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Blaum in 2010 to protect pair errors in symbol-pair read chan-2 nels. Recently Yaakobi, Bruck and

and the minimum pair distance, constructed some codes for pair distance and gave decoding algorithms.

The minimum pair distance of linear cyclic codes has been studied by Cassuto and Blaum [START_REF] Cassuto | Codes for symbol-pair read channels[END_REF], Kai et al. [START_REF] Kai | A construction of new MDS symbolpair codes[END_REF], and recently by Yaakobi et al. [START_REF] Yaakobi | Constructions and decoding of cyclic codes over b-symbol read channels[END_REF]. In particular, Yaakobi et al. obtained an elegant result on the pair distance of binary cyclic codes of dimension at least 2:

d 2 (C) ≥ d 1 (C) + d1(C)
2 3 2 d 1 (C), where d 2 (C) is the minimum pair distance of C and d 1 (C) is the minimum (Hamming) distance of C. Moreover, in [START_REF] Yaakobi | Constructions and decoding of cyclic codes over b-symbol read channels[END_REF] they considered the more general problem of consecutive b-symbol errors instead of only 2-symbol errors for a prescribed integer b ≥ 2. They generalized some results of b = 2 to the case of b ≥ 2.

Let F q be an arbitrary finite field. In this paper we use algebraic curves over finite fields (equivalently algebraic function fields over finite fields) in order to study lower and upper bounds on an arbitrary cyclic code C over F q of length n, where b is a prefixed integer such that 2 ≤ b ≤ n -1. Our main contributions are:

• We obtain tight lower and upper bounds for b-symbol

Hamming weights of arbitrary cyclic codes.

• We give a stability theorem for b-symbol Hamming weights: if C is an arbitrary cyclic code of length n and dimension k, then for any integer b in the range k ≤ b ≤ n-1 the b-symbol Hamming weight enumerator of C is the same as the k-symbol Hamming weight enumerator of C.

• We obtain improved lower and upper bounds for b-symbol Hamming weights of some cyclic codes related to irreducible cyclic codes.

We also find a connection between maximal and minimal curves over finite fields and the lower and upper bounds of b-symbol Hamming weights of arbitrary cyclic codes. Using this connection and inspired by the important result d 2 (C) ≥ For any code C of length n over F q , there is a canonical code C (b) of length n over the alphabet F b q such that the b-symbol Hamming weight enumerator of C is the same as the Hamming weight enumerator of C. This follows naturally from the definition by an explicit F q -linear map π b . We could not find this map in the literature and we explain it in Section 2 below.

The rest of the paper is organized as follows: We give some preliminaries and further notation in Section 2. We present a

B. b-Symbol Hamming Weight, b-Symbol Hamming Minimum Distance and b-Symbol Hamming Weight Enumerator

Recall that b is an integer with 2 ≤ b ≤ n -1. Let π b : F n q → F b q n the map (α 0 , . . . , α i , . . . , α n-1 ) → ((α 0 , α 1 , . . . , α b-1 ), . . . , (α i , α i+1 , . . . , α i+b-1 ), . . . , (α n-1 , α 0 , . . . , α n+b-1 )),

where the indices are modulo n. It is clear that π b is an F q -linear map.

Example 1: For q = 2, n = 4, b = 3 and α = (0, 1, 1, 0, 0) ∈ F 5 2 we have π 3 (α) = (0, 1, 1), (1, 1, 0), (1, 0, 0), (0, 0, 0), (0, 0, 1)

∈ (F 2 × F 2 × F 2 ) 5 .
The Hamming weight of π 3 (α) over the alphabet We also denote C as C (1) .

A = F 2 × F 2 × F 2 is 1 + 1 + 1 + 0 + 1 = 4 (see Subsection II-A). Put A = F q × • • • × F q b times . Recall that C ⊆ F n q is a

C. Cyclic Code of Length n Over F q and Its Nonzero Set

We further fix and assume the following from now on throughout the paper:

• r ≥ 2: an integer such that n | (q r -1).

