfaction of the forward constraiat p C; ¢ atrt in
the L-structureG will be expressed a&',rt |= [p]((q) !)root. The nodert is the
only nodew in G satisfyingG, w [= root. Hence, our symbaloot is an example of a
so-callednominal(a proposition letter that is true of at most a single nodembalel).
PDL with converse is calledonverse PDL(CPDL). We obtainCPDL with nominals
(see e.qg., [20]) by extending CPDL with nominals.

3.2 Defining the Logic PDLath

The logic PDIP**" we study is a fragment of CPDL with nominals augmented wiéh th
wildcard#. Here’s a more precise definition.

Definition 5 (PDLP2t*) The path expressions of PP considered are those intro-
duced in Definition 1 with the inclusion of the converse oparé)~!; they are denoted
by p, ¢ and also byt. Formulas of PDP**" are typically denoted by:

¢ u= T|L|root|-¢|oAg|(t)e]lle.

Given a formulag, define|¢|, the lengthof ¢, as the number of symbols . A
formula(t)¢ is read as ‘after some transitiong holds,’ or, more precisely, as ‘there is
a sequence of labels which forms a word in a regular languefiead! byt and it leads
to a node where holds.” Dually, [t]¢ is definable as+(t)-¢ and means ‘after every
transitiont, ¢ holds,’ that is: ‘if labels of a path form a word tnthen at the end of the
path¢ holds.

To give an example(a*)—(b) T means that after O or finitely manylinks one can
reach a node which has no outgoing links labéled

Definition 6 (Semantics) PDLP*t" s interpreted or.-structures. We now define truth
of a formula¢ at a nodew in a structureG (notation: G, w = ¢). For atomic propo-
sitional symbols;T is true at all nodes| is false at all nodes, antbot is true only at



the root of the graph. Furthefig is true if ¢ is false, andp A ¢ is true if both¢ and
¢ are true. For modalities, we shall use the transition mfatir(p). We just need to
extendtr(-) such thatr((p)~') = {{u,v) : (v,u) € tr(p)}.

We say that is accessiblédrom u by a transitiort if (u,v) € ¢r(¢). Then, for
modal formulas{t)¢ is true at a nodey if there exists a node accessible from: by
t such tha is true atv. Dually, [t]¢ is true atu if for every v accessible fromu by ¢,
¢ is true. A PDIP?th formula ¢ is true on anL-structureG if it is true at the root of
G. A PDLPe*h formula ¢ is satisfiableif it is true on someL-structureG. A formula
is valid if it is true on allL-structures.

Roughly speakingL-structures equipped withr(¢) for every relational termt in
PDLP**" can (almost) be viewed as PDL-models with a unique promusittter in-
terpreted by a singleton. This is not quite true becauseepthsence oft, but we
will show below that it is correct when non-determinisfiestructures are considered
(see the proof of Theorem 11). Hence, modulo the presengg $fDLP*" can be
viewed as a fragment of CPDL with nominals [20] or as a fraghoérthe hybridu-
calculus [43]. Furthermore, the constructjwealculus introduced in [5] also contains
nominals (i.e., proposition letters interpreted by sitms) as well as a form of re-
cursion. We don'’t need the full expressive power of thealculus, however: we are
interested in path queries, and regular expressions fromd® sufficient to express
standard path constraints.

Just like the modal logic HML [33], PDtt* has no proposition letters except the
truth constanil™ and the unique nominabot. Indeed, PDE**" is designed to reason
about relations.

A final comment: one of our main aims is to reduce as much astpeske com-
plexity gaps between problems on path constraints anddbgioblems. We will show
that PDLPeth is well-designed in this respect.

3.3 Standard Logical Reasoning Tasks

For the purposes of this paper, the following logical reasgtasks (involving PDp2th)
are important:

e Themodel checkingroblem for PDIPet" js:

instance: a finite L-structureGG and a formulap;
question: Is ¢ true atG?

¢ Thevalidity problem for PDIP**" is defined as follows:

instance: a formulag;
question: Is it the case that for ever§-structureG, ¢ is true atG'?

e Thesatisfiability problenis defined accordingly in the usual way.

Before we explore the computational costs of the above réagdasks for PDpeth
we will show that PDPet* suffices for expressing the reasoning tasks on the standard
path constraints that we defined earlier.



