
HAL Id: hal-03189484
https://hal.science/hal-03189484

Submitted on 9 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the complexity of monitoring Orchids signatures,
and recurrence equations

Jean Goubault-Larrecq, Jean-Philippe Lachance

To cite this version:
Jean Goubault-Larrecq, Jean-Philippe Lachance. On the complexity of monitoring Orchids signatures,
and recurrence equations. Formal Methods in System Design, 2018, 53 (1), pp.6-32. �10.1007/s10703-
017-0303-x�. �hal-03189484�

https://hal.science/hal-03189484
https://hal.archives-ouvertes.fr

On the Complexity of Monitoring Orchids
Signatures, and Recurrence Equations∗

Jean Goubault-Larrecq1 and Jean-Philippe Lachance2
1 LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay

ENS Paris-Saclay
61, avenue du président Wilson, 94230 Cachan Cedex, France

Tel.: +1-47402260
Fax: +1-47402464
goubault@lsv.fr

2 Coveo Solutions, Inc., Québec City, QC G1W 2K7, Canada
jplachance@coveo.com

Abstract

Modern monitoring tools such as our intrusion detection tool Orchids
work by firing new monitor instances dynamically. Given an Orchids sig-
nature (a.k.a. a rule, a specification), what is the complexity of checking
that specification, that signature? In other words, let f(n) be the max-
imum number of monitor instances that can be fired on a sequence of n
events: we design an algorithm that decides whether f(n) is asymptoti-
cally exponential or polynomial, and in the latter case returns an exponent
d such that f(n) = Θ(nd). Ultimately, the problem reduces to the follow-
ing mathematical question, which may have other uses in other domains:
given a system of recurrence equations described using the operators +
and max, and defining integer sequences un, what is the asymptotic behav-
ior of un as n tends to infinity? We show that, under simple assumptions,
un is either exponential or polynomial, and that this can be decided, and
the exponent computed, using a simple modification of Tarjan’s strongly
connected components algorithm, in linear time.

1 Introduction
Orchids [13, 8] is an intrusion detection system. Given a trace σ of events, typi-
cally obtained in real-time, and a family of so-called signatures (variously other-
wise called rules or specifications), Orchids tries to find a subsequence of σ that

∗Partially funded by INRIA-DGA grant 12 81 0312 (2013-2016). The second author also
thanks Hydro-Québec and Les Offices jeunesse internationaux du Québec (LOJIQ) for their
financial support.

1

satisfies one of the signatures. Each signature is described as an automaton—
not a finite-state automaton, though: each state comes with a piece of code, in
a simple but expressive imperative language, that is executed whenever control
flow enters that state. Orchids then waits for an event matching one of the
transitions going out of the state.

See Figure 1 for a slightly edited example of a signature that monitors legal
user id (uid) and group id (gid) changes, and reports any system call done with
an unexpected uid or gid (at state alert). Events are records with fields such as
.syscall or .euid (we have slightly simplified the syntax), and variable names
start with a dollar sign. Transitions are introduced by the expect keyword,
so, e.g., the start state init has one outgoing transition, and wait has five.
Informally, Orchids will wait in state init for an event whose .syscall field is
equal to the predefined constant SYS_clone: that is the indication that some
process called the Linux system call clone(), creating a new process. Once this
is detected, Orchids will then go to state newpid, where it will first record the
values of the field .exit in variable $pid (the process id of the created process),
and similarly obtain the values of the user id and group id of the created process.
Then it goes to state wait, which is the core monitoring loop: while in state
wait, Orchids will wait, concurrently, for five possible conditions, described by
so-called expect transitions, on future events. The first three are cases where
process number $pid (as checked by the condition .pid==$pid, which checks
that the current event is one that concerns process $pid) can legally change its
user id or group id: either by calling execve on a executable with the setuid or
setgid bit set, or by calling one of the functions setresuid() or setresgid().
The fourth expect transitions catches the case where process $pid exits, in
which case Orchids will cease monitoring it. The last of the transitions of state
wait is triggered whenever the process $pid executes an action with an effective
user id .euid that is not the one we expected (in $uid), or with an unexpected
effective group id. Orchids then goes to state alert, where an alert report is
produced, and then ceases monitoring that process.

Since Orchids cannot predict which of the five expect transitions will be
matched by a subsequent event (and in fact, since, in principle, an event might
match several of those transitions), Orchids must monitor all five. To implement
that, the Orchids engine simulates so-called threads, and forks a new thread for
each pending transition, each new thread waiting for a matching event1. That
is, on entering state wait, Orchids will create five threads.

This description of the working of Orchids is, of course, oversimplified, but
is enough to explain the problem we attack in this paper: evaluating the com-
plexity of detecting a subsequence that matches one of the signatures. A similar
question occurs naturally in other modern monitors, such as JavaMOP [11] or
the more recent RV-Monitor [12], where signatures are called specifications, and
threads are called monitor instances. As the authors argue, and as our own ex-

1To dispel a possible misunderstanding, these threads are not system-level threads, rather
pairs of a pending transition and an environment holding the values of variables, and which are
handled and scheduled by the Orchids engine. Similarly, “forking” an Orchids thread simply
means making a copy of the current thread and adding it to the Orchids thread queue.

2

rule pidtrack {
state init {

expect (. syscall ==
SYS_clone)

goto newpid ;
}
state newpid ! {

$pid = . exit ;
$uid = . euid ;
$gid = . egid ;
goto wait ;

}
state update_uid_gid ! {

$uid = . euid ;
$gid = . egid ;
goto wait ;

}
state update_setuid ! {

case (. egid != $gid)
goto alert ;

else
goto update_uid_gid ;

}
state update_setgid ! {

case (. euid != $uid)
goto alert ;

else
goto update_uid_gid ;

}

state wait ! {
expect (. pid == $pid &&

. syscall == SYS_execve &&
(. uid != . euid | |
. gid != . egid))

goto update_uid_gid ;
expect (. pid == $pid &&

. syscall == SYS_setresuid)
goto update_setuid ;

expect (. pid == $pid &&
. syscall == SYS_setresgid)

goto update_setgid ;
expect (. pid == $pid &&

. syscall == SYS_exit)
goto end ;

expect (. pid == $pid &&
(. euid != $uid | |
. egid != $gid))

goto alert ;
}

state alert ! { report () ; }

state end ! { }
}

Figure 1: The pid tracker signature

3

perience confirms, the main function that has to be estimated is the number of
threads that the engine may create after reading n events.

In the worst case, for a signature S, the Orchids algorithm may create a
number of threads fS(n) that is exponential in n, and that would be untenable.
For an intrusion detection system, that would be dangerous, too, as that would
open the door to an easy denial-of-service attack on the system itself.

Experience with practical signatures S shows that fS(n) is most often a
polynomial of low degree. The exponential worst case behavior just means
that one could instead craft specific signatures S such that fS(n) would be
exponential. Most signatures are not of this kind. But can we warn a signature
writer of the complexity of his signatures? I.e., how does fS(n) vary as a function
of S?

Our main contribution is the design, and proof, of a linear time algorithm
that, given a signature S, computes the asymptotic behavior of fS(n) as n
tends to +∞. We shall see that fS(n) is either exponential or polynomial.
In the second case, our algorithm computes the unique exponent d such that
fS(n) = Θ(nd).

Our algorithm works in two phases. First, it computes a set of recurrence
equations from S, defining sequences un, vn, . . . , indexed by n ∈ N. Then, and
this is the core of our work, it finds the asymptotic behaviors of those sequences.
In the example of Figure 1, the recurrence equations are:

u
τ0pidtrack
n+1 = u

τ0pidtrack
n + uinitn onen+1 = onen uτ0n+1 = uτ1n+1 = . . . = uτ5n+1 = onen

uinitn = uτ0n uwaitn = uτ1n + · · ·+ uτ5n
unewpidn = u

update_uid_gid
n = usetuidn = usetgidn = ualertn = uendn = onen

rn = max(u
τ0pidtrack
n , uinitn , u

newpid
n , u

update_uid_gid
n , usetuidn , uwaitn , u

setgid
n , ualertn , uendn)

with the initialization conditions uτ0pidtrack0 = one0 = uτ00 = uτ10 = . . . = uτ50 =
0. (We shall explain how those are found in Section 6: to connect with the
explanation there, τ0 is the unique transition out of state init, and τ1, . . . ,
τ5 are the five transitions out of state wait.) Of the above sequences, rn is
fpidtrack(n). Then, our algorithm determines that rn = Θ(n), showing that rule
pidtrack creates a number of threads that is linear in the number n of events
read in the worst case.

Outline. We review some recent related work in Section 2, describe the Or-
chids algorithm in Section 3, and define our format of systems of recurrence
equations in Section 4. Those systems will be definitions of the sequence fS(n)
by induction on n, together with several other auxiliary sequences, such as
unewpidn or uτ0n above. Any system of recurrence equations Σ in our format gives
rise to a graph G(Σ) which will be instrumental in our study, and which we
define in Section 5. Translating Orchids signatures to systems of recurrence
equations and their associated graph is described in Section 6. The real work
begins in Section 7, where we shall examine the possible asymptotic behaviors of
our sequences, by looking finely at the structure of the strongly connected com-
ponents (scc) of G(Σ), carefully distinguishing between trivial and non-trivial

4

sccs, and so-called cheap and expensive edges. The algorithm quickly follows
in Section 8, as an easy adaptation of Tarjan’s algorithm, which we describe in
full. We also report on our implementation and the result it gives on the ten
standard Orchids signatures. We conclude in Section 9.

2 Related Work
The question of evaluating the complexity of monitors at this level of detail
does not seem to have been addressed already. Efficiency has always been an
important subject in the field, and RV-Monitor [12] was recently advocated as
a fast implementation of monitors, able to sustain a large number of monitor
instances (a.k.a., our threads). This is backed by experimental evidence.

RV-Monitor’s algorithm is data-driven. Given a specification with parame-
ters x1, x2, . . . , xk, RV-Monitor organizes monitor instances inside an indexing
tree, and if we agree to call N the maximal number of different values that
parameters can take over an n event run, there can be at most Nk monitor
instances at any given time. If we assume no fixed bound on N , it is however
clear that N = O(n), and that the RV-Monitor analogue of our function fS(n)
above is polynomial in all cases (assuming the specification S fixed).

