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Abstract

The formal ball construction B is a central tool of quasi-metric space theory.
We show that it induces monads on certain natural categories of quasi-metric
spaces, with 1-Lipschitz maps as morphisms, or with 1-Lipschitz continuous
maps as morphisms. Those are left Kock-Zöberlein monads, and that al-
lows us to characterize their algebras exactly. As an application, we study
so-called Lipschitz regular spaces, a natural class of spaces that contain all
standard algebraic quasi-metric spaces with relatively compact balls, in par-
ticular all metric spaces whose closed balls are compact. There are other
Lipschitz regular spaces, as we show, and notably all B-algebras. That in-
cludes all spaces of formal balls, with their d+-Scott topology. The value
of Lipschitz regularity is that, for a Lipschitz regular standard quasi-metric
space X, d, the space LX of lower semicontinuous maps from X to R+, with
the Scott topology, retracts onto each of the spaces Lα(X, d) of α-Lipschitz
continuous maps, and that the subspace topology on the latter coincides with
the Scott topology.

Keywords: Quasi-metric, formal balls, d-Scott topology, Kock-Zöberlein
monad
2000 MSC: 54E99

1. Introduction

Let R+ be the set of extended non-negative reals. A quasi-metric on a set
X is a map d : X×X → R+ satisfying: d(x, x) = 0; d(x, z) ≤ d(x, y)+d(y, z)
(triangular inequality); and d(x, y) = d(y, x) = 0 implies x = y. The pair
X, d is then called a quasi-metric space.
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The space of formal balls B(X, d) of a quasi-metric space X, d is probably
the single most important artifact that has to be considered in the study of
quasi-metric spaces [12, 2]. This has a very simple definition: a formal ball is
syntax for an actual ball, namely a pair (x, r) where x ∈ X (the center) and
r ∈ R+ (the radius). B(X, d) can itself be equipped with a quasi-metric d+,
with an ordering ≤d+ , and with various topologies. Our objective is to show
that this construction defines monads on natural categories of quasi-metric
spaces, and to characterize their algebras.

As an application, we investigate Lipschitz regular quasi-metric spaces,
which are spaces such that the assignment U 7→ Û , where U ranges over
d-Scott-open subsets of X, and Û is the largest Scott-open subset of B(X, d)

such that Û ∩X = U , is itself Scott-continuous. This is a desirable property
in some situations. That property is satisfied, for example, by standard
algebraic quasi-metric spaces with relatively compact balls, as we shall argue,
in particular by metric spaces whose closed balls are compact. Our study of
formal ball monads will allow us to show that every space of formal balls is
Lipschitz regular, although it fails to have relatively compact balls in general.

This work is one of several bricks needed in a study of quasi-metrics on
spaces of continous valuations (a notion close to measures) and non-linear
extensions of the latter, which should appear in a series of papers1.

Outline. We present some preliminaries in Section 2, stressing the peculiari-
ties of quasi-metric spaces, and notably of the so-called d-Scott topology. We
show that the formal ball construction induces monads, first on the category
of quasi-metric spaces and 1-Lipschitz maps, then in the subtler case of stan-
dard quasi-metric spaces and 1-Lipschitz continuous maps. (Not all Lipschitz
maps are continuous with respect to the d-Scott topology, contrarily to what
happens with the open ball topology.) This occupies Section 3. Section 4
gives the promised application to Lipschitz regular spaces. The name comes
from the fact that those are the spaces in which the function that maps each
lower semicontinuous map f : X → R+ to the largest α-Lipschitz continuous
map below it is itself Scott-continuous, as we show in Section 5.

1An unpublished version of that work is available on arXiv [6]. The present paper
covers Sections 3, 4, and part of Section 6.1 there.
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2. Preliminaries

General topology. We refer the reader to [5] for basic notions and theorems
of topology, domain theory, and in the theory of quasi-metric spaces. The
book [4] is the standard reference on domain theory, and I will assume known
the notions of directed complete posets (dcpo), Scott-continuous functions,
the way-below relation �, and so on. We write ↑↑x for the set of points y
such that x � y. The Scott topology on a poset consists of the Scott-open
subsets, the upwards-closed subsets U such that every directed family that
has a supremum in U must intersect U . A Scott-continous map between
posets is one that is monotonic and preserves existing directed suprema, and
this is equivalent to requiring that it is continuous for the underlying Scott
topologies.

The topic of the present paper is on quasi-metric spaces. Chapters 6
and 7 of [5] are a recommended read on that subject. The paper [7] gives
additional information on quasi-metric spaces, which we shall also rely on.

As far as topology is concerned, compactness does not imply separation.
In other words, we call a subset K of a topological space compact if and
only if every open cover of K contains a finite subcover. This property is
sometimes called quasicompactness.

We shall always write ≤ for the specialization preordering of a topological
space: x ≤ y if and only if every open neighborhood of x is also an open
neighborhood of y, if and only if x is in the closure of y. As a result, the
closure of a single point y is also its downward closure ↓y. In general, we
write ↓A for the downward closure of any set A, ↑A for its upward closure,
and ↑x = ↑{x}.

Quasi-metric spaces. Given a quasi-metric space X, d, the open ball Bd
x,<r

with center x ∈ X and radius r ∈ R+ is {y ∈ X | d(x, y) < r}. The open
ball topology is the coarsest containing all open balls, and is the standard
topology on metric spaces.

In the realm of quasi-metric spaces, the d-Scott topology is the topology
we shall always consider, unless specified otherwise. This is defined as follows.
Formal balls are ordered by (x, r) ≤d+ (y, s) iff d(x, y) ≤ r − s, and form a
poset B(X, d). (Note that (x, r) ≤d+ (y, s) implies r ≥ s.) We equip B(X, d)
with its Scott topology. There is an injective map x 7→ (x, 0) from X to
B(X, d), and the d-Scott topology is the coarsest that makes it continuous.
This allows us to see X as a topological subspace of B(X, d).
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The notation ≤d+ comes from the fact that it is the specialization ordering
of B(X, d), d+, where the quasi-metric d+ is defined by d+((x, r), (y, s)) =
max(d(x, y)− r + s, 0).

The d-Scott topology coincides with the open ball topology when d is a
metric [5, Proposition 7.4.46], or when X, d is Smyth-complete [5, Proposi-
tion 7.4.47]. It coincides with the generalized Scott topology of [1] when X, d
is an algebraic Yoneda-complete quasi-metric space [5, Exercise 7.4.69].

We shall define all notions when they are required. For now, let us make
clear what we understand by a Yoneda-complete quasi-metric space, and let
us leave algebraicity for later. We will not need Smyth-completeness, and
will therefore simply say “complete” instead of “Yoneda-complete”. Com-
pleteness will mean the usual notion in the case of metric spaces.

A net in a space X is a family (xi)i∈I,v of elements of X indexed by a set
I, preordered by v in such a way that I is directed. If X is itself preordered,
then this net is monotone if and only if for all i, j ∈ I, i v j implies xi ≤ xj.
Monotone nets and directed families are essentially the same thing, since
every monotone net is a directed family, and every directed family (xi)i∈I
can be seen as a monotone net by defining i v j if and only if xi ≤ xj.

Recall from Section 7.2.1 of [5] that a Cauchy-weighted net (xi, ri)i∈I,v
is a monotone net of formal balls on X, d such that infi∈I ri = 0. The
underlying net (xi)i∈I,v is then called Cauchy-weightable. A point x ∈ X
is a d-limit of the latter net if and only if, for every y ∈ X, d(x, y) =
lim supi∈I,v d(xi, y). This is equivalent to: for every y ∈ X, d(x, y) is the
supremum of the monotone net (d(xi, y)− ri)i∈I,v [5, Lemma 7.4.9], a formula
which we shall prefer for its simplicity. The d-limit is unique if it exists.

X, d is complete if and only if every Cauchy-weightable net has a d-limit.
(Or: if and only if every Cauchy net has a d-limit; but Cauchy-weighted nets
will be easier to work with.) This is also equivalent to requiring that B(X, d)
is a dcpo, and in that case, the least upper bound (x, r) of (xi, ri)i∈I,v is
given by r = infi∈I ri and x is the d-limit of (xi)i∈I,v. This is the Kostanek-
Waszkiewicz Theorem [10], see also [5, Theorem 7.4.27].

Example 2.1. R+ comes with a natural quasi-metric dR, defined by dR(x, y) =
0 if x ≤ y, dR(+∞, y) = +∞ if y 6= +∞, dR(x, y) = x− y if x > y and x 6=
+∞. Then ≤d+R is the usual ordering ≤. We check that the Scott topology on
R+ coincides with the dR-Scott topology. To this end, observe that B(R+, dR)
is order-isomorphic to C = {(a, b) ∈ (R ∪ {+∞})×] − ∞, 0] | a − b ≥ 0}
through the map (x, r) 7→ (x − r,−r). Since C is a Scott-closed subset of a
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continuous dcpo, it is itself a continuous dcpo. A base of the Scott topology
on C is given by open subsets of the form ↑↑(a, b) = {(c, d) | a < c, b < d},
hence a base of the Scott topology on B(R+, dR) is given by sets of the form
{(x, r) ∈ B(R+, dR) | a < x− r, b < −r}, (a, b) ∈ C. The intersections of the
latter with R+ are intervals of the form R+∩]a,+∞], a ∈ R∪ {+∞}. Those
are exactly the Scott open subsets of R+.

Example 2.2. Any poset X,≤ gives rise to a quasi-metric space in a canon-
ical way, by defining d≤(x, y) as 0 if x ≤ y, +∞ otherwise. The d≤-Scott
topology is exactly the Scott topology on X [7, Example 1.8].