3.4 From Path Constraints to PDLP**" and Back

Given a forward constraint = p Cy ¢ (or a backward constraint = p C, g), we
write ¢.. to denote the formul@]{(q) ~*)root (or [p](g)root, respectively). Lemma 7
relates reasoning with path constraints to reasoning tagksPDLP"

Lemma 7

1. LetG be anL-structure and = p C q a standard path constraint. Thén= ¢
iff ¢ is true atG.

2. Letcy, ..., cyy1 be standard path constraints. Then...,c, — cpy1 iff
(Gey A=+ ABe) = be,,, is PDLPH valid.

The proof of Lemma 7 is by an easy verification.

By contrast, there is no way to express (lollipop) path a@iistsr ~ p C ¢ by
PDLP2*" formulas in a similar fashion since the containment problenthe class of
(lollipop) path constraints is undecidable [13] and PBI validity is decidable, as
we will see below. As an aside, (lollipop) path constrairda be expressed in modal
logics with reference pointers (see e.g., [24]), but thélitglproblem of such logics is
usually undecidable.

By using Lemma 7, one can easily establish the followingltesu

Lemma 8 Let C be either the full class ol-structures or the class of deterministic
L-structures.

1. The query evaluation problem for standard path consgdnL OGSPACE re-
ducible to the model checking problem for PE}?.

2. The containment problem for forward constraints recd¢o L-structures irC
is LOGSPACE reducible to the validity problem for PE#" restricted toL-
structures irC.

3. The containment problem for backward constraints i&etlito L-structures in
C is LOGSPACE reducible to the validity problem for PE¥" without converse
and restricted td.-structures irC.

To conclude this section, we will briefly contrast our modahfialization of path con-
straints with others in the literature. In [37], a fragmehth® Computation Tree Logic
CTL is shown to be equivalent t8l:*// a tree pattern language; more precisely, the
authors prove equivalence between the implication probiethis fragment of CTL
and the containment problem f&t:*// . In addition, in [25], Core XPath is translated
into full CTL. It is important to notice that, unlike the awtts of the papers just quoted,
we consider graph structures — and not just tree structures.

In [16], a spatial logic is introduced for reasoning abolelled directed graphs;
the logic is closely related to monadic second-order l0gi§ Q) for graphs (see e.g., [19]),
and its main use is in querying structures from the semisirad data model. Both
logics have a model checking problem in PSPACE, whereasisatility for MSO is
undecidable. By contrast, our logic PP” is better attuned to the reasoning tasks



about path constraints and we do not actually need the fullep@f MSO-like for-
malisms, especially if we wish to deduce complexity uppeurtats of problems on
path constraints from translations into logical problems.

4 The Complexity of Reasoning with PDIPt"

We now consider complexity and decidability results for PBf: problems. In the
next section we will use these results, together with Lemmis 8lerive complexity
and decidability results for path constraints.

4.1 The Model Checking Problem
The model checking problem for PB" is no more expensive than for PDL:

Theorem 9 Let G = (V,rt, (R.)acr) be anL-structurew € V, and¢ a PDLPeth
formula. Checking wheth&®, w |= ¢ can be done in timé& (|G| x |¢]).

Proof. There is a simple linear reduction of the model checking lemokfor PDLPet"
to the model checking problem for PDL. The latter problemmigime O(|G| x |¢|).
This follows from the fact that model checking for the aliiaon-free modaj:-calculus
is in linear time (see e.g., [18]).

The linear time reduction works as follows. First, giveh we construct a new
L-structureG’. G’ has the same vertices and root, and contains all the edgeh @hi
has plus, for every edge -+ v in G we add three more edges@:

-1 -1
u i) v,V (#i) u, andv (i> U.

The construction of7’ is obviously linear in the size af. Second, we rewrité so
that all occurrences af)~! are on the atomic labels. This can be done in linear time
by using the following standard equivalences:

)7t = ) (7
) I ) R (
@) = ()
(™"t =»p

Note that the resulting formul&’ is linear in the size 0. Finally, it is easy to show
thatG,w ':PDLpath ¢ iff Gl,w 'ZPDL ¢I. O

Corollary 10 The model checking problem for PBt" is P-complete.