The Orchids algorithm is not data-driven, but trace-driven. That is, Or-
chids does not look merely for values of parameters that make a match, but for
a subsequence of the input sequence. This is important for security. See Sec-
tion 3.1 of [8] for a precise explanation: as we have argued there, Orchids needs
to be able to sort matching subsequences (even with different sets of parameter
values), so that only the smallest, lexicographically, is eventually reported: this
is in most cases the most informative subsequence of events that characterizes
a successful attack. Orchids signature matching is therefore necessarily more
complex in general, and one can craft signatures that would make Orchids gen-
erate exponentially many threads. This is why the algorithm presented here is
needed.

Efficiency is also one of the main concerns behind the MonPoly-Reg and
MonPoly-Fin tools [4]. The signature language there, MFOTL, is a real-time
logic. Each variable varies in a domain of at most N elements, and it is assumed
that there is an upper bound m on the number of successive events with the
same timestamp. Time complexity is always polynomial. By carefully reading
Section 5 of [4], one sees that the polynomial degree is linear in the maximal
number k of free variables in the monitored formula and in the number c of
connectives of the formula. When m = 1 (i.e., event timestamps are strictly
increasing) and there are no temporal future operators, the complexity is com-
parable with the O(Nk) bound given for RV-Monitor: if t(n) is the time to
check one RV-Monitor instance, so that RV-Monitor takes time O(Nkt(n)), the
MFOTL-based tools run in time O(NO(k+c)).

We will not cite any other paper on the question of monitor complexity.
Other (parametric) monitors such as QEA or LogFire are described in [10],
with some features in common with Orchids and RV-Monitor respectively. Extra

5

information can be gleaned by following references from the above papers.
Later, we will argue that our problem reduces to finding asymptotic esti-

mates for sequences (un)n∈N defined by so-called recurrence equations. Those
are (systems of) equations of the form un+1 = f(un, vn, wn, · · ·), vn+1 = g(un,
vn, wn, · · ·), etc., where f , g, . . . , are some explicitly given functions. There
is a huge body of literature, specially in the mathematical literature, on those
objects. One of the most relevant source is Flajolet and Sedgwick’s book on
analytic combinatorics [6]. Unfortunately, we shall need to deal with recurrence
equations where un+1 depend on un, vn, wn, etc., by using both the + and max
operations. The latter seems to be out of scope of what is known in analytic
combinatorics.

Estimating the asymptotics of recurrence equations defined using + and
max can also be done using the spectral theory of max-plus algebras, see [1].
However, this only handles linear max-plus equations, i.e., equations of the
form un+1 = max(auu + un, auv + vn, auw + wn, · · ·), where auu, auv, auw,
. . . , are constants. (In max-plus algebra, max takes the rôle of addition and
+ of multiplication. Hence the latter equation is the max-plus equivalent of
auuun + auvvn + auwwn + · · ·) We will allow equations of the form un+1 =
max(3+2un+vn, 1+un+wn), for example, which are not linear, and might be
called max-plus polynomial equations. (This example is the max-plus equivalent
of un+1 = a3u2nvn + aunwn, for some unspecified constant a.)

Complexity analysis, and specifically of forms close to our own work, is
not limited to monitors. A whole part of the literature is devoted to static
analysis of the time and space taken by programs. See [7] for a recent paper on
the topic, based on finding upper approximations of solutions to so-called cost
equations [2]. Other papers can be found by following references. Probably the
piece of work closest to ours is due to Brockschmidt et al. [5], who propose a
static analysis framework to infer polynomial upper bounds on the time taken
by programs, and (at the same time) on the size of integer values. Both the
purpose (complexity evaluation) and the tools of that paper are similar to ours—
notably the role of sccs—and this is uncanny: the quantities they evaluate seem
to bear no relationship with those we are interested in. Recall that we are
interested in evaluating the asymptotic behavior of functions fS(n) where n ∈ N
is some measure of time (number of events received in our case), and which are
naturally defined by induction on n. Instead, Brockschmidt et al. compute an
over-approximation R(t)(~m) of the number of times a given transition t can be
taken in an execution trace that starts with inputs of sizes bounded by the vector
of sizes ~m, and to that end they also compute an over-approximation S(t, v)(~m)
of the size of variable v after transition t has just been taken, starting with
inputs of sizes bounded by ~m. That is a rather different approach.

As a final note, we have paid special attention to dealing with the issue at
the right level of generality. Rather than reporting on a perhaps clever, but
highly specialized algorithm devoted to the complexity analysis of a specific
tool (Orchids), we identify the core of the problem as finding the asymptotic
behavior of sequences defined by recurrence equations. This allows us to study
the latter in a proper, well-defined mathematical way, giving not only upper

6

bounds but also matching lower bounds, and a simple self-contained algorithm
that computes them, in linear time. Because it is done at the right level of
generality, we believe that the present work may have other uses beyond Orchids.

3 Orchids
Let us have a quick look at how Orchids creates and handles threads (a.k.a.,
monitor instances). We shall ignore most optimizations, both algorithmic and
implementation-related, at least those that do not change the worst-case behav-
ior of Orchids.

3.1 The History of Orchids
Orchids evolved from previous attempts at building intrusion detection systems
from a model-checking approach, starting from [16], which presents two ap-
proaches. The second approach was a forerunner of the Orchids tool, which was
presented in 2005 [13], and whose algorithm and optimizations were described
in 2008 [8]. That second approach corrected a few flaws from the first approach.
That same first approach (not the second one) is covered by a patent [15], which
does not cover Orchids: the main claims of that patent require a means of gen-
erating propositional Horn clauses from formulae in a temporal logic for each
new event read. The Orchids algorithm is not based on any such mechanism.

We would like to take the 2008 paper [8] as a reference to the Orchids algo-
rithm. However, we need to explain it in a different light in the next subsections,
so as to make the complexity analysis clearer.

3.2 A High-Level View
An Orchids signature consists in finitely many states. We will implicitly re-
fer to Figure 1 to illustrate the notions. One of those states, init, is the
initial state. Each state starts with an optional piece of code (for instance,
$pid = .exit; $uid = .euid; $gid = .egid; in state newpid), which gets exe-
cuted on entering the state. That code can contain elementary computations,
tests, but no loops: we consider that piece of code irrelevant as far as complexity
is concerned.

The second part of the description of a state defines its outgoing transitions,
and comes in two flavors. We may either see a block of expect clauses, labeled
with conditions that must be satisfied to launch the transition, as in state wait;
or a case-delimited multi-way conditional, as in state update_setuid for exam-
ple (or as in the degenerate case of state update_uid_gid, where there is just
one branch, hence no case keyword).

The latter kind of state has an obvious semantics. For example, a thread
entering state update_setuid will compare the field .egid with the value of

7

the variable $gid2, and branch to state alert if they are different (a system
call was made with a group id that is not what it was expected to be), or to
update_uid_gid otherwise—such transitions were called ε-transitions in [8].

The former kind of state will wait for a subsequent event matching one of
the expect clauses. A same event may match several expect clauses at once,
and accordingly Orchids will fork as many threads as needed. We shall ignore
the semantics of the tests performed by those clauses, and therefore a state with
5 expect clauses such as wait may fork 5 new threads.

Orchids works slightly differently. Mainly, Orchids threads wait on events,
not when they enter a state, rather when they reach an expect clause. That may
seem surprising, but look at it this way: expect clauses are the only quiescent
places in an Orchids signature, namely the only places where execution does not
proceed by itself.

Additional differences occur because of the ‘ !’ marker next to the state
names, and of the NO_WAIT flag that the Orchids rule compiler uses to decorate
transitions, and which is used to avoid forking certain threads while leaving the
semantics unchanged. Setting that flag or not is based on the outcome of static
analyses, as described in [8]. We will briefly explain those points below.

3.3 The Orchids Algorithm
Let us give an informal description of how the Orchids algorithm works. We
avoid giving a formal description, which would be lengthy and of little interest,
and are content with a description that allows us to compute the recurrence
equations of Section 6.

Orchids maintains a queue of threads. Each thread θ is a tuple (τ, ρ, n)
where τ is an expect transition usually out of some state q, ρ is an environment,
binding variables to values, and n is a natural number, the thread id. The latter
allows us to consider thread groups, namely the collection of threads that have
the same thread id. One of the things Orchids will do, at specific points, is
committing to a thread: this consists in killing (i.e., removing from the queue)
all the threads in the same thread group as the current thread θ, except θ itself.

Committing is done when an Orchids thread enters a state with the ‘ !’
marker—so-called commit states. One can see that as a generalization of the
final states considered in previous papers on Orchids. In particular, final states
are now coded as commit states with no outgoing transition, such as state end or
state alert in Figure 1. But it is also interesting to have intermediate commit
states, such as states where we can be certain that an attack has been detected,
but we wish to proceed with extra actions, typically to analyze what the attacker
does once the attack has succeeded (forensics). In general, a commit state q can
be seen as a state that is both final (killing all threads in q’s thread group) and
initial (restarting a thread, by going to state q—we shall define what “going to”
means below).

2Variables are thread-local: if an Orchids thread modifies one of its variables, this does not
affect any other thread.

8

Any monitoring algorithm needs to delete threads. Apart from the commit
mechanism, this is implemented in Orchids by states with no outgoing transition,
such as end or state alert. As the following description will make clear, any
Orchids thread that enters such a state will just execute the code written there,
then be deleted.

Abstracting away from details, we may describe the Orchids algorithm as
follows. For each signature S, we assume an additional transition τ0S outside
of the signature. Notionally, this transition has the following description:

expect (1) goto init ;

meaning that it will wait for an arbitrary event (1 is always true), and go to the
initial state init of S. What is not covered by this description is that going to
init will be accompanied with the creation of a new thread group, by changing
the thread id to a fresh value. That is unimportant for our purposes here.

The Orchids algorithm starts out by creating one thread waiting on τ0S , and
with an empty environment. This is used to populate the initial thread queue.

For each new event read e, the Orchids algorithm sweeps through the threads
(τ, ρ, n) in the thread queue. Ordering is important in order to implement the
shortest run semantics of [8], and as can be inferred from loc. cit., not an entirely
trivial matter. For the purpose of complexity analysis, this is unimportant here
again, and we shall ignore this point.