To avoid certain pathologies, we shall concentrate on standard quasi-
metric spaces [7, Section 2]. X, d is standard if and only if, for every directed
family of formal balls (xi, ri)i∈I , for every s ∈ R+, (xi, ri)i∈I has a supremum
in B(X, d) if and only if (xi, ri + s)i∈I has a supremum in B(X, d). Writing
the supremum of the former as (x, r), we then have that r = infi∈I ri, and
that the supremum of the latter is (x, r+ s)—this holds not only for s ∈ R+,
but for every s ≥ −r. In particular, the radius map (x, r) 7→ r is Scott-
continuous from B(X, d) to Rop

+ (R+ with the opposite ordering ≥), and for
every s ∈ R+, the map + s : (x, r) 7→ (x, r + s) is Scott-continuous from
B(X, d) to itself [7, Proposition 2.4].

Most quasi-metric spaces—not all—are standard: all metric spaces, all
complete quasi-metric spaces, all posets are standard [7, Proposition 2.2].
R+, dR is standard, being complete.

Given a map f from a quasi-metric space X, d to a quasi-metric space
Y, ∂, we say that f is α-Lipschitz if and only if ∂(f(x), f(y)) ≤ αd(x, y) for
all x, y ∈ X. (When α = 0 and d(x, y) = +∞, we take the convention that
0.+∞ = +∞.)

For every α ∈ R+, and every map f : X, d→ Y, ∂, let Bα(f) map (x, r) ∈
B(X, d) to (f(x), αr) ∈ B(Y, ∂). Then f is α-Lipschitz if and only if Bα(f)
is monotonic.

With the open ball topology, every Lipschitz map is continuous, but no
longer so if we consider d-Scott topologies instead. There is a notion of
Lipschitz Yoneda-continuous map, characterized as preserving so-called d-
limits. When both X, d and Y, ∂ are standard, f is α-Lipschitz Yoneda-
continuous if and only if Bα(f) is Scott-continuous [7, Lemma 6.3]. We take
the latter as our definition:
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Definition 2.3 (α-Lipschitz continuous). A map f : X, d→ Y, ∂ between
quasi-metric spaces is α-Lipschitz continuous if and only if Bα(f) is Scott-
continuous.

The phrase “α-Lipschitz continuous” should not be read as “α-Lipschitz and
continuous”, rather as another notion of continuity. The two notions are
actually equivalent in the case of standard quasi-metric spaces, as we show
in Proposition 2.5 below. The proof is similar to Proposition 7.4.52 of [5],
which states a similar result for complete quasi-metric spaces, and relies on
the following lemma, similar to Lemma 7.4.48 of ibid.

Lemma 2.4. Let X, d be a standard quasi-metric space. Every open hole
T dx,>ε, defined as {y ∈ X | d(y, x) > ε}, where ε ∈ R+, is open in the d-Scott

topology: it is the intersection of the Scott-open set T d
+

(x,0),>ε with X.

Proof. Let V be the open hole T d
+

(x,0),>ε. This is the set of formal balls (y, s)

such that d(y, x) > s + ε. We claim that V is upwards-closed: for every
(y, s) ∈ V and every (z, t) such that (y, s) ≤d+ (z, t), we have d(y, x) > s+ ε
and d(y, z) ≤ s− t; by the triangular inequality d(y, x) ≤ d(y, z) + d(z, x) ≤
s− t+ d(z, x), so d(z, x) > t+ ε, showing that (z, t) is in V .

Next we claim that V is Scott-open. Let (yi, si)i∈I be a directed family
of formal balls that has a supremum (y, s) in V . Since X, d is standard,
(y, s+2ε) is the supremum of the directed family (yi, si + 2ε)i∈I . If no (yi, si)

were in V , then we would have d(yi, x) ≤ si+ε, i.e., (yi, si+2ε) ≤d+ (x, ε) for
every i ∈ I. Since (y, s+ 2ε) is the least upper bound, (y, s+ 2ε) ≤d+ (x, ε),
so d(y, x) ≤ s+ ε, contradicting (y, s) ∈ V . Therefore (yi, si) is in V for some
i ∈ V , showing that V is Scott-open.

Finally, V ∩X consists of those points y such that d(y, x) > 0 + ε, hence
is equal to T dx,>ε, whence the claim. 2

Proposition 2.5. Let X, d and Y, ∂ be two quasi-metric spaces, α > 0, and
f be a map from X to Y . Consider the following claims:

1. f is α-Lipschitz continuous in the sense of Definition 2.3;

2. f is α-Lipschitz and continuous, from X with its d-Scott topology to Y
with its ∂-Scott topology.

Then (1) implies (2), and (2) implies (1) provided that X, d and Y, ∂ are
standard.
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Proof. (1)⇒ (2). Assume f is α-Lipschitz continuous. Let V be a ∂-Scott
open subset of Y . By definition, and equating Y with a subspace of B(Y, ∂),
V is the intersection of some Scott-open subset V of B(Y, ∂) with Y . Since
Bα(f) is Scott-continuous, U = B1(f)−1(V) is Scott-open in B(X, d). Look
at U = U ∩ X, a d-Scott open subset of X. We note that x ∈ U if and
only if (x, 0) ∈ U if and only if B1(f)(x, 0) = (f(x), 0) is in V , if and only if
f(x) ∈ V , so that U = f−1(V ). Hence f is continuous.

(2)⇒ (1), assuming X, d and Y, ∂ standard. Assume f is α-Lipschitz and
continuous. Since f is α-Lipschitz, Bα(f) is monotonic. In order to show
that it is Scott-continuous, consider an arbitrary directed family (xi, ri)i∈I in
B(X, d), with a supremum (x, r). We see that family as a monotone net, and
let i v j if and only if (xi, ri) ≤d

+
(xj, rj). Since X, d is standard, r = infi∈I ri

and (x, 0) is the supremum of the directed family (xi, ri − r)i∈I .
Bα(f)(x, r) = (f(x), αr) is an upper bound of (f(xi), αri)i∈I by mono-

tonicity. Assume that it is not least. Then there is a formal ball (y, s) such
that (f(xi), αri) ≤∂

+
(y, s) for every i ∈ I, i.e., ∂(f(xi), y) ≤ αri−s for every

i ∈ I, and such that (f(x), αr) is not below (y, s), i.e., ∂(f(x), y) > αr − s.
Let us note that αr − s ≥ 0: for every i ∈ I, since (f(xi), αri) ≤∂

+
(y, s)

we have αri ≥ s, so αr = infi∈I αri ≥ s. Pick a real number η such that
∂(f(x), y) > η > αr − s. In particular, η > 0, and f(x) is in the open
hole T ∂y>η, which is ∂-Scott open by Lemma 2.4. Since f is continuous,
U = f−1(T ∂y>η) is d-Scott open, and contains x by definition. Let U be a
Scott-open subset of B(X, d) whose intersection with X is equal to U . Since
(x, 0) ∈ U , (xi, ri − r) is in U for all i large enough; in other words, there is
an i0 ∈ I such that (xi, ri − r) ∈ U for all i ∈ I such that i0 v i. Since U is
upwards-closed, (xi, 0) is in U , so xi is in U , which implies that f(xi) is in
T ∂y>η, for every i w i0. The latter expands to ∂(f(xi), y) > η for every i w i0.
However, ∂(f(xi), y) ≤ αri − s for every i ∈ I, and since r = infi∈I ri is also
equal to infi∈I,i0vi ri (by directedness of I and the fact that i v j implies
ri ≥ rj), we obtain that αr − s ≥ η. This is impossible since η > αr − s. 2

The latter has the following nice consequence, which we mention in pass-
ing.

Lemma 2.6. Let X, d be a standard quasi-metric space. For every point
x′ ∈ X, the function d( , x′) : x 7→ d(x, x′) is 1-Lipschitz continuous from
X, d to R+, dR.

Proof. It is 1-Lipschitz because of the triangular inequality. Relying on
Proposition 2.5, and since R+, dR is standard, we only need to check that

7



d( , x′) is continuous. By Example 2.1, the dR-Scott topology is the Scott
topology on R+, hence it suffices to show that the inverse image of the Scott
open ]ε,+∞] by d( , x′) is d-Scott open. That inverse image is the open hole
T dx′,>ε, and we conclude by Lemma 2.4. 2

Of particular interest are the Lipschitz continuous functions from X, d
to R+, dR. Recall that f : X, d → R+, dR is α-Lipschitz continuous if and
only if Bα(f) is Scott-continuous. B(R+, dR) is order-isomorphic with the
Scott-closed set C = {(a, b) ∈ (R ∪ {+∞}) × (−∞, 0] | a − b ≥ 0}, through
the map (x, r) 7→ (x − r,−r): see Example 2.1. Every order isomorphism
is Scott-continuous. Therefore f is α-Lipschitz continuous if and only if the

composition X
Bα(f)// B(X, d)

∼= // C is Scott-continuous. That composition

is (x, r) 7→ (f ′(x, r),−αr), where f ′ is defined by f ′(x, r) = f(x) − αr. The
map (x, r) 7→ −αr is Scott-continuous when X, d is standard. Hence we
obtain the second part of the following result. The first part is obvious.

Lemma 2.7. Let X, d be a standard quasi-metric space, α > 0, and let
f be a map from X to R+. Let f ′ : B(X, d) → R ∪ {+∞} be defined by
f ′(x, r) = f(x)− αr. Then:

1. f is α-Lipschitz if and only if f ′ is monotonic;

2. f is α-Lipschitz continuous if and only if f ′ is Scott-continuous. 2

Lemma 2.7 is Lemma 6.4 of [7], where Lipschitz Yoneda-continuous maps are
used instead of Lipschitz continuous maps. The two notions are equivalent
on standard quasi-metric spaces, as we have noticed before Definition 2.3.

The Lipschitz continuous functions to R+, dR are closed under several
constructions, which we recapitulate here.

Proposition 2.8. Let X, d be a standard quasi-metric space, α, β ∈ R+, and
f , g be maps from X, d to R+, dR.