The polynomial upper bound is a consequence of Theorem Sharubtynomial lower
bound can easily be obtained by a reduction from the P-cdmpleblem SAM2CVP
(synchronous alternating monotone fanout 2 circuit valkablem; see e.g., [26, page
123]), as has been done to show the P-hardness of CTL modekiolg restricted to’X
and3X, a folklore result in model checking. The proof for CTL carsigabe adapted
to the model-checking problem for PPt restricted to deterministif-structures, as
soon agL| > 2.



4.2 The Satisfiability Problem

The satisfiability problem for PD1¢t* can be proved to be decidable by a reduction to
the (decidable) satisfiability problem of CPDL with nominal

Theorem 11 The satisfiability and validity problems for PB¥" are decidable in EX-
PTIME.

Proof. We use the fact that CPDL with nominals is decidable [20, Té&en49] and
reduce satisfiability in PDte*" to satisfiability in CPDL with nominals. If the set
of labels L is finite, # can be replaced by the finite union of labels frdmand the
reduction to CPDL with nominals is immediate.

Suppose thak is infinite, in which casét is a non-trivial addition to the language.
We proceed as follows. Given a PB® formula ¢ which uses label§ay, . ..,a,}
and possibly#, we construct a CPDL formula by replacing# with (a1 +- - -+ an+1)
in ¢, and we show thap is satisfiable (which meansis true at the root of someé-
structure) iffroot A ¢ is.

Suppos&r = (V,rt, (Ra)acL), rt = ¢. We will define anl.-structureG’ and view
it as a partial description of a model for CPDL with nominadlst G’ = (V, rt, (R,,)acL)
be theL-structure defined as follows:

1. foreveryl <i<n, R, = Ry,

2. R, =Uyecr Ra-

An 41

It is easy to show tha®, rt |= ¢ iff G',rt |= root A sincetr(#) in G is equal to
tr(ai+ -+ ant1) ING'.

Now, suppose? = (V,rt, (R.)acL), Tt = Toot A ¢ for some partial description
of a model for CPDL with nominals. Le& = (V,rt,(R,)scr) be the L-structure
defined as follows:

1. foreveryl <i<n,R,, =R, ;

2. foreverya € (L\ {a1,...,an}), Ra = R,

An41"

Itis now easy to show tha¥’, r¢ = root A ¢ iff G,rt |E &. O

By itself, Theorem 11 does not imply an analogous resultéedninisticL-structures,
which remains an open problem to date. However, if the setlgédabeld. is finite,
deterministic CPDL with nominals is decidable only if on el@binistic L-structures,
the satisfiability problem for PD13t" is decidable.

In the non-deterministic case, we can actually do better Tfeeorem 11, and ob-
tain matching lower and upper bounds for the complexity efghtisfiability problem
for PDLPeth,

Theorem 12 The satisfiability problem for PD12t" is EXPTIME-complete whenever
|L] > 1.

10



Proof. To see that the satisfiability problem for PB#" is decidable in exponential
time, recall that, by [20, page 98], the satisfiability pexlfor CPDL with nominals
is EXPTIME-complete. The reduction of the PBt* satisfiability problem to the
satisfiability problem for CPDL with nominals is polynomial the size of the input
formula.

As to the lower bound, we use a reduction from the globalfealbidity problem for
the standard modal logic K. A formulais globally satisfiable if there exists a model
such thaw is satisfied in every state of the model. The global satisfigioblem for K
is known to be EXPTIME-hard, see e.g., [17, 31]. Our reductialy uses a restricted
form of the PDIP2*-satisfiability problem, viz. restricted to the modal ogera(a,)
and(a,'). We use the spy-point technique as described in [10] by auafite proof
of [7, Theorem 2]. As part of this technique, we introduce den¢the “spy point”) in
the model that can see any other node, and, therefore, salguantification can be
simulated by exploring the successors of the spy point. Tihedifficulty is to use the
spy-point technique and simultaneously encode the propodetters which occur in
the K-formula.