For each thread (τ, ρ, n) in the thread queue, if the Boolean condition b
labeling the expect clause τ is satisfied by e, then Orchids goes to the target
state of transition τ (relatively to ρ, n), possibly inserting new threads into the
thread queue. The process of going to a state is described below. If additionally
τ has the NO_WAIT flag set, then the original thread (τ, ρ, n) is removed from
the queue; otherwise it is kept. If b is not satisfied, then the thread is kept,
unchanged.

This NO_WAIT flag deserves an explanation: a transition of the form expect
(b) goto q will wait for a later event that satisfies condition b, then go to state q.
Imagine b is satisfied at the current event, but also 7 events from now. We must
spawn one thread for each of the two possibilities: perhaps the second case will
detect a successful run, while the first one will not. This default mechanism is
implemented by keeping the original thread (τ, ρ, n) in the queue, so as to detect
such a second case. However, there are situations where one can prove that any
such second case will either never lead to a successful run, or will lead to one,
but one which will never be shortest. In those situations, which can be detected
by an appropriate static analyzer (see [8] again, and replace the notion of final
states there by the new notion of commit state), the Orchids compiler flags the
transition with NO_WAIT, instructing Orchids to remove (τ, ρ, n) from the queue
at run-time. Then Orchids will simply not look for a second case as above, but
that is all right: no shortest run can be found this way, and the shortest run
semantics is therefore preserved. In Section 8.2, we shall see an example where
this trick decreases the complexity of detection from exponential to polynomial.

We promised we would explain what going to a state q′ (relatively to ρ, n)
would mean. If q′ is a commit state, then kill all the threads of the same group,

9

i.e., remove all threads with the same n component from the thread queue,
except the current thread. That being done, if q′ is a state of the form:

〈code〉
case (b1) goto q1 ;
else case (b2) goto q2 ;
. . .
else case (bk−1) goto qk−1 ;
else goto qk ;

then run 〈code〉 starting from environment ρ, producing a new environment ρ′,
then check the Boolean conditions b1, b2, . . . , in turn in environment ρ′ (all
Boolean conditions are constrained by the type-checker to be side-effect free),
until one matches, say bi, or until the final else clause is reached (in which case
we agree that i = k). Then the Orchids algorithm goes to state qi (relatively
to ρ′, n), recursively. The process must eventually stop: Orchids rejects all
signatures that contain cycles of gotos at compile-time; the check is done by a
simple graph reachability algorithm.

If q′ is a state of the form:

〈code〉
expect (b1) goto q1 ;
expect (b2) goto q2 ;
. . .
expect (bk) goto qk ;

then run 〈code〉 starting from environment ρ, producing a new environment ρ′.
Now do not check any of the conditions b1, b2, . . . , bk, corresponding any of
the expect transitions τ1, τ2, . . . , τk out of q′. Instead, create new threads
(τi, ρ

′, n) for each i, 1 ≤ i ≤ k, and insert them into the thread queue.
In particular, when k = 0 (look at states end and alert in Figure 1), no

thread at all will be enqueued, and this is the way threads are eventually deleted.

4 Systems of Recurrence Equations
A sequence is an infinite family of natural numbers (un)n∈N indexed by natural
numbers. We say that a property P holds of un for n large enough if and only
if there is an n0 ∈ N such that P holds of un for every n ≥ n0. For a function
f : N → R, un = Θ(f(n)) means that there are two real constants m,M > 0
such that, for n large enough, mf(n) ≤ un ≤ Mf(n). If only the left-hand
inequality is assumed, then we write un = Ω(f(n)), and if only the right-hand
inequality is assumed, then we write un = O(f(n)).

We shall say that (un)n∈N has exponential behavior if and only if un = Ω(an)

for some constant a > 1. It has polynomial behavior if and only if un = Θ(nk)
for some constant k ∈ N.

Let Q = {u, v, · · · } be a finite non-empty set of symbols. Each symbol
u ∈ Q is meant to denote a sequence (un)n∈N of natural numbers. A system of
recurrence equations Σ for Q is, at least informally:

10

• an initial condition of the form u0 = au, where au ∈ Nr {0}, one for each
u ∈ Q;

• for each u ∈ Q, an equation that defines un+1 in terms of the terms
vn, v ∈ Q, and natural number constants, using the operations max and
+. Semantically, since max distributes over +, this means defining un+1

as maxmu
i=1(

∑
v∈Q auivvn + bui), where auiv and bui are natural number

constants. For reasons explained below, we require mu 6= 0, and for each
u and i, either bui 6= 0 or auiv 6= 0 for some v ∈ Q.

We shall use a slightly different formal definition below (Definition 4.1), and that
will be the only authoritative definition for all our mathematical developments,
notably in all proofs. We use the above definition for now to illustrate our
goals and some inevitable issues, as well as to vindicate the upcoming formal
definition itself.

Sticking to the above definition for now, Σ defines a unique family of se-
quences (un)n∈N, one for each u ∈ Q, in the obvious way. Our purpose is to
show that one can decide, in linear time, which of these sequences have expo-
nential behavior, and which have polynomial behavior; in the latter case, our
algorithm will return a natural number d such that un = Θ(nd). Note that this
will imply that (un)n∈N has either exponential or polynomial behavior, nothing
else—e.g., not logarithmic, Θ(2

√
n) or Θ(nlogn) for example.

Example 4.1 Consider Q = {u}, the system u0 = 1, un+1 = 2un is a sys-
tem of recurrence equations; it defines a unique sequence un = 2n, which has
exponential behavior.

Example 4.2 Instead, consider Q = {u, v, w} and the system u0 = 1, v0 = 1,
w0 = 1, un+1 = vn + 1, vn+1 = un + wn, wn+1 = wn + 2. Its unique solution
is given by wn = 2n + 1, vn = 1

2n
2 + n + 1 if n is even, vn = 1

2n
2 + n + 1

2 if
n is odd, un = 1

2n
2 + 1 if n is even, un = 1

2n
2 + 3

2 if n is odd. In that case,
wn = Θ(n), un = Θ(n2), vn = Θ(n2) all have polynomial behavior.

Notice the slightly oscillating behavior of (un)n∈N and (vn)n∈N. Although
those sequences have polynomial behavior, we cannot find an actual, unique
polynomial p(n) such that un = p(n) for every n ∈ N.

Our recurrence equations have a few constraints attached: au is non-zero,
mu is non-zero, and either bui 6= 0 or auiv 6= 0 for some v ∈ Q. This will
be the case in all applications. Without this condition, the behaviors of the
corresponding sequences might be much wilder, as exemplified below.

Example 4.3 Consider Q = {u, v} with u0 = 0, v0 = 1, un+1 = 2vn, vn+1 =
un. This is not a system of recurrence equations in our sense, because the initial
value au for u is equal to 0. Its unique solution is un = 0 if n is even, 2(n+1)/2

if n is odd; vn = 2n/2 if n is even, 0 if n is odd. Note that (un)n∈N exhibits
neither polynomial nor exponential behavior, as it oscillates between the two.
Such a system is forbidden by our definition.

11

We claimed that, for every vertex u ∈ Q, (un)n∈N would either have expo-
nential or polynomial behavior, and that in the latter case, we would be able to
find a degree d ∈ N such that un = Θ(nd). One may wonder whether it would
be possible to refine this, and to also find a coefficient a such that un ∼ and

(meaning that u/(and) would tend to 1 as n tends to +∞). This is not possible,
as the following example shows.

Example 4.4 Let Q = {u, v, s, t} with u0 = 1, v0 = 2, s0 = 1, t0 = 1, un+1 =
vn, vn+1 = un, sn+1 = tn, tn+1 = sn + un. Its unique solution is: un = 1 if n
is even, 2 if n is odd; vn = 2 if n is even, 1 if n is odd; sn = n/2 + 1 if n is
even, n if n is odd; tn = n+ 1 if n is even, (n+ 3)/2 if n is odd. Note that both
s and t exhibit polynomial behavior, as they are Θ(n), but we cannot find an a
such that sn ∼ an or tn ∼ an: for example, sn oscillates between n/2 + 1 and
n.

Let us give a formal definition of systems of recurrence equations. One
might do this in the obvious way, using Q and families of numbers auiv and bui.
However, we would also like some equations such as

un+1 = un + max(vn,max(un, wn + 2) + max(2un, wn)) (1)

where the max and + operators are freely mixed. Distributing max over +
would produce an equivalent system of the right shape, but this transformation
takes exponential time and space in the worst case.

Instead, we use the following folklore transform, which works in linear time,
at the expense of introducing new symbols to Q (clearly, only linearly many
more). For each non-variable proper subexpression of the term on the right
(here, un+max(vn,max(un, wn+2)+max(2un, wn))), we introduce a fresh sym-
bol. By non-variable we mean any subexpression except the non-constant leaves
(here, un, vn, wn); this includes all non-leaf expressions, such as max(un, wn+2),
and all constant leaves, such as 2. Let us do so on (1). There are seven non-
variable proper subexpressions there, and we create seven fresh symbols, call
them a, b, c, d, e, f and two. The sequence twon is meant to be the con-
stant sequence equal to 2, and is defined by two0 = 2, twon+1 = twon. The
sequence an denotes wn + 2, bn denotes max(un, wn + 2), cn denotes 2un, dn
denotes max(2un, wn), en denotes max(un, wn + 2) + max(2un, wn), and fn de-
notes max(vn,max(un, wn+2)+max(2un, wn)). Accordingly, we replace (1) by
the following eight equations:

un+1 = un + fn fn = max(vn, en) en = bn + dn
dn = max(cn, wn) cn = 2un bn = max(un, an)
an = wn + twon twon+1 = twon

plus the initial condition two0 = 2.
Doing so only requires us to be able to state two kinds of recurrence equa-

tions: equations of the form un+k = max(vn, wn, · · ·), and equations of the form
un+k =

∑
v∈Q auvvn, obeying some natural conditions. (Note that constants

bui have disappeared in the process, being replaced by fresh symbols, such as
two in the above example.) This leads us to the following, formal, definition.

12

Definition 4.1 (System of Recurrence Equations) Let Q be some set of
so-called symbols.

