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It is well-known that model checking and satisfiability for PLTL are PSPACE-complete.
By contrast, very little is known about whether there exist some interesting fragments of
PLTL with a lower worst-case complexity. Such results would help understand why PLTL
model checkers are successfully used in practice.

In this paper we investigate this issue and consider model checking and satisfiability for
all fragments of PLTL obtainable by restricting (1) the temporal connectives allowed, (2)
the number of atomic propositions, and (3) the temporal height.

Key Words: logic in computer science, computational complexity, verification, temporal
logic, model checking

1. INTRODUCTION

Background. PLTL is the standard linear-time propositional temporal logic
used in the specification and automated verification of reactive systems [MP92,
Eme90]. It is well-known that model checking and satisfiability for PLTL are
PSPACE-complete [SC85, HR83, Wol83]. This did not deter some research
groups from implementing PLTL model checkers or provers, and using them suc-
cessfully in practice [BBC+96, CGH97, Hol97]. The fundamental question this
raises is “what makes PLTL feasible in practice ?”.

To this question, the common answer starts with the observation that the PSPACE
complexity only applies to the formula part of the problem [LP85], and it is only
a worst-case complexity. Then, it is often argued that the PLTL formulae used
in actual practical situations are not very complex, have a low temporal height

1This article is a completed version of [DS98].
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(number of nested temporal connectives) and are mainly boolean combinations of
simple eventuality, safety, responsiveness, fairness, . . . properties.

Certainly the question calls for a systematic theoretical study, aiming at turning
the above answers into formal theorems and helping understand the issue at hand.
If we consider for example SAT, the famous Boolean Satisfiability problem, there
are current in-depth investigations of tractable subproblems (e.g., [Dal96, FV98]).
Regarding PLTL, we know of no systematic study of this kind in the literature.
This is all the more surprising when considering the wide use of PLTL model
checkers for reactive systems.

Our objectives. In this article, we develop a systematic study, looking for nat-
ural subclasses of PLTL formulae for which complexity decreases. The potential
results are (1) a better understanding of what makes the problem PSPACE-hard,
(2) the formal identification of classes of temporal formulae with lower complex-
ity, called simple cases, (3) the discovery of more efficient algorithms for such
simple cases. Furthermore, since PLTL is the most basic temporal logic, simple
cases for PLTL often have corollaries for other logics.

As a starting point, we revisit the complexity questions from [SC85] when
there is a bound on the number of propositions and/or on the temporal height of
formulae. More precisely, let us write H1,H2, . . . for an arbitrary set of linear-
time combinators among {U,F,X, . . .} and let Lkn(H1, . . .) denote the fragment of
PLTL restricted to formulae (1) only using combinators H1, . . ., (2) of temporal
height at most k, and (3) with at most n distinct atomic propositions. In this
article we measure the complexity of model checking and satisfiability for all
these fragments.

The choice of this starting point is very natural, and it is relevant for our original
motivations:

• For the propositional calculus and for several modal logics (K45, KD45, S5,
von Wright’s logic of elsewhere, . . . ), satisfiability becomes linear-time when at
most n propositions can be used (see [Hal95, Dem96]). By contrast, satisfiability
for K remains PSPACE-complete even when only one proposition is allowed.
What about PLTL ?

• In practical applications, the temporal height often turns out to be at most
2 (or 3 when fairness is involved) even when the specification is quite large and
combines a large number of temporal constraints. This bounded height is often
invoked as a reason why PLTL model checking is feasible in practice. Can this be
made formal ?

Our contribution.
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1. Our first contribution is an evaluation of the computational complexity of
model checking and satisfiability for all Lkn(H1, . . .) fragments. A table in sec-
tion 8 summarizes this.

2. We also identify new simple cases for which the complexity is lowered (only
NP-complete). For these we give (non-deterministic) algorithms. We think it
is worth investigating whether the ideas underlying these algorithms could help
develop deterministic algorithms that perform measurably better (on the relevant
simple case) than the usual methods. These results also have implications beyond
PLTL: e.g. NP-completeness of PLTL without temporal nesting (Prop. 7.4) leads
to a ∆P

2 model checking algorithm for CTL+ and FCTL [LMS01].

3. A third contribution is the proof techniques we develop: we show how a
few logspace reductions allow to compute almost all the complexity measures
we needed (only a few remaining ones are solved with ad-hoc methods). These
reductions lead to a few rules of thumb (summarized in section 8) that can be
used as guidelines. Additionally, some of our reductions transform well-known
problems (SAT or QBF) into model checking problems for formulae with a simple
structure (e.g., low temporal height) and can be used in other contexts. The second
author used them for very restricted fragments of CTL+Past [LS00].

We believe that these constructions are interesting in their own right and think
that the scarcity of available proofs and exercices suitable for a classroom frame-
work is unfortunate when PLTL model checking is now widely taught in computer
science curriculums.

Related work. It is common to find papers considering extensions of ear-
lier temporal logics. The search for fragments with lower complexity is less
common (especially works considering model checking). [EES90] investigates
(very restricted) fragments of CTL (a branching-time logic) where satisfiability
is polynomial-time. [KV98] studies particular PLTL formulae for which there is
a linear-sized equivalent CTL formula: one of the aims is to understand when
and why PLTL model checking often behaves computationally well in practice.
[BK98] tries to understand why Mona performs well in practice and isolates a frag-
ment of WS1S where the usual non-elementary blowup does not occur. [Hal95]
investigates, in a systematic way, the complexity of satisfiability (not model check-
ing) for various multimodal logics when the modal height or the number of atomic
propositions is restricted: in fact PLTL is quite different from the more standard
multimodal logics and we found it behaves differently when syntactic restrictions
are enforced. In [Hem00], the complexity of fragments of modal logics is also
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studied by restricting the set of logical (boolean and temporal) operators. These
fragments are mainly relevant for description logics (see, e.g., [DLNN97]).

As far as PLTL is concerned, some complexity results for some particular re-
stricted fragments of PLTL can be found in [EL87, CL93, Spa93, DFR00] but
these are not systematic studies sharing our objectives. [Har85] has a simple
proof, based on a general reduction from tiling problems into modal logics, that
satisfiability for L(F,X) is PSPACE-hard. In fact, the same proof (or the proofs
from [Spa93, DFR00]) shows that PSPACE-hardness is already obtained with
temporal height 2.

Finally, there is a special situation with L(F) and L(X). These two very lim-
ited fragments of PLTL actually coincide (semantically) with, respectively, the
modal logics S4.3Dum (also called S4.3.1 or D) [Bul65, Seg71, Gor94] and
KDAlt1 [Seg71]. NP-completeness of S4.3Dum satisfiability has been first proved
in [ON80] and generalized in [Spa93] to any modal logic extending the modal logic
S4.3. The complexity of L(X) satisfiability is also studied in [SR99].

Plan of the article. Section 2 recalls various definitions we need throughout
the article. Sections 3 and 4 study the complexity of PLTL fragments when the
number of atomic propositions is bounded. Logspace transformations from QBF
into model checking can be found in Section 5 and Section 6. Section 7 studies the
complexity of PLTL fragments when the temporal height is bounded. Section 8
contains concluding remarks and provides a table summarizing the complete pic-
ture we have established about complexity for PLTL fragments.

2. BASIC DEFINITIONS AND RESULTS

Computational complexity. We assume that the reader understands what is
meant by complexity classes such as L (deterministic logspace), NL (non-de-
terministic logspace), P (polynomial-time), NP and PSPACE, see e.g. [Pap94].
Given two decision problems P1 and P2, we write P1 ≤L P2 when there exists a
logspace transformation (many-one reduction) from P1 into P2. In the rest of the
article, all the reductions are logspace, and by “C-hardness” we mean “logspace
hardness in the complexity class C”.

Temporal logic. We follow notations and definitions from [Eme90]: PLTL is a
propositional linear-time temporal logic based on a countably infinite set Prop =

{A1, A2, . . . , P1, P2, . . .} of propositional variables, the classical boolean con-
nectives >, ¬, ∧, and the temporal operators X (next), U (until), F (sometimes).
The set {ϕ, . . .} of formulae is defined in the standard way, using the connectives
⊥, ∨, ⇒, ⇔ and G (always) as abbreviations with their standard meaning. We
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let |ϕ| denote the length (or size) of the string ϕ, assuming a reasonably succinct
encoding.