We set out to define a map from K-formulas into PDP***-formulas such that
¢ is globally satisfiable ifff (¢) is PDLPeth satisfiable. In order to show the ‘only-if’
direction, given a Kripke structur! = (V, R, m) such thatM = ¢, we construct an
L-structureG = (V*,rt, R,,) such thatf(¢) is true atG and the fact that, w |= p;
is encoded by the existence of an edgé% w in G wherei is a node inG associated
with the proposition lettep;. To simplify notation we now write— instead of—=%.
The structurgV*, R,,) consists of:

e acopy of(V, R), that is to say, the restriction ¢V *, R,,) to V is (V, R);

e an extra nodet (the spy point) that can see any nod#ifi.e., for everyw € V,
rt — win Q);

e extranodesg,..., N thatare used to encode the satisfaction of propositioerkett
p1, --.,pN insuch away tham, w | p; iff i — wisinG;

e achainrt +—— 1 — 2 — ... — N that allows us to identify the elements
of V¥\ V:
1. rt is the only elementv in V* such thatG, w [= root (not related to the
chain);
2. 1is the only element of V* such thatt — w andw — rt;
3.i+1(1 <i< N —1)is the only elementy in V* such that — w,
w # rt (just here for the case= 1), and notrt — w.

Consequently, the elements Bfin G are precisely the elemenisin V* such that
rt — w and notw — rt.
Let us define a familyr;);cn of PDLPt" formulas encoding proposition letters.

“only true at 1”
N

moo= <aal>(2a0>root A {ag Hyroot)

11



Figure 2: M and@G: an example.

“only true at i+1"

Tiv1 = {ag')(=root A =(ag )root A ;).

Encodings of proposition letters can be also found in [27, Bt our encoding is of
a different nature since we tailor it to the spy-point tecfu@. The mapping is now
defined as follows:

f(pz) = m; for ¢ > 1
f commutes with the Boolean connectives
“only true at elements oV

f(09) = (ao)({ag')root A—~{ao)root A f(¢)).

Now, let¢ be a K-formula. We will show thap is globally K-satisfiable iff the follow-
ing formula is PDIP*th-gatisfiable:

“only true at elements oV
A

[ao](<a51)root A —={ap)root — f(¢9)).

Without loss of generality, we can assume thaYitlistinct proposition letters occur in
¢, then they areq, ..., pN.

(‘Only-if’y Assume thatM = ¢ for some Kripke structure! = (V, R, m). Let
G = (V*,rt, Rq,) be theL-structure such that

o V¥ :=VU{rt}u{l,...,N}wherert ¢ VU{l,...,N}andVNn{l,...,N} =

® Ry := RU{(rt,w) :w e V}U{(1,2),....,(N—-1,N)}U{(1,rt),(rt,1)} U
{G, w) : M,w = p; };

¢ the interpretation ofoot is rt.

In Figure 2, we give a simple example of the construction. useshow that for all
w €V, forall ¢ € sub(¢) (the set of subformulas @), M,w E ¢ iff G,w E f(¥).
For the base case (fore {1,..., N}, M,w = p; iff G,w = m;), one can easily show

12



by induction oni that{w e V* : Giw Em} ={w eV : M,w Ep;} U ({i+1}\
{N +1}).

We now turn to the casg = <. Observe thaiM,w | Oy iff there isw’ €
R(w) such thatM, v’ |= ¢ iff (i) there isw’ € V such thafw,w’) € R,,, (r,w’) €
R,y (W', r) € Ry,, and M, w' |= 9. Furthermore, (i) holds iff there is’ € R,,(w)
such thatG,w' = f(¢') A {ag Yoot A =(ag)root iff G,w = f(1). So forallw € V,
we haveG,w | f(¢) sinceM [ . Moreover, R, (rt) N {w € V* : G,w [
{ag MYroot A =(ag)root} = V. S0,G, 7t |= [ao]({ag *)root A —~{ag)root — f(1)).
(‘If") Assume thatG, rt |= [ag]({ag ' )root A={ag)root — f(¢)) for someL-structure
G = (V,rt, Ry, ). Define amodeM = (V*, R, m) such that

o V*:={weV:(rt,w) € Ry, (w,rt) € Ry, }
¢ R is the restriction ofR,, to V*;
e foreveryi € {1,...,N},m(p;) ={w e V*: G,w = m;}.