• γ ∈ F * q r : a primitive n-th root of 1.

• C: an arbitrary (if not stated otherwise) cyclic code of length n over F q .

The existence of r follows by the assumption that gcd(n, q) = 1.

We need to introduce some basic facts on cyclic codes. We refer, for example [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF], for the details. It is possible to identify an element (a 0 , a 1 , . . . , a n-1 ) ∈ F n q with the polynomial a 0 + a 1 z + • • • + a n-1 z n-1 ∈ F q [z]. Let R be the quotient ring of F q [z] given by R = F q [z]/ < z n -1 >. Using this identification, cyclic codes of length n over F q are exactly ideals of R.

Let I be the ideal of R corresponding to C. It is well known that the ideals of R are principal. Hence there exists a uniquely determined monic polynomial g(z) ∈ F q [z] of smallest degree such that g(z)+ < z n -1 >∈ I. This polynomial is called the generator polynomial of C. Recall that k is the dimension of C over F q . It is well known that deg g(z) = nk and g(z) | (z n -1) in the polynomial ring F q [z].

As n | (q r -1), there is no repeated root of g(z) and g(z) splits into its linear factors over F q r . Let S ⊆ {0, 1, . . . , n-1} be the subset such that the roots of g(z) are exactly {γ i : i ∈ S}. Let S be the complement, i.e. S = {0, 1, . . . , n-1}\S.

Let U ⊆ {0, 1, . . . , n-1} be the subset of cardinality k defined as U = {-j mod n : j ∈ S}. We call U the nonzero set of C.

Example 2: Let q = 4, n = 21 and r = 3. Let γ ∈ F * 4 3 be a primitive 21-th root of 1. We choose γ as a root of x 6 +

x 5 + x 4 + x 2 + 1 ∈ F 2 [x]. Let g(z) = z -γ 9 z -γ 15 z -γ 18 z -γ 5
zγ 20 zγ 17 zγ 10 zγ 19 zγ 13 zγ 7 .

It turn out that g(z) ∈ F 4 [z]. Namely we have

g(z) = z 10 + δz 9 + δz 8 + δ 2 z 7 + z 6 + δz 5 (1) 
+δ 2 z 4 + z 2 + δz + δ 2 ,
where δ ∈ F 4 with δ We also fix the following from now on throughout the paper:

• U ⊆ {0, 1, . . . , n -1}: the nonzero set of C.
Note that U and C determine each other uniquely.

D. Trace Representation of a Cyclic Code

In this subsection we present a trace representation of C.

We use well known methods, see for example, [START_REF] Stichtenoth | Algebraic Function Fields and Codes[END_REF]Chapter 9] and the references therein.

The cyclic group Gal(F q r /F q ) is generated by the Frobenius automorphism x → x q . There is an action of Gal(F q r /F q ) on {0, 1, . . . , n-1}. The action of the Frobenius automorphism is given as follows:

u ∈ {0, 1, . . . , n-1} → uq mod n ∈ {0, 1, . . . , n -1}. For any integer u ∈ {0, 1, . . . , n -1}, the orbit {u i mod n ∈ {0, 1, . . . , n -1} : 0 ≤ i ≤ r-1} of u under this action is called the q-cyclotomic coset of u modulo n. A subset A ⊆ {0, 1, . . . , n-1} is called closed if u ∈ A implies that uq mod n ∈ A. A closed set is a disjoint union of q-cyclotomic cosets modulo n.
Recall that U is the nonzero set of the cyclic code C. It is well known that U is a closed set and hence hence U is a disjoint union of q-cyclotomic cosets modulo n. Note that the disjoint decomposition of U into its disjoint subsets, which are q-cyclotomic cosets modulo n, is uniquely determined. Let U 0 be a subset of U such that there is exactly one element in U 0 for each q-cyclotomic coset modulo n in this disjoint decomposition of U . Note that U 0 is not uniquely determined in general. We call that U 0 is a basic nonzero set of C.

