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Introduction

In recent years, a lot of interesting work has been done to extend database techniques to semistructured collections of data, in particular the World Wide Web or fragments of it; an overview of this work can be found in [START_REF] Abiteboul | Data on the Web[END_REF]. It is generally agreed that the appropriate data model for semistructured data is an edge-labeled graph. More specifically, the web can be viewed as a set of objects linked by labeled edges; an object represents a page, and the labeled edges represent hypertext links.

Query languages proposed for semistructured data and querying the web, such as WebSQL [START_REF] Mendelzon | Querying the world wide web[END_REF], Lorel [START_REF] Abiteboul | The LOREL query language for semistructured data[END_REF], and UnQL [START_REF] Buneman | A query language and optimization techniques for unstructured data[END_REF] are similar in spirit if not in syntax, and all include a form of recursion (regular expressions). Making effective use of whatever information is available about the format of data is obviously a very important issue. In the context of the web, it is often useful to know that everything accessible by a given sequence of links is cached, or available locally; or that the site reachable by a given sequence of links is mirrored elsewhere, etc. To express such information, one can use so-called path constraints, that is: statements about paths in the graph. It is reasonable to expect that the language of constraints forms a well-behaved (preferably decidable) sublanguage of the query language.

In this paper we build on results in [START_REF] Abiteboul | Regular path queries with constraints[END_REF][START_REF] Buneman | Path constraints on semistructured and structured data[END_REF], and embed several classes of path constraints that have been considered in the literature into well-known modal logics.

Earlier work has considered the modal -calculus, but we consider variants of PDL (see e.g., [START_REF] Harel | Dynamic Logic[END_REF]). Our embeddings into a flavor of PDL establish a number of things; they shed light on known decidability results and give rise to new ones and to new complexity bounds. In some cases, the complexity bounds obtained by translation are not the tighest possible; in such cases we provide tighter bounds by using other methods (see e.g., Theorems 14 and 15).

But perhaps more importantly, adopting a logical perspective on data modeling and description languages often yields conceptual clarity, as demonstrated, for instance by Hayes' paper on a model-theoretic semantics for RDF and RDFs [START_REF] Hayes | RDF model theory[END_REF]. In our case, we think that the main benefit of our modal perspective on path constraints lies in the insights it yields on the way various constraints relate to each other. Of course, rephrasing reasoning tasks on constraints in terms reasoning inside a suitable logic will not always give the sharpest possible complexity bounds: in some cases the corresponding logic simply has not been explored yet.

This paper is an extended and updated version of [START_REF] Alechina | Path constraints from a modal logic point of view (extended abstract)[END_REF]. It is organized as follows. Section 2 provides background information on data models and query languages and it introduces several kinds of path constraints. In Section 3 we introduce logical formalisms to capture such constraints. In Section 4 we state our complexity and decidability results for logical problems. In Section 5, we establish corresponding results for reasoning problems on path constraints. We conclude in Section 6.

Path Constraints

Semistructured data is often represented as an edge-labeled graph. In particular, the World Wide Web can be modeled as a graph where the vertices are uniquely identified by URLs and the labels are hypertext links between them [START_REF] Abiteboul | Data on the Web[END_REF]; richer structures able to deal with the frame structure of the pages can be found in [START_REF] Alfaro | Model checking the world wide web[END_REF]. An important special class of graphs are deterministic graphs. A graph is called deterministic if for every node ¡and label ¢there is at most one node £such that ¡ ¤ ¥ ¦ £holds. In the case of the web (unlike the case of most object-oriented databases) it is reasonable to expect a graph to be deterministic.

In this paper, we will restrict attention to rooted connected graphs: that is, one of the nodes in the graph is designated as the root and every other node is accessible from the root by a directed path of edges. Intuitively, this is because we consider the web from the point of view of browsing, i.e., only the sites accessible from the current site (the root) really matter.

Languages for querying semistructured data use so-called path queries. These have emerged as an important class of browsing-style queries, and in their simplest version they are of the form 'find all objects reachable by paths whose edge labels form a regular expression over some given alphabet of labels.' Let us make things more formal. Let §be a countable set of edge labels. An §structure ¨is a tuple of the form ¨© ¤ ¤ such that is a set of nodes, is a distinguished element of (the root), and ¤ ¤ is a family of binary relations on acting as links between nodes. We say that ¨is finite whenever is finite and ¤ is non-empty for only finitely many labels. In that case, the size of ¨, written !¨! , is ! ! ¡ ¤ ! ¤ ! . In other words, §-structures are rooted labeled transitions systems over the (possibly infinite) alphabet §. Definition 1 Let §be a countable set of edge labels. A label ¢¢ §, the empty path £ and wildcard ¤are path expressions. If ¥ ¦ and ¥ § are path expressions, then so are ¥ ¦¨¥ § (sequential composition), ¥ ¦ ¥ § (union), and ¥ © (finite iteration).