1. If f is β-Lipschitz continuous, then αf is αβ-Lipschitz continuous;

2. If f is α-Lipschitz continuous and g is β-Lipschitz continuous then f+g
is (α + β)-Lipschitz continuous;

3. If f , g are α-Lipschitz continuous, then so are min(f, g) and max(f, g);

4. If (fi)i∈I is any family of α-Lipschitz continuous maps, then the point-
wise supremum supi∈I fi is also α-Lipschitz continuous.
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5. If α ≤ β and f is α-Lipschitz continuous then f is β-Lipschitz contin-
uous.

6. Every constant map is α-Lipschitz continuous.

Proof. (1–5) were proved in [7, Proposition 6.7 (2)], and are easy conse-
quences of Lemma 2.7 (2). For (6), using the same lemma, we observe that
for each constant a, the map (x, r) 7→ a− αr is Scott-continuous, because in
a standard space, the radius map is Scott-continuous from B(X, d) to Rop

+ .
2

We shall also need the following result, which is obvious considering our
definition of Lipschitz continuity.

Lemma 2.9. Let X, d and Y, ∂ and Z, d be three quasi-metric spaces. For
every α-Lipschitz continuous map f : X, d→ Y, ∂ and every β-Lipschitz con-
tinuous map g : Y, ∂ → Z, d, g ◦ f is αβ-Lipschitz continuous.

Proof. Bαβ(g◦f) maps (x, r) to (g(f(x)), αβr) = Bβ(g)(f(x), αr) = Bβ(g)
(Bα(f)(x, r)). Since Bα(f) and Bβ(g) are Scott-continuous by assumption,
so is their composition Bαβ(g ◦ f). 2

3. Formal Ball Monads

A monad on a category is the data of an endofunctor T , two natural
transformations η : id → T and µ : T 2 → T satisfying: µX ◦ ηTX = idTX ,
µX ◦ TηX = idTX , and µX ◦ µTX = µX ◦ T (µX).

We now examine the space B(X, d), with its quasi-metric d+((x, r), (y, s)) =
max(d(x, y) − r + s, 0), and show that that construction yields a monad on
two categories of quasi-metric spaces: first, with 1-Lipschitz maps as mor-
phisms, second with 1-Lipschitz continuous maps as morphisms. The latter
case is more involved than the former.

In each case, we define the endofunctor B as mapping the object X, d to
B(X, d), d+ and every 1-Lipschitz map f : X, d→ Y, ∂ to B1(f). The unit ηX
will be the embedding x 7→ (x, 0), and multiplication µX will map ((x, r), s)
to (x, r + s).
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3.1. In the category of quasi-metric spaces and 1-Lipschitz maps

Lemma 3.1. Let X, d be a quasi-metric space. The following relations hold:

1. µX ◦ ηB(X,d) = idB(X,d);

2. µX ◦B1(ηX) = idB(X,d);

3. µX ◦ µB(X,d) = µX ◦B1(µX);

4. ηB(X,d) ◦ µX ≥ idB(B(X,d),d+).

Proof. (1) µX(ηB(X,d)(x, r)) = µX((x, r), 0) = (x, r + 0) = (x, r).
(2) µX(B1(ηX)(x, r)) = µX(ηX(x), r) = µX((x, 0), r) = (x, 0 + r) = (x, r).
(3) µX(µB(X,d)(((x, r), s), t)) = µX((x, r), s + t) = (x, r + s + t), while

µX(B1(µX)(((x, r), s), t)) = µX(µX((x, r), s), t) = µX((x, r + s), t) = (x, r +
s+ t).

(4) ηB(X,d)(µX((x, r), s)) = ηB(X,d)(x, r + s) = ((x, r + s), 0). We must
check that this is larger than or equal to ((x, r), s), namely that d+((x, r), (x, r+
s)) ≤ s− 0. Since d+((x, r), (x, r+ s)) = max(d(x, x)− r+ r+ s, 0) = s, this
is clear. 2

Theorem 3.2. The triple (B, η, µ) is a monad on the category of quasi-
metric spaces and 1-Lipschitz maps.

Proof. For every 1-Lipschitz map f , B1(f) is not just monotonic, but also
1-Lipschitz. Indeed, ∂+(B1(f)(x, r),B1(f)(x′, r′)) = ∂+((f(x), r), (f(x′), r′)) =
max(∂(f(x), f(x′))−r+r′, 0) ≤ max(d(x, x′)−r+r′, 0) = d+((x, r), (x′, r′)).
Hence B defines an endofunctor.

The unit η is 1-Lipschitz, since d+((x, 0), (y, 0)) = d(x, y). The multipli-
cation is 1-Lipschitz, too, since d+((x, r+ s), (y, r′+ s′)) = max(d(x, y)− r+
r′− s+ s′, 0), while d++(((x, r), s), ((y, r′), s′)) = max(d+((x, r), (y, r′))− s+
s′, 0) = max(d(x, y) − r + r′ − s + s′,−s + s′, 0), which is at least as large.
The monad equations are from Lemma 3.1. 2

A left KZ-monad [3, Definition 4.1.2, Lemma 4.1.1] (short for Kock-
Zöberlein monad) is a monad (T, η, µ) on a poset-enriched category such
that T is monotonic on homsets, and either one of the following equivalent
conditions hold:

1. TηX ≤ ηTX for every object X;
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2. a morphism α : TX → X is the structure map of a T -algebra if and
only if α ◦ ηX = idX and idTX ≤ ηX ◦ α;

3. µX a ηTX for every object X;

4. TηX a µX for every object X.

The notion stems from work by A. Kock on doctrines in 2-categories [9],
and the above equivalence is due to Kock, in the more general case of 2-
categories. The notation f a g means that the two morphisms f and g are
adjoint, namely, f ◦ g ≤ id and id ≤ g ◦ f . A T -algebra is an object X
together with a morphism α : TX → X, called its structure map, such that
α ◦ ηX = idX and α ◦µX = α ◦ Tα. TX is always a T -algebra with structure
map µX , called the free T -algebra on X.

The category of standard quasi-metric spaces and 1-Lipschitz maps is
poset-enriched. Each homset is ordered by: for f, g : X, d→ Y, ∂, f ≤ g if and
only if for every x ∈ X, f(x) ≤∂ g(y). If f ≤ g, then B1(f) ≤ B1(g), since for
every (x, r) ∈ B(X, d), B1(f)(x, r) = (f(x), r) ≤∂+ (g(x), r) = B1(g)(x, r).

Condition (3) of a left KZ-monad reads: µX ◦ ηTX ≤ idTX and idX ≤
ηTX ◦ µX . For T = B, those follow from Lemma 3.1 (1) and (4). Hence:

Proposition 3.3. The triple (B, η, µ) is a left KZ-monad on the category of
quasi-metric spaces and 1-Lipschitz maps. 2

Kock’s theorem between the equivalence of the four conditions defining
KZ-monads yields the following immediately. The closed ball Bd

x,≤r is the set
of points y such that d(x, y) ≤ r. Despite the name, that is in general not
closed, whether in the open ball topology or in the d-Scott topology, unless
d is a metric. Indeed, closed balls are upwards-closed, while closed sets must
be downwards-closed.

Proposition 3.4. Let X, d be a quasi-metric space, and α : B(X, d), d+ →
X, d be a 1-Lipschitz map. The following are equivalent:

1. α is the structure map of a B-algebra;

2. for every x ∈ X, α(x, 0) = x and for all r, s ∈ R+, α(x, r + s) =
α(α(x, r), s);

3. for every x ∈ X, and every r ∈ R+, α(x, r) is a point in the closed ball
Bd
x,≤r, which is equal to x if r = 0;
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4. for every x ∈ X, α(x, 0) = x.

Proof. The equivalence between (1) and (2) is the definition of an algebra of
a monad. Look at the second equivalent condition defining left KZ-monads,
applied to the left KZ-monad B (Proposition 3.3). This implies that (1)
is equivalent to α ◦ ηX = idX (i.e., α(x, 0) = x for every x ∈ X), and to
idX ≤ ηX ◦ α; the latter means that for every x ∈ X and every r ∈ R+,
(x, r) ≤d+ ηX(α(x, r)), equivalently, d(x, α(x, r)) ≤ r, i.e., α(x, r) ∈ Bd

x,≤r.
Finally, clearly (3) implies (4). In the converse direction, note that since α
is 1-Lipschitz, d(α(x, 0), α(x, r)) ≤ d+((x, 0), (x, r)) = r. Since α(x, 0) = x,
this implies that α(x, r) is in Bd

x,≤r. 2

Remark 3.5. It is natural to ask whether (B, η, µ) is a strong monad, namely
whether it has a so-called tensorial strength [8, 11]. (We will not define the
concept, and will refer the reader to the latter papers for details.) That is not
the case. By [11, Proposition 3.4], the tensorial strength is uniquely deter-
mined if the ambient category has finite products and has enough points. The
product of quasi-metric spaces X, d and Y, ∂ is understood with the product
quasi-metric (d × ∂)((x, y), (x′, y′)) = max(d(x, x′), ∂(y, y′)). Hence, if the
tensorial strength exists, it must be given by the formula tX,Y : (x, (y, r)) ∈
X × B(Y, ∂) 7→ ((x, y), r) ∈ (X × Y, d × ∂). However, that map is not
1-Lipschitz. We compute:

(d× ∂)+(((x, y), r), ((x′, y′), r′)) = max(d(x, x′)− r + r′, ∂(y, y′)− r + r′, 0)

(d× ∂+)((x, (y, r)), (x′, (y′, r′))) = max(d(x, x′), ∂(y, y′)− r + r′, 0).

The former is not less than or equal to the latter in general: e.g., take X =
Y = R+, d = ∂ = dR, r = 0, r′ = 1, x = 1, x′ = y = y′ = 0.