Let us show that for allv € V* and fory € sub(¢), G,w E f(¥) iff M,w [E 9.
The base case is obvious. We treat the aase <+’ in a bit more detail. We have
G,w | (ao)(f(¥') A (ag')root A =(ao)root) iff there isw’ € Ry, (w) N V* such
thatG,w' = f(¢') iff there isw’ € R(w) such thatM,w’ | ¢ iff M,w E 9.
SinceG, rt |= [ao]({ag )root A =(ag)root — f(3)), we obtainM,w |= ¢ for all
W € Rgy (rt)NV*s. SinceV* C R, (rt), it follows thatM, w = ¢ forallw € V*. O

The minimal tense logic (the logi&; in [41]) is a bimodal logic with modal operators
[ao], [ag '], and a countably infinite set of proposition letters. As adary to the proof
of Theorem 12, the minimal tense logic augmented with a singiminal but without
proposition letters has an EXPTIME-hard satisfiabilitylgean. This improves the re-
sult in [7], which states that the minimal tense logic witfearominaland proposition
letters is EXPTIME-hard. From the proof of Theorem 12, itlisac that the main in-
gredient for EXPTIME-hardness is not the presence of regidpressions in PDHet?
but rather the presence of a unique nominal with future asttrae operators.

To conclude this section we summarize the results we haairsat so far, and
situate them amongst related results in the literatureTabke 1.

5 The Complexity of Reasoning with Path Constraints

In order to characterize the complexity of reasoning pnoislen path constraints, we
will either use translations into PDE” (mainly via Lemma 8) or use direct methods.

5.1 The Query Evaluation Problem

An immediate corollary to Lemma 8, item 1, and Theorem 9 is thacking whether
G E p C g can be done in tim& (|G| x (|p| + |¢|)). The rest of this section is
devoted to showing that this tractability result can be ioved significantly. We need
the following lemma.
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Model checking problem

non-deterministic graphs deterministic graphs
PDL P-complete; see e.g., [18] | P-complete; see e.g., [18]
pPDLPath P-complete; this P-complete; this
paper, Corollary 10 paper, Corollary 10
Satisfiability problem
non-deterministic graphs deterministic graphs
PDL EXPTIME-complete [22, 40]] EXPTIME-complete [39, 9]
PDL with nominals | EXPTIME-complete [23] EXPTIME-complete [23]
CPDL EXPTIME-complete [22, 40]] EXPTIME-complete [44]
CPDL with nominals| EXPTIME-complete [20, 7] | open
pPDLPath EXPTIME-complete; this open
paper, Theorem 12

Table 1: A summary of results on logical reasoning tasks.

Lemma 13 The problem below is in NLOGSPACE i@| and|¢|:
instance: a finite L-structure(, a path expressioh andu,v € V;
question: is (u,v) € tr(t)?

Proof. Without loss of generality, we can assume thdbes not contaig#, sinceG
is finite. We write A ..., to denote the finite state automaton obtained f@nm the
obvious way with initial state, and final state. The following facts are known:

1. constructing a finite state automatd(¢) recognizingL(t) (the language gener-
ated byt) can be done in LOGSPACE it;

2. constructing a product automatBmecognizing the intersection of the languages
from A(t) and.Ag. .., can be done in LOGSPACE itA(t)| + |G|;

3. the class of LOGSPACE transformations is closed undeposition (see e.g., [8,
Theorem 3.37]).

Now, note that the question whether, v) € tr(¢) is equivalent to checking whether
L(B) is non-empty. By [8, Theorem 3.36], we get that the latter bandone in
NLOGSPACE in|B|. 0

Lemma 13 is an improvement of [36], which only states thatgtablem formulated
in Lemma 13isin P.

In the proof of Lemma 13, it contains#, then we considet’ instead oft by
replacing every occurrence ¢ by (a1 + - - - + ax), where either; occurs int or R,
is non-empty inG. Hence|t'| is in O(|G| x |t|) which guarantees that we also have
an NLOGSPACE upper bound in this case.

Theorem 14 The query evaluation problem for the class of path conggs@MNLOGSPACE-
complete in|G| and|c|.
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Proof. The Graph Accessibility Problem (GAP) can easily be reducetthe query
evaluation problem, which provides NLOGSPACE-hardnesdeéd, letZ = (V, R)
be a graph and,v € V. We have(u,v) € R* iff G' = (V,u, Rq,, Ra,) = a2 Cy af
with R,, = RandR,, = {(u,v)}.