A recurrence equation on Q is:

1. either an equation of the form un+k = max(vn, wn, · · ·), for some non-
empty subset of symbols v, w, · · · ∈ Q,

2. or an equation of the form un+k =
∑
v∈Q auvvn, where at least one auv,

v ∈ Q, is non-zero,

and where in each case k = ku is equal to 0 or 1.
A system of recurrence equations Σ on the set of symbols Q is a Q-indexed

family of recurrence equations Eu, plus initial conditions u0 = au for each
u ∈ Q such that ku 6= 0, where au ∈ Nr {0} is a constant.

We represent equations un+k =
∑
v∈Q auvvn in sparse form, that is, as a list of

pairs (v, auv) for each v ∈ Q such that auv 6= 0.
Our formal definition includes strictly more systems than our previous, in-

formal definition. Systems defined per our previous definition always have ex-
actly one solution; in other words, for each u ∈ Q, they define exactly one se-
quence (un)n∈N. A contrario, our new definition allows for systems of the form
un = un, which have infinitely many solutions; or of the form un = un + onen,
onen+1 = onen, one0 = 1, which have no solution. We repair this shortly.

5 Graphs
Given a system Σ of recurrence equations on the set of symbols Q, let us define
its graph G(Σ) as follows. We write s → t to say there is an edge from s to t.
G(Σ) is a labelled directed graph, and both vertices and edges receive labels.
Its vertices are the elements of Q, and are split in two kinds, corresponding to
the two kinds of allowed equations:

1. the max vertices u are those whose associated equation Eu is of the form
un+k = max(vn, wn, · · ·); there is one edge from u to v, one from u to w,
and so on; u itself is labeled with k, and the edges receive label 1;

2. the plus vertices u are those whose associated equation Eu is of the form
un+k =

∑
v∈Q auvvn; there is one edge from u to each v ∈ Q such that

auv 6= 0, and it is labeled with auv; the vertex u itself is labeled with k;

3. there is no other edge.

Introducing auxiliary symbols as necessary, Example 4.1 is really the system:

un+1 = 2un u0 = 1

Its graph is shown on the top left of Figure 2. We distinguish the plus vertices
by showing them on a light grey background. We also distinguish the vertex

13

+1

two

one

1

1

1

1

+1

+1

1 1 1

1

Example 4.2

u+1
2

Example 4.1

Example 4.4

+1t s

vu

w

u

v

+1

+1

+1+1

1

1

1
1

1

+1

Figure 2: Three examples of graphs G(Σ)

labels by writing them with a plus sign, viz., +1, not 1. The right-hand graph
is that of the system of Example 4.2, put into the adequate form:

un+1=vn + onen u0=1 vn+1=un + wn v0=1 wn+1=wn + twon
onen+1=onen one0=1 twon+1=twon two0=2 w0=1

Similarly for the graph of Example 4.4, shown at the bottom left.
Using the graph G(Σ), we evacuate the problem of those systems Σ that

have non-unique solutions, or no solution: we say that Σ is well-formed if and
only if there is no cycle in the graph that goes only through vertices labeled +0.

Proposition 5.1 Every well-formed system Σ has a unique solution, consisting
of uniquely-defined sequences (un)n∈N for each u ∈ Q, which satisfy all the
equations in Σ.

Proof. Define a relation � by u � v if and only if there is a non-empty path
from u to v in G(Σ) whose vertices, including u but excluding v, are labeled +0.
Write v ≺ u for u � v. Since Σ is well-formed, ≺ is irreflexive, hence defines
a well-founded strict ordering. Then, un is defined by Σ, by induction on the
pair (n, u) ∈ N × Q, ordered by the lexicographic product (< × ≺)lex of the
usual ordering < on N and of ≺. Since the latter is well-founded, un is defined
uniquely. 2

In proofs to come, we shall use the relation � several times, and each time this
will be to do well-founded inductions along (< × ≺)lex. In all the examples
shown in Figure 2, � is the trivial relation (u � v is always false), and such
inductions boil down to ordinary inductions on n ∈ N.

Note that G(Σ) has no provision for specifying initial conditions such as u0 =
1. They are not needed for Proposition 5.1. They will be useless in subsequent
developments as well: the asymptotic behavior of un will be independent of u0,
provided u0 6= 0.

14

6 Generating Recurrence Equations from Orchids
Signatures

Let us describe how we generate the recurrence equations that define the se-
quences we are interested in from a given Orchids signature. The translation
takes linear time in the size of the signature, defined as the sum of the number
of its states and its transitions.

We first define the set Q of symbols, that is, the names u of sequences
(un)n∈N: r for the final complexity of signature S, uq for each state q, uτ for
each expect transition τ (including τ0S), one for a special sequence defining
the constant 1. For the latter, generate the recurrence equations:

onen+1 = onen (2)

The initialization condition (one0 = 1) is irrelevant to the asymptotic behavior
of sequences. In fact, they are discarded when we construct the graph of our
system of recurrence equations. We shall therefore omit them.

The meaning of symbol uτ is as follows. Imagine the Orchids algorithm is
launched on a single thread (τ, ρ, id) (with the same τ as in uτ), and feed it n
events. Now count how many threads have been created by Orchids once it has
read and processed those n events: uτn is designed so as to be a precise upper
bound on that number. The symbol uq has a similar meaning, starting from
state q instead of transition τ .

In each state, for each transition τ , say with target state q′, we create the
following recurrence equations (3)–(8). If q′ is not a commit state, and if τ has
the NO_WAIT flag set, then we generate:

uτn+1 = uq
′

n (3)

Indeed, given n + 1 events, Orchids will simply read the first one, trigger the
transition and go to state q′, where n events will remain to be read.

If q′ is not a commit state and if τ does not have the NO_WAIT flag set, then
we generate instead:

uτn+1 = uτn + uq
′

n (4)

witnessing the fact that we also keep the current thread, waiting on transition
τ , so that all threads descending from τ count (and are accounted through the
term uτn).

If q′ is a commit state, then, as we have said earlier, we can consider q′ to
be a final state, and accordingly we write:

uτn+1 = onen (5)

if τ has the NO_WAIT flag, and:

uτn+1 = uτn + onen (6)

15

otherwise. We also need to consider q′ as an initial state, and this will be taken
care of in Equation (9) below.

For each state q with k outgoing expect transitions τ1, τ2, . . . , τk, we
generate:

uqn = uτ1n + uτ2n + · · ·+ uτkn (7)

For each state q with outgoing case transitions, enumerate the target states
that are not commit states as q1, q2, . . . , qk, and generate:

uqn = max(onen, u
q1
n , u

q2
n , · · · , uqkn) (8)

Indeed all commit states only contribute one thread, hence the maximum with
onen.

Finally, we write:

rn = max(uτ0Sn , uq1n , u
q2
n , · · · , uqmn) (9)

where q1, q2, . . . , qm are all the commit states of S. This is meant to take into
account the fact that each commit state is not only a final state, but also an
initial state, and may therefore contribute to rn.

Equation (9) is the only equation presented here whose soundness is not
obvious. Indeed, what we have is that the maximum number of threads sn
created by signature S is the maximum of uτ0Sn , and of quantities uqin−j , for
1 ≤ i ≤ m, and j varying over 0 · · ·n: j is, intuitively, the event number at
which state qi is entered. We shall see that the asymptotic behavior of those
sequences are either exponential or polynomial. For i fixed, uqin−j is an Ω(an−j)

for some a > 1, or a Θ((n− j)d) for some degree d ∈ N, as we have seen. When
j varies, an−j (resp., (n − j)d) reaches its maximum when j is minimal. We
see that the minimal value of j is the length of the shortest series of transitions
leading from state init to state qi in S, which is a constant. Since an−j = Θ(an)
and (n− j)d = Θ(nd), sn is, in any case, a Θ of rn, as described in (9).

As a final note to this section, observe that all the recurrence equations
described here are well-formed in the sense of Proposition 5.1.

The reader is invited to practice, to generate the equations corresponding
to the signature of Figure 1, and, finally, to check that those are exactly those
given at the end of the introduction. To this end, one needs to know that the
Orchids compiler manages to set the NO_WAIT flag on every transition.

We shall give more details, on practical examples, in Section 8.2. The equa-
tions we have just described are an upper bound on the actual complexities we
are interested in, and a natural question is whether they incur an acceptable
loss of precision, compared to the complexities experienced in practice. This
is a legitimate concern, and perhaps the most pressing source of worry is as
follows. Monitors not only create, but also remove threads (monitor instances)
at run-time, whereas our equations only seem to upper-bound the number of
created threads, ignoring deletions. This would be understanding our algorithm
wrongly. The main mechanism Orchids uses to delete threads is entering com-
mitted states. In that case, recall that all threads in the current thread group

16

except the current thread are killed. Dealing with that case is the purpose of
equation (5), (6), and (9). Our complexity evaluation mechanism simulates that
bulk removal by considering that all threads of the same group are removed in
one go—equations (5), (6)—and that one is born again, as described in equation
(9). Hence that particular form of deletion is, in fact, correctly handled. We
shall discuss precision issues in more detail Section 8.2, resting on the examples
given there.

7 Sccs, and asymptotics
We shall see that the key to understanding the asymptotic behavior of sequences
defined by a well-formed system of recurrence equations Σ lies in the strongly
connected components of the graph G(Σ), introduced in Section 5.

We fix a well-formed system Σ of recurrence equations for the rest of the
section, as well as its set of symbols Q, and the unique sequences (un)n∈N that
it defines. The following trivial lemma is crucial.

Lemma 7.1 Assume two vertices u, v in Q such that v is reachable from u,
namely, such that there is a path from u to v in G(Σ). There is a constant
k ∈ N such that, for every n ∈ N, un+k ≥ vn.

More precisely, k can be taken as the sum of vertex labels on any given path
from u to v, including u but excluding v.

Proof. The key argument is that for every edge of the form s→ t, where s is
labeled a, sn+a ≥ tn for every n ∈ N. This holds whether s is a max or a plus
vertex. 2

Before we start doing any real proof, we must mention that the pathological
case of a behavior that is neither polynomial nor exponential (see Example 4.3)
will not happen. This will rest on the following casual-looking observation,
which we shall need in the proof of Proposition 7.5.