Given an §-structure ¨, we define transition relations ¥ on corresponding to the path expressions ¥:

¢ © ¤ for ¢¢ § ¥ © is the reflexive transitive closure of ¥ ¤ © ¤ ¤ £ © ¡ ¡ ¡¢ ¥ ¦¨¥ § © ¡ £ ¥ ¦ ¡ ¥ § £ ¥ ¦ ¥ § © ¥ ¦ ¥ §
As usual, given a binary relation on , we write ¡ to denote the set of - successors of ¡: £¢ ¡ £ ¢ . In the absence of information about the format of data, evaluating queries with regular expressions can be very inefficient. A natural way to express useful information about the data represented as a graph is to impose constraints on possible paths in the graph, such as 'all objects reachable by a path ¥arealsoreachablebyapath , ' where ¥and are sequences of labels, possibly involving regular expressions. Examples of constraints which may be useful for query optimization in the context of the web are constraints saying that everything accessible by such-and-such sequence of labels is also accessible locally; that the answer to such-and-such query is cached; that suchand-such site is mirrored elsewhere, and so on. All these examples can be expressed by means of path inclusion constraints as defined in [START_REF] Abiteboul | Regular path queries with constraints[END_REF] (see below).

The motivation of the work in [START_REF] Buneman | Path constraints on semistructured and structured data[END_REF] is more database-related than the work in [START_REF] Abiteboul | Regular path queries with constraints[END_REF]. Indeed, one important difference between the constraints considered in [START_REF] Abiteboul | Regular path queries with constraints[END_REF] and those studied in [START_REF] Buneman | Path constraints on semistructured and structured data[END_REF] is that the former correspond to unary properties and are evaluated relative to a node. The latter are closed sentences and can be evaluated anywhere and don't have to mention the root; the motivation for the latter is much more databaserelated than the work in [START_REF] Abiteboul | Regular path queries with constraints[END_REF]. Another difference is that the constraints from [START_REF] Abiteboul | Regular path queries with constraints[END_REF] can contain regular expressions, while those in [START_REF] Buneman | Path constraints on semistructured and structured data[END_REF] are strictly first-order definable.

Definition 2 Let ¥and be two path expressions. A path inclusion constraint is a statement of the form ¥ ! . Let ¨be an §-structure. A path inclusion constraint ¥ ! is true at ¨, written ¨! © ¥ ! , if ¥ : every node " reachable from by a path whose labels form a word described by ¥(i. e., a ¥-path), is reachable from by a path whose labels form a word described by (i. e., a -path).

See Figure 1 (a).

The path inclusion constraints defined above are sometimes referred to as forward constraints. In [START_REF] Buneman | Path constraints on semistructured and structured data[END_REF], backward constraints are introduced. We generalize their definition to a language containing regular expressions. Definition 3 Let ¥and be two path expressions. A backward path constraint is a statement of the form ¥ ¥ . Let ¨be an §-structure.

A backward path constraint ¥ ¥ is true at ¨, written ¨! © ¥ ¥ , if ¥ ¦ ¦ where ¦ ¦
denotes the converse operator on binary relations. See Figure 1 (b).

Notice that a backward constraint can be rewritten as an inclusion constraint, and vice versa, by rewriting the regular expressions involved in the presence of the converse operator.

A standard path constraint (notation: ¥ ) is either a forward constraint or a backward constraint. The next class of constraints is a generalization of path constraints as defined in [START_REF] Buneman | Path constraints on semistructured and structured data[END_REF] to a language containing regular expressions:

Definition 4 Let ¥, , and be path expressions. A lollipop path constraint is an expression of the form § ¥ . Let ¨© ¤ ¤ be an §-structure. A lollipop path constraint § ¥ is true at ¨, written ¨! © § ¥ , if for every ¢ , ¤ ¤ ! © ¥ . See Figure 1 (c). Obviously, a forward constraint ¥ ! is a lollilop path constraint § ¥ ! with ©£ . In the sequel, a lollipop path constraint will simply be called a path constraint.

Our syntax for talking about path constraints is obviously much more abstract than, for example, the XPath syntax [START_REF]XML Path Language (XPath) 1.0[END_REF][START_REF] Harold | XML in a Nutshell[END_REF], which was designed to describe paths in XML trees. XPath involves predicates specific to attributes and names, and it allows navigation along the sibling axis. However, many constraints which are formulated using XPath expressions are very similar to the path constraints we are interested in. Consider the following example (taken from [START_REF] Capra | xlinkit: the consistency checking and link generation engine developed at the University College London[END_REF]): <consistencyrule id="r1"> <description> The product name of an advertised product must be in the catalogue </description> <forall var="a" in="$adverts"> <exists var="p" in="$products"> <equal op1="$a/ProductName/text()" op2="$p/Name/text()"/> </exists> </forall> </consistencyrule> This is the same as the following path inclusion constraint:

¡ ¢£¤ ¥ ¦ ¨ §¤¨¡© ¥ £ ! § ¤¨¡© ¥ ¦ ¨£
A further exploration of the formal logical aspects of XPath is beyond the scope of this paper; we refer the reader to [START_REF] Gottlob | Monadic queries over tree-structured data[END_REF][START_REF] Miklau | Containment and equivalence for an XPath fragment[END_REF]. Now that we have formulated path constraints, we take a closer look at important reasoning tasks involving them.

The query evaluation problem for a class C of path constraints is defined as follows:

instance: a finite §-structure ¨and a constraint in C; question: ¨! © ? A more difficult problem is the containment problem for the class C of path constraints. It is defined as follows:

instance: constraints ¦ ¦ , ! , in C; question: is it the case that for every §-structure ¨, ¨! © ¦ and . . . and ¨! © imply ¨! © ¦ ? (if so, we write ¦ ¦ ¦ .)