3.2. In the category of standard quasi-metric spaces and 1-Lipschitz contin-
uous maps

We now turn to the more difficult case of categories of quasi-metric spaces
with 1-Lipschitz continuous maps as morphisms.

The following is the first part of Exercise 7.4.54 of [5]. It might seem a
mistake that this does not require X, d to be standard: to dispel any doubt,
we give a complete proof.

Lemma 3.6. Let X, d be a quasi-metric space. The map µX : ((x, r), s) ∈
B(B(X, d), d+) 7→ (x, r + s) ∈ B(X, d) is Scott-continuous.
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Proof. The map µX is monotonic: if ((x, r), s) ≤d++
((x′, r′), s′), then

d+((x, r), (x′, r′)) ≤ s − s′, meaning that max(d(x, x′) − r + r′, 0) ≤ s − s′,
and this implies d(x, x′) ≤ r − r′ + s− s′, hence (x, r + s) ≤d+ (x′, r′ + s′).

We claim that µX is Scott-continuous. Consider a directed family of for-
mal balls ((xi, ri), si)i∈I in B(B(X, d), d+) with a supremum ((x, r), s). We
must show that (x, r+s) is the supremum of the directed family (xi, ri + si)i∈I .
It is certainly an upper bound, since µX is monotonic. Let (y, t) be another
upper bound of (xi, ri + si)i∈I . Let a = max(t− s, 0), b = t− a = min(s, t).

We claim that ((y, a), b) is an upper bound of ((xi, ri), si)i∈I . For every

i ∈ I, by assumption (xi, ri + si) ≤d
+

(y, t), so d(xi, y) ≤ ri + si− t. We must
check that d+((xi, ri), (y, a)) ≤ si− b, namely that max(d(xi, y)− ri+a, 0) ≤
si − b, and this decomposes into d(xi, y) ≤ ri − a + si − b and si ≥ b. The
latter is proved as follows: since b = min(s, t), b ≤ s, and since ((x, r), s)
is an upper bound of ((xi, ri), si)i∈I , s ≤ si for every i ∈ I. The former
condition is equivalent to d(xi, y) ≤ ri + si − t, since a + b = t, and this is
our assumption.

Since ((x, r), s) is the least upper bound of ((xi, ri), si)i∈I , ((x, r), s) ≤d++

((y, a), b), so max(d(x, y)− r+ a, 0) ≤ s− b. In particular, d(x, y) ≤ r+ s−
a − b = r + s − t, so (x, r + s) ≤d+ (y, t). This shows that (x, r + s) is the
least upper bound of (xi, ri + si)i∈I , hence that µX is Scott-continuous. 2

Lemma 3.7. For every quasi-metric space X, d:

1. the map ηB(X,d) : (x, r) 7→ ((x, r), 0) is Scott-continuous;

2. the d+-Scott topology on B(X, d) coincides with the Scott topology.

Proof. (1) This is [5, Exercise 7.4.53]. Monotonicity is clear: if (x, r) ≤d+

(y, s), then d(x, y) ≤ r− s, so d+((x, r), (y, s)) = max(d(x, y)− r+ s, 0) = 0.
For every directed family (xi, ri)i∈I in B(X, d), with supremum (x, r), by
monotonicity ((x, r), 0) is an upper bound of ((xi, ri), 0)i∈I . Consider another

upper bound ((y, s), t). For every i ∈ I, ((xi, ri), 0) ≤d++
((y, s), t), namely

d+((xi, ri), (y, s)) ≤ 0 − t. That implies t = 0, and d(xi, y) − ri + s ≤ 0.
The latter means that (xi, ri) ≤d

+
(y, s), and as this holds for every i ∈ I,

(x, r) ≤d+ (y, s). Therefore d+((x, r), (y, s)) = max(d(x, y) − r + s, 0) = 0,
showing that ((x, r), 0) ≤ ((y, s), 0) = ((y, s), t).

(2) This is [5, Exercise 7.4.54]. Using (1), every d+-Scott open subset
V of B(X, d) is Scott-open: by definition, V = η−1B(X,d)(V) for some Scott-

open subset V of B(B(X, d), d+), and since ηB(X,d) is Scott-continuous, V is
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Scott-open. To show the converse implication, we observe that µX ◦ ηB(X,d)

is the identity map, by Lemma 3.1 (ii). Then for every Scott-open subset V
of B(X, d), V is equal to (µX ◦ ηB(X,d))

−1(V ), hence to η−1B(X,d)(V) where V is

the subset µ−1X (V ), which is Scott-open by Lemma 3.6. This exhibits V as a
d+-Scott open subset of B(X, d). 2

Lemma 3.8. Let X, d be a standard quasi-metric space. The map ηX : x 7→
(x, 0) is 1-Lipschitz continuous from X, d to B(X, d), d+.

Proof. It is 1-Lipschitz, because d+((x, 0), (y, 0)) = d(x, y). It is continuous
from X with the d-Scott topology to B(X, d) with the Scott topology by defi-
nition, and the latter coincides with the d+-Scott topology by Lemma 3.7 (2).
Now apply Proposition 2.5. 2

The first three statements of Lemma 3.1 seem to indicate that T = B
gives rise to a monad, where the functor B maps every quasi-metric space
X, d to the quasi-metric space B(X, d), d+, and every 1-Lipschitz continuous
map f : X, d→ Y, ∂ to B1(f) : (x, r) 7→ (f(x), r).

The devil hides in details, one says. We must work in a category of
standard, not arbitrary quasi-metric spaces, for ηX to be a morphism (see
Lemma 3.8). As a consequence, we must show that B maps standard spaces
to standard spaces. This is done in several steps.

Lemma 3.9. Let X, d be a standard quasi-metric space, and let (xi, ri)i∈I,v
be a monotone net of formal balls on X, d with supremum (x, r). Then r =
infi∈I ri and x is the d-limit of (xi)i∈I,v.

Proof. This is similar to the proof of [5, Lemma 7.4.26], which assumes
that B(X, d) is a dcpo, whereas we only assume that X, d is standard.

SinceX, d is standard, r = infi∈I ri. Since (xi, ri) ≤d
+

(x, r) for each i ∈ I,
d(xi, x) ≤ ri−r. For every y ∈ X, d(xi, y) ≤ d(xi, x)+d(x, y) ≤ ri−r+d(x, y).
Taking suprema over i ∈ I, supi∈I(d(xi, y) − ri + r) ≤ d(x, y). Note that
(xi, ri − r)i∈I,v is a Cauchy-weighted net, so it only remains to show that the
latter inequality is an equality.

Assume that the inequality were strict. Let s = supi∈I(d(xi, y)−ri+r) <
d(x, y). In particular, s < +∞. Note also that s ≥ 0, because −ri + r is
arbitrarily close to 0. For every i ∈ I, d(xi, y) − ri + r ≤ s, so d(xi, y) ≤
ri − r + s, i.e., (xi, ri − r + s) ≤d+ (y, 0) (and ri − r + s ≥ 0, so that
(xi, ri−r+s) is a well-defined formal ball). Since X, d is standard, and (x, r)
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is the supremum of (xi, ri)i∈I , (x, s) is the supremum of (xi, ri − r + s)i∈I .

By the definition of s, (xi, ri − r + s) ≤d+ (y, 0) for every i ∈ I. It follows
that (x, s) ≤d+ (y, 0), that is, d(x, y) ≤ s, which is impossible. 2

This has the following interesting consequence (which we shall not use,
however). Standardness says that if (xi, ri)i∈I,v and (xi, si)i∈I,v are two
monotone nets of formal balls with the same underlying net (xi)i∈I,v, then
one of them has a supremum if and only if the other one has, provided that ri
and si differ by a constant. In that case, those suprema are of the form (x, r)
and (x, s) for the same point x (and where r and s differ by the same con-
stant). The following proposition shows that this holds without any condition
on ri and si.

That might be used to (re)define the notion of d-limit x of a net (xi)i∈I,v,
as the center of the supremum of (xi, ri)i∈I,v, for some family of radii ri that
make (xi, ri)i∈I,v a monotone net of formal balls. The following proposition
shows that that definition is independent of the chosen radii ri, assuming
just standardness.

Proposition 3.10. Let X, d be a standard quasi-metric space. Let (xi, ri)i∈I,v
and (xi, si)i∈I,v be two monotone nets of formal balls with the same underly-
ing net (xi)i∈I,v. If (xi, ri)i∈I,v has a supremum (x, r), then r = infi∈I ri and
(xi, si)i∈I,v also has a supremum, which is equal to (x, s), where s = infi∈I si.

Proof. If (xi, ri)i∈I,v has a supremum (x, r), then r = infi∈I ri because X, d
is standard. By Lemma 3.9, x is the d-limit of (xi)i∈I,v. Lemma 7.4.25 of [5]
states that if (xi, si)i∈I,v is a monotone net of formal balls and if (xi)i∈I,v has
a d-limit x, then (x, s) is the supremum of (xi, si)i∈I,v, where s = infi∈I si.
2

Proposition 3.11. For every standard quasi-metric space X, d, B(X, d), d+

is standard.

Proof. Let ((xi, ri), si)i∈I be a directed family of formal balls on B(X, d), d+.
This is a monotone net, provided we define v by i v j if and only if
((xi, ri), si) ≤d

++
((xj, rj), sj).

Assume that ((xi, ri), si)i∈I has a supremum ((x, r), s). Since µX is Scott-
continuous (Lemma 3.6), (xi, ri + si)i∈I is a directed family with supremum
(x, r + s). We use the fact that X, d is standard and apply Lemma 3.9 to
obtain that r + s = infi∈I(ri + si) and that x is the d-limit of (xi)i∈I,v.
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Since ((xi, ri), si)i∈I is directed, (si)i∈I is filtered in R+ (i.e., directed in
Rop

+ ). Let s∞ = infi∈I si. Since µX is Scott-continuous hence monotonic,
(xi, ri + si)i∈I is also directed, so (ri + si)i∈I is filtered. Its infimum is r + s,
as we have just seen. Let r∞ = infi∈I(ri + si)− s∞ = r + s− s∞.