Following the usual notations (see, e.g., [SC85, Eme90]), we let L(H1,H2, . . .)

denote the fragment of PLTL for which only the temporal operators H1,H2, . . .

are allowed 3. For instance L(U) is “PLTL without X”, as used in [Lam83].
Prop(ϕ) denotes the set of propositional variables occurring inϕ. The temporal

height ofϕ, written th(ϕ), is the maximum number of nested temporal operators in
ϕ. We write Lkn(H1, . . .) to denote the fragment of L(H1, . . .) where at most n ≥ 1

propositions are used, and at most temporal height k ≥ 0 is allowed. We write
nothing for n and/or k (or we use ω) when no bound is imposed: L(H1, . . .) =

L
ω
ω(H1, . . .).
For example, forϕ given as (A⇒ XXB)U(¬XA), we haveProp(ϕ) = {A,B}

and th(ϕ) = 3 so that ϕ ∈ L
3
2(U,X).

Flat Until. We say a PLTL formulaϕ, of the formψUψ′, uses flat Until when the
left-hand side, ψ, does not contain any temporal combinator (i.e., ψ is a boolean
combination of propositional variables) and we write ψU−ψ′ when we want to
stress that this occurrence of U is flat. E.g., we sometimes write (AU−B)UC for
(AUB)UC.

To the best of our knowledge, Dams was the first to explicitely isolate and name
this restricted use of Until 4 and prove that U− is less expressive than U [Dam99].
He argued that flat Until is often sufficiently expressive in practice, and hoped
model checking and satisfiability would be simpler for U− than for U. In the
following, we treat U− as if it were one more PLTL combinator, more expressive
than F but less than U.

Semantics. A linear-time structure (also called a model) is a pair (S, ε) of an
ω-sequence S = s0, s1, . . . of states, with a mapping ε : {s0, s1, . . .} → 2Prop

labeling each state si with the set of propositions that hold in si. We often only
write S for a structure, and use the fact that a structure S can be viewed as an
infinite string of subsets of Prop. Let S be a structure, i ∈ N a position, and ϕ a
PLTL formula. The satisfiability relation |= is inductively defined as follows (we
omit the usual conditions for the propositional connectives):

• S, i |= A
def
⇔ A ∈ ε(si) (when A ∈ Prop);

• S, i |= Xϕ
def
⇔ S, i+ 1 |= ϕ;

• S, i |= Fϕ
def
⇔ for some j ≥ i, S, j |= ϕ;

3Negations are allowed. For instance, L(F) and L(G) denote the same fragment.
4But flat fragments of temporal logics have been used in many places, e.g. [MC85, DG99, CC00].
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• S, i |= ϕUψ
def
⇔ there is a j ≥ i such that S, j |= ψ and for all i ≤ j ′ < j,

S, j′ |= ϕ.

We write S |= ϕ when S, 0 |= ϕ.

Satisfiability. We say that a formula ϕ is satisfiable iff S |= ϕ for some S. The
satisfiability problem for a fragment L(. . .), written SAT (L(. . .)), is the set of all
satisfiable formulae in L(. . .).

Model checking. A Kripke structure T = (N,R, ε) is a triple such that N
is a non-empty set of states, R ⊆ N × N is a total 5 next-state relation, and
ε : N → 2Prop labels each state s with the (finite) set of propositions that hold
in s. A path in T is an ω-sequence S = s0, s1, . . . of states of N such that
siRsi+1 for all i ∈ N. (A path in T is a linear-time structure and a linear-time
structure is a possibly infinite Kripke structure where R is a total function.) We
follow [Eme90, SC85] and write T, s |= ϕwhen there exists in T a path S starting
from s such that S |= ϕ 6. The model checking problem for a fragment L(. . .),
writtenMC(L(. . .)), is the set of all 〈T, s, ϕ〉 such that T, s |= ϕwhere T is finite
and ϕ is in L(. . .). For the definition of |T |, the size of T , we use a reasonably
succinct encoding of T = (N,R, ε). In practice, it is convenient to pretend
|T | = card(R) + card(N).

Complexity of PLTL. As far as computational complexity is concerned we make
a substantial use of the already known upper bounds:

Theorem 2.1. [ON80, HR83, SC85]
SAT (L(F)) and MC(L(F)) are NP-complete.
SAT (L(F,X)),MC(L(F,X)),SAT (L(U))andMC(L(U))are PSPACE-complete.

As a consequence, most of our proofs establish lower bounds.

Stuttering equivalence. Two models are equivalent modulo stuttering, written
S ≈ S′, if they display the same sequence of subsets of Prop when repeated
(consecutive) elements are seen as one element only (see [Lam83, BCG88] for a

5Only considering Kripke structures with total relations is a common technical simplification. Usu-
ally it has no impact on the complexity of temporal logic problems. However the “total R” assumption
implies that any two states satisfy the same temporal formulae in L

ω
0 (U, X), a fragment for which

satisfiability is trivial. In “non-total R” frameworks there is a branching-time formula that behaves
as a propositional variable. This can impact complexity: satisfiability for the fragment of K with no
propositions is PSPACE-complete in a “non-total R” framework [Hem00], and is in L in a “total R”
framework.

6This existential formulation is well suited to complexity studies because it makes model checking
closer to satisfiability. It is the dual of the definition used in verification (“all paths from s satisfy ϕ”),
so that all complexity results for model checking can be easily translated, modulo duality, between the
two formulations.
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formal definition). Lamport argued that one should not distinguish between stutter-
equivalent models and he advocated prohibiting X in high-level specifications since

Theorem 2.2. [Lam83] S ≈ S′ iff S and S′ satisfy the same L(U) formulae.

3. BOUNDING THE NUMBER OF ATOMIC PROPOSITIONS

In this section we evaluate the complexity of satisfiability and model checking
when the number of propositions is bounded, i.e. for fragments Ln(. . .).

When the number of propositions is bounded, satisfiability can be reduced to
model checking:

Proposition 3.1. Let H1, . . . be a non-empty set of PLTL temporal combi-
nators. Then for any n ∈ N, SAT (Ln(H1, . . .)) ≤L MC(Ln(H1, . . .)).

Proof. Take ϕ ∈ Ln(H1, . . .) such that Prop(ϕ) ⊆ {A1, . . . , An}. Let T =

(N,R, ε) be the Kripke structure where N def
= 2{A1,...,An} is the set of all 2n

valuations, R def
= N × N relates any two states, and for all s ∈ N , s is its own

valuation: ε(s) def
= s. One can see that ϕ is satisfiable iff there is a s ∈ N s.t.

T, s |= ϕ. For a many-one reduction, we pick any s0 ∈ N and use

(∃s ∈ N, T, s |= ϕ) iff T, s0 |= Xϕ iff T, s0 |= Fϕ.

The reduction is logspace since n, and then |T |, are constants.

Prop. 3.1 is used extensively in the rest of the article. Note that the reduction does
not work for an empty set of combinators, as could be expected since SAT (L())

is NP-complete while MC(L()) amounts to evaluating a boolean expression and
is in L [Lyn77]. Also, Prop. 3.1 holds when n is bounded and should not be
confused with the reductions from model checking into satisfiability where one
uses additional propositions to encode the structure of T into a temporal formula
(used in, e.g., [SC85, Eme90]).

3.1. PSPACE-hardness with few propositions
The next two propositions show that, for model checking problems, n proposi-

tional variables can be encoded into only two if U is allowed, and into only one
one if F and X are allowed.