Variants of the above problems can be defined by considering only (finite, deterministic, . . . ) §-structures or/and by distinguishing the class of constraints for ¦ , . . . , and separately(if applicable).

In the sequel we investigate the decidability and complexity issues of the problems we have just introduced, mostly from a modal logic point of view.

Capturing Path Constraints by Modal Means

To determine the computational costs of reasoning tasks on path constraints, we recast them as model checking, validity, and satisfiability tasks in some logic. The logic used for this purpose should be such that it can easily encode problems on path constraints, especially the containment problem for the class of standard path constraints. Moreover, we wish to reduce the complexity gap between problems on path constraints and logical problems. In this way, a model checker or a theorem prover for such a logic will allow us to solve problems on path constraints in an efficient manner.

Choosing a Logic

A modal flavor. Which logic (or logics) should we use for capturing path constraints? Many formalisms have been proposed for reasoning about graphs. As we will see below, many decidable classes of constraints can be defined in terms of suitable modal logics, while constraints that lack a modal flavor (such as the ones studied in [START_REF] Buneman | Path constraints on semistructured and structured data[END_REF]) are generally undecidable. Rather than the presence or absence of regular expressions or even the need for two vs. three variables to express a constraint, the 'modal flavor' of constraints seems to be important. By this we mean the fact that modal formulas can only express local properties and the fact that the quantification implicit in modal formulas is 'guarded' [START_REF] Andréka | Modal languages and bounded fragments of predicate logic[END_REF]. We opt for Propositional Dynamic Logics (PDL, [START_REF] Harel | Dynamic Logic[END_REF]) here since these are modal logics that incorporate regular expressions. Thus, we translate constraints into formulas of a flavor of PDL and reformulate reasoning tasks for constraints as reasoning tasks within this flavor of PDL.

PDL-like features. The language of PDL has two kinds of primitive symbols: propositional symbols and atomic transitions. Propositional symbols stand for properties that are true or false of a node in a graph; we only need three propositional symbols: (tautology), ¡(falsum), and ¢¢ (to denote the root of the graph). Atomic transitions are used to label edges; we include a distinguished label £ to denote the diagonal relation.

Compound transition terms correspond to path expressions and are built from atomic ones using , and £. We indifferently use "path expression", "transition term" and "relational term" as synonyms.

In addition to these traditional ingredients of PDL, we add a wildcard ¤and a converse operator ¤ ¦ ¦ : ¤is a transition term, and if is a transition term, then so is ¦ ¦

. For instance, the satisfaction of the forward constraint © ¥ ! at in the §-structure ¨will be expressed as ¨ ! © ¥ ¥ ¦ ¦ ¦ ¢¢ . The node is the only node §in ¨satisfying ¨ §! ©¢¢ . Hence, our symbol ¢¢ is an example of a so-called nominal (a proposition letter that is true of at most a single node of a model). PDL with converse is called converse PDL (CPDL). We obtain CPDL with nominals (see e.g., [START_REF] Giacomo | Decidability of Class-Based Knowledge Representation Formalisms[END_REF]) by extending CPDL with nominals.

Defining the Logic PDL

¨©

The logic PDL ¤ we study is a fragment of CPDL with nominals augmented with the wildcard ¤. Here's a more precise definition. are typically denoted by : © !¡! ¢¢ !! ! ! ¥ ¦ Given a formula , define !! , the length of , as the number of symbols in . A formula isreadas'aftersometransition , holds, ' or, more precisely, as 'there is a sequence of labels which forms a word in a regular language defined by and it leads to a node where holds. ' Dually, ¥ ¦ is definable as and means 'after every transition , holds, ' that is: 'if labels of a path form a word in , then at the end of the path holds. ' To give an example, ¢ © means that after 0 or finitely many ¢links one can reach a node which has no outgoing links labeled .

Definition 6 (Semantics) PDL

¤ is interpreted on §-structures. We now define truth of a formula at a node §in a structure ¨(notation: ¨ §! © ). For atomic propo- sitional symbols, is true at all nodes, ¡is false at all nodes, and ¢¢ is true only at the root of the graph. Further, is true if is false, and is true if both and are true. For modalities, we shall use the transition relations ¥

. We just need to

extend ¤ such that ¥ ¦ ¦ © ¡ £ £ ¡ ¢ ¥ .
We say that £is accessible from ¡by a transition if ¡ £ ¢

. Then, for modal formulas, is true at a node ¡if there exists a node £accessible from ¡by such that is true at £. Dually, ¥ ¦ is true at ¡if for every £accessible from ¡by , is true. A PDL ¤ formula is true on an §-structure ¨if it is true at the root of ¨. A PDL ¤ formula is satisfiable if it is true on some §-structure ¨. A formula is valid if it is true on all §-structures.

Roughly speaking, §-structures equipped with for every relational term in PDL ¤ can (almost) be viewed as PDL-models with a unique proposition letter interpreted by a singleton. This is not quite true because of the presence of ¤, but we will show below that it is correct when non-deterministic §-structures are considered (see the proof of Theorem 11). Hence, modulo the presence of ¤, PDL ¤ can be viewed as a fragment of CPDL with nominals [START_REF] Giacomo | Decidability of Class-Based Knowledge Representation Formalisms[END_REF] or as a fragment of the hybridcalculus [START_REF] Sattler | The hybrid mu-calculus[END_REF]. Furthermore, the constructive -calculus introduced in [5] also contains nominals (i.e., proposition letters interpreted by singletons) as well as a form of recursion. We don't need the full expressive power of the -calculus, however: we are interested in path queries, and regular expressions from PDL are sufficient to express standard path constraints.