Consider ((x, r∞), s∞). For every i ∈ I, we claim that ((xi, ri), si) ≤d
++

((x, r∞), s∞). For that, we compute d+((xi, ri), (x, r∞)) = max(d(xi, x)−ri+
r∞, 0), and we check that this is less than or equal to si−s∞. Since si−s∞ ≥ 0
by definition of s∞, it remains to verify that d(xi, x)−ri+r∞ ≤ si−s∞. Using
the equality r∞ + s∞ = r + s, obtained as a consequence of the definition
of r∞, we have to verify the equivalent inequality d(xi, x) ≤ ri + si − r − s.
That one is obvious, since (xi, ri + si) is below the supremum (x, r + s).

Since ((xi, ri), si) ≤d
++

((x, r∞), s∞) for every i ∈ I, ((x, r), s) ≤d++

((x, r∞), s∞). However, we claim that the converse inequality also holds. In-
deed, we start by observing that s ≤ si for every i ∈ I, since ((xi, ri), si) ≤d

++

((x, r), s). Hence s ≤ s∞. Since r∞ = r + s − s∞, r∞ ≤ r. Therefore
d+((x, r∞), (x, r)) = max(d(x, x)−r∞+r, 0) = r−r∞, and the latter is equal
to, hence less than or equal to s∞ − s. This means that ((x, r∞), s∞) ≤d++

((x, r), s).
Having inequalities in both directions, we conclude that ((x, r), s) =

((x, r∞), s∞). This entails the important fact that s = s∞ = infi∈I si.
We use that to show that for any a ≥ −s, ((x, r), s+ a) is the supremum

of ((xi, ri), si + a)i∈I . Since ((xi, ri), si) ≤d
++

((x, r), s), we have ((xi, ri), si+

a) ≤d++
((x, r), s + a). Now consider any other upper bound ((x′, r′), s′) of

((xi, ri), si + a)i∈I . We have s′ ≤ si + a for every i ∈ I, whence using the

equality s = infi∈I si, s
′ ≤ s + a. We wish to check that ((x, r), s + a) ≤d++

((x′, r′), s′), equivalently d+((x, r), (x′, r′)) ≤ s+a−s′, and that reduces to s+
a−s′ ≥ 0 (which we have just shown) and d(x, x′) ≤ r+s+a−r′−s′. In order
to establish the latter, recall that (x, r+s) is the supremum of (xi, ri + si)i∈I .
Since X, d is standard (and since a ≥ −s ≥ −r − s), (x, r + s + a) is also
the supremum of (xi, ri + si + a)i∈I . Since µX is monotonic, (x′, r′ + s′) is

an upper bound of (xi, ri + si + a)i∈I , so (x, r + s + a) ≤d+ (x′, r′ + s′), or
equivalently d(x, x′) ≤ r+ s+ a− r′ − s′: that is exactly what we wanted to
prove.

Let us recap: for every directed family ((xi, ri), si)i∈I with supremum
((x, r), s), then s = infi∈I si and for every a ≥ −s, ((x, r), s + a) is the
supremum of ((xi, ri), si + a)i∈I . This certainly implies that if ((xi, ri), si)i∈I
has a supremum, then ((xi, ri), si + a)i∈I also has one for every a ∈ R+.
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Conversely, if ((xi, ri), si + a)i∈I has a supremum for some a ∈ R+, then it
is of the form ((x, r), s + a) where s = infi∈I si, and for every a′ ≥ −s − a,
((x, r), s + a + a′) is the supremum of ((xi, ri), si + a+ a′)i∈I . In particular,
for a′ = −a, ((xi, ri), si)i∈I has a supremum. 2

Lemma 3.12. Let X, d be a standard quasi-metric space. The map µX : ((x,
r), s) 7→ (x, r + s) is 1-Lipschitz continuous from B(B(X, d), d+), d++ to
B(X, d), d+.

Proof. First, µX is 1-Lipschitz as part of Theorem 3.2.
Next, µX is Scott-continuous from B(B(X, d), d+) to B(X, d) by Lemma 3.6.

The Scott topology on the the latter coincides with its d+-Scott topology,
by Lemma 3.7 (2), owing to the fact that X, d is standard. Similarly, since
B(X, d), d+ is standard (Proposition 3.11), the Scott topology on the for-
mer coincides with its d++-Scott topology. Hence µX is continuous from
B(B(X, d), d+) to B(X, d), with their d++-Scott, resp. d+-Scott topologies.

Since B(X, d), d+ and B(B(X, d), d+), d++ are standard, by Proposition 3.11,
we can apply the (2) ⇒ (1) direction of Proposition 2.5, and we obtain that
µX is 1-Lipschitz continuous. 2

Lemma 3.13. Let X, d and Y, ∂ be two standard quasi-metric spaces, and
f be an α-Lipschitz continuous map from X, d to Y, ∂, with α > 0. Then
Bα(f) is α-Lipschitz continuous from B(X, d), d+ to B(Y, ∂), ∂+.

Proof. We verify that Bα(f) is α-Lipschitz:

∂+(Bα(f)(x, r),Bα(y, s)) = ∂+((f(x), αr), (f(y), αs))

= max(∂(f(x), f(y))− αr + αs, 0)

≤ max(αd(x, y)− αr + αs, 0)

= αmax(d(x, y)− r + s, 0) = αd+((x, r), (y, s)).

By definition of α-Lipschitz continuity, Bα(f) is Scott-continuous. Since the
Scott topology on B(X, d) coincides with the d+-Scott topology, and similarly
for Y , thanks to Lemma 3.7 (2), Bα(f) is continuous with respect to the d+-
Scott and ∂+-Scott topologies. Now use that B(X, d), d+ and B(Y, ∂), ∂+ are
standard, owing to Proposition 3.11, and apply Proposition 2.5 to conclude
that Bα(f) is α-Lipschitz continuous. 2
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Theorem 3.14. The triple (B, η, µ) is a monad on the category of standard
quasi-metric spaces and 1-Lipschitz continuous maps.

Proof. We shall show the equivalent claim that (B, η, †) is a Kleisli triple,
that is: (i) B maps objects of the category (standard quasi-metric spaces) to
objects of the category; (ii) ηX is a morphism from X, d to B(X, d), d+ (a 1-
Lipschitz continuous map); (iii) for every morphism f : X, d→ B(Y, ∂), ∂+,
f † is a morphism from B(X, d), d+ to B(Y, ∂), ∂+ such that: (a) η†X =
idB(X,d); (b) f † ◦ ηX = f ; (c) f † ◦ g† = (f † ◦ g)†. For that, we define f †

as mapping (x, r) to (y, r + s), where (y, s) = f(x).
Proposition 3.11 gives us (i), and Lemma 3.8 gives us (ii). We devote the

rest of this proof to (iii).
We must start by checking that f † is a morphism for every morphism

f : X, d→ B(Y, ∂), ∂+. We have defined f †(x, r) as (y, r + s) where (y, s) =
f(x), and we notice that f † is equal to µY ◦ B1(f). This is 1-Lipschitz
continuous because µY and B1(f) both are, by Lemma 3.12 and Lemma 3.13
respectively.

The equalities (a), (b), (c) are easily checked.
Any Kleisli triple (T, η, †) gives rise to a monad (T, η,m) by letting mX =

id†X . Here mX maps ((x, r), s) to (x, r+s), hence coincides with µX , finishing
the proof. 2

The category of standard quasi-metric spaces and 1-Lipschitz continu-
ous maps is poset-enriched, as a subcategory whose objects are the stan-
dard quasi-metric spaces, and whose morphisms are merely required to be
1-Lipschitz. As for Proposition 3.3, we obtain immediately:

Proposition 3.15. The triple (B, η, µ) is a left KZ-monad on the category
of standard quasi-metric spaces and 1-Lipschitz continuous maps. 2

The following is then proved as Proposition 3.4. Alternatively, it can be
deduced from it.

Proposition 3.16. Let X, d be a standard quasi-metric space, and α : B(X,
d), d+ → X, d be a 1-Lipschitz continuous map. The following are equivalent:

1. α is the structure map of a B-algebra;

2. for every x ∈ X, α(x, 0) = x and for all r, s ∈ R+, α(x, r + s) =
α(α(x, r), s);
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3. for every x ∈ X, and every r ∈ R+, α(x, r) is a point in the closed ball
Bd
x,≤r, which is equal to x if r = 0;

4. for every x ∈ X, α(x, 0) = x. 2

4. Lipschitz Regular Spaces

Here and in the following, we work in the category of standard quasi-
metric spaces and 1-Lipschitz continuous maps.

For every open subset U of X in its d-Scott topology, there is a largest
open subset Û of B(X, d) such that Û ∩ X ⊆ U . Then Û ∩ X = U . This
was used in [7, Definition 6.10] in order to define the distance d(x, U) of any

point x to the complement U of U as sup{r ∈ R+ | (x, r) ∈ Û}.
We shall write OY for the lattice of open subsets of a topological space

Y . The mapping U 7→ Û is monotonic, and preserves arbitrary intersections,
but it does not preserve unions in general. Notably, it is not Scott-continuous
in general, as we shall see in Remark 4.8.

Definition 4.1 (Lipschitz regular). A quasi-metric space X, d is Lips-

chitz regular if and only if the map U ∈ OX 7→ Û ∈ OB(X, d) is Scott-
continuous.

The name stems from a result that we shall see later, Proposition 5.4.