We further fix the following from now on throughout the paper:

• Tr : F q r → F q : the trace map defined as x

→ x + x q + 223 • • • + x q r-1 .

224

Note that Tr is a surjective and F q -linear map.

225

For U 0 = {u 1 , u 2 , . . . , u ρ }, let P (U 0 ) denote the F q r -linear 226 subspace of F q r [x] defined as

227 P (U 0 ) = {a 1 x u1 + • • • + a ρ x uρ : a 1 , . . . , a ρ ∈ F q r }.

228

For f (x) ∈ P (U 0 ), we use the short notation Tr(f (x)) for the 229 n-tuple

230 Tr(f (x)) = Tr(f (γ 0 )), • • • , Tr(f (γ n-1 ) ∈ F n q .
231 It is well known that we have a trace representation for C 232 given by q . We refer to Subsection II-B for a definition of the code C (b) .

233 C = {Tr(f (x)) : f ∈ P (U 0 )},

268

In this section we present a trace representation of C (b) ,

269
where C is an arbitrary cyclic code over F q of length coprime 270 to q. This section is one of the contributions of this paper as

γ ∈ F * 4 3 is a primitive 21-th root of 1. Put b = 3.

304

For an arbitrary element

(β 0 , β 1 , . . . , β 20 ) of C (3) ∈ 305 (F 4 × F 4 × F 4 )
21 , there exist a 0 , a 5 , a 7 , a 9 , a 10 ∈ F 4 3 such 306 that 307

β i = Tr a 0 + a 5 γ 5i + a 7 γ 7i + a 9 γ 9i + a 10 γ 10i , 308
Tr a 0 + a 5 γ 5+5i + a 7 γ 7+7i + a 9 γ 9+9i + a 10 γ 10+10i ,

309

Tr a 0 + a 5 γ 10+5i + a 7 γ 14+7i + a 9 γ 18+9i + a 10 γ 20+10i 310 for 0 ≤ i ≤ 20.

311

IV. b-SYMBOL WEIGHTS FOR SOME CYCLIC CODES Throughout this section we assume that C is a cyclic code of length n dividing q r -1 whose nonzero set is exactly one q-cyclotomic coset U in Z/nZ. If U = {0}, then C is a repetition code and any b-symbol Hamming weight of any nonzero codeword c of C is n for any 1 ≤ b ≤ n -1. Hence we further assume that there exists an integer

1 ≤ u ≤ n -1 such that u ∈ U .
There is a close connection of the codes of this section to irreducible cyclic codes. We explain this connection explicitly after Theorem IV.3 below. It is well known that it is a notoriously difficult open problem to determine the weight distribution of irreducible cyclic codes in general (see, for example, [START_REF] Ding | Hamming weights in irreducible cyclic codes[END_REF]).

First we present a useful stability theorem. We start with some notation.

For

1 ≤ t ≤ n -1, let V (t) = Span Fq {1, γ u , . . . , γ (t-1)u }.
Note that on the difference of consecutive dimensions we have

dim Fq V (t + 1) -dim Fq V (t) ∈ {0, 1} for all t. ( 6 
)
The following definition is useful.

Definition IV.1: Let μ be the largest positive integer t such that dim Fq V (t) = t.

The next lemma gives an alternative definition of μ and it shows that μ is independent from the choice of primitive n-th root of unity and from the choice of u ∈ U .

Lemma IV.2: Under notation above, for μ given in Definition IV.1 we have μ = dim Fq F q (γ u ), where F q (γ u ) is the smallest finite field extension of F q containing γ u .

Proof: It follows from [START_REF] Duursma | Generalized Hamming weights for duals of BCH codes, and maximal algebraic function fields[END_REF] and Definition IV.1 that μ is the smallest positive integer t satisfying γ u(t+i) ∈ Span Fq {1, γ u , . . . , γ u(t-1) }, for all integers i ≥ 0. Equivalently μ is the smallest positive integer t such that F q [γ u ] ∈ Span Fq {1, γ u , . . . , γ u(t-1) }. This means that F q (γ u ) = F q [γ u ] = Span Fq {1, γ u , . . . , γ u(t-1) }.