Proposition 3.2. MC(L(H1, . . .)) ≤L MC(L2(U)) for any set H1, . . . of
PLTL temporal operators.
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Proof. With a Kripke structure T = (N,R, ε) and a formula ϕ ∈ L(H1, . . .)

such that Prop(ϕ) = {P1, . . . , Pn}, we associate a Kripke structure Dn(T )
def
=

(N ′, R′, ε′) over Prop′ = {A,B} given by

N ′ def
= {〈s, i〉 | s ∈ N, 1 ≤ i ≤ 2n+ 2}

〈s, i〉R′〈s′, i′〉
def
⇔

{
s = s′ and i′ = i+ 1, or
sRs′ and i = 2n+ 2 and i′ = 1,

ε′(〈s, 1〉)
def
= {A,B},

ε′(〈s, 2〉)
def
= {},

ε′(〈s, 2j + 1〉)
def
= {A},

ε′(〈s, 2j + 2〉)
def
=

{
{B} if Pj ∈ ε(s),
{} otherwise.

where j = 1, . . . , n. Fig. 1 displays an example. Here alternations betweenA and

P1,P3s

P2t

A,B

s,1

A,B

t,1

s,2

A

s,3

B

s,4
P1

A

s,5 s,6
¬P2

A

s,7

B

s,8
P3

t,2

A

t,3
¬P1

t,4

A

t,5

B

P2

t,6

A

t,7
¬P3

t,8

T : D3(T ) :

FIG. 1. T and D3(T ) – An example

¬A in Dn(T ) define visible “slots”, the 〈s, 2j + 2〉’s, that are used to encode the
truth value of the propositional variables: B in the i-th slot encodes that Pi holds.

Define AtD
def
= A ∧B, and let Alt

k
n for k = 0, . . . , n be given by

Alt
0
n

def
= AtD Alt

k+1
n

def
= ¬B ∧A ∧

(

AU
−

(

¬A ∧
(
¬AU

−
Alt

k
n

))
)

.

AtD is satisfied in Dn(T ) at all 〈s, j〉 with j = 1 and only there. Alt
k
n expresses

the fact that there remain k “A–¬A” alternations before the next state satisfying
AtD.
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We now translate formulae over T into formulae over Dn(T ) via the following
inductive definition:

Dn(Pi)
def
= AU−

(

¬AtD ∧ ¬AtDU−
(
Alt

n+1−i
n ∧AU−B

))

;

Dn(ϕ ∧ ϕ
′)

def
= Dn(ϕ) ∧Dn(ϕ

′);

Dn(¬ϕ)
def
= ¬Dn(ϕ);

Dn(Xϕ)
def
= AtDU−

(

¬A ∧ ¬B ∧ (¬AtDU−(AtD ∧Dn(ϕ))
)

;

Dn(Fϕ)
def
= F(AtD ∧Dn(ϕ));

Dn(ϕUϕ′)
def
= (AtD ⇒ Dn(ϕ))U(AtD ∧Dn(ϕ

′)).

This gives the reduction we need since

for any s ∈ N : T, s |= ϕ iff Dn(T ), 〈s, 1〉 |= Dn(ϕ).

Clearly the construction ofDn(T ) can be done in spaceO(log(|T |+ |ϕ|)) and the

construction of Dn(ϕ) can be done in space O(log |ϕ|).

Observe that Dn(ϕ) ∈ L2(U
−) when ϕ ∈ L(F,X). Combining with Theo-

rem 2.1 we obtain

Corollary 3.1. MC(L2(U
−)) is PSPACE-complete.

Proposition 3.3. MC(L(H1, . . .)) ≤L MC(L1(X,H1, . . .)) for any setH1, . . .

of PLTL temporal operators.

Proof. With a Kripke structure T = (N,R, ε) and a formula ϕ ∈ L(H1, . . .)

such that Prop(ϕ) = {P1, . . . , Pn}, we associate a Kripke structure Cn(T )
def
=

(N ′, R′, ε′) over Prop′ = {A}, given by

N ′ def
= {〈s, i〉 : s ∈ N, 1 ≤ i ≤ 2n+ 2},

〈s, j〉R′〈s′, j′〉
def
⇔ s = s′ and j′ = j + 1, or sRs′ and j = 2n+ 2 and j′ = 1,

∀s ∈ N,∀j = 1, . . . , n :

ε′(〈s, 1〉) = ε′(〈s, 2〉)
def
= {A},

ε′(〈s, 2j + 1〉)
def
= {},

ε′(〈s, 2j + 2〉)
def
=

{
{A} if Pj ∈ ε(s),
{} otherwise.

Fig. 2 displays an example.
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P1,P3s

P2t

A

s,1

A

s,2 s,3

A

s,4
P1

s,5 s,6
¬P2

s,7

A

s,8
P3

A

t,1

A

t,2 t,3
¬P1

t,4 t,5

A

P2

t,6 t,7
¬P3

t,8

T : C3(T ) :

FIG. 2. T and C3(T ) – An example

The idea is to use ¬A.A (resp. ¬A.¬A) in the i-th slot after a A.A to encode
that Pi holds (resp. does not hold). TheA.A is a marker for the beginning of some
s and the ¬A in a 〈s, 2j + 1〉 is to distinguish slots for starting a new s and slots
for a Pi. We now translate formulae over T into formulae over Cn(T ) via the
following inductive definition:

Cn(Pi)
def
= X2i+1A, Cn(Xϕ)

def
= X2n+2Cn(ϕ),

Cn(ϕ ∧ ϕ
′)

def
= Cn(ϕ) ∧ Cn(ϕ

′), Cn(Fϕ)
def
= F(AtC ∧ Cn(ϕ)),

Cn(¬ϕ)
def
= ¬Cn(ϕ), Cn(ϕUϕ′)

def
= (AtC ⇒ Cn(ϕ))U(AtC ∧ Cn(ϕ

′)).

with AtC
def
= A ∧ XA ∧ X2¬A. Clearly, AtC is satisfied in Cn(T ) at all 〈s, j〉

with j = 1 and only there. For any s ∈ N , we have T, s |= ϕ iff Cn(T ), 〈s, 1〉 |=

Cn(ϕ).
Finally, the construction ofCn(T ) can be done in spaceO(log(|T |+|ϕ|)) and the

construction of Cn(ϕ) can be done in space O(log |ϕ|).

Combining with Theorem 2.1 we obtain

Corollary 3.2. MC(L1(F,X)) is PSPACE-complete.

Similar results exist for satisfiability problems:

Proposition 3.4. For H1, . . . a set of PLTL temporal operators,
(1) SAT (L(H1, . . .)) ≤L SAT (L2(U)), and
(2) SAT (L(H1, . . .)) ≤L SAT (L1(F,X,H1, . . .)).
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Proof. (1) Let ϕ ∈ L(H1, . . .) be such that Prop(ϕ) = {P1, . . . , Pn}. Let ψ′
n

be the formula

ψ′
n

def
= AtD ∧ G

(
¬A ⇒ (B ⇒ BU−A) ∧ (¬B ⇒ ¬BU−A)

)

∧G

[

AtD ⇒ AtDU−
(
¬A ∧ ¬B ∧ ((¬A ∧ ¬B)U−Alt

n
n)

)
]

.

ψ′
n describes the shape of models that have the form of some Dn(S). More

formally, one can show that for any model S, Dn(S) |= ψ′
n and for any S′ over

{A,B}, if S′ |= ψ′
n then there exists a (unique) S such that S ′ ≈ Dn(S). Then

an Ln(H1, . . .) formula ϕ is satisfiable iff the L2(U,H1, . . .) formula ψ′
n ∧Dn(ϕ)

is satisfiable. We already know that Dn(ϕ) can be built in space O(log |ϕ|).
Moreover, ψ′

n can be also built in space O(log |ϕ|) since we already know that
Altnn can be built in space O(log n) which is a fortiori in space O(log |ϕ|).

(2) Let ϕ ∈ L(H1, . . .) such that Prop(ϕ) = {P1, . . . , Pn}. Let ψn be the
formula

ψn
def
= AtC ∧ G

(

AtC ⇒ (X2n+2
AtC ∧

n∧

j=1

X
2j¬A)

)

.

ψn describes the shape of models of the form Cn(S): for any model S, Cn(S) |=

ψn and for any S′ over {A} if S′ |= ψn then there exists a (unique) S such that
S′ is (isomorphic to) Cn(S). Then the Ln(H1, . . .) formula ϕ is satisfiable iff the
L1(F,X,H1, . . .) formula ψn ∧Cn(ϕ) is satisfiable. We already know that Cn(ϕ)

can be built in spaceO(log |ϕ|). Moreover,ψn can be also built in spaceO(log |ϕ|)

since we need to count until n which requires space in O(log n). So, computing

ψn ∧ Cn(ϕ) requires space in O(log |ϕ|).