Lemma 4.2. The following are equivalent for a standard quasi-metric space
X, d:

1. X, d is Lipschitz regular;

2. for every point x ∈ X, the map U ∈ OX 7→ d(x, U) is Scott-continuous.

Proof. (1)⇒ (2). The map U 7→ d(x, U) is the composition of U 7→ Û and
of the map U ∈ OB(X, d) 7→ sup{r ∈ R+ | (x, r) ∈ U}. The latter is easily
seen to be Scott-continuous, and the former is Scott-continuous by (1).

(2)⇒ (1). Let U be the union of a directed family of open subsets (Ui)i∈I .

We only have to show that every (x, r) ∈ Û is in some Ûi. By [7, Lemma 3.4],
(x, r) is the supremum of the chain of formal balls (x, r + 1/2n), n ∈ N, so

one of them is in Û . This implies that d(x, U) ≥ r + 1/2n > r. Using (2),
d(x, U i) > r for some i ∈ I, and that implies the existence of a real number

s > r such that (x, s) ∈ Ûi. Since (x, s) ≤d+ (x, r), (x, r) is also in Ûi. 2
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The following Proposition 4.4 gives a further explanation of Lipschitz
regularity, in the special case of algebraic quasi-metric spaces.

A point x in a standard quasi-metric space X, d is a center point if and
only if, for every ε > 0, the open ball Bd+

(x,0),<ε = {(y, s) ∈ B(X, d) | d(x, y) <

ε − s} is Scott-open in B(X, d). This is equivalent to requiring that x be
a finite point in X, d, a notion that has a more complicated definition [7,
Lemma 5.7].

X, d itself is called algebraic if and only if every point x is the d-limit of a
Cauchy (or even Cauchy-weightable, see Section 5, ibid.) net of center points,
or equivalently, for every x ∈ X, there is a directed family of formal balls
(xi, ri), i ∈ I, where every xi is a center point, such that supi∈I(xi, ri) = (x, 0)
(Lemma 5.15, ibid.).

Every metric space is (standard and) algebraic, since in a metric space
every point is a center point, as a consequence of results by Edalat and
Heckmann [2]. Indeed, the poset of formal balls of a metric space X, d is
continuous, and (x, r) � (y, s) if and only if d(x, y) < r − s (Proposition 7
and Corollary 10, ibid.): then Bd+

(x,0),<ε is equal to ↑↑(x, ε), hence is Scott-open.

Every standard algebraic quasi-metric space X, d is continuous [7, Propo-
sition 5.18], where a continuous quasi-metric space is a standard quasi-metric
space X, d whose space of formal balls B(X, d) is a continuous poset (Defi-
nition 3.10, ibid.) Moreover, when X, d is standard algebraic, B(X, d) has a
basis of formal balls whose centers are center points, and for a center point
x, (x, r)� (y, s) if and only if d(x, y) < r−s. This is the same relation as in
metric spaces, but beware that we only require it when x is a center point.

In general, we shall call a strong basis of a standard quasi-metric space
X, d any set B of center points of X such that, for every x ∈ X, (x, 0) is the
supremum of a directed family of formal balls with center points in B. (Given
that X, d is standard, this is equivalent to [5, Definition 7.4.66].) Hence X, d
is algebraic if and only if it has a strong basis.

Remark 4.3. In metric spaces, a strong basis is nothing else than the fa-
miliar concept of a dense subset [5, Exercise 7.4.67]. Strong bases are the
correct generalization of dense subsets in the realm of quasi-metric spaces.

Proposition 4.4. Let X, d be a standard algebraic quasi-metric space. The
following are equivalent:

1. X, d is Lipschitz regular;
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2. X, d has relatively compact balls, namely: for every center point x of
X, for all r, s ∈ R+ with s < r, every open cover of the open ball Bd

x,<r

contains a finite subcover of the closed ball Bd
x,≤s;

3. for every center point x of X, for all r, s ∈ R+ with s < r, for every
directed family of open subsets (Ui)i∈I of open subsets of X such that
Bd
x,<r ⊆

⋃
i∈I Ui, there is an i ∈ I such that Bd

x,≤s ⊆ Ui.

Proof. The equivalence of (2) and (3) is a standard exercise. In the difficult
direction, notice that any union of open sets can be written as a directed
union of finite unions.

(3) ⇒ (1). It is easy to see that U 7→ Û is monotonic. Let (Ui)i∈I be
a directed family of d-Scott open subsets of X, and U =

⋃
i∈I Ui. Pick an

arbitrary element (y, s) in Û . Our task is to show that (y, s) lies in some Ûi.
Since X, d is algebraic, (y, s) is the supremum of a directed family of

formal balls (x, r) way-below (y, s), where each x is a center point. Since Û

is Scott-open, one of them is in Û . From (x, r)� (y, s) we obtain d(x, y) <
r − s. Find a real number ε > 0 so that d(x, y) < r − s− ε.

The open ball Bd
x,<r is the intersection of ↑↑(x, r) with X, and ↑↑(x, r) is

included in Û because (x, r) is in Û and Û is upwards-closed. Hence Bd
x,<r

is included in Û ∩X = U =
⋃
i∈I Ui. By (3), Bd

x,≤r−ε is included in some Ui,
i ∈ I.

Consider Ûi ∪ ↑↑(x, r − ε). This is an open subset of B(X, d), and its

intersection with X is Ui ∪Bd
x,<r−ε = Ui. By the maximality of Ûi, Ûi = Ûi ∪

↑↑(x, r−ε), meaning that ↑↑(x, r−ε) is included in Ûi. Since d(x, y) < r−s−ε,
(x, r − ε)� (y, s). It follows that (y, s) is in Ûi.

(1) ⇒ (3). Fix a center point x, two real numbers r and s such that
0 < s < r, and assume that Bd

x,<r is included in the union U of some directed
family of open subsets Ui of X.

We claim that (x, s) must be in Û . The argument is one we have just

seen. Indeed, Û ∪ ↑↑(x, r) is an open subset of B(X, d) whose intersection

with X equals U ∪ Bd
x,<r = U . By maximality Û ∪ ↑↑(x, r) = Û . However,

since x is a center point and d(x, x) < r− s, we have (x, r)� (x, s), so (x, s)

is in Û .
By (1), (x, s) is in some Ûi, so ↑(x, s) ⊆ Ûi, hence, taking intersections

with X, Bd
x,≤s is included in Ui. 2
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Remark 4.5. As a special case, every metric case in which closed balls are
compact is Lipschitz regular. Indeed, recall that every metric space is standard
and algebraic, and compactness immediately implies the relatively compact
ball property.

Having relatively compact balls is a pretty strong requirement. Recall that
a topological space X is core-compact if and only if OX is a continuous
dcpo; equivalently, for every y ∈ X and every open neighborhood U of y,
y is in some open set V that is way-below U in OY [5, Section 5.2.1]. In
the presence of sobriety, core-compactness is equivalent to local compactness
(ibid., Theorem 8.3.10).

Lemma 4.6. Every standard algebraic quasi-metric space X, d with rela-
tively compact balls is core-compact in its d-Scott topology.

Proof. Assume y ∈ U , where U is d-Scott open in X. Since X, d is standard
algebraic, y is in some open ball Bd

x,<r included in U , where x is a center point
and r > 0. Hence d(x, y) < r, so that d(x, y) < r − ε for some ε > 0. Then
y is also in the open neighborhood Bd

x,<r−ε of x, and Bd
x,<r−ε ⊆ Bd

x,≤r−ε is
way-below Bd

x,<ε, using property (3) of Proposition 4.4. 2

Since algebraic (and even continuous) complete quasi-metric spaces are
sober in their d-Scott topology [7, Proposition 4.1], we obtain:

Corollary 4.7. Every algebraic complete quasi-metric space X, d with rela-
tively compact balls is locally compact in its d-Scott topology. 2

Another argument consists in using the definition of Lipschitz regularity di-
rectly: then OX is a retract of OB(X, d), and when B(X, d) is a continuous
poset, OB(X, d) is a completely distributive lattice, in particular a continu-
ous lattice; any retract of a continuous lattice is again continuous, so OX is
continuous, meaning that X is core-compact.

Remark 4.8. Not all standard algebraic quasi-metric spaces have relatively
compact balls. For example, Q with its usual metric is not core-compact,
hence does not have relatively compact balls. In particular, Q is not Lipschitz
regular.

Remark 4.9. Lipschitz regularity is therefore a pretty strong requirement—
in the case of standard algebraic quasi-metric spaces. On the contrary, we
shall see below that spaces of formal balls are always Lipschitz regular (The-
orem 4.13), even when not core-compact (Remark 4.14).
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The following lemma shows that the construction U 7→ Û admits a par-
ticularly simple form on B-algebras.

Lemma 4.10. Let X, d be a quasi-metric space, and assume that there is a
continuous map α : B(X, d) → X (with respect to the d+-Scott and d-Scott
topologies) such that α(x, r) ∈ Bd

x,≤r and α(x, 0) = x for all x ∈ X and
r ∈ R+. Then:

1. For every d-Scott open subset U of X, Û is equal to α−1(U);

2. X, d is Lipschitz regular.

Proof. Since α is continuous, α−1(U) is d+-Scott open in B(X, d). Its
intersection with X is equal to U , since (x, 0) ∈ α−1(U) is equivalent to

α(x, 0) ∈ U , and α(x, 0) = x. By the definition of Û as largest, α−1(U) is

included in Û . To show the converse implication, let (x, r) be an arbitrary

element of Û . Since α(x, r) is an element of Bd
x,≤r, d(x, α(x, r)) ≤ r, so

(x, r) ≤d+ (α(x, r), 0). Since Û is upwards-closed, (α(x, r), 0) is in U . It
follows that α(x, r) is in U , so that (x, r) is in α−1(U).