Corollary 1: Under notation above, for μ given in Definition IV.1 the following equivalent characterizations hold:

• μ = dim Fq F q (γ u ). • μ = dim Fq C.
• μ is the multiplicative order of q modulo n gcd(n,u) .

• μ is the size of the q-cyclotomic coset U (containing u) in Z/nZ.

Proof:

The multiplicative order of γ u is n gcd(n,u) . Hence we have that dim Fq F q (γ u ) = μ if and only if μ is the smallest integer r such that n gcd(n,u) divides q r -1. In particular this means that μ is the multiplicative order of q modulo n gcd(n,u) . Let U be the nonzero set of C. It follows from the definition of the nonzero set (see Subsection II-C) that dim Fq C is the size of U . Note that U is the q-cyclotomic coset containing u in Z/nZ as the nonzero set of C consists of exactly one q-cyclotomic coset by assumption in this section. The size of U is the smallest integer r such that q r u ≡ u mod n. This means that the size of U is the smallest integer r such that n gcd(n,u) divides q r -1. Combining the arguments above we complete the proof.

First we present our stability theorem in the special case of this section. Basically it says that the b-symbol Hamming weight enumerators of C are the same for all b-symbol Hamming weights if b ≥ dim Fq (C). There exists a nonempty stability region always except the trivial case that dim Fq C = n -1. We generalize the next result to arbitrary cyclic codes in Theorem V.2 below, whose proof is more involved.

Theorem IV.3: Assume that gcd(n, q) = 1. Let C be a cyclic code of length n such that its nonzero set is exactly one q-cyclotomic coset U of Z/nZ. Assume that U = {0} and let 

u ∈ U . Let k = dim
Proof: Let f (x) = ax u ∈ F q r [x] \ {0} be an arbitrary nonzero polynomial in P ({u}). Let c (k) (f ) ∈ C (k) and c (b) (f ) ∈ C (b)
be the corresponding codewords, where we refer to Theorem III.2 for the explicit descriptions of the codewords. Note that

c (b) (f ) = Tr(f (γ)), Tr(f (1) (γ)), • • • , Tr(f (b) (γ)) . Putting c (b) (f ) = c (b) 0 (f ), c (b) 1 (f ), . . . , c (b) n-1 (f ) ∈ F b q n , for the symbols of c (b) (f ) in the alphabet F b q we observe that c (b) i (f ) = Tr(aη ui ), Tr(η u aη ui ), • • • , Tr(η (b-1)u aη ui ) . ( 7 
)
Similarly for the symbols of c (k) (f ) in the alphabet F μ q we observe that

c (k) i (f ) = Tr(aη ui ), Tr(η u aη ui ), • • • , Tr(η (k-1)u aη ui ) . ( 8 
)
Using Corollary 1 we get

Q := Span Fq {1, γ u , . . . , γ (k-1)u } = Span Fq {1, γ u , . . . , γ (b-1)u } Hence if α ∈ F q r , then 0 = Tr(α) = Tr(η u α) = • • • = Tr(η (k-1)u α) ( 9 
) ⇐⇒ 0 = Tr(α) = Tr(η u α) = • • • = Tr(η (b-1)u α).
Using [START_REF] Garcia | Algebraic function fields over finite fields with many rational places[END_REF] and [START_REF] Garcia | On subfields of the Hermitian function field[END_REF] this implies that c 

(c) = 1 m w H (c) and w H (c (b) ) = 1 m w H (c (b) ). ( 12 
) 425 Let δ = γ u ∈ F * q r ,
which is a primitive n-th root of 1. 426 We observe that C is the irreducible cyclic code of length 427 n over F q having the trace representation 428 C = { Tr(aδ 0 ), Tr(aδ 1 ), . . . , Tr(aδ n-1 ) : a ∈ F q r }. 