Just like the modal logic HML [START_REF] Hennessy | Algebraic laws for nondeterminism and concurrency[END_REF], PDL ¤ has no proposition letters except the truth constant and the unique nominal ¢¢ . Indeed, PDL ¤ is designed to reason about relations.

A final comment: one of our main aims is to reduce as much as possible the complexity gaps between problems on path constraints and logical problems. We will show that PDL ¤ is well-designed in this respect.

Standard Logical Reasoning Tasks

For the purposes of this paper, the following logical reasoning tasks (involving PDL ¤ ) are important:

The model checking problem for PDL ¤ is: instance: a finite §-structure ¨and a formula ; question: Is trueat ¨?

The validity problem for PDL ¤ is defined as follows: instance: a formula ; question: Is it the case that for every §-structure ¨, istrueat ¨?

The satisfiability problem is defined accordingly in the usual way. Before we explore the computational costs of the above reasoning tasks for PDL ¤ we will show that PDL ¤ suffices for expressing the reasoning tasks on the standard path constraints that we defined earlier.

From Path Constraints to PDL

¨© and Back

Given a forward constraint © ¥ ! (or a backward constraint © ¥ ¥ ), we write to denote the formula ¥ ¥ ¦ ¦ ¦ ¢¢ (or ¥ ¥ ¦ ¢¢ , respectively). Lemma 7 relates reasoning with path constraints to reasoning tasks with PDL ¤ .

Lemma 7

1. Let ¨be an §-structure and © ¥ a standard path constraint. Then ¨! © iff is true at ¨.

2. Let ¦ , . . . , ¦ be standard path constraints. Then

¦ ¦ ¦ iff ¡ ¤¤¤ ¢ £ ¢ ¤¡is PDL ¤ valid.
The proof of Lemma 7 is by an easy verification.

By contrast, there is no way to express (lollipop) path constraints § ¥ by PDL ¤ formulas in a similar fashion since the containment problem for the class of (lollipop) path constraints is undecidable [START_REF] Buneman | Path constraints on semistructured and structured data[END_REF] and PDL ¤ validity is decidable, as we will see below. As an aside, (lollipop) path constraints can be expressed in modal logics with reference pointers (see e.g., [START_REF] Goranko | Hierarchies of modal and temporal logics with references pointers[END_REF]), but the validity problem of such logics is usually undecidable.

By using Lemma 7, one can easily establish the following results:

Lemma 8 Let C be either the full class of §-structures or the class of deterministic §-structures. To conclude this section, we will briefly contrast our modal formalization of path constraints with others in the literature. In [START_REF] Miklau | Containment and equivalence for an XPath fragment[END_REF], a fragment of the Computation Tree Logic CTL is shown to be equivalent to ¥ ¦ § ¨©¨© © , a tree pattern language; more precisely, the authors prove equivalence between the implication problem in this fragment of CTL and the containment problem for ¥ ¦ § ¨©¨© ©

. In addition, in [START_REF] Gottlob | Monadic queries over tree-structured data[END_REF], Core XPath is translated into full CTL. It is important to notice that, unlike the authors of the papers just quoted, we consider graph structures -and not just tree structures.

In [START_REF] Cardelli | A spatial logic for querying graphs[END_REF], a spatial logic is introduced for reasoning about labelled directed graphs; the logic is closely related to monadic second-order logic (MSO) for graphs (see e.g., [START_REF] Courcelle | The expression of graph properties and graph transformations in monadic second-order logic[END_REF]), and its main use is in querying structures from the semistructured data model. Both logics have a model checking problem in PSPACE, whereas satisfisability for MSO is undecidable. By contrast, our logic PDL ¤ is better attuned to the reasoning tasks about path constraints and we do not actually need the full power of MSO-like formalisms, especially if we wish to deduce complexity upper bounds of problems on path constraints from translations into logical problems.

The Complexity of Reasoning with PDL ¥¢

We now consider complexity and decidability results for PDL ¤ problems. In the next section we will use these results, together with Lemma 8, to derive complexity and decidability results for path constraints.

The Model Checking Problem

The model checking problem for PDL ¤ is no more expensive than for PDL:

Theorem 9 Let ¨© ¤ ¤ be an §-structure, §¢
, and a PDL ¤ formula. Checking whether ¨ §! © canbedoneintime ¡ !¨! !! . Proof. There is a simple linear reduction of the model checking problem for PDL ¤ to the model checking problem for PDL. The latter problem is in time ¡ !¨! !! . This follows from the fact that model checking for the alternation-free modal -calculus is in linear time (see e.g., [START_REF] Cleaveland | A linear-time model-checking algorithm for the alternation-free modal mu-calculus[END_REF]).