(2) follows from (1), since α−1 commutes with unions. 2

Remark 4.11. Lemma 4.10 in particularly applies when X, d is a (stan-
dard) B-algebra, with structure map α. Indeed, by the (1) ⇒ (2) direction of
Proposition 2.5, α is continuous, and the remaining assumptions are item (3)
of Proposition 3.16.

Remark 4.12. By Lemma 4.10 (1), the standard quasi-metric spaces that

are B-algebras are much more than Lipschitz regular: the map U 7→ Û must
preserve all unions, not just the directed unions, and all intersections.

However rare as B-algebras may appear to be, recall that (when X, d is
standard) B(X, d), d+ is itself a B-algebra, with structure map µX . Hence
the following is clear under a standardness assumption. However, this even
holds without standardness.

Theorem 4.13. For every quasi-metric space, the quasi-metric space B(X,
d), d+ is Lipschitz regular. For every d+-Scott open subset U of B(X, d),

Û = µ−1X (U).
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Proof. This is Lemma 4.10 with α = µX . This is a continuous map be-
cause it is Scott-continuous by Lemma 3.6 and because the Scott topologies
on B(X, d) and on B(B(X, d), d+) coincide with the d+-Scott topology and
with the d++-Scott topology respectively, by Lemma 3.7 (2). The other two
assumptions are Lemma 3.1, items (i) and (iv). 2

Remark 4.14. We exhibit a Lipschitz regular, standard quasi-metric space
that is not core-compact. Necessarily, that quasi-metric space cannot be al-
gebraic, by Proposition 4.4. In particular, it cannot be metric. We build
that quasi-metric space as B(X, d) for some quasi-metric space X, d, so that
Theorem 4.13 will give us Lipschitz regularity for free.

Every poset X can be turned into a quasi-metric space by letting d≤(x, y) =
0 if x ≤ y, +∞ otherwise, see Example 2.2. Then B(X, d≤) is order-
isomorphic with the poset X×]−∞, 0] [7, Example 1.6].

Consider the dcpo X = (N × N) ∪ {ω}, with the ordering defined by
(i, n) ≤ (i′, n′) iff i = i′ and n ≤ n′, and where ω is larger than any other
element. The non-empty upwards-closed subsets of X are the subsets of the
form {ω} ∪

⋃
i∈S ↑(i, ni), where S ⊆ N and for each i, ni ∈ N. Those that

are compact are exactly those such that S is finite, and those that are Scott-
open are exactly those such that S = N. In particular, note that all compact
saturated subsets have empty interior. The same happens in X×] − ∞, 0].
Indeed, assume a compact saturated subset Q of X×]−∞, 0] with non-empty
interior U . Since Q is compact, its first projection π1[Q] is compact, too, and
we see that π1[Q] is also upwards-closed, hence of the form {ω}∪

⋃
i∈S ↑(i, ni),

with S finite. Pick some j ∈ N outside of S. Since U is non-empty, it
must contain (ω, 0). However, (ω, 0) is the supremum of the chain of points
((j, n), 0), n ∈ N, so one of them is in U , hence in Q. This is impossible
since j 6∈ S. Since all compact saturated subsets of X×]−∞, 0] have empty
interior, it follows that X×]−∞, 0] is not locally compact.

Note that X is sober. Indeed, consider a non-empty closed subset C. If its
complement is empty, then C = ↓ω. Otherwise, C is the complement of an
open set {ω}∪

⋃
i∈N ↑(i, ni), hence is equal to

⋃
i∈S ↓(i, ni− 1), where S is the

set of indices i such that ni ≥ 1. S is non-empty since we have assumed C
non-empty. Pick i0 from S. Then C is included in the union of ↓(i0, ni0 − 1)
and C ′ =

⋃
i∈Sr{i0} ↓(i, ni − 1). Note that C is not included in C ′, so if C is

irreducible, then C ⊆ ↓(i0, ni0 − 1), from which we obtain C = ↓(i0, ni0 − 1).
In any case, we have shown that every irreducible closed subset of X is the
downward closure of a unique point, hence X is sober.

24



Since ] −∞, 0] is a continuous dcpo, it is sober in its Scott topology [5,
Proposition 8.2.12 (b)]. Products of sober spaces are sober (Theorem 8.4.8,
ibid.), so X×] − ∞, 0] is sober. Since every sober core-compact space is
locally compact (Theorem 8.3.10, ibid.), we conclude that X×]−∞, 0] is not
core-compact.

We conclude that B(X, d≤) ∼= X×] − ∞, 0] is Lipschitz regular but not
core-compact. 2

5. Largest α-Lipschitz Continuous Maps

We equip R+ with the Scott topology of its ordering ≤, or equivalently,
with the dR-Scott topology. For a topological space X, the continuous maps
from X to R+ are usually called lower semicontinuous. We shall write LX
for the set of lower semicontinuous maps X to R+, and Lα(X, d) for the set
of α-Lipschitz continuous maps from X, d to R+, dR.

Lemma 5.1. Let X, d be a standard quasi-metric space, and α > 0. Every
α-Lipschitz continuous map from X, d to R+, dR is lower semicontinuous.

Proof. Recall that f is α-Lipschitz continuous if and only if f ′ : (x, r) 7→
f(x) − αr is Scott-continuous, by Lemma 2.7. Then f−1(]t,+∞]) = X ∩
f ′−1(]t,+∞]) for every t ∈ R, showing that f itself is lower semicontinuous.

2

Hence Lα(X, d) is a subset of LX. Both are dcpos with the pointwise
ordering. Note that there are in principle at least two distinct topologies on
Lα(X, d): the Scott topology, and the subspace topology, induced from the
Scott topology on LX. We shall see in Proposition 5.6 that the two coincide
when X, d is standard and Lipschitz regular.

Assuming X, d standard, for each α ∈ R+, there is a largest α-Lipschitz
continuous map f (α) below any lower semicontinuous map f : X → R+.
Moreover, the family (f (α))α∈R+

is a chain, and supα∈R+
f (α) = f , where

suprema are taken pointwise [7, Theorem 6.17]. We also know that, for
every d-Scott open subset U of X, for all α, r ∈ R+, (rχU)(α) is the map
x 7→ min(r, αd(x, U)) (Proposition 6.14, ibid.). We shall extend that below.
Also, for every α-Lipschitz continuous map g : X → R+, for every t ∈ R+, tg
is tα-Lipschitz continuous (Proposition 2.8 (1)).

Let us call step function any function fromX to R+ of the form supmi=1 aiχUi ,
where 0 < a1 < · · · < am < +∞ and U1 ⊇ U2 ⊇ · · · ⊇ Um form a finite
antitone family of open subsets of X.
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Lemma 5.2. Let X, d be a standard quasi-metric space. For a step func-
tion f = supmi=1 aiχUi, and α > 0, f (α) is the function that maps every
x ∈ X to min(αd(x, U1), a1 + αd(x, U2), · · · , ai−1 + αd(x, U i), · · · , am−1 +
αd(x, Um), am).

Proof. Let g(x) = min(αd(x, U1), a1 +αd(x, U2), · · · , ai−1 +αd(x, U i), · · · ,
am−1 + αd(x, Um), am). Each of the maps x 7→ ai−1 + αd(x, U i) (where,
for convenience, we shall assume a0 = 0, so as not to make a special case
for i = 1) is α-Lipschitz continuous, and therefore g is α-Lipschitz continu-
ous. Indeed, the map d( , U) is 1-Lipschitz (Yoneda-)continuous, as shown
in Lemma 6.11 (3) of [7]; the rest of the argument relies on Proposition 2.8.

We claim that g(x) ≤ f(x) for every x ∈ X. Let U0 = X, so that Ui
makes sense also when i = 0, and let Um+1 = ∅. The latter allows us to write
g(x) as minmi=0(ai+αd(x, U i+1)), noticing that d(x, Um+1) = 0. Indeed, by [7,
Lemma 6.11 (1)], for every open subset U , d(x, U) = 0 if and only if x 6∈ U .

There is a unique index j, 0 ≤ j ≤ m, such that x ∈ Uj and x 6∈ Uj+1.
Then g(x) ≤ aj + d(x, U j+1) = aj. Noticing that f(x) = aj, it follows that
g(x) ≤ f(x).

Now consider any α-Lipschitz continuous map h ≤ f , and let us show
that h ≤ g. We fix x ∈ X and i with 0 ≤ i ≤ m, and we claim that h(x) ≤
ai +αd(x, U i+1). Since h is α-Lipschitz continuous, h′ : (x, r) 7→ h(x)−αr is
Scott-continuous, so V = h′−1(]ai,+∞]) is open in B(X, d).

For every element of the form (y, 0) in V ∩X, h′(y, 0) = h(y) > ai, hence
f(y) ≥ h(y) > ai, which implies that y is in Ui+1. We have just shown that

V ∩X ⊆ Ui+1, and that implies V ⊆ Ûi+1, by maximality of Ûi+1.
Now, for every s ∈ R+ such that s < (h(x) − ai)/α, i.e., such that

h′(x, s) = h(x)−αs is strictly larger than ai, by definition (x, s) is in V , hence

in Ûi+1. By definition, this means that s ≤ d(x, U i+1). Taking suprema over
s, we obtain (h(x)−ai)/α ≤ d(x, U i+1), equivalently h(x) ≤ ai+αd(x, U i+1).
Since that holds for every i, 0 ≤ i ≤ m, h(x) ≤ g(x). Hence g is the largest
α-Lipschitz continuous map below f , in other words, g = f (α). 2

Given any topological spaceX, every lower semicontinuous function f : X →
R+ is the pointwise supremum of a chain of step functions:

fK(x) =
1

2K
supK2K

k=1 kχf−1(]k/2K ,+∞])(x) (1)

where K ∈ N. If X, d is a standard quasi-metric space, f
(α)
K is given by
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Lemma 5.2, namely:

f
(α)
K (x) = min

(
minK2K

k=1

(
k − 1

2K
+ αd(x, f−1(]k/2K ,+∞])

)
, K

)
. (2)

Proposition 5.3. Let X, d be a standard quasi-metric space. For every
lower semicontinuous map f : X → R+, for every α ∈ R+, for every x ∈ X,

f (α)(x) = sup
K∈N

f
(α)
K (x).