Lemma 7.2 For every u ∈ Q, for every n ∈ N, un ≥ 1.

Proof. By well-founded induction on (n, u) along (< × ≺)lex.
If u is a max vertex labeled +0, then un = max(vn, wn, · · ·) where v, w,

. . . , form a non-empty subset of Q. Note that u � v, w, · · · By induction
hypothesis, vn ≥ 1, wn ≥ 1, and so on. Since they form a non-empty subset,
max(vn, wn, · · ·) ≥ 1, so un ≥ 1.

If u is a max vertex labeled +1, then either n = 0 and u0 = au ≥ 1, or
un = max(vn−1, wn−1, · · ·) ≥ 1 by a similar argument as above (but using the
fact that n > n − 1, not u � v, w, · · · as a reason to invoke the induction
hypothesis).

If u is a plus vertex labeled +0, then un =
∑
v∈Q auvvn, and some auv is

non-zero. For this v, u � v, so by induction hypothesis vn ≥ 1. We now have
un ≥ auvvn ≥ 1.

17

rd

1

e

s

t

c

a

b

v

u

1

1

1

1
1

1

1 1

1

1

5

w

1

7 4

1

1

f

Figure 3: Sccs in a graph G(Σ)

If u is a plus vertex labeled +1, then either n = 0 and u0 = au ≥ 1, or
un =

∑
v∈Q auvvn−1 ≥ 1, by a similar argument as above. 2

A subset A of vertices is strongly connected if and only if every vertex from A
is reachable from any other vertex of A. The maximal strongly connected subsets
are called the strongly connected components of the graph, and we abbreviate
that as scc. They partition the graph, and in particular every vertex u belongs
to a unique scc, which we write scc(u).

On Figure 2, the top left graph is its unique scc. The right-hand graph has
four sccs, the top cycle {u, v}, the middle cycle {w}, and the two cycles {one}
and {two}. The bottom left graph has two sccs, the top cycle {s, t}, and the
bottom cycle {u, v}.

In general, an scc can be more complex than a mere cycle, but if one wants
to picture a non-trivial scc, a cycle is a good first approximation. Sccs can also
be trivial, i.e., consist of no cycle at all, just a single vertex with no self-loop.
Figure 3 displays a more complex graph, with sccs shown as darker gray rect-
angles. (We haven’t shown any vertex labels on this example, as they would
distract us somehow. You can put any vertex labels so long as no cycle goes
only through vertices labeled +0, for example by labeling each vertex +1.) The
topmost scc is an example of an scc that is not just a cycle. There are also trivial
sccs: {c} and {f}. We let the reader reconstruct a system of recurrence equa-
tions associated with this graph. Note that, contrarily to previous examples,
this one involves the max operator in order to define (un)n∈N, (vn)n∈N, (sn)n∈N,
(tn)n∈N, (wn)n∈N, (rn)n∈N. Although this may seem like a complicated graph,

18

it will follow from our algorithm that un = Θ(n), an = Θ(n), bn = Θ(n) and
vn = Θ(n), and all other vertices have constant behavior.

Definition 7.3 (Bad Vertex) Call a vertex u ∈ Q bad if and only if it is a
plus vertex, and given its associated equation un+k =

∑
v∈Q auvvn, the sum of

the coefficients auv where v ranges over scc(u) is at least 2.

Equivalently, u is bad if and only if it is a plus vertex, and at least one of the
following possibilities occurs:

1. there is an edge (u, v) of label at least 2 to a vertex v in the same scc as
u,

2. or there are at least two edges u→ v and u→ w to vertices v and w that
are both in the same scc as u.

In Example 4.1, u is bad. There is no bad vertex in Example 4.2 or in Exam-
ple 4.4. There is no bad vertex either in Figure 3: although there are several
edges with label at least 2, they all go out of their start scc.

Definition 7.4 (Bad∗ Vertex) Say that a vertex u ∈ Q is bad∗ if and only if
some bad vertex is reachable from it, namely if and only if there is a path from
u to some bad vertex v.

We shall see that the bad∗ vertices u are exactly those such that (un)n∈N has
exponential behavior. In Example 4.1, u is bad∗. There is no bad∗ vertex in
Example 4.2 or in Example 4.4, or in Figure 3.

Proposition 7.5 For every bad∗ vertex u in Q, (un)n∈N has exponential be-
havior.

Proof. We shall show that this is the case if u is bad. If u is bad∗, then there
is a path from u to some bad vertex v, so that (vn)n∈N will have exponential
behavior. By Lemma 7.1, for some k ∈ N, for every n ∈ N, un+k ≥ vn, so that
(un)n∈N will also have exponential behavior.

So let us assume that u is bad. In particular, u is a plus vertex, and we
consider two cases.

Case 1. If there is an edge u→ v with label auv at least 2 for some v in the
same scc as u, then there is also a path π from v to u. Concatenating π with
the edge u → v, we obtain a cycle u → v

π−→u. Let a be the label of u, and k
be the sum of the vertex labels on π, including v but excluding u. Since Σ is
well-formed, k + a ≥ 1. By the defining equation for u, un+k+a ≥ auvvn+k ≥
2vn+k, and by Lemma 7.1, vn+k ≥ un, for every n ∈ N. By induction on p, it
follows that u(k+a)p+q ≥ 2puq for all p, q ∈ N, and since u0, u1, . . . , uk+a−1 ≥ 1
(Lemma 7.2), u(k+a)p+q ≥ 2p for all p, q ∈ N. This implies that un ≥ man

for every n ∈ N, where a = k+a
√

2 and m = 1/ak+a−1. Hence (un)n∈N has
exponential behavior in this case.

Case 2. If instead there are at least two edges u→ v and u→ w to vertices v
and w that are both in the same scc as u, then there are two cycles u→ v

π1−→u

19

and u→ w
π2−→u. Let k1 be the sum of the vertex labels on π1, including v but

excluding u, and similarly for k2 and π2. Let also a be the vertex weight of
u. Since Σ is well-formed, k1 + a and k2 + a are both larger than or equal to
1. Using Lemma 7.1, we obtain that for every n ∈ N, vn+k1+a ≥ un+a ≥ vn
and wn+k2+a ≥ un+a ≥ wn. If k1 and k2 were equal, we could reuse the same
argument as in Case 1. . . but we have to work a bit more.

By induction on p1, it follows that vn+p1(k1+a) ≥ vn and similarly, wn+p2(k2+a) ≥
wn, for all p1 and p2 in N. Pick p1 and p2 so that (p1+1)(k1+a) = (p2+1)(k2+a)
(by taking least common multiples), and let k be equal to the latter minus a.
Then vn+k = vn+p1(k1+a)+k1 ≥ vn+k1 ; by Lemma 7.1 applied to π1, vn+k1 ≥ un,
so vn+k ≥ un. Similarly, wn+k ≥ un. By the defining equation of u, un+k+a ≥
auvvn+k + auwwn+k ≥ vn+k + wn+k ≥ 2un. We obtain the same inequality
un+k+a ≥ 2un as in Case 1. It follows that (un)n∈N has exponential behavior
again, by the same reasoning. 2

If an scc contains a bad∗ vertex, then all its vertices are bad∗. Let us consider
the case of sccs A without any bad∗ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Figure 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = Θ(ndA) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.

Proposition 7.6 Assume u ∈ Q is a trivial scc, and that for every edge u→ v,
the sequence (vn)n∈N has polynomial behavior, viz., for some dv ∈ N, vn =

Θ(ndv). Then (un)n∈N has polynomial behavior, too, and un = Θ(ndu), where
du = max{dv | v ∈ Q such that u→ v}.

Proof. This follows from the fact that max(Θ(ndv),Θ(ndw), · · ·) = Θ(nmax(dv,dw,···))
for max vertices, and that

∑
v∈Q such that u→v auvΘ(ndv) = Θ(nmax{dv|u→v}) for

plus vertices, using the fact that auv ≥ 1 for every v ∈ Q such that u→ v. 2

Now assume A is a non-trivial scc without any bad vertex. Such an scc must
have a special shape, exemplified on the three sccs of the graph on the right of
Figure 2, or on the bottom left graph of the same figure, or on the non-trivial
sccs of Figure 3: the weights of all edges between vertices of A must be equal to
1, and every plus vertex has exactly one successor in A (all others are outside
A). That it has at most one successor in A (and that all its edge labels are
equal to 1) is a consequence of the absence of bad vertices. That it has at least
one follows from the fact that A is non-trivial.

Note that plus vertices in A may have more than one successor; but only
one can be in A. For example, v has two successors in the graph of Example 4.2
(Figure 2, right), but only u is in the scc A = {u, v} that v belongs to. Exam-
ple 4.4 displays a similar situation. Figure 3 does, too: b has two successors,
but only one in its own scc.

20

Definition 7.7 (Expensive, cheap edges) Say that an edge u→ v goes out
of A if and only if u ∈ A and v 6∈ A. If u is a plus vertex, then we say that it
is an expensive edge out of A, otherwise it is a cheap edge out of A.

In Figure 3, there is only one expensive edge out of a non-trivial scc, namely
the edge b→ w, with label 1. There are two other edges going out of non-trivial
sccs, namely u → c and w → f . They are both cheap. Note that being cheap
or expensive is entirely independent of the label it carries. Here the expensive
edge has the lowest possible label of the whole graph.

The key argument in Proposition 7.10 below consists in not-
ing that

∑n
j=0 j

N = Θ(nN+1) when n tends to +∞—a well-
known identity. The way we use that is probably best explained
on a small test case. Imagine one of the simplest possible non-
trivial sccs: a one-vertex loop, as shown on the right, and as-
sume that we know that vn = Θ(nN), and even, to make things
simpler, that vn = nN .

+1

1

1

u

v

The equation defining (un)n∈N is un+1 = un + vn = un + nN . It follows easily
that un = (n− 1)N + (n− 2)N + · · ·+ 1N + 0N + u0 = u0 +

∑n−1
j=0 j

N , and that
is Θ(nN+1), as we have just seen. Note that the edge u→ v is expensive. The
name “expensive” was chosen so as to suggest that those are the edges that are
responsible for the increase in the exponent, from N to N +1. Cheap edges will
incur no such increase.