The linear time reduction works as follows. First, given ¨, we construct a new §-structure ¨¢. ¨¢has the same vertices and root, and contains all the edges which ḧas plus, for every edge ¡ ¤ ¥ ¦ £in ¨we add three more edges to ¨¢:

¡ £ ¥ ¦ £, £ ¤£¥¦ ¡ ¥ ¦ ¡, and £ ¤ ¤ ¥¦ ¡ ¥ ¦ ¡.
The construction of ¨¢is obviously linear in the size of ¨. Second, we rewrite so that all occurrences of ¤ ¦ ¦ are on the atomic labels. This can be done in linear time by using the following standard equivalences:

¥ ¦ ¦ © ¥ ¦ ¦ ¦ ¦ ¥ ¨ ¦ ¦ © ¦ ¦ ¨¥ ¦ ¦ ¥ © ¦ ¦ © ¥ ¦ ¦ © ¥ ¦ ¦ ¦ ¦ © ¥ Note that the resulting formula ¢
is linear in the size of . Finally, it is easy to show that ¨ §! © §¨© iff ¨¢ §! © §¨© ¢ .

Corollary 10 The model checking problem for PDL ¤ is P-complete.

The polynomial upper bound is a consequence of Theorem 9 and the polynomial lower bound can easily be obtained by a reduction from the P-complete problem SAM2CVP (synchronous alternating monotone fanout 2 circuit value problem; see e.g., [26, page 123]), as has been done to show the P-hardness of CTL model-checking restricted to and , a folklore result in model checking. The proof for CTL can easily be adapted to the model-checking problem for PDL ¤ restricted to deterministic §-structures, as soon as ! §! .

The Satisfiability Problem

The satisfiability problem for PDL ¤ can be proved to be decidable by a reduction to the (decidable) satisfiability problem of CPDL with nominals.

Theorem 11

The satisfiability and validity problems for PDL ¤ are decidable in EX-PTIME.

Proof. We use the fact that CPDL with nominals is decidable [20, Theorem 49] and reduce satisfiability in PDL ¤ to satisfiability in CPDL with nominals. If the set of labels §is finite, ¤can be replaced by the finite union of labels from §and the reduction to CPDL with nominals is immediate.

Suppose that §is infinite, in which case ¤isanon-tri vial addition to the language.

We proceed as follows. Given a PDL

¤

formula which uses labels ¢ ¦ ¢ and possibly ¤,weconstructaCPDLformula by replacing ¤with ¢ ¦ ¤¤¤ ¢ ¦ in , and we show that is satisfiable (which means is true at the root of some §structure) iff ¢¢ is.

Suppose ¨© ¤ ¤ ! © . We will define an §-structure ¨¢and view it as a partial description of a model for CPDL with nominals. Let ¨¢© ¢ ¤ ¤ be the §-structure defined as follows:

1. for every ¡¢¡ , ¢ ¤£ © ¤£ ;

2. ¢ ¤ ¢ ¤¡ © ¤ ¤ ¤ . It is easy to show that ¨ ! © iff ¨¢ ! ©¢¢ since ¤ in ¨is equal to ¢ ¦ ¤¤¤ ¢ ¦
in ¨¢. Now, suppose ¨© ¢ ¤ ¤ ! ©¢¢ for some partial description of a model for CPDL with nominals. Let ¨© ¤ ¤ be the §-structure defined as follows:

1. for every ¡¢¡ , ¤£ © ¢ ¤£; 2. for every ¢¢ § ¥ ¢ ¦ ¢ , ¤ © ¢ ¤ ¢ ¤¡.

It is now easy to show that ¨¢ ! ©¢¢ iff ¨ ! © .

By itself, Theorem 11 does not imply an analogous result for deterministic §-structures, which remains an open problem to date. However, if the set of edge labels §is finite, deterministic CPDL with nominals is decidable only if on deterministic §-structures, the satisfiability problem for PDL ¤ is decidable. In the non-deterministic case, we can actually do better than Theorem 11, and obtain matching lower and upper bounds for the complexity of the satisfiability problem for PDL ¤ .

Theorem 12

The satisfiability problem for PDL ¤ is EXPTIME-complete whenever

! §! .

Proof. To see that the satisfiability problem for PDL ¤ is decidable in exponential time, recall that, by [20, page 98], the satisfiability problem for CPDL with nominals is EXPTIME-complete. The reduction of the PDL ¤ satisfiability problem to the satisfiability problem for CPDL with nominals is polynomial in the size of the input formula.

As to the lower bound, we use a reduction from the global satisfiability problem for the standard modal logic K. A formula is globally satisfiable if there exists a model such that issatisfiedineverystateofthemodel. The global satisfiablity problem for K is known to be EXPTIME-hard, see e.g., [START_REF] Chen | The complexity of propositional modal theories and the complexity of consistency of propositional modal theories[END_REF][START_REF] Hemaspaandra | The price of universality[END_REF]. Our reduction only uses a restricted form of the PDL ¤ -satisfiability problem, viz. restricted to the modal operators ¢ and ¢ ¦ ¦

. We use the spy-point technique as described in [START_REF] Blackburn | Hybrid languages[END_REF] by adapting the proof of [START_REF] Areces | A road-map on complexity for hybrid logics[END_REF]Theorem 2]. As part of this technique, we introduce a node (the "spy point") in the model that can see any other node, and, therefore, universal quantification can be simulated by exploring the successors of the spy point. The only difficulty is to use the spy-point technique and simultaneously encode the proposition letters which occur in the K-formula.