Since ψ′
n is a L2(U

−) formula, the proof of Proposition 3.4 also shows that
SAT (L(F,X)) ≤L SAT (L2(U

−)). Combining with Theorem 2.1, we get

Corollary 3.3. SAT (L2(U
−))andSAT (L1(F,X))are PSPACE-complete.

3.2. NP-hardness with few propositions
We now show that MC(L2(F)) and SAT (L2(F)) are NP-hard using Prop. 3.1

and

Proposition 3.5. SAT (L0
ω()) ≤L SAT (L2(F)).

Proof. We consider structures on Prop = {A,B}. Say S has nA-alternations
iff there exist positions 0 = i1 < i′1 < i2 < i′2 < · · · < in+1 < i′n+1 = ω such
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that S, j |= ¬A iff i′k ≤ j < ik+1 for some k. Hence S contains an alternation of
2n consecutive non-empty segments : A holds in the first and all odd-numbered
segments, A does not hold in even-numbered segments. Then there is an infinite
suffix where A holds continually.

Let us define the following formulae:

• ϕ0
def
= G(¬A ∨ GA) ∧ FA;

• ϕ0[ϕ]
def
= >; ϕ1[ϕ]

def
= A ∧ F(¬A ∧ ϕ);

• ϕi+1[ϕ]
def
= ϕ1[Fϕi[ϕ]], for i ≥ 1.

One can check that ϕn[ϕ0], n ≥ 1, expresses that a structure has n′ A-alternations
for some n′ ≥ n. Thus

ψn
def
= ϕn[ϕ0] ∧ ¬ϕn+1[ϕ0]

is a formula with size inO(n), stating that the modelS has exactlynA-alternations.
An A-alternation is a segment composed of an A-segment followed by an ¬A-
segment. For l ∈ {A,¬A}, an l-segment is a (non-empty) finite sequence of states
where l holds true. Generally, ϕn[ψ] expresses that there is n′ ≥ n such that ψ
holds at some state belonging to the n′th A-alternation in which ¬A also holds.

When S has exactly n A-alternations, we can view it as the encoding of a
valuation vS of {P1, . . . , Pn} by saying that Pk holds iff both B and ¬B can
be found in the k-th ¬A-segment in S. Formally, vS(Pk)

def
= > iff there exist

i′k ≤ j, j
′ < ik+1 with S, j |= B and S, j′ |= ¬B.

We now encode a propositional formula θ over {P1, . . . , Pn} into fn(θ), an
L(F)-formula with

fn(Pi)
def
= ϕi[B ∧ Fϕn−i[ϕ0]] ∧ ϕi[¬B ∧ Fϕn−i[ϕ0]]

and the obvious homomorphic rules for ∧ and ¬. One can see that, for S with n
A-alternations, vS |= θ iff S |= fn(θ), so that θ is satisfiable iff fn(θ) ∧ ψn is
satisfiable.

The proof is completed by checking that fn(θ)∧ψn is an Lω2 (F)-formula that can

be computed from θ in space O(log |θ|) .

The transformation from 3SAT into MC(L(F)) in [SC85] only uses formulae
of temporal height 1. Here we provide a logspace transformation from 3SAT into
MC(L(F)) using only formulae with two different propositional variables.

Proposition 3.6. 3SAT ≤L MC(Lω2 (F)).
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Proof. Consider an instance I of 3SAT. I is a conjunction
∧m
i=1 Ci of clauses,

where each Ci is some disjunction
∨3
j=1 li,j of literals, where each li,j is a propo-

sitional variable xr(i,j) or the negation ¬xr(i,j) of a propositional variable from
X = {x1, . . . , xn}. W.l.o.g. we assume that n ≤ 3 ×m and that, for any i, the
r(i, j) for 1 ≤ j ≤ 3 are all distinct.

We consider the structure Tn labeled with propositions A and B as in Figure 3.
Observe that Tn only depends on n, the number of different boolean variables
occuring in I.

s0

At1

Bu1

s1

At2

Bu2

s2 . . . sn−1

Atn

Bun

sn

FIG. 3. The structure Tn

With a path S from s0, we associate a valuation vS ∈ {>,⊥}X : if S visits tr
(resp. ur), we let vS(xr)

def
= > (resp. vS(xr)

def
=⊥). Symmetrically, any valuation

v is vS for a unique path S in Tn.
For i = 1, . . . ,m we define ϕ0

i , an L(F) formula stating that vS does not satisfy
clause Ci. This is done in several steps: define

ϕn+1
i

def
= ¬F(A ∨B)

and, for r = 1, . . . , n, define inductively

ϕri
def
=







¬(A ∨B) ∧ F(B ∧ Fϕr+1
i ) if li,j = xr for some 1 ≤ j ≤ 3,

¬(A ∨B) ∧ F(A ∧ Fϕr+1
i ) if li,j = ¬xr for some 1 ≤ j ≤ 3,

¬(A ∨B) ∧ F((A ∨B) ∧ Fϕr+1
i ) if no li,j is xr or its negation.

Because it involves alternations between¬(A∨B) andA∨B,ϕri cannot be satisfied
starting from sn−r′ for r′ > r. Thus, if S |= ϕ0

i , the rth positive occurence of A
or B or A ∨B is necessarily satisfied in tr or ur. Hence

S |= ϕ0
i iff vS 6|= Ci.

Now define ϕI
def
=

∧m
i=1 ¬ϕ

0
i . Then Tn, s0 |= ϕI iff I is satisfiable. Finally, both

Tn and ϕI can be computed in space O(log |I|).

Corollary 3.4. MC(L2(F)) and SAT (L2(F)) are NP-complete.



14 S. DEMRI AND PH. SCHNOEBELEN

4. FRAGMENTS WITH ONLY ONE PROPOSITION

In this section, we give a polynomial-time algorithm for Lω1 (U) that relies on
linear-sized Büchi automata.

Recall that the standard approach for PLTL satisfiability and model checking
computes, for a given PLTL formula ϕ, a Büchi automaton 7 Aϕ recognizing
exactly the models of ϕ (the alphabet of the Büchi automaton is the set of possible
valuations for the propositional variables from ϕ).

Satisfiability of ϕ is non-emptiness ofAϕ. Checking whether a path in some T
satisfiesϕ is done by computing a synchronous product of T andAϕ and checking
for non-emptiness of the resulting system (a larger Büchi automaton) This method
was first presented in [WVS83], where a first algorithm for computing Aϕ was
given.

The complexity of this approach comes from the fact that Aϕ can have expo-
nential size. Indeed, once we have Aϕ the rest is easy:

Lemma 4.1. [Var94] It is possible, given a Büchi automaton A recognizing
the models of formula ϕ, and a Kripke structure T , to say in non deterministic
space O(log|T | + log|A|) whether there is a computation in T accepted by A.

From these remarks, it easily follows that fragments of PLTL will have low
complexity if the corresponding Aϕ are small.

4.1. The fragment Lω

1
(U)

Here we consider a single proposition: Prop = {A}. Any linear model is
equivalent, modulo stuttering, to one of the following: for n ∈ N

Sn1
def
= (A.¬A)n.Aω, Sn2

def
= ¬A.(A.¬A)nAω, Sn3

def
= (A.¬A)ω,

Sn4
def
= (¬A.A)n.¬Aω, Sn5

def
= A.(¬A.A)n¬Aω, Sn6

def
= (¬A.A)ω,

where Sn3 and Sn6 do not depend on n.
Now a satisfiable Lω1 (U,X) formula is satisfiable in some Sni with small n:

Lemma 4.2. For any i = 1, . . . , 6, ϕ ∈ L
ω
1 (U,X) and n ≥ th(ϕ), Sn+1

i |=

ϕ iff Sni |= ϕ.

7or a Muller automaton, or an alternating Büchi automaton, or . . .
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Proof. By structural induction onϕ and using the fact that the first suffix of aSni
is a Sn

′

j with n−1 ≤ n′ ≤ n, e.g. the first suffix of Sn1 is Sn−1
2 (for n > 0) and the

first suffix of Sn2 is Sn1 .