In general, the proof of the bounds in the following proposition uses a similar
argument. The case of non-trivial sccs A without any bad vertex, and with only
+ vertices (no max vertex) is easier to argue. There is a single elementary
cycle from u back to u, and all its weights are equal to 1; all edges out of
this path go out of A. Semantically un+a can be written as un−k (for some
constant k) plus values vn, for v outside of A. If vn has polynomial growth, viz.
if vn = Θ(ndv), then ndv will enter a summation defining un+a, and a similar
argument as above shows that un will grow as a polynomial in n whose degree
is the largest exponent dv plus 1. The fact that + and max vertices can be
used freely inside A makes the proof of the Proposition 7.10 below slightly more
involved.

The key argument in Proposition 7.10 consists in the following well-known
bounds. We take the standard convention that jN = 1 when N = 0, even when
j = 0. The proof is a standard high school exercise.

Lemma 7.8 Let N be any non-negative real constant. For every p ∈ N,

1

N + 1
pN+1 ≤

p∑
j=0

jN ≤ 1

N + 1
(p+ 1)N+1.

Proof. If N > 0, by elementary analysis,
∑p
j=0 j

N ≤
∫ p+1

0
xNdx = 1

N+1 (p +

1)N+1, and
∑p
j=0 j

N =
∑p
j=1 j

N ≥
∫ p
0
xNdx = 1

N+1p
N+1. When N = 0, the

claim reduces to the inequalities p ≤ p+ 1 ≤ p+ 1, which are obvious. 2

21

We will use the left-hand inequality of Lemma 7.8 to prove lower bounds,
but we will not use the right-hand inequality for upper bounds. Regarding the
latter, we will find it easier to rely on the following inequality—one that can
be used to reprove the right-hand inequality of Lemma 7.8, using a telescoping
sum, by the way.

Lemma 7.9 Let N be any non-zero natural number. For every x ≥ 0, xN +
NxN−1 ≤ (x+ 1)N .

Proof. By the binomial formula, (x+1)N =
∑N
k=0

(
N
k

)
xk = xN+

(
N
N−1

)
xN−1+(

N
N−2

)
xN−2 + · · · ≥ xN +

(
N
N−1

)
xN−1 (since N ≥ 1, the sum contains at least

those first two terms). We conclude since
(
N
N−1

)
= N . 2

Proposition 7.10 Let A be a non-trivial scc of G(Σ) without a bad vertex. For
each edge u→ v going out of A, assume that (vn)n∈N has polynomial behavior.
Precisely, assume that vn = Θ(ndv).

Then every vertex of A has polynomial behavior, with the same degree dA,
where dA is the maximum of:

• all the quantities dv, where u→ v ranges over the cheap edges out of A,

• and all the quantities dv + 1, where u→ v ranges over the expensive edges
out of A.

To be completely formal, we agree that the maximum of an empty set of numbers
is 0; this is needed in case there is no edge going out of A at all.

Proof. We show that, for every u ∈ A, un = Ω(ndA) and that for every
u ∈ A, un = O(ndA), separately.

Lower bounds. Consider any edge going out of A. If this is a cheap
edge u → v, with u a max vertex labeled a, then un+a ≥ vn. By assumption,
vn = Ω(ndv), hence un = Ω(ndv). By Lemma 7.1, for every t ∈ A, there is a
constant k ∈ N such that for every n ∈ N, tn+k ≥ un, whence tn = Ω(ndv) as
well.

If this is an expensive edge u → w, then u is a plus vertex labeled a, and
un+a =

∑
v∈Q auvvn. Among the summands with auv 6= 0, one is obtained by

choosing v = w, because of the existence of the edge u→ w; and exactly one is
a vertex v ∈ Q that is in A—recall the special shape of non-trivial sccs without
a bad vertex. Since v ∈ A and w 6∈ A, v and w are distinct. It follows that
un+a ≥ vn + wn for every n ∈ N. Since A is an scc, u is reachable from v. By
Lemma 7.1, there is a k ∈ N such that for every n ∈ N, vn+k ≥ un. Moreover,
since Σ is well-formed, k+a ≥ 1. We have obtained: (a) un+k+a ≥ un+wn+k for
every n ∈ N. Since wn = Ω(ndw), there is a constant n0 ∈ N, and a real constant
m > 0 such that, for every n ≥ n0, wn ≥ mndw . Without loss of generality, we
may assume n0 ≥ k + a. For n large enough, we may write n − a uniquely as
p(k+a)+q for some p ∈ N, q < k+a ≤ n0. Assuming n sufficiently large, p will
be non-zero. Using (a), un ≥ wp(k+a)+q+w(p−1)(k+a)+q+ · · ·+wj(k+a)+q+ · · ·+
wq ≥ m

∑p
j=0(j(k+a)+q)dw . Since q ≥ 0, un ≥ m(k+a)dw

∑p
j=0 j

dw , and this

22

is larger than or equal to m(k+a)dw

dw+1 pdw+1 by Lemma 7.8. Since p ≥ n−a
k+a − 1,

un ≥ m(k+a)dw

dw+1

(
n−a
k+a − 1

)dw+1

, and this is a Θ(ndw+1), since m, k, a, and dw
are constants. Finally, as for cheap edges, we use Lemma 7.1 to conclude that
tn = Ω(ndw+1) for every t ∈ A.

For each t ∈ A, we have therefore obtained that tn = Ω(ndw+1) for every
expensive edge u → w out of A, and that tn = Ω(ndv) for every cheap edge
u→ v out of A. Since dA is the largest of those exponents, tn = Ω(ndA).

Upper bounds. There is a constant n0 ∈ N, and constants Mv > 0, such
that, for every n ≥ n0, for every edge u→ v out of A, vn ≤ Mv(n+ 1)dv . (We
take n+ 1 instead of n to avoid problems with the case n = 0.) Notice that we
pick the same n0 for all edges. That does not restrict generality, since we can
always take the maximum of all values of n0 collected for each edge.

It will be important to realize what the defining equation is for un, where
u is a plus vertex in A. In principle, letting a be the label of u, this is un+a =∑
v∈Q auvvn. Since auv 6= 0 only when there is an edge u → v, this is un+a =∑
v∈Q/u→v auvvn. Since u cannot be bad by assumption, there is a unique w ∈ Q

such that u → w and for which w is also in A; moreover, auw = 1. (That this
w exists is because A is a non-trivial scc.) It follows that the defining equation
for such a vertex is of the form un+a = wn + Tn, where Tn is the sum over all
(expensive) edges u→ v out of A of auvvn.

We first deal with the case where dA = 0. In that case, there cannot be any
expensive edge out of A, and for every cheap edge u→ v out of A, dv = 0. Let
B be the maximum of all the constants Mv given above, when u → v ranges
over all the cheap edges out of A, and of all the values un0

, u ∈ A. We claim
that, for every u ∈ A, for every n ≥ n0, un ≤ B(n+ 1)dA , namely that un ≤ B.
This is by induction on (n, u) with n ≥ n0, ordered by (< × ≺)lex. For n = n0,
un0
≤ B by the definition of B. For n > n0, either u is a max node (labeled

a, say), and un = max(vn−a, wn−a, · · ·) ≤ B by induction hypothesis; or u is a
plus node, but since there is no expensive edge out of A, the term Tn alluded
to above is zero, so the defining equation for un is un = wn−a for some unique
vertex w in A; by induction hypothesis again, this is at most B.

We now deal with the more complicated case dA ≥ 1. We deal with that
case separately, because we shall need to refer to dA− 1, which would not make
sense if dA = 0.

We shall show that un ≤ B(n+ 1)dA +h(u)(n+ 1)dA−1 for every n ≥ n0 and
u ∈ A. Here B and h(u), for each u ∈ A, will be non-negative constants that
are defined below. What they should be is best found by examining the proof
below, and collecting the constraints that they need to obey.

Solving those constraints leads us to define h(u) by induction along ≺ by:

1. if u is labeled +1, then h(u) = 0;

2. if u is a max vertex labeled +0, then h(u) = max{h(v) | u→ v, v ∈ A};

3. if u is a plus vertex labeled +0, then recall that the defining equation
for u is un = wn + Tn, where w is in A and Tn =

∑
v auvvn, where

23

the sum is taken over all expensive edges u → v out of A: then we let
h(u) = h(w) +

∑
v auvMv.

And we require B to be so large that:

(a) un0
≤ B(n0 + 1)dA + h(u)(n0 + 1)dA−1 for every u ∈ A;

(b) B ≥Mv for every cheap edge u→ v out of A;

(c) for every plus vertex u labeled +1 in A, h(w) +
∑
v auvMv ≤ dAB, where

w is the unique vertex in A such that u → w, and the sum is taken over
all expensive edges u→ v out of A;

(d) for every max vertex u labeled +1 in A, for every edge u → v with v in
A, h(v) ≤ dAB.

Note indeed that all those inequalities are eventually satisfied as B tends to
+∞, (a) because n0 + 1 > 0, (c) and (d) because dA > 0.

We now prove that un ≤ B(n+ 1)dA + h(u)(n+ 1)dA−1 for every n ≥ n0 by
induction on (n, u) with n ≥ n0, ordered by (< × ≺)lex. The case n = n0 is by
(a).

Let us now assume n > n0.
If u is a plus vertex, labeled a, then un = wn−a + Tn−a where w ∈ A and

Tn−a =
∑
v auvvn−a, where the sum is taken over all expensive edges u → v

out of A. By assumption, vn−a ≤ Mv(n− a+ 1)dv for all the latter vertices v,
hence vn−a ≤Mv(n− a+ 1)dA−1. By induction hypothesis, wn−a ≤ B(n− a+
1)dA + h(w)(n− a+ 1)dA−1. If the label a is +0, we obtain un ≤ B(n+ 1)dA +
h(w)(n+1)dA−1+

∑
v auvMv(n+1)dA−1 = B(n+1)dA +h(u)(n+1)dA−1 (item 3

of the definition of h). If the label a is +1, we obtain instead un ≤ BndA +
h(w)ndA−1 +

∑
v auvMvn

dA−1 ≤ BndA +dABn
dA−1, where the latter inequality

is by (c); the last term is less than or equal to B(n+1)dA by Lemma 7.9, and we
therefore obtain un ≤ B(n+ 1)dA + h(u)(n+ 1)dA−1 since h(u) is non-negative.
(In fact, h(u) = 0, see item 1 of the definition of h.)