We set out to define a map

¡ from K-formulas into PDL ¤ -formulas such that is globally satisfiable iff ¡ is PDL ¤ satisfiable.
In order to show the 'only-if' direction, given a Kripke structure ¢ © £ such that ¢ ! © ,weconstructan §-structure ¨©© ¤¤ such that ¡ is true at ¨and the fact that ¢ §! © ¥ ¥ is encoded by the existence of an edge ¢ ¤¤ ¥ ¦ §in ¨where ¢ is a node in ¨associated with the proposition letter ¥ ¥ . To simplify notation we now write ¥ ¦ instead of ¤¤ ¥ ¦ . The structure © ¤¤ consists of: a copy of , that is to say, the restriction of © ¤¤ to is ; an extra node (the spy point) that can see any node in (i.e., for every §¢ , ¥ ¦ §in ¨); extra nodes ¦ that are used to encode the satisfaction of proposition letters ¥ ¦ , . . . , ¥ § in such a way that ¢ §! © ¥ ¥ iff ¢ ¥ ¦ §isin ¨; a chain ¦ ¥ ¦ ¥ ¦ ¥ ¦ ¦ that allows us to identify the elements of ©¥ :

1. is the only element §in © such that ¨ §! ©¢¢ (not related to the chain); 2. is the only element §of © such that ¥ ¦ §and § ¥ ¦ ; 3. ¢ ( ¡¢ ¡¦ ¥ ) is the only element §in © such that ¢ ¥ ¦ §, § © © (just here for the case ¢ © ), and not ¥ ¦ §. Consequently, the elements of in ¨are precisely the elements §in © such that ¥ ¦ §andnot § ¥ ¦ . Let us define a family ¥ ¥ of PDL ¤ formulas encoding proposition letters.

¦ © ¢ ¦ ¦ " ¦ " ! " # $ ¢ ¢¢ ¢ ¦ ¦ ¢¢ ¥ § ¥ ¦ ¢ ¨ 1 2
Figure 2: ¢ and ¨: an example.

¥¦ © ¢ ¦ ¦ ¥¦ " ! " # $ ¢¢ ¢ ¦ ¦ ¢¢ ¥
Encodings of proposition letters can be also found in [START_REF] Halpern | The effect of bounding the number of primitive propositions and the depth of nesting on the complexity of modal logic[END_REF][START_REF] Hemaspaandra | The complexity of poor man's logic[END_REF], but our encoding is of a different nature since we tailor it to the spy-point technique. The mapping ¡ is now defined as follows:

¡ ¥ ¥ © ¥ for ¢ ¡ commutes with the Boolean connectives ¡ ¡ © ¢ "only true at elements of ¢" ! " # $ ¢ ¦ ¦ ¢¢ ¢ ¢¢ ¡ Now, let beaK-formula. We will show that isgloballyK-satisfiableiffthefollowing formula is PDL ¤ -satisfiable: 

¥ ¢ ¦ "only true at elements of ¢" ! " # $ ¢ ¦ ¦ ¢¢ ¢ ¢¢ ¦ ¡
; ¤¤ © § §¢ ¦ ¥ ¦ ¢ § ¢ §! © ¥ ¥ ; the interpretation of ¢¢ is .
In Figure 2, we give a simple example of the construction. Let us show that for all §¢ , for all ¢ ¦© ¦ (the set of subformulas of

), ¢ §! © iff ¨ §! © ¡ . For the base case (for ¢ ¢ ¦ , ¢ §! © ¥ ¥ iff ¨ §! ©¥ ), one can easily show by induction on ¢ that §¢ © ¨ §! ©¥ © §¢ ¢ §! © ¥ ¥ ¢ ¥ ¦ . We now turn to the case © ¡ ¢ . Observe that ¢ §! © ¡ ¢ iff there is § ¢ ¢ § such that ¢ § ¢ ! © ¢ iff (i) there is § ¢ ¢ such that § § ¢ ¢ ¤¤ , § ¢ ¢ ¤¤ , § ¢ © ¢ ¤¤ , and ¢ § ¢ ! © ¢ . Furthermore, (i) holds iff there is § ¢ ¢ ¤¤ § such that ¨ § ¢ ! © ¡ ¢ ¢ ¦ ¦ ¢¢ ¢ ¢¢ iff ¨ §! © ¡ . So for all §¢ , we have ¨ §! © ¡ since ¢! © . Moreover, ¤¤ ¤ §¢ © ¨ §! © ¢ ¦ ¦ ¢¢ ¢ ¢¢ © . So, ¨ ! © ¥ ¢ ¦ ¢ ¦ ¦ ¢¢ ¢ ¢¢ ¦ ¡ . ('If') Assume that ¨ ! © ¥ ¢ ¦ ¢ ¦ ¦ ¢¢ ¢ ¢¢ ¦ ¡ for some §-structure ¨© ¤¤ . Define a model ¢ © © £ such that © © §¢ § ¢ ¤¤ § © ¢ ¤¤ ; is the restriction of ¤¤ to © ; for every ¢ ¢ ¦ , £ ¥ ¥ © §¢ © ¨ §! ©¥ .
Let us show that for all §¢ © and for ¢ ¦© ¦

, ¨ §! © ¡ iff ¢ §! © .
The base case is obvious. We treat the case © ¡ ¢ in a bit more detail. We have