Recognizing the Sni ’s is easy:

Lemma 4.3. For any 1 ≤ i ≤ 6 and n ∈ N, there exists a Büchi automaton
A=n
i and a Büchi automaton A≥n

i s.t. A=n
i (resp. A≥n

i ) accepts a model S iff
S ≈ Sni (resp. S ≈ Smi for some m ≥ n).
Furthermore, the A=n

i ’s and A≥n
i ’s have O(n) states and can be generated uni-

formly using log n space.

Proof. We only show A2
1, A≥2

1 and A=n
3 as examples (see Fig. 4.1).

A=2
1 : A A A

A≥2
1 : A A A

A=n
3 : A A

FIG. 4. Büchi automata for Lemma 4.3

Combining lemmas 4.1 and 4.3, we see that the problem of deciding, given T
with s0 a state, givenn ∈ N and 1 ≤ i ≤ 6, whether there is a pathS inT that starts
from s0 and s.t. S ≈ Sni , can be solved in non deterministic spaceO(log(n×|T |))

or in deterministic time O(n × |T |). Similarly, the problem of deciding whether
there is a path S and a m ≥ n s.t. S ≈ Smi can be solved with same complexity.

Theorem 4.1. Model checking for Lω1 (U) is in P.

Proof. Consider a Kripke structure T = (N,R, ε) and some state s0 ∈ N . If
there is a path S from s0 satisfying ϕ ∈ L

ω
1 (U) then S ≈ Sni for some n ∈ N

and some i = 1, . . . , 6 and Sni |= ϕ. Conversely, if Sni |= ϕ and there is a path
S ≈ Sni starting from s0, then T, s0 |= ϕ.

It is possible to check whether T contains such a path in polynomial-time: We
consider all Ski for k < th(ϕ). When Ski |= ϕ, seen in time O(k.|ϕ|), we check
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in timeO(k.|T |), whether, from s0, T admits a path S ≈ Ski . We also consider all
Ski for k = th(ϕ). WhenSki |= ϕwe know thatSk+mi |= ϕ for allm (Lemma 4.2)
so that it is correct to check whether there is a m such that T admits a path S ≈
Sk+mi . Because k ≤ |ϕ|, the complete algorithm only needsO(|T |×|ϕ|

2
)-time.

Remark 4. 1. We do not know whetherMC(Lω1 (U)) is P-hard. We only know
it is NL-hard 8. The same open question applies to SAT (Lω1 (U)).

Looking at the algorithm used in the proof of Theo. 4.1, it appears 9 that this
open question is linked to an important open problem that remained unnoticed for
many years:

Open Problem 4.1. What is the complexity of model checking a path?

Here a “path” is a finitely presented linear-time structure. It can be given by a
deterministic Kripke structure (i.e., where any state has exactly one successor) or
by an ω-regular expression u.vω where u and v are finite sequences of valuations.
Model checking a path is clearly in P but it is not known whether it is P-hard or
in NL or somewhere in between.

4.2. The fragment Lω

1
(X)

Proposition 4.2. SAT (Lω1 (X)) and MC(Lω1 (X)) are NP-complete.

Proof. Satisfiability for L(X) is in NP because, for ϕ ∈ L(X) with temporal
height k, it is enough to guess the first k states of a witness S. Model checking
also is in NP for the same reason.

NP-hardness of SAT (Lω1 (X)) can be shown by a reduction from 3SAT: con-
sider a boolean formula θ with propositional variables P1, . . . , Pn and replace the
Pi’s by XiA’s: the resultingLω1 (X) formula is satisfiable iff θ is. Then, by Prop. 3.1,

MC(Lω1 (X)) is NP-hard too.

Proposition 4.3. For any k, n < ω, SAT (Lkn(U,X)) is in L.

Proof. Here the key observation is that there are only a finite number of es-
sentially distinct formulae in a given fragment Lkn(U,X). Given n and k, one can
compute once and for all a finite subset Jkn = {ψ1, . . . , ψN} of Lkn(U,X) such that

1. any ϕ ∈ L
k
n(U,X) is equivalent to a ψi ∈ Jkn (we say ψi is the canonical

representative for ϕ);

8One easily shows that already MC(L1
1(F)) is NL-hard by a reduction from GAP, the graph acces-

sibility problem of [Jon75].
9M. Y. Vardi pointed out the connection to us.
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2. for i 6= j, ψi and ψj are not equivalent. Then a given ϕ is satisfiable iff its
canonical representative is not the canonical representative of ⊥.

Any Jkn is finite and, more precisely, |J0
n| = 22n

and |Jk+1
n | is in 22O(|Jk

n
|2)

.
We assumen andk are fixed and we consider the problem, givenϕ, of computing

its canonical representative (or equivalently its index 1 ≤ i ≤ N ). This can be
done in a compositional way: if ϕ ≡ ψi and ϕ′ ≡ ψj then the representative ψk of
ϕUϕ′ (say) is the representative of ψiUψj , so that we just need to compute once
and for all a finite table tU : (i, j) 7→ k, and similar tables tX, t∧, t¬, . . . , for all
operators, temporal or boolean.

Once we have these tables, computing the canonical representative of any ϕ ∈
L
k
n(U,X) amounts to evaluating an expression over a fixed finite domain, which can

be done in logspace (see [Lyn77]).

Proposition 4.4. For any k, n < ω, MC(Lkn(U,X)) is in NL.

Proof. As in the proof of Prop. 4.3, for ϕ ∈ L
k
n(U,X) we compute in logspace

a canonical representative ψi ∈ Jkn . By Lemma 4.1, checking whether T, s |= ψi
can be done in non deterministic spaceO(log |T |+ log |Aψi

|). Since n and k are
fixed, max{|Aψi

| : i ∈ {1, . . . , N}} is a constant, so that MC(Lkn(U,X)) is in
NL.

Since MC(L1
1(F)) is NL-hard (Remark 4.1), we get

Corollary 4.1. For any 1 ≤ k < ω and 1 ≤ n < ω, for any set H1, . . . of
PLTL temporal operators, MC(Lkn(F,H1, . . .)) is NL-complete.

By contrast, by [Lyn77], MC(L0
ω(U,X)) is in L.

This concludes the study of all fragments with a bounded number of proposi-
tions. In the remaining of the article, this bound is removed.

5. FROM QBF TO MC(L(U))

In this section, we offer a logspace transformation from validity of Quantified
Boolean Formulae (QBF) into model checking for L(U) that involves rather simple
constructions of models and formulae. This reduction can be adapted to various
fragments and, apart from the fact that it offers a simple means to get PSPACE-
hardness, we obtain a new master reduction from a well-known logical problem.
As a side-effect, we establish that MC(L2

ω(U−)) is PSPACE-hard, which is not
subsumed by any reduction from the literature.
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Consider an instance I of QBF. It has the form

I ≡ Q1x1 . . . Qnxn

I0
︷ ︸︸ ︷

∧mi=1 ∨
ki

j=1 li,j

where every Qr (1 ≤ r ≤ n) is a universal, ∀, or existential, ∃, quantifier. I0
is a propositional formula without any quantifier. Here we consider w.l.o.g. that
I0 is a conjunction of clauses, i.e. every li,j is a propositional variable xr(i,j) or
the negation ¬xr(i,j) of a propositional variable from X = {x1, . . . , xn}. The
question is to decide whether I is valid or not. Recall that

Lemma 5.1. I is valid iff there exists a non-empty set V ⊆ {>,⊥}X of valu-
ations such that
correctness: ∀v ∈ V, v |= I0, and
closure: for all v ∈ V , for all r such that Qr = ∀, there is a v′ ∈ V such that
v′[xr] 6= v[xr] and for all r′ < r, v′[xr′ ] = v[xr′ ].

With I we associate the Kripke structure TI as given in Figure 5, using labels
fromProp = {A0, A1, . . . , x

T
1 , . . . , L

1
1, . . .}. AssumeS is an infinite path starting

A0s0 B1 A1s1 B2 A2s2 B3

xT1t1 xT2t2

xF1u1 xF2u2

. . . Ansn

L1
1

L2
1...

Lk11

w1

L1
2

wm. . .