438

Theorem IV.4: Assume that gcd(n, q) = 1. Let C be a cyclic 439 code of length n = q r -1 such that its nonzero set is exactly 440 one q-cyclotomic coset U of Z/nZ. Assume that U = {0} 441 and let u ∈ U . Let k = dim Fq C. Put N = gcd(u, q r -1) 442 and N 1 = gcd q r -1 q-1 , N . Let c ∈ C be an arbitrary nonzero 443 codeword. For

1 ≤ b ≤ k, let w b (c) denote the b-symbol 444 Hamming weight of c. If N 1 = 1, then we have 445 w b (c) = (q b -1)q r-b . 446 If N 1 > 1, then we have 447 N (q b -1) q b-1 q r -(N 1 -1)q r/2 qN (13) 448 ≤ w b (c) ≤ N (q b -1) q b-1 q r + (N 1 -1)q r/2 qN . 449 Proof: Let f (x) = ax u ∈ F q r [x] \ {0} be an arbitrary 450 nonzero polynomial in P ({u}). Let c (b) (f ) ∈ C (b) be the 451 corresponding codeword.

452

We use some methods of [START_REF] Güneri | Hasse-Weil bound for additive cyclic codes[END_REF] and further techniques in this 453 proof. We refer to Appendix A for notation and background on 454 algebraic function fields. In Appendix A we provide necessary 455 background on algebraic function fields in order to make the 456 paper self-contained. 

that dim Fq V (b) = b. Let W = {α ∈ F q r : Tr(α) = 459 Tr(γ u α) = • • • = Tr(γ (b-1)u α) = 0}. As dim Fq V (b) = 460 b, W is an F q -linear subspace of codimension b in F q r . 461 Let A(T ) ∈ F q r [
T ] be the monic q-additive polynomial of degree q b which splits in F q r and which satisfies W = {A(y) : y ∈ F q r }. For some properties, including existence and uniqueness of A(T ), we refer to [START_REF] Garcia | Some maximal function fields and additive polynomials[END_REF] and [START_REF] Güneri | Hasse-Weil bound for additive cyclic codes[END_REF]Section 3].

Let F be the algebraic function field corresponding to the codeword c (b) (f ) given by F = F q r (x, y) such that A(y) = ax u . Let V ⊆ F q r be the subset consisting of the roots of A(T ). Note that V is an F q -linear subspace of dimension b. Let P ⊆ V \ {0} be a subset such that each one dimensional F q -linear subspace of V contains exactly one nonzero element in V . Then |P | = (q b -1)/(q -1) and let P = {δ 1 , . . . , δ (q b -1)/(q-1) } be an enumeration of P .

Let j be an integer in the range 1 ≤ j ≤ (q b -1)/(q -1).

Let c(δ j f ) ∈ C be the codeword corresponding to δ j ax u . Let F j be the algebraic function field corresponding to c(δ j f )

given by F j = F q r (x, y j ) such that y q jy j = δ j ax u .

It is not difficult to observe that F is the compositum of

F 1 , F 2 , . . . , F (q b -1)/(q-1)
, that is to say the smallest extension field containing all F 1 , F 2 , . . . , F (q b -1)/(q-1) .

There exists exactly one rational place of F at infinity, which is the rational place of F over the rational place of the rational function field F q r (x) corresponding to the pole of (x). Let N (aff) (F ) denote the number of affine rational places of F .

Consider the i-th symbol c (b) i (f ) = (Tr(f (γ i )), Tr(γ u f (γ i )), . . . , Tr(γ (b-1)u f (γ i )) ∈ F b q ) of the codeword c (b) (f ) for 0 ≤ i ≤ n -1. This symbol contributes to the Hamming weight w H (c (b) (f )) of c (b) (f )
if and only if there are q b distinct rational places of the covering F/F q r (x) over the place of the rational function field F q r (x) corresponding to the zero of (xγ i ). Also there exist exactly q b distinct rational places of the covering F/F q r (x) over the place of the rational function field F q r (x) corresponding to the zero of (x).