¨ §! © ¢ ¡ ¢ ¢ ¦ ¦ ¢¢ ¢ ¢¢ iff there is § ¢ ¢ ¤¤ § ¤© such that ¨ § ¢ ! © ¡ ¢ iff there is § ¢ ¢ § such that ¢ § ¢ ! © ¢ iff ¢ §! © . Since ¨ ! © ¥ ¢ ¦ ¢ ¦ ¦ ¢¢ ¢ ¢¢ ¦ ¡ , we obtain ¢ §! © for all §¢ ¤¤ ¤© s. Since © ¤¤ , it follows that ¢ §! © forall §¢ © .
The minimal tense logic (the logic in [START_REF] Rescher | Temporal Logic[END_REF]) is a bimodal logic with modal operators

¥ ¢ ¦ , ¥ ¢ ¦ ¦ ¦
, and a countably infinite set of proposition letters. As a corollary to the proof of Theorem 12, the minimal tense logic augmented with a single nominal but without proposition letters has an EXPTIME-hard satisfiability problem. This improves the result in [START_REF] Areces | A road-map on complexity for hybrid logics[END_REF], which states that the minimal tense logic with one nominal and proposition letters is EXPTIME-hard. From the proof of Theorem 12, it is clear that the main ingredient for EXPTIME-hardness is not the presence of regular expressions in PDL ¤ but rather the presence of a unique nominal with future and past-time operators.

To conclude this section we summarize the results we have obtained so far, and situate them amongst related results in the literature; see Table 1.

The Complexity of Reasoning with Path Constraints

In order to characterize the complexity of reasoning problems on path constraints, we will either use translations into PDL ¤ (mainly via Lemma 8) or use direct methods.

The Query Evaluation Problem

An immediate corollary to Lemma 8, item 1, and Theorem 9 is that checking whether

¨! © ¥ can be done in time ¡ !¨! ! ¥! ! !
. The rest of this section is devoted to showing that this tractability result can be improved significantly. We need the following lemma. Lemma 13 is an improvement of [START_REF] Mendelzon | Finding regular simple paths in graph databases[END_REF], which only states that the problem formulated in Lemma 13 is in P.

In the proof of Lemma 13, if contains ¤, then we consider ¢ instead of by replacing every occurrence of ¤by ¢ ¦ ¤¤¤ ¢ © , where either ¢ ¥ occurs in or ¤£ is non-empty in ¨. Hence, ! ¢ !is in ¡ !¨! ! ! which guarantees that we also have an NLOGSPACE upper bound in this case.

Theorem 14

The query evaluation problem for the class of path constraints is NLOGSPACEcomplete in !¨!and !! .

Proof. The Graph Accessibility Problem (GAP) can easily be reduced to the query evaluation problem, which provides NLOGSPACE-hardness. Indeed, let ¨© be a graph and ¡ £¢ . We have ¡ £ ¢ © iff ¨¢ © ¡ ¤¡ ¤ ! © ¢ § ! ¢ © ¦ with ¤¡ © and ¤ © ¡ £ . Now, let us establish the NLOGSPACE upper bound. Let © § ¥ ! (respectively, © § ¥ ¥ ) be a path constraint and ¨a finite §-structure. We provide an NLOGSPACE algorithm to check whether ¨© ! © . Since NLOGSPACE = co-NLOGSPACE, we are done. The steps are the following: To see that the final step can also be done in NLOGSPACE, use Lemma 13 together with the fact that NLOGSPACE = co-NLOGSPACE.

Notice that the proof for NLOGSPACE-hardness is actually a lower bound for forward constraints. Moreover (and by taking ¤ © £ ¡ ) it can be adapted for backward constraints. In a similar manner, the proof can be adapted for deterministic structures. Summarizing, then, we have the following:

Theorem [START_REF] Capra | xlinkit: the consistency checking and link generation engine developed at the University College London[END_REF] The query evaluation problems for the classes of forward constraints, backward constraints, and path constraints areallNLOGSPACE-completein !¨!and !! , for both deterministic and non-deterministic graphs ¨.

As an aside, we designed the logic PDL ¤ in such a way that we can express reasoning problems for standard path constraints as easily as possible. We can 'measure' how well PDL ¤ fits this purpose by comparing the complexity results of reasoning in PDL ¤ to those of reasoning in other logics, and hopefully getting as close as possible to the complexity of the corresponding problem on standard path constraints. For instance, the hybrid -calculus has a model-checking problem in NP ¤ co-NP; given Theorems 14 and 15 this result disqualifies the hybrid -calculus as a logic that nicely fits the descriptive requirements of standard path constraints; on the other hand, the alternation-free hybrid -calculus would fit better.

The Containment Problem

Our next aim is to obtain sharp complexity results for containment problems for classes of path constraints. We start by considering non-deterministic §-structures, and the first step is to show the following.

Theorem 16

The containment problem for forward constraints is decidable in exponential time, while it is at least PSPACE-hard whenever ! §! .

Proof. The EXPTIME upper bound is a corollary of Lemma 8(2) and Theorem 12. As to the lower bound PSPACE, each relational term built with ¨ © over the atomic terms ¢ ¢ ¦ can obviously be viewed as regular expressions and we write § to denote the language generated by . By [34, Theorem 2.12(c)], the problem of check- ing whether § ¢ ¢ ¦ ©© §

, where is a relational term built over ¢ ¢ ¦

, is PSPACE-complete. The complement problem belongs to the same complexity class.