FIG. 5. The structure TI associated with I ≡ Q1x1 . . . Qnxn ∧
m
i=1

∨
ki

j=1
li,j

from s0. Between s0 and sn, it picks a boolean valuation for all variables in X ,
then reaches wm and goes back to some Br-labeled state (1 ≤ r ≤ n) where
(possibly distinct) valuations for xr, xr+1, . . . , xn are picked.

In S, at any position lying between a sn and the next wm, we have a notion of
current valuation which associates> or⊥ with any xr depending on the latest ur
or tr node we visited. With S we associate the set V(S) of all valuations that are
current at positions where S visits sn (there are infinitely many such positions).

Now consider some r with Qr = ∀ and assume that whenever S visits sr−1

then it visits both tr and ur before any further visit to sr−1. In L(U), this can be
written S |= ψr with ψr given by

ψr
def
= G

(

Ar−1 ⇒ (¬Br−1Ux
T
r ) ∧ (¬Br−1Ux

F
r )

)

.
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Let ψclo
def
=

∧
{ψr | Qr = ∀}: if S satisfies ψclo, then V(S) is closed in the sense

of Lemma 5.1.
Now, whenever S visits a Lji -state, we say it agrees with the current valuation v

if v |= li,j . This too can be written in L(U), using the fact that the current valuation
for xr cannot be changed without first visiting theBr-state. For i = 1, . . . ,m, for
j = 1, . . . , ki, let

ψi,j
def
=







G[xFr ⇒ G¬Lji ∨ ¬L
j
iUBr] if li,j = xr,

G[xTr ⇒ G¬Lji ∨ ¬L
j
iUBr] if li,j = ¬xr.

Let ψcorr
def
=

∧m
i=1

∧ki

j=1 ψi,j : if S satisfies ψcorr, then V(S) is correct in the sense
of Lemma 5.1.

Lemma 5.2. Let ϕI
def
= ψclo ∧ ψcorr. Then TI , s0 |= ϕI iff I is valid.

Proof. If S |= ϕI , then V(S) is non-empty, closed and correct for I so that I
is valid. Conversely, if I is valid, there exists a validating V (Lemma 5.1). From V
one can build an infinite path S starting from s0 such that V(S) = V and S |= ϕI :
from a lexicographical enumeration of V , S is easily constructed so that S |= ψclo.
Then, to ensureS |= ψcorr, between any visit to sn and to the nextwm,S only visits
L
j
i -states validated by the current valuation v, which is possible because v |= I0.

It is worth observing that ϕI belongs to L
2
ω(U−). Now, because both TI and

ϕI can be computed from I in logspace, and because th(ϕI) ≤ 2 (and using
Prop. 3.2), we get

Corollary 5.1. QBF ≤L MC(L2
ω(U−)) ≤L MC(Lω2 (U−)).

Corollary 5.2. MC(L2
ω(U−)) and MC(Lω2 (U−)) are PSPACE-hard.

6. FROM QBF TO MC(L(F, X))

As in section 5, we consider an instance I ≡ Q1x1 . . . Qnxn ∧
m
i=1 ∨

ki

j=1li,j of
QBF . With I we associate the Kripke structure T ′

I given in Figure 6. Here, any
path S starting from s0 can be seen as an infinite succession of segments of length
K

def
= 2n+ 2m+ 1. Each segment directly yields a valuation for X: they form an

infinite sequence v1, v2, . . . (necessarily with repetitions) and we let V(S) denote
the associated set.
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s0

xT1t1

xF1u1

s1

xT2t2

xF2u2

s2 . . . sn

L1
1

L2
1

...
Lk11

w1

L1
2

wm. . .

FIG. 6. The structure T ′

I
associated with I ≡ Q1x1 . . . Qnxn ∧

m
i=1

∨
ki

j=1
li,j

Using F and X, it is easy to state that any segment in S visits the Lji -states
in a way that agrees with the corresponding valuation. For i = 1, . . . ,m, for
j = 1, . . . , ki, let

ψi,j
def
=







G[xFr ⇒ ¬X2(n−r+i)L
j
i ] if li,j = xr,

G[xTr ⇒ ¬X2(n−r+i)L
j
i ] if li,j = ¬xr.

Now S |=
∧m
i=1

∧ki

j=1 ψi,j implies that V(S) is correct in the sense of Lemma 5.1.

There remains to enforce closure ofV(S). For this, we require that the valuations
v1, v2, . . . are visited according to the lexicographical ordering, and then cycling.
This means that the successive choices of truth values for universally quantified
propositional variables behave as the successive binary digits of counting modulo
2n

′

(assuming there are n′ universal quantifiers in Q1, . . . , Qn). As usual, the
existentially quantified variables are free to vary when an earlier variable varied.

Assume Qr = ∀. When moving from a valuation vt to its successor vt+1, we
require that vt(xr) remains unchanged iff for some r′ > r with Qr′ = ∀ we have
vt(xr′) =⊥. This is written

ψr
def
= G

(

(xTr ∨ x
F
r ) ⇒

( ∨

r′>r
Q

r′=∀

X
2r′−2rxFr′ ⇔

“v(xr) does not change”
︷ ︸︸ ︷
(
xTr ⇔ X

KxTr
))

)

If S |=
∧
{ψr | Qr = ∀} then, restricted to the universally quantified variables,

v1, v2, . . . behaves like counting modulo 2n
′

.
Assume now thatQr′ = ∃. When moving from vt to its successor, vt(xr′) may

not change unless vt(xr) changes for some r < r′ with Qr = ∀, or equivalently
unless vt(xr) changes for the latest r < r′ withQr = ∀ (thanks to our assumption
about counting). Equivalently, this means that if for a universally quantified xr,
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vt(xr) does not change, then for any following existentially quantified xr′ , vt(xr′)
does not change either. By “following” we mean that there is no other ∀ between
Qr and Qr′ , i.e. that r′ ∈ sc(r) with

sc(r)
def
= {r′ > r | Qh = ∃ for all r < h ≤ r′}.

This behaviour can be written:

ψ′
r

def
= G

(

(xTr ∨ x
F
r ) ⇒

“if v(xr) does not change”
︷ ︸︸ ︷
(
xTr ⇔ X

KxTr
)
⇒

∧

r′∈sc(r)

X
2r′−2r

“then v(x′r) does not change”
︷ ︸︸ ︷
(
xTr′ ⇔ X

KxTr′
))

.

Now we define

ϕI
def
=

( m∧

i=1

ki∧

j=1

ψi,j

)

∧
( n∧

r=1
Qr=∀

ψr ∧ ψ
′
r

)

.

Lemma 6.1. T ′
I , s0 |= ϕI iff I is valid.

Proof. IfS |= ϕI thenV(S) validatesI as we explained. Conversely, if someV
validatesI, then, enumeratingV in lexicographical order, it is easy to build aS such

that S |= ϕI .

Now, because T ′
I and ϕ′

I can be computed from I in logspace (and using
Prop. 3.3) we get

Corollary 6.1. QBF ≤L MC(L(F,X)) ≤L MC(Lω1 (F,X)).

Corollary 6.2. MC(Lω1 (F,X)) is PSPACE-hard.

7. BOUNDING THE TEMPORAL HEIGHT

In this section we investigate the complexity of satisfiability and model check-
ing when the temporal height is bounded. From Section 5, we already know that
MC(L2

ω(U−)) is PSPACE-hard.

We first consider ways of reducing the temporal height (sections 7.1 and 7.2).
Then we show how to improve the upper bounds when temporal height is below 2
(sections 7.3 and 7.4).
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7.1. Elimination of X for model checking
Assume T is a Kripke structure and k ∈ N. It is possible to partially unfold T

into a Kripke structure T k where a state s (in T k) codes for a state s0 in T with the
k next states s1, . . . , sk already chosen. In T k, s is labeled with new propositions
encoding the fact that some si’s satisfy some Aj’s.

Formally, let k ∈ N and Prop = {A1, . . . , An}. First let Propk def
= {Aij : 1 ≤

j ≤ n, 0 ≤ i ≤ k}. Assume T = (N,R, ε). Then T k is defined as the Kripke
structure (Nk, Rk, εk) with

• Nk def
= {〈s0, . . . , sk〉 : ∀i ∈ {0, . . . , k − 1} 〈si, si+1〉 ∈ R};

• εk(〈s0, . . . , sk〉)
def
= {Aij : 0 ≤ i ≤ k, 1 ≤ j ≤ n, Aj ∈ ε(si)}, and

• 〈〈s0, . . . , sk〉, 〈s
′
0, . . . , s

′
k〉〉 ∈ R

k def
⇔ 〈s0, s

′
0〉 ∈ R and for any j ∈ {1, . . . , k},

sj = s′j−1.