If u is a max vertex, labeled a, then un = max(vn−a, wn−a, · · ·). The terms
vn−a obtained from (necessarily cheap) edges u → v out of A are less than
or equal to Mv(n − a + 1)dv ≤ Mv(n − a + 1)dA ≤ B(n − a + 1)dA (by (b))
≤ B(n− a+ 1)dA + h(u)(n− a+ 1)dA−1, since h(u) is non-negative. Whichever
the value of a, +0 or +1, that is less than or equal toB(n+1)dA+h(u)(n+1)dA−1.
The terms vn−a such that v ∈ A are less than or equal to B(n − a + 1)dA +
h(v)(n−a+1)dA−1 by induction hypothesis. If a = +0, then this is less than or
equal to B(n+ 1)dA + h(u)(n+ 1)dA−1, using the fact that h(v) ≤ h(u) in this
case (item 2 of the definition of h). If a = +1, then this is less than or equal to
BndA + h(v)ndA−1 ≤ BndA + dABn

dA−1 by (d). That is less than or equal to
B(n + 1)dA by Lemma 7.9, hence to B(n + 1)dA + h(u)(n + 1)dA−1, again. It
follows that un ≤ B(n+ 1)dA + h(u)(n+ 1)dA−1. 2

Let us use those results to determine the asymptotic behavior of all the
sequences defined by the graph of Figure 3. Recall that there is no bad∗ vertex
in that example. We start from the sccs at the bottom, and work our way up:

24

• The non-trivial sccs {r} and {s, e, t, d} have no outgoing edge at all, hence
their associated sequences are Θ(n0) (bounded from below and from above
by constants).

• The scc {f} is trivial, and its two successors behave as Θ(n0), hence it
itself behaves as Θ(n0), by Proposition 7.6.

• Similarly for the trivial scc {c}.

• The scc {w} is not trivial, but it does not have any expensive edge out of
it; by Proposition 7.10, it also behaves as Θ(n0).

• The topmost scc is non-trivial, it has one cheap outgoing edge, u→ c, and
one expensive outgoing edge b→ w. By applying Proposition 7.10, all the
sequences associated with vertices in that scc behave as Θ(nmax(0,0+1)),
that is, Θ(n).

8 The Algorithm
To conclude, we need a final, standard ingredient: the condensation of a directed
graph G is the graph whose vertices are the sccs of G, and such that there is an
edge from A to B if and only if there are vertices q ∈ A and r ∈ B and an edge
q → r in G. The condensation is always acyclic, meaning that working our way
up, that is, from the leaves to the roots of the condensation, must terminate
(hence terminate in a linear number of steps). In the case of a graph G of the
form G(Σ), we shall say that an edge A → B as above in the condensation is
expensive if and only if A is non-trivial, and we can find a q ∈ A and an r ∈ B
such that the edge q → r is expensive in G; it is cheap otherwise, namely when
A is trivial, or A is non-trivial and all the edges q → r in G with q ∈ A and
r ∈ B are cheap.

Theorem 8.1 Given any system Σ of recurrence equations with set Q of sym-
bols, we can compute a table of numbers du ∈ N ∪ {+∞}, u ∈ Q, in linear
time, such that du = +∞ iff (un)n∈N has exponential behavior, and otherwise
un = Θ(ndu).

The algorithm works as follows:

1. Compute G(Σ) and its sccs, building its condensation G′.

2. Traverse G′ in reverse topological order (i.e., from the bottom up). For
each visited scc A, decide whether A contains a bad vertex. If so, let dA :=
+∞. Otherwise, for every successor B of A in G′, dB has already been
computed, and let dA := max(maxA→B cheap dB ,maxA→B expensive(dB +
1)), where by convention we agree that the maximum of the empty set is
zero.

3. Finally, for each u ∈ Q, let du := dscc(u).

25

function scc(v:vertex)
push(v)
for each successor w of v do

if w.index is undefined then
scc(w)
if w.low < v.low then

v.low← w.low
else if w.onStack then

if w.index < v.low then
v.low← w.index

end if
end if

else
end if

end for
if v.low = v.index then

. pop the scc with root v from the stack
l← S . sever scc from rest of stack
S← v.next . l=linked list of nodes in scc
v.next← NULL . last node in l is v
w ← l . now loop over scc l
while w 6= NULL do

w.onStack← false
w.sccRoot← v
w ← w.next

end while
computeComplexities(l)

end if
end function

function push(v:vertex)
v.index← index

v.low← index

index← index+ 1
v.next← S

v.onStack← true
S← v

end function

Figure 4: Tarjan’s algorithm

The correctness of the algorithm is a direct consequence of Proposition 7.5,
Proposition 7.6, and Proposition 7.10. That it works in linear time is easy.
Notably, the second phase sweeps through all the sccs A once, and for each,
takes time proportional to the number of vertices in A plus the number of edges
that go out of A. The sum over all sccs A of those values is the size of G(Σ).

In practice, this is implemented by simply modifying Tarjan’s scc algorithm
[17]. In any description of that algorithm, there is a single line of code where
it has just found an scc A, and it must emit it by repeatedly popping a stack.
It is enough to compute dA there, by the formula given in Theorem 8.1, item 2,
knowing that at that point, all the values dB will have been computed earlier.

8.1 A Concrete Implementation
We make the algorithm more explicit. Figure 4 displays one possible implemen-
tation of Tarjan’s algorithm. (Comments start with ..) That algorithm works
with the help of a global natural number index, initialized to 0, and a global
stack S, which we implement as a linked list of vertices S, S.next, S.next.next,
and so on until we reach the special constant NULL, denoting the end of the
list. We assume that each vertex v of the graph is a record containing the fol-
lowing fields: onStack, a Boolean flag which is true if and only v is on the

26

stack; next, used for linking purposes, and in the first place to implement the
stack itself; and type, a flag with only two possible values, PLUS or MAX de-
pending on whether v is a + or max vertex. Initially, v.onStack is false, and
S = NULL. The vertex v also contains the following fields, which will be filled
in by the algorithm: index (depth-first search index), low (lowest depth-first
search index of vertices in the same scc), sccRoot (root vertex of v’s scc), and
degree, all initially undefined. The latter field will eventually contain either a
natural number—the degree of the polynomial if the sequence associated with v
has asymptotic polynomial behavior—or the special constant INFTY, denoting
exponential behavior. We agree that INFTY is strictly larger than any natural
number, and that INFTY + 1 = INFTY.

Edges are left implicit, and are handled by loops of the form “for each
successor w” in the code. To obtain the desired degrees, we launch scc on the
root r of our graph; when it returns, we read off the degree field from r.sccRoot.

The algorithm of Figure 4 is not our contribution. Our contribution is the
function computeComplexities, called at the end of the loop in Tarjan’s
algorithm. At this point, l is guaranteed to hold a list of all the vertices in the
just discovered scc, with root v, that list has been severed off the stack and has
v as last entry, and for each vertex w in l, w.sccRoot = v.

The function computeComplexities is shown in Figure 5, right, and fol-
lows our informal description: if the scc l is trivial, then its degree, stored in the
degree field of its root l.sccRoot, is the maximum of all degrees of the successor
sccs of l; otherwise, its degree is the maximum of the same degrees (computed as
variable dv), possibly incremented by 1 in case of expensive edges. The helper
functions trivialScc and badVertex determine whether their argument is a
trivial scc, resp., a bad vertex.

8.2 Experimental Results
We have implemented that algorithm inside Orchids, and its ten standard signa-
tures. Execution time was negligible. We had the pleasant surprise of observing
that all our signatures had polynomial thread complexity, confirming our intu-
ition that human experts do not write signatures with exponential behavior.

The largest observed complexity is Θ(n3) for lin24_ptrace.rule, a signa-
ture that attempts to detect the ptrace attack [14]. The second largest is Θ(n2)
for the apachessl.rule, a signature that tries to correlate abnormal variations
in message entropy [9] with specific failure events from the Apache server. Out
of our ten signatures, seven others have linear behavior, including the pid tracker
of Figure 1. We have instrumented our algorithm so that it reports the main
causes of complexity. For example, on the pid tracker, our algorithm reports:

rule pidtrack may have worst case linear behavior, i.e., O(#events).
each event may fork a new thread going to ’init’.

And indeed, each newly created Unix process (through the clone system call, a
Linux abstraction behind the more well-known fork call) may cause the creation
of a new Orchids thread for that signature, starting at state init.

27

function trivialScc(l:vertex)
if l.next 6= NULL then

. if there is another vertex
. in the scc,

. then it is not trivial
return false

end if
for each successor w of l do

if w = l then
. if there is a self-loop,

. then the scc
. is not trivial

return false
end if

end for
return true

end function

function badVertex(w:vertex)
if w.type 6= PLUS then

. MAX vertices are never bad
return false

end if
v ← w.sccRoot
weight← 0

for each edge w
a−→z do

if z.sccRoot = v then
weight← weight+ a

end if
end for
return weight ≥ 2

end function

function computeComplexities(l:vertex)
v ← l.sccRoot
v.degree← 0
if trivialScc(l) then

. take max of degrees of successors
for each successor w of l do

if w.sccRoot.degree > v.degree then
v.degree← w.sccRoot.degree

end if
end for

else . loop over w in scc l
w ← l
while w 6= NULL do

if badVertex(w) then
. exponential behavior

v.degree← INFTY

break . exit while loop
else

for each successor z of w do
if z.sccRoot 6= v then

dv ← z.sccRoot.degree
if w.type = PLUS then

. expensive edge
dv ← dv + 1

end if
. take max(dv, v.degree)

if dv > v.degree then
v.degree← dv

end if
end if

end for
end if
w ← w.next

end while
end if

end function

Figure 5: Computing complexities

28

The last of the ten signatures, taint_auditd.rule, a tainting mechanism
for detecting illegal transitive information flows, is not even flagged by our
algorithm: it is correctly classified as generating a constant number of threads.

Let us focus on lin24_ptrace.rule in order to understand what is going
on in the worst experienced case. We will not describe the actual signature: see
[13], where we used a version of that rule as a running example.