Hence we get that

n -w H (c (b) (f )) q b + q b = N (aff) (F ).
This is equivalent to

w H (c (b) (f )) = q r - N (aff) (F ) q b . ( 14 
)
Recall that j is an integer in the range 1 ≤ j ≤ (q b -1)/(q -1). Again there exists exactly one rational place of F j at infinity. Let N (aff) (F j ) denote the number of affine rational places of F j . For the Hamming weight w H (c(δ j f )) of c(δ j f ) using similar arguments we also get that

w H (c(δ j f )) = q r - N (aff) (F j ) q . ( 15 
)
Let S and S j be the integers defined via

N (aff) (F ) = q r -S and N (aff) (F j ) = q r -S j . ( 16 
)
It follows from [6, Corollary 6.7] (see also [START_REF] Gáneri | Improvements on generalized Hamming weights of some trace codes[END_REF]Proposition 3.6] and [17, Lemma 2.4 and (3)]) that

S = (q r -1)/(q-1) j=1 S j . ( 17 
)
Here we use the fact that A(T ) is a q-additive polynomial 510 splitting in F q r . Using ( 14), ( 15) and ( 16) yields

511 V := q r -N (aff) (F ) 512 = (q r -1)/(q-1) j=1 q r -N (aff) (F j ) 513 = (q r -1)/(q-1) j=1 (-(q -1)q r 514 +qw H (c(δ j f ))) 515 = -q r+b + q r 516 +q (q r -1)/(q-1) j=1 w H (c(δ j f )).
517

This implies that

518 w H (c (b) (f )) = 1 q b-1 (q b -1)/(q-1) j=1 w H (c(δ j f )). ( 18 
) 519
Recall that N = gcd(u, q r -1). Put n = q r -1 N and let c(δ j f ) 520 be the shortening of c(δ j f ) to the first n symbols as in [START_REF] Gáneri | Improvements on generalized Hamming weights of some trace codes[END_REF]. 521 Similarly let C be the shortening of the code C to the first n 522 symbols as in [START_REF] Guneri | Weil-serre type bounds for cyclic codes[END_REF]. Note that C is an irreducible cyclic code 523 of length n over F q with N = q r -1 n .

524

Assume first that N 1 = 1. Using [5, Theorem 15] we have 525

w H (c(δ j f )) = (q -1)q r-1 N (19) 526
for each 1 ≤ j ≤ q b -1 q-1 . Using [START_REF] Yaakobi | Constructions and decoding of cyclic codes over b-symbol read channels[END_REF] and ( 12) we obtain that 527 w H (c(δ j f )) = (q -1)q r-1 (20) 528

for each 1 ≤ j ≤ q b -1 q-1 . Combining (20) and ( 18) we conclude 529 that

530 w b (c(f )) = wH (c (b) (f )) = q b -1 q b-1 q r-1 = q b -1 q r-b 531
which completes the proof of the case that N 1 = 1.

532

Assume next that N 1 > 1. Using [5, Theorem 24] we have 533 21) and ( 12) we obtain that 536 22) and ( 18) we 539 conclude that 540

(q -1) q r -(N1-1)q r/2 qN ≤ w H (c(δ j f )) (21) 534 ≤ (q -1) q r + (N 1 -1)q r/2 qN 535 for each 1 ≤ j ≤ q b -1 q-1 . Using (
N (q -1) q r -(N1-1)q r/2 qN ≤ w H (c(δ j f )) (22) 537 ≤ N (q -1) q r + (N 1 -1)q r/2 qN 538 for each 1 ≤ j ≤ q b -1 q-1 . Combining (
N q b -1 q b-1 q r -(N1-1)q r/2 qN ≤ w b (c(f )) (23) 541 ≤ N q b -1 q b-1 q r + (N 1 -1)q r/2 qN .
As w b (C(f )) is an integer, taking the ceiling and the floor 543 integer parts of both sides of (23) we complete the proof.