This peculiar unraveling is also called bulldozing (see e.g. [Seg71]). Fig. 7 contains
a simple example. Observe that |T k| is in O(|T |

k+1
) and T k can be computed in

T :

At0 B t1

t2

T 2
:

A0B1A2

t0t1t0

B0A1B2

t1t0t1

A0B1

t0t1t2

B0

t1t2t2

B0A1

t1t0t2

A0

t0t2t2 t2t2t2

FIG. 7. An example of bulldozing: T and T 2 side by side

space O(log(k + |T |)).

Say a formula ϕ has inner-nexts if all occurrences of X are in subformulae of
the form XX . . .XA (where A is a propositional variable).

If now ϕ has inner-nexts, with at most k nested X, and if we replace all XiAj in
ϕ by propositions Aij , we obtain a new formula, denoted ϕk, such that

T, s |= ϕ iff T k, s |= ϕk for some s starting with s. (1)

Both T k and ϕk can be computed in space O(log(|T |+ |ϕ|)).
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Not all formulae have inner-nexts but, using the following equivalences

X¬ϕ ≡ ¬Xϕ X(ϕ ∧ ψ) ≡ (Xϕ) ∧ (Xψ) X(ϕUψ) ≡ (Xϕ)U(Xψ)

as left-to-right rewrite-rules, it is possible to translate any PLTL formula into an
equivalent one with inner-nexts. This translation may involve a quadratic blow-up
in size but it does not modify the number of propositional variables or the temporal
height of the formula 10.

Corollary 7.1. For any k ∈ N and set H1, . . . of PLTL temporal combina-
tors, MC(Lkω(X,H1, . . .)) ≤L MC(Lkω(H1, . . .)).

Proof. Givenϕ in Lkω(X, . . .), and someT , we transformϕ into some equivalent

ψ with inner-nexts and then evaluate ψk on T k.

Corollary 7.2. MC(Lkω(X)) is in L and MC(Lkω(F,X)) is in NP for any
fixed k ≥ 0.

MC(L1
ω(F)) is NP-hard as can be seen from the proof of NP-hardness of

MC(Lωω(F)) in [SC85]. Hence for k ≥ 1, MC(Lkω(F,X)) is NP-complete.

7.2. Elimination of X for satisfiability
Elimination of X for satisfiability relies on the same ideas. If ϕ is satisfiable,

then, thanks to (1),ϕk is. The converse is not true: considerϕgiven asGA∧G¬XA,
clearly not satisfiable. Hereϕ1 is GA0∧G¬A1 which is satisfiable. This is because
if ϕk is satisfiable, then it may be satisfiable in a model that is not a Sk for some
S. But, using an L

2
ω(F,X) formula, we can express the fact that a given model is

a Sk, so that

ϕ is satisfiable iff ϕk ∧ G(
∧n
j=1

∧k
i=1A

i
j ⇔ XAi−1

j ) is.

Actually, this approach based on standard renaming techniques can get us fur-
ther. We writeϕ{ψ ← A} to denote a formula obtained by replacing all occurences
of ψ with A inside ϕ. If A does not occur in ϕ, then

ϕ is satisfiable iff ϕ{ψ ← A} ∧ G(A⇔ ψ) is.

By using this repeatedly and systematically, we can remove (by renaming) all
subformulae ψ s.t. (1) th(ψ) = 1 and, (2) there exists at least one occurence of ψ

10These rules may introduce X’s in the right-hand side of U−’s but this will be repaired when we
later replace the XiAj ’s with the Ai

j ’s.
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in ϕ that is under the scope of two temporal combinators (or in the left-hand side
of a U). For example, F(AU(FGB ⇒ GB)) is replaced by F(AU(FA1

new ⇒

A1
new)) ∧ G(A1

new ⇔ GB) in turn replaced by F(AU(A2
new ⇒ A1

new)) ∧

G(A1
new ⇔ GB) ∧ G(A2

new ⇔ FA1
new).

Starting from some ϕ, this repetitive construction eventually halts (when no ψ
can be found), the resulting formula ϕ′ has temporal height at most 2, uses flat
until, and is satisfiable iff ϕ is. It can be computed in logspace, so that

Proposition 7.1. For any set H1, . . . of PLTL temporal combinators,
SAT (L(H1, . . .)) ≤L SAT (L2

ω(F,H1, . . .)).

Corollary 7.3. SAT (L2
ω(F,X)),SAT (L2

ω(U))andSAT (L2
ω(U−))are PSPA-

CE-hard.

7.3. Satisfiability without temporal nesting
We now consider formulae in L

1
ω(U,X), i.e. without nesting of temporal opera-

tors. The main result is

Proposition 7.2. Assume ϕ ∈ L
1
ω(U,X). If ϕ is satisfiable then it is satisfi-

able in a model S′ = s0, s1, . . . such that for any i, j ≥ |ϕ|, ε(si) = ε(sj).

Such a S′ can be guessed and checked in polynomial time, hence

Corollary 7.4. For any set H1, . . . of PLTL temporal combinators,
SAT (L1

ω(H1, . . .)) is in NP, and hence is NP-complete.

We now proceed with the proof of Prop. 7.2. Our main tool is a notion of
extracted structure:

Definition 7.1. An extraction pattern is an infinite sequence n0 < n1 <

n2 < . . . of increasing natural numbers. Given an extraction pattern (ni)i∈N and a
structure S, the extraction from S along (ni)i∈N is the structure s′0, s

′
1, . . . where,

for i = 0, 1, 2, . . ., s′i is a copy of sni
.

Now consider a formula ϕ ∈ L
1
ω(U,X). Since ϕ has temporal height 1, it is a

boolean combination of atomic propositions and of temporal subformulae of the
form Xψ or ψUψ′ where ψ and ψ′ have temporal height 0. For example, with ϕ
given as

ϕ
def
= ((A ∨ ¬C)UB) ∧ ¬(AUB) ∧ (¬XA ∨ ¬(AUC)) ∧ ¬B
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the temporal subformulae of ϕ are (A ∨ ¬C)UB, AUB, XA and AUC.

Definition 7.2. From any S = s0, s1, . . ., and given ϕ ∈ L
1
ω(U,X), we

extract a set of positions, called the witnesses for ϕ in S. The rules are that 0 is
always a witness, and that each temporal subformula ofϕmay require one witness:

1. for a temporal subformula Xψ, 1 is the witness,
2. for a temporal subformula ψUψ′, we have three cases

(i) if S |= ψUψ′ and i is the smallest position such that S, i |= ψ′, then i is
the witness. (Observe that for all j < i, S, j |= ψ ∧ ¬ψ′.)

(ii) if S 6|= Fψ′, then no witness is needed.
(iii) otherwise S 6|= ψUψ′ and S |= Fψ′. Let i be the smallest position such

that S, i 6|= ψ, then i is the witness. (Observe that S, i 6|= ψ′ and for all j < i,
S, j |= ψ ∧ ¬ψ′.)

Clearly, if {n0, n1, . . . , nk} are the witnesses for ϕ, then k < |ϕ|.

We continue our earlier example: let S be the structure

S:
A

s0

A

s1

A

s2

A

s3 s4

A

s5

B

s6

B

s7

A

s8

. . .

where C never holds. Here S |= ϕ. Indeed, S |= (A ∨ ¬C)UB, S 6|= AUB,
S |= XA and S 6|= AUC. The witness for XA is 1. The witness for (A∨¬C)UB

is 6 since we are in case (a) from definition 7.2, and s6 is the first position where
B holds. No witness is needed for AUC since we are in case (b). The witness for
AUB is 4 since we are in case (c) and s4 is the first position where A does not
hold. Finally, the witnesses for ϕ are {0, 1, 4, 6}.

Lemma 7.1. Let ϕ ∈ L
1
ω(U,X) and S be a structure. Let (ni)i∈N be an

extraction pattern containing all witnesses for ϕ in S. Let S ′ be the structure
extracted from ϕ along (ni)i∈N. Then for any subformula ψ of ϕ, S |= ψ iff
S′ |= ψ.