Θ(n3) is an overestimation: the actual complexity of that signature is Θ(n2).
The source of the overestimation lies in the following piece of Orchids signature:

state ptrace_poketext {
$counter = $counter + 1 ;

expect (. pid == $attack_pid &&
. syscall == SYS_ptrace &&
. ptrace_req == POKETEXT &&
. ptrace_pid == $target_pid &&
$counter < 10)

goto ptrace_poketext ;
expect (. pid == $attack_pid &&

. syscall == SYS_ptrace &&

. ptrace_req == DETACH &&

. ptrace_pid == $target_pid)
goto ptrace_detach ;

}

Let p be the state ptrace_poketext, and d be the state ptrace_detach (not
shown). Our complexity analyzer correctly determines that udn = Θ(1), and
produces the equations:

u
p
n = uτ1n + uτ2n uτ1n+1 = u

p
n uτ2n+1 = udn

where τ1 and τ2 are the two expect transitions. Both have the NO_WAIT flag,
as determined by the Orchids signature compiler. Note that, otherwise, the
equation defining uτ1 would have to be uτ1n+1 = uτ1n + u

p
n, in which case uτ1n

and upn would behave as Θ(2n). This dramatically confirms the claim made in
[8] that optimizations found by static analysis are crucial: here they allow us
to replace an exponential behavior by a polynomial behavior, preserving the
semantics.

The above equations yield an asymptotic estimate for upn of Θ(n). There
are two expensive edges (not shown) between the root node and vertex up,
leading to an estimated complexity of Θ(n3) for the whole rule. This result is
not optimal: as one can see from the use of the variable $counter in state p,
and since $counter starts at 0, the loop on that state can only be taken at most
10 times. A more precise analysis, taking that into account, would generate the
following equation for upn:

u
p
n+10 =

9∑
i=0

udn+i,

29

which would give a more precise estimate upn = Θ(1), hence an overall complex-
ity of Θ(n2). That would be doable, given some additional static analyses.

There is a final source of imprecision in our complexity estimation algorithm.
Among the static analyses that Orchids implements, the monotonicity analysis
allows Orchids to remove threads that are waiting on conditions b that have
failed once, provided we can show that b is antitonic [8, Section 5]. Consider an
expect transition of the form:

expect (. syscall == SYS_open &&
. time <= $start+$delay) goto q ;

which one would write to detect a call to the open() system call within $delay
time units, assuming $start holds the current time. The .time field is trusted
to evolve in a non-decreasing way as new events flow in. Then, the Boolean
condition .time <= $start+$delay is antitonic in the sense that its value can
only decrease (go from true to false), and never increase. Therefore, if it fails
once, it will fail forever. An Orchids thread that is waiting on the above expect
transition is then reclaimed if .time <= $start+$delay is found to be false
just once. Contrarily to the NO_WAIT flag, Orchids discovers that it can remove
the corresponding thread at run-time, not at compile-time. As a consequence,
that is ignored by our complexity analyzer, which operates entirely at compile-
time: it computes an upper bound on the number of created threads, but ignores
deletions (except for the thread killing mechanism arising from commit states,
which can be predicted at compile-time).

Should we refine our complexity analyzer to handle such thread deletions?
Certainly, if the monotonicity analysis is ever useful, we should do so. We should
start by evaluating the gap between the observed number of active threads and
the number predicted by our complexity analyzer. However, and perhaps sadly
so, the monotonicity analysis may be of limited use. Of the signatures we used,
only two would have benefited from that mechanism: the ssh_failed_burst
rule and the ssh_failed_long_window rule, which detect bursts of ssh failures
(more than N failed connection attempts during some fixed amount of time,
where N is a constant). The author of these rules, Baptiste Gourdin, preferred
to write them in a different style. To explain that on the example of the above
expect transition, he would have written it as:

expect (. syscall == SYS_open) goto q ;
expect (. time > $start+$delay) goto stop ;

where stop is a commit state. That actually implements the desired timeout
by relying on commit states instead: if .time ever exceeds $start+$delay,
then Orchids will enter state stop, and that will kill the thread waiting on the
condition .syscall==SYS_open, among others.

9 Conclusion
We have described, and proved, a linear time algorithm that decides the asymp-
totic complexity of sequences defined by certain forms of systems of recurrence

30

equations, using both the + and max operators. Our goal was to analyze, au-
tomatically, which Orchids signatures have polynomial detection complexity (in
terms of numbers of created Orchids threads), and with which exponent.

This turns out to be an extremely reliable and useful tool to Orchids signa-
ture writers. Personal experience shows that a high degree in the polynomial,
or worse, an estimation of exponential complexity, is indicative of a mistake in
the writing of the signature.

Beyond Orchids, it seems obvious that our simple algorithm for estimating
the asymptotic complexity of recurrence equations should find applications out-
side of security or of runtime verification. Mounir Assaf recently proposed a
(yet unpublished) static analysis that detects whether leakage of sensitive data
in security programs is negligible or not [3]. This is based on estimating the rate
of growth of a sequence un as the number of steps taken, n, tends to infinity,
and we hope that our algorithm, or similar techniques, apply.

Acknowledgement
The first author would like to thank Mounir Assaf for drawing his attention to
analytic combinatorics, and the anonymous referees for their suggestions.

References
[1] Akian M, Bapat R, Gaubert S (2006) Max-plus algebras. In: Hogben L (ed)

Handbook of Linear Algebra, Discrete Mathematics and Its Applications,
vol 39, Chapman and Hall/CRC, chap 25

[2] Albert E, Arenas P, Genaim S, Puebla G (2011) Closed-form upper bounds
in static cost analysis. Journal of Automated Reasoning 46(2):161–203

[3] Assaf M (2015) From qualitative to quantitative program analysis : Permis-
sive enforcement of secure information flow. PhD thesis, Université Rennes
I

[4] Basin D, Klaedtke F, Müller S, Zălinescu E (2015) Monitoring metric first-
order temporal properties. Journal of the Association for Computing Ma-
chinery 62(2):15:1–15:45

[5] Brockschmidt M, Emmes F, Falke S, Fuhs C, Giesl J (2014) Alternating
runtime and size complexity analysis of integer programs. In: Proc. Intl.
Conf. Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’14), Springer Verlag Lecture Notes in Computer Science 8413, vol
8413

[6] Flajolet P, Sedgwick R (2009) Analytic Combinatorics. Cambridge Univer-
sity Press, iSBN 0521898064. ISBN-13 978-0521898065

31

[7] Flores-Montoya A, Hähnle R (2014) Resource analysis of complex programs
with cost equations. In: Proc. 12th Asian Symposium on Programming
Languages and Systems (APLAS’14), Singapore, Singapore, Springer Ver-
lag Lecture Notes in Computer Science 8858

[8] Goubault-Larrecq J, Olivain J (2008) A smell of Orchids. In: Leucker M
(ed) Proceedings of the 8th Workshop on Runtime Verification (RV’08),
Springer, Budapest, Hungary, Lecture Notes in Computer Science, vol 5289,
pp 1–20, DOI 10.1007/978-3-540-89247-2_1

[9] Goubault-Larrecq J, Olivain J (2013) On the efficiency of mathematics in
intrusion detection: The NetEntropy case. In: Danger JL, Debbabi M, Mar-
ion JY, Garcia-Alfaro J, Zincir-Heywood N (eds) Revised Selected Papers
of the 6th International Symposium on Foundations and Practice of Secu-
rity (FPS’13), Springer, La Rochelle, France, Lecture Notes in Computer
Science, vol 8352, pp 3–16, DOI 10.1007/978-3-319-05302-8_1

[10] Havelund K, Reger G (2015) Specification of parametric monitors - quan-
tified event automata versus rule systems. In: Drechsler R, Kuhne U (eds)
Formal Modeling and Verification of Cyber-Physical Systems, Springer Ver-
lag, pp 151–189, 1st International Summer School on Methods and Tools
for the Design of Digital Systems (SyDe), Bremen, Germany

[11] Jin D, O’Neil Meredith P, Lee C, Roşu G (2012) JavaMOP: Efficient para-
metric runtime monitoring framework. In: Proceeding of the 34th Interna-
tional Conference on Software Engineering (ICSE’12), IEEE, pp 1427–1430,
DOI 10.1109/ICSE.2012.6227231

[12] Luo Q, Zhang Y, Lee C, Jin D, O’Neil Meredith P, Şerbănuţă TF, Roşu G
(2014) RV-Monitor: Efficient parametric runtime verification with simul-
taneous properties. In: Bonakdarpour B, Smolka SA (eds) Proceedings of
the 5th International Conference on Runtime Verification (RV’14), Springer
Verlag LNCS 8734, Toronto, ON, CA, pp 285–300

[13] Olivain J, Goubault-Larrecq J (2005) The Orchids intrusion detection tool.
In: Etessami K, Rajamani S (eds) Proceedings of the 17th International
Conference on Computer Aided Verification (CAV’05), Springer, Edin-
burgh, Scotland, UK, Lecture Notes in Computer Science, vol 3576, pp
286–290, DOI 10.1007/11513988_28

[14] Purczyński W (2003) Linux kernel privileged process hijacking vulnera-
bility. http://www.securityfocus.com/bid/7112, bugTraq Id 7112. Last
read: september, 2003

[15] Roger M, Goubault-Larrecq J (1999) Procédé et dispositif de résolution
de modèles, utilisation pour la détection des attaques contre les systèmes
informatiques. Dépôt français du 13 sep. 1999, correspondant Dyade, de-
mandeurs : 1. INRIA 2. Bull S.A. Numéro de publication: 2 798 490.
Numéro d’enregistrement national: 99 11716. Classification: G 06 F 19/00.

32

Date de mise à la disposition du public de la demande: 16 mars 2001,
bulletin 01/11.

[16] Roger M, Goubault-Larrecq J (2001) Log auditing through model check-
ing. In: Proceedings of the 14th IEEE Computer Security Foundations
Workshop (CSFW’01), IEEE Computer Society Press, Cape Breton, Nova
Scotia, Canada, pp 220–236

[17] Tarjan RE (1972) Depth-first search and linear graph algorithms. SIAM
Journal on Computing 1(2):146–160

33