544

Remark 2: Let u * be the largest positive divisor t of u 545 such that gcd(t, q) = 1. The genus g(F ) of the function field 

546 F in the proof of Theorem IV.4 is g(F ) = (q b -1)(u * -
|N (aff) (F )| ≤ q r + (q b -1)(u * -1) 2 2 q r/2 .

550

For a nonzero codeword c ∈ C, using the arguments in the 551 proof of Theorem IV.4 we arrive at the bounds Corollary 2: Assume that gcd(n, q) = 1. Let C be a cyclic 580 code of length n | (q r -1) such that its nonzero set is exactly

552 q r -q r-b - (q b -1)(u * -1) 2q r/2 2q b 553 ≤ w b (c) 554 ≤ q r -q r-b + (q b -1)(u * -1) 2q
581 one q-cyclotomic coset U of Z/nZ. Assume that U = {0} and 582 let u ∈ U . Let k = dim Fq C. Put m = gcd(u, n), N = q r -1 n m 583 and N 1 = gcd q r -1 q-1 , N . Let c ∈ C be an arbitrary nonzero 584 codeword. For 1 ≤ b ≤ k, let w b (c) denote the b-symbol Hamming weight of c. If N 1 = 1, then we have w b (c) = m N (q b -1)q r-b . (24) If N 1 > 1, then we have m(q b -1) q b-1 q r -(N 1 -1)q r/2 qN ≤ w b (c) ≤ m(q b -1) q b-1 q r + (N 1 -1)q r/2 qN .
Remark 3: Remark 5: Note that k ≤ r as the nonzero set of C consists of only one q-cyclotomic coset of Z/nZ in Corollary 2. Moreover if N 1 = 1, then N | (q -1). Hence the b-symbol Hamming weight m N (q b -1)q r-b in ( 24) is an integer.

If n = q r -1, then m = N
If N 1 = 1, then using also Theorem IV.3 we determine the b-symbol Hamming weight enumerator of C not only for

1 ≤ k ≤ b but for the full range 1 ≤ b ≤ n -1 in this case.
Corollary 3: Keeping the notation and assumptions of Corollary 2, assume further that

N 1 = 1. For integers b in the interval 1 ≤ b ≤ n -1, the b-symbol Hamming weight enumerator of C is ⎧ ⎪ ⎨ ⎪ ⎩ 1 + (q k -1)Z m(q b -1)q r-b N if 1 ≤ b ≤ k, 1 + (q k -1)Z m(q k -1)(q-k) N if k + 1 ≤ b ≤ n -1.
Proof: Assume first that 1 ≤ b ≤ k, Then we have w b (c) = m N (q b -1)q r-b using Corollary 2 for any nonzero codeword c of C. For the zero codeword c = 0 of C it is clear that w b (c) = 0. These imply that the b-symbol Hamming weight enumerator of C is

1 + (q k -1)Z m(q b -1)q r-b N . In particular if b = k, then the b-symbol Hamming weight enumerator of C is 1 + (q k -1)Z m(q k -1)q r-k N . ( 25 
)
Using Theorem IV.3, the b-symbol Hamming weight enumerator of C is exactly as in (25

) if k + 1 ≤ b ≤ n -1.
Further knowledge on the weight distribution of irreducible cyclic codes combined with the methods of the proof of Theorem IV.4 would immediately imply some improvements on the general bound of Corollary 2. Note that there exists such knowledge on the weight distribution on irreducible cyclic codes only for some very special subcases. We present a collection of such improvements on special subcases in the next corollary.

Corollary 4: Keeping the notation and assumptions of Corollary 2, we obtain improved bounds in the following special subcases. Let q = p s , where p is the characteristic of

F q . Recall that k = dim Fq C. m(q b -1)(q r -q r/2 ) q b N 631 ≤ w b (c) 632 ≤ m(q b -1)(q r + q r/2 ) q b N .