One can show that for any regular expression ¢ , § § ¢ iff for any structure ¤¤ ¤¡ , ¢

. Consequently, it is easily verified that for any rela-

tional term built over ¢ ¢ ¦ , § ¢ ¢ ¦ © § iff ! © ¢ ¢ ¦ © ! . Hence,
the containment problem restricted to two labels and without forward constraints as premisses, is already PSPACE-hard.

For backward constraints one can obtain results similar to those for forward constraints.

Theorem 17

The containment problem for backward constraints is decidable in exponential time, while it is at least PSPACE-hard whenever ! §! .

Proof. Since the converse construction ¤ ¦ ¦ is not present in the path expressions, we cannot simply use the proof of Theorem 16. However, one can easily show that for any regular expression ¥built over ¢ ¢ ¦ , (i) § ¢ ¢ ¦ © § ¥ iff (ii) for any §-structure ¨, ¨! © ¥ ¥ ¢ § implies ¨! © ¢ ¢ ¦ © ¥ ¢ § , and from this we easily get our theorem. So let us prove that the equivalence (i) iff (ii) holds.

(Only-if) If § ¢ ¢ ¦ © § ¥ , then obviously for every §-structure ¨, ¨! © ¥ ¥ ¢ § implies ¨! © ¢ ¢ ¦ © ¥ ¢ § . (If)
Assume that (ii) holds and suppose that there is a finite word §¢ § ¢ ¢ ¦ ©¥ § ¥ such that § © ¦¤ ¤ for some ! ( © ! if § ©£ ). Let ¨ © ¤¤ ¤¡ ¤ be the structure such that for every ¢ ¢ !

, for all ¡ ¡ ¢ ¢

, ¡ ¤£ ¡ ¢ iff ¡ ¢ © ¡ and ©© ¢ ¥ ; ¤ © ¡ ¡¢ ! ¦¤ ¤ © ¢ § ¥ . So ¨ ! © ¥ ¥ ¢ § but not ¨! © ¢ ¢ ¦ © ¥ ¢ § since ¢ ¤¤ ¤¡ © and © ¢ ¤ , a contradiction.
We now restrict attention to deterministic §-structures, which makes a substantial difference. The containment problem with (lollipop) path constraints of the form § ¥ ! restricted to deterministic §-structures is undecidable even if §contains only two labels [START_REF] Buneman | Path constraints on deterministic graphs[END_REF]. However, in the lollipop constraints used in the proof, the operator © occurs in , and this is used to encode the word problem. Moreover by imposing restrictions of , ¥, and (for instance by forbidding ©

), decidable restrictions of the containment problem on deterministic §-structures have been found (again, see [START_REF] Buneman | Path constraints on deterministic graphs[END_REF]).

Using Table 2: A summary of results on reasoning tasks with path constraints.

Conclusions

By moving back and forth between reasoning tasks for PDL ¤ and reasoning tasks for semistructured data, we have given new and transparent decidability proofs for the forward constraints proposed in [START_REF] Abiteboul | Regular path queries with constraints[END_REF] for optimizing queries on semistructured data, mostly in the context of the web. In some cases we have obtained sharp upper and lower bounds that are better than previously known ones (see e.g., Theorem 14 and 15), and in other cases we have improved known bounds (Theorems 16 and 17). Tables 1 and2 summarize the complexity and (un-) decidability results for the reasoning tasks considered in this paper.

It is worth observing that some of our decidability results were obtained by re-using the results of [START_REF] Giacomo | Decidability of Class-Based Knowledge Representation Formalisms[END_REF]. More generally, there are many areas in computer science in which describing and reasoning about finite graphs is a key issue. There exists a large body of work in e.g., feature structures [START_REF] Rounds | Feature logics[END_REF], process algebra [START_REF] Milner | Communication and Concurrency[END_REF], or knowledge representation [START_REF] Donini | Reasoning in description logics[END_REF] which can be usefully applied in the theory of semistructured datas. But there are differences in the kind of questions asked and in the emphasis in descriptions of linguistic structures, processes, or knowledge on the one hand, and in descriptions of database schemas on the other hand; these differences make the present application interesting and non-trivial.

Our modal logic perspective on standard path constraints moves many decidability and complexity issues for semistructured data into the realm of PDL-like logics. Here are just some of the many remaining open problems:

1. Complexity of the containment problem for the class of forward constraints (respectively backward constraints) (we know PSPACE-hardness and the EX-PTIME upper bound). The containment problem for the class of forward constraints cannot be expressed naturally by query containement between a conjunctive two-way regular path query with constants and a tree two-way regular path query with constants, although this problem is in PSPACE [START_REF] Calvanese | View-based query answering and query containment over semistructured data[END_REF]. Query containment between conjunctive two-way regular path queries with constants is roughly about the validity of questions of the form ¥ ¦ ¤ ¤¤¤ ¤ ¥ ¦ ¤ ¤¤¤ ¤ .

2. Decidability of the containment problem for forward constraints restricted to deterministic §-structures. 4. Extending our results to a richer path expressions language containing additional predicates such as, for example, XPath [START_REF]XML Path Language (XPath) 1.0[END_REF].
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