Now, let us establish the NLOGSPACE upper bound. déet r ~ p Cy ¢
(respectivelyc = r ~ p Cp ) be a path constraint ar@ a finite L-structure. We
provide an NLOGSPACE algorithm to check whetldg~= c. Since NLOGSPACE =
co-NLOGSPACE, we are done. The steps are the following:

1. non-deterministically chooseandv in V;

2. check in NLOGSPACE whethért, u) € tr(r) (see Lemma 13);

3. check in NLOGSPACE whethén, v) € tr(p) (see Lemma 13);

4. check in NLOGSPACE whethét, v) ¢ tr(q) (respectivelyv, u) & tr(q)).

To see that the final step can also be done in NLOGSPACE, usenbeh3 together
with the fact that NLOGSPACE = co-NLOGSPACE. O

Notice that the proof for NLOGSPACE-hardness is actuallyveelr bound for forward
constraints. Moreover (and by takii},, = {(v,w)}) it can be adapted for backward
constraints. In a similar manner, the proof can be adaptedei@rministic structures.
Summarizing, then, we have the following:

Theorem 15 The query evaluation problems for the classes of forwardsicaimts,
backward constraints, and path constrairase all NLOGSPACE-complete ijd| and
|c|, for both deterministic and non-deterministic grapghs

As an aside, we designed the logic PP in such a way that we can express rea-
soning problems for standard path constraints as easilpssipge. We can ‘measure’
how well PDLP*t* fits this purpose by comparing the complexity results of ceas

in PDLP2* to those of reasoning in other logics, and hopefully gettisglose as pos-
sible to the complexity of the corresponding problem ondéad path constraints. For
instance, the hybrigi-calculus has a model-checking problem in NRo-NP; given
Theorems 14 and 15 this result disqualifies the hyprichlculus as a logic that nicely
fits the descriptive requirements of standard path comésaon the other hand, the
alternation-free hybrigi-calculus would fit better.

5.2 The Containment Problem

Our next aim is to obtain sharp complexity results for cam@ént problems for classes
of path constraints. We start by considering non-detestioi-structures, and the first
step is to show the following.

Theorem 16 The containment problem for forward constraints is dedigldb expo-
nential time, while it is at least PSPACE-hard whenever> 2.
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Proof. The EXPTIME upper bound is a corollary of Lemma 8(2) and Theod 2. As
to the lower bound PSPACE, each relational teérbuilt with +, ; ,* over the atomic
termsag, a1, . .. can obviously be viewed as regular expressions and we W(itgto
denote the language generatedtbBy [34, Theorem 2.12(c)], the problem of check-
ing whetherL((ao + a1)*) € L(t), wheret is a relational term built ovefag, a1 }, is
PSPACE-complete. The complement problem belongs to the samplexity class.
One can show that for any regular expression, L(t) € L(t') iff for any structure
(V,r, Rag, Ray), tr(t) C tr(t'). Consequently, it is easily verified that for any rela-
tional termt built over{ag, a1}, L((ag + a1)*) C L(t) iff = (ap+a1)* Cy t. Hence,
the containment problem restricted to two labels and witliorward constraints as
premisses, is already PSPACE-hard. O

For backward constraints one can obtain results simildrasd for forward constraints.

Theorem 17 The containment problem for backward constraints is débidia expo-
nential time, while it is at least PSPACE-hard whengver> 3.

Proof. Since the converse construction=! is not present in the path expressions, we
cannot simply use the proof of Theorem 16. However, one caityeshow that for
any regular expressianbuilt over {ag, a1}, (i) L((ao + a1)*) € L(p) iff (i) for any
L-structureG, G = p Cp ay impliesG [ (ag + a1)* Cp ag, and from this we easily
get our theorem. So let us prove that the equivalence (i)ifiélds.

(Only-if) If L((ao+ a1)*) C L(p), then obviously for everg-structureG, G |= p C,

as impliesG | (ap + a1)* Cp as.

(If) Assume that (ii) holds and suppose that there is a finttedw € L((ap + a1)*) \
L(p) such thatw = by -...- b, forsomen > 0(n = 0if w = ¢€). LetGy =
({1,...,n+1},1, Ry, Ra,, Ra,) be the structure such that

o for everyi € {0,1}, forall k, k" € {1,...,n+ 1}, kRy, K iff ¥ = k+ 1 and
b = a;;

® Ry, ={(k+1,1): k€{0,...,n}, by -...- by € L(p)}.