Proof. By induction on the structure ofψ. Since all other cases are obvious, we
only need deal with the case ψ1Uψ2 and show that S′ |= ψ1Uψ2 iff S |= ψ1Uψ2.
Assume S |= ψ1Uψ2. Let i be the witness for ψ1Uψ2. So S, i |= ψ2 and, for any
j < i, S, j |= ψ1. (A copy of) si appears in S′ as some s′n and all s′n′ for n′ < n

are (copies of) sj’s for j < i, hence S′ |= ψ1Uψ2 (remember that ψ1 and ψ2 have
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no temporal operator.)
Now assume S 6|= ψ1Uψ2. If ψ1Uψ2 has no witness, then no si satisfies ψ2

and therefore no s′n: then S′ 6|= ψ1Uψ2. If i is the witness for ψ1Uψ2, then
S, i 6|= ψ1 and S, j 6|= ψ2 for j ≤ i. Assume si appears as s′n in S′: we

have S′, n 6|= ψ1 and S′,m 6|= ψ2 for m ≤ n , so that S′, n 6|= ψ1Uψ2.

We may now conclude the proof of Prop. 7.2: Consider now a satisfiable ϕ ∈
L
1
ω(U,X) and assume S |= ϕ. Let {n0, . . . , nk} be the witnesses for ϕ in S.

We turn these into an extraction pattern by considering the sequence n0 < n1 <

· · · < nk prolongated by some nk+1 < nk+2 < . . . where the nk+i are positions
of states carrying the same valuation (there must be at least one valuation appearing
infinitely often). The extracted S ′ has the form required for Prop. 7.2.

Continuing our previous example, and assuming the valuation of s6 appears
infinitely often, the resulting S ′ is made out of s0, s1, s4 and s6, and it satisfies ϕ:

S′:
A

s′0

A

s′1 s′2

B

s′3

B

s′4

B

s′5

B

s′6

B

s′7

B

s′8

. . .

(s0) (s1) (s4) (s6) (s6) (s6) (s6) (s6) (s6)

7.4. Model checking without temporal nesting
We now consider model checking of formulae where the temporal height is at

most 1.

Proposition 7.3. MC(L1
ω(U,X)) is in NP.

Proof. Consider ϕ ∈ L
1
ω(U,X) and assume T, s |= ϕ. Then there is a path S

in T starting from s such that S, s |= ϕ.
The witnesses for ϕ in S are some W = {n0, . . . , nk}. We consider an extrac-

tion pattern containing all witnesses of W and such that the extracted S ′ be a path
in T : this may imply to retain some positions from S, between a ni ∈W and the
following ni+1, to ensure connectivity in T . In any case, it is possible to find an
extraction pattern where nk appears as some position l ≤ k × |T |.

Therefore, if T, s |= ϕ then this can be seen along a path S of the form
s0 . . . sl(sl+1 . . . sl+m)ω with l ≤ |ϕ| × |T | andm ≤ |T |. Guessing this path and

checking it can be done in non deterministic polynomial-time.

Since MC(L1
ω(F)) is NP-hard [SC85], we get:
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TABLE 1.

A complete summary of complexity measures
n − 1, k < ω Model checking Satisfiability

L(. . .)
L
0
n(. . .) L L

L
0
ω(. . .) L [Lyn77] NP-complete [Coo71]

L(F)

L(F) NP-complete [SC85] NP-complete [ON80]
L
1
ω(F) NP-complete NP-complete

L
ω
2 (F) NP-complete NP-complete

L
ω
1 (F) in P, NL-hard P

L
k+1
n (F) NL-complete L

L(U?)

L(U?) PSPACE-complete [SC85] PSPACE-complete [SC85, HR83]
L
2
ω(U?) PSPACE-complete PSPACE-complete

L
1
ω(U?) NP-complete NP-complete

L
ω
2 (U?) PSPACE-complete PSPACE-complete

L
ω
1 (U?) in P, NL-hard P

L
1+k
n (U?) NL-complete L

L(X)
L(X) NP-complete NP-complete
L

k
ω(X) L NP-complete

L
ω
1 (X) NP-complete NP-complete

L
k
n(X) L L

L(F, X)

L(F, X) PSPACE-complete [SC85] PSPACE-complete [SC85, HR83]
L
2+k
ω (F, X) NP-complete PSPACE-complete [Har85, Spa93]

L
1
ω(F, X) NP-complete NP-complete

L
ω
1 (F, X) PSPACE-complete PSPACE-complete

L
1+k
n (F, X) NL-complete L

L(U?, X)

L(U?, X) PSPACE-complete [SC85] PSPACE-complete [SC85, HR83]
L
2
ω(U?, X) PSPACE-complete PSPACE-complete [Har85, Spa93]

L
1
ω(U?, X) NP-complete NP-complete

L
ω
1 (U?, X) PSPACE-complete PSPACE-complete

L
1+k
n (U?, X) NL-complete L

Corollary 7.5. For any set H1, . . . of PLTL temporal combinators,
MC(L1

ω(F,H1, . . .)) is NP-complete.

8. CONCLUDING REMARKS

In this article we have measured the complexity of model checking and satisfi-
ability for all fragments of PLTL obtained by bounding (1) the number of atomic
propositions, (2) the temporal height, and (3) restricting the temporal operators
one allows. Table 1 provides a complete summary.

In this table we use U? to denote any of U and U− since one outcome of our study
is that all the problems we considered have the same computational complexity
when “Until” is replaced by the weaker “flat Until”, thereby ruining some hopes
of [Dam99].
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Some general conclusions can be read in the table. In most cases no reduction in
complexity occurs when two propositions are allowed, or with temporal height two.
Moreover, in most cases, for equal fragments, satisfiability and model checking
belong to the same complexity class. Still the table displays some exceptions, two
of which deserve comments :

1. Model checking and satisfiability for Lω1 (U) (only one proposition) are in
P. Admittedly this fragment is not very relevant when it comes to, say, protocol
verification. Moreover, it is open whether those problems are P-hard or in NL, to
quote a few possibilities.

2. Model checking for Lkω(F,X) is only NP-complete. This shows that F+X

can be simpler than U. Because NP-hardness is already intractable, this result
does not immediately suggest improved deterministic algorithms. However, the
isolated fragment is very relevant.

Another way to see our results is to focus on the general techniques that we
developed: we provided a simple transformation from QBF into model checking
problems, and we formalized a number of logspace transformations leading to a
few basic rules of thumb:

(1) when the number of propositions is fixed, satisfiability can be transformed
into model checking,

(2) n propositional variables can be encoded into

(2.1) only one if F (sometimes) and X (next) are allowed,

(2.2) only two if U (until) is allowed,

(3) when arbitrarily many propositions are allowed, temporal height can be
reduced to 2 if F is allowed, and

(4) model checking for logics with X can be transformed into model checking
without X.

(5) Besides, when the formulaϕhas temporal height at most 1, knowing whether
S |= ϕ only depends on O(|ϕ|) places in S.

Most of the time, these techniques are used to strengthen earlier hardness results,
showing that they also apply to specific fragments. In some cases we develop spe-
cific arguments showing that the complexity really decreases under the identified
threshold values.

The general situation in our study is that lower bounds are preserved when
fragments are taken into account. Hence our investigations do not give a formal
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justification of the alleged simplicity of “simple practical applications”. Rather,
we show that several natural suggestions are not sufficient.

Understanding and taming the complexity of linear temporal logics remains an
important issue and the present work can be seen as some additional contribu-
tion. The ground is open for further investigations. We think future work could
investigate

• different, finer definitions of fragments (witness [EES90]) that can be inspired
by practical examples, or that aim at defeating one of our hardness proofs, e.g.
forbidding the renaming technique we use in sections 7.1 and 7.2,
• restrictions on the models rather than the formulae,
• other complexity measures: e.g. average complexity, or separated complexity

measure for models and formulae, or analysis of hard and easy distributions.

Additionaly, it must be noted that we only considered satisfiability and model
checking, and ignored other problems that are important for verification: module
checking, semantic entailment, . . .
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