Proof. We first deal with the case where f is already α-Lipschitz continu-
ous. In that case, we claim the equivalent statement: (∗) if f is α-Lipschitz

continuous, then for every x ∈ X, f(x) = supK∈N f
(α)
K (x).

Fix j ∈ N and k such that 1 ≤ k ≤ K2K , and note that if (x, j/(α2K)) ∈
Ûk, where Uk = f−1(]k/2K ,+∞], then αd(x, Uk) ≥ j/2K . This is by defini-
tion of d(x, Uk).

Recall that f ′(x, r) = f(x) − αr defines a Scott-continuous map. For
every (y, 0) in X ∩ f ′−1(]k/2K ,+∞]), f ′(y, 0) = f(y) > k/2K , so X ∩
f ′−1(]k/2K ,+∞]) is included in f−1(]k/2K ,+∞]) = Uk. By maximality,

f ′−1(]k/2K ,+∞]) is included in Ûk.
Hence if (x, j/(α2K)) is in f ′−1(]k/2K ,+∞]), then αd(x, Uk) ≥ j/2K .

That happens when f(x) − j/2K > k/2K , i.e., when x is in f−1(](k +
j)/2K ,+∞]). Therefore αd(x, Uk) ≥ j/2Kχf−1(](k+j)/2K ,+∞])(x) for all j ∈ N
and k such that 1 ≤ k ≤ K2K .

Now fix k0 with 1 ≤ k0 ≤ K2K . For every k with 1 ≤ k ≤ k0, letting
j = k0 − k, we obtain that (k − 1)/2K + αd(x, Uk) ≥ (k − 1)/2K + (k0 −
k)/2Kχf−1(]k0/2K ,+∞])(x) ≥ (k0 − 1)/2Kχf−1(]k0/2K ,+∞])(x). For every k such

that k0 < k ≤ K2K , (k− 1)/2K +αd(x, Uk) ≥ k0/2
K is larger than the same

quantity already, and similarly for K, which is also larger than or equal to
k0/2

K . Using Formula (2), we obtain f
(α)
K (x) ≥ (k0−1)/2Kχf−1(]k0/2K ,+∞])(x),

and therefore f
(α)
K (x) ≥ k0/2

Kχf−1(]k0/2K ,+∞])(x)−1/2K . Since that holds for

every k0 between 1 and K2K , it follows that f
(α)
K (x) ≥ fK(x)−1/2K . Taking

suprema over K ∈ N, we obtain supK∈N f
(α)
K (x) ≥ supK∈N(fK(x)− 1/2K) =

f(x), proving (∗).
In the general case, where f is only assumed to be lower semicontinu-

ous, we note that f ≥ f (α) implies that fK ≥ (f (α))K . Indeed, that fol-
lows from formula (1) and the fact that (f (α))−1(]k/2K ,+∞]) is included in
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f−1(]k/2K ,+∞]) for every k. The mapping g 7→ g(α) is also monotonic, since
g(α) is defined as the largest α-Lipschitz continuous map below g. There-
fore f

(α)
K ≥ (f (α))

(α)
K . Taking suprema, we obtain that supK∈N f

(α)
K (x) ≥

supK∈N(f (α))
(α)
K (x) = f (α)(x) for every x ∈ X, where the last equality fol-

lows from statement (∗) (first part of the proof), applied to the α-Lipschitz
continuous function f (α).

The converse inequality supK∈N f
(α)
K ≤ f (α) is easy: for every K ∈ N,

fK ≤ f , so f
(α)
K ≤ f (α). 2

Proposition 5.4. Let X, d be a standard quasi-metric space. The following
are equivalent:

1. X, d is Lipschitz regular;

2. for every α ∈ R+, the map f ∈ LX 7→ f (α) ∈ Lα(X, d) is Scott-
continuous;

3. for some α > 0, the map f ∈ LX 7→ f (α) ∈ Lα(X, d) is Scott-
continuous.

Proof. (1)⇒ (2). Clearly f 7→ f (α) is monotonic. Let (fi)i∈I be a directed

family of lower semicontinuous maps from X to R+, and f be their (point-
wise) supremum. Note that, for every t ∈ R+, f−1(]t,+∞]) is the union of
the directed family of open sets f−1i (]t,+∞]), i ∈ I. Then, for every x ∈ X,
and every K ∈ N:

f
(α)
K (x) = min

(
minK2K

k=1

(
k − 1

2K
+ αd(x, f−1(]k/2K ,+∞])

)
, K

)
by Formula (2)

= min

(
minK2K

k=1

(
k − 1

2K
+ αd(x,

⋃
i∈I

f−1i (]k/2K ,+∞])

)
, K

)

= min

(
minK2K

k=1

(
k − 1

2K
+ α sup

i∈I
d(x, f−1i (]k/2K ,+∞])

)
, K

)
by Lipschitz-regularity (Lemma 4.2 (2))

= sup
i∈I

min

(
minK2K

k=1

(
k − 1

2K
+ αd(x, f−1i (]k/2K ,+∞])

)
, K

)
= sup

i∈I
(fi)

(α)
K (x)
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since multiplication by α, addition, and min are Scott-continuous. Us-
ing Proposition 5.3, it follows that f (α)(x) = supK∈N supi∈I (fi)

(α)
K (x) =

supi∈I supK∈N (fi)
(α)
K (x) = supi∈I f

(α)
i (x).

(2) ⇒ (3): obvious.
(3) ⇒ (1). (3) applies notably to the family of maps rχUi , where (Ui)i∈I

is an arbitrary directed family of open subsets of X, and r ∈ R+. Let
U =

⋃
i∈I Ui, so that supi∈I rχUi = rχU . Then (3) entails that (rχU)(α) =

supi∈I(rχUi)
(α). This means that for every x ∈ X, min(r, αd(x, U)) =

supi∈I min(r, αd(x, U i)) = min(r, α supi∈I d(x, U i)). Since r is arbitrary, we
make it tend to +∞, leaving x fixed. We obtain that αd(x, U)) = α supi∈I d(x, U i),
and since α > 0, that d(x, U) = supi∈I d(x, U i). Hence X, d is Lipschitz reg-
ular by Lemma 4.2 (2). 2

Equip LX with its Scott topology, and Lα(X, d) with the subspace topol-
ogy (not the Scott topology!). Then:

Corollary 5.5. Let α > 0, and X, d be a Lipschitz regular standard quasi-
metric space. Then the canonical injection iα : Lα(X, d)→ LX and the map
rα : f ∈ LX 7→ f (α) ∈ Lα(X, d) form an embedding-projection pair, viz., rα
and iα are continuous, rα ◦ iα = idLαX and iα ◦ rα ≤ idLX .

Proof. We know that iα is continuous (by definition of the subspace topol-
ogy), the equalities rα ◦ iα = idLαX and iα ◦ rα ≤ idLX are clear, and rα is
Scott-continuous by Proposition 5.4. Recall however that the topology we
have taken on Lα(X, d) is not the Scott topology. In order to show that rα
is continuous, we therefore proceed as follows. Given any open subset V of
Lα(X, d), by definition of the subspace topology there is a Scott-open subset
W of LX such that V = W ∩Lα(X, d). Then r−1α (V ) = r−1α (W ) is Scott-open
in LX, showing that rα is continuous from LX to Lα(X, d). 2

In the proof of Corollary 5.5, we have paid attention to the fact that the
subspace topology on Lα(X, d) might fail to coincide with the Scott topology.
However, when X, d is Lipschitz regular and standard, this is unnecessary:

Proposition 5.6. Let X, d be a Lipschitz regular standard quasi-metric space.
Then the subspace topology on Lα(X, d) induced by the Scott topology on LX
coincides with the Scott topology.

Proof. rα is Scott-continuous by Proposition 5.4 (2), and iα is also Scott-
continuous, since suprema are computed in the same way in Lα(X, d) and in
LX. In a section-retraction pair, the section is a topological embedding, so iα
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is an embedding of Lα(X, d), with its Scott topology, into LX. That implies
that the Scott topology on Lα(X, d) coincides with the subspace topology.
2

A similar argument allows us to establish the following. Let Laα(X, d) de-
note the subspace of all α-Lipschitz continuous maps from X, d to [0, αa], dR,
for α ∈ R+, where a ∈ R+, a > 0.

To show that min(αa.1, f (α)) ∈ Laα(X, d), we use Proposition 2.8 (3) and
(6), which state that the pointwise min of two α-Lipschitz continuous maps is
α-Lipschitz continuous and that constant maps are α-Lipschitz continuous.
We write 1 for the constant map equal to 1.

Corollary 5.7. Let α > 0, a > 0, and X, d be a Lipschitz regular standard
quasi-metric space. Then the canonical injection iaα : Laα(X, d) → LX and
the map raα : f ∈ LX 7→ min(aα.1, f (α)) ∈ Laα(X, d) form an embedding-
projection pair, viz., raα and iaα are continuous, raα ◦ iaα = idLaαX and iaα ◦ raα ≤
idLX . 2

Remark 5.8. As in Proposition 5.6, this also shows that, when X, d is Lip-
schitz regular and standard, the subspace topology (induced by the inclusion
into LX) coincides with the Scott topology on Laα(X, d).

At the risk of repeating ourselves, those results hold, in particular: (1)
on all standard algebraic quasi-metric spaces with relatively compact balls,
a case that includes all metric spaces whose closed balls are compact; (2) on
all B-algebras, and therefore on all spaces of formal balls B(X, d) with the
d+ quasi-metric.
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