S0Gy = p Cp az but notG = (ag +a1)* Cp as since(l,n+1) € (R,, UR,,)* and
(n+1,1) € R,,, a contradiction. O

We now restrict attention taeterministic L-structures, which makes a substantial
difference. The containment problem with (lollipop) patbnstraints of the form

r ~» p Cy g restricted to deterministi€-structures is undecidable evervifcontains
only two labels [12]. However, in the lollipop constraintsadl in the proof, the opera-
tor * occurs inr, and this is used to encode the word problem. Moreover by $ingo
restrictions ofr, p, andgq (for instance by forbidding), decidable restrictions of the
containment problem on deterministicstructures have been found (again, see [12]).
Using the results in this paper, we are able to identify a negidhble case. By com-
bining Lemma 8, item 3, and Theorem 11, we get

Lemma 18 The containment problem for backward constraints restlitd determin-
istic L-structures for finite sets of labelsis decidable in exponential time.
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Lemma 18 above provides a positive answer to an open qudstion12]. However,
in spite of Lemma 8 it is open whether the containment prolitarforward constraints
restricted to deterministi&-structures is decidable. Similarly, the decidability lo&t
containment problem for backward constraints restricbedieterministicL-structures
(without restrictions orl) is also open.

Query evaluation problem

non-deterministic graphs

deterministic graphs

forward constraints

backward constraints

constraints

Containment problem

NLOGSPACE-complete;
this paper, Theorem 15
5 NLOGSPACE-complete;
this paper, Theorem 15
NLOGSPACE-complete;

this paper, Theorem 14

NLOGSPACE-complete;
this paper, Theorem 15
NLOGSPACE-complete;
this paper, Theorem 15
NLOGSPACE-complete;
this paper, Theorem 15

non-deterministic graphs

deterministic graphs

forward constraints

backward constraints

constraints

PSPACE-hard, in EXPTIME;
this paper, Theorem 16

5 PSPACE-hard, in EXPTIME;
this paper, Theorem 17
undecidable

[13, Theorem 3.1]

open

in EXPTIME (L finite);
this paper, Lemma 18
undecidable

[12, Theorem 6.1]

Table 2: A summary of results on reasoning tasks with patistcaimts.

6 Conclusions

By moving back and forth between reasoning tasks for PfLand reasoning tasks
for semistructured data, we have given new and transpamsidlability proofs for
the forward constraints proposed in [3] for optimizing dasron semistructured data,
mostly in the context of the web. In some cases we have oltaharp upper and
lower bounds that are better than previously known onesggegrheorem 14 and 15),
and in other cases we have improved known bounds (Theoreraadl67). Tables 1
and 2 summarize the complexity and (un-) decidability rssfar the reasoning tasks
considered in this paper.

Itis worth observing that some of our decidability resulergiobtained by re-using
the results of [20]. More generally, there are many areasinpeiter science in which
describing and reasoning about finite graphs is a key isswerelexists a large body of
work in e.g., feature structures [42], process algebra [@8nowledge representation
[21] which can be usefully applied in the theory of semistuoed datas. But there
are differences in the kind of questions asked and in the asiplin descriptions of
linguistic structures, processes, or knowledge on the ame hand in descriptions of
database schemas on the other hand; these differences neageesent application
interesting and non-trivial.
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Our modal logic perspective on standard path constraintemmany decidability
and complexity issues for semistructured data into therredIPDL-like logics. Here
are just some of the many remaining open problems:

1. Complexity of the containment problem for the class ofsamd constraints
(respectively backward constraints) (we know PSPACE+esd and the EX-
PTIME upper bound). The containment problem for the clas®wfard con-
straints cannot be expressed naturally by query containebetween a con-
junctive two-way regular path query with constants and a tvéo-way regular
path query with constants, although this problem is in PSPATA]. Query
containment between conjunctive two-way regular pathigaevith constants is
roughly about the validity of questions of the fopnN---Np, C g1 N+ - -N@m.

2. Decidability of the containment problem for forward ctagts restricted to
deterministicL-structures.

3. Decidability of PDIP*® restricted to deterministi&-structures; decidability of
PDL with converse and determinism is a long-standing opeblpm [43].

4. Extending our results to a richer path expressions laggoantaining additional
predicates such as, for example, XPath [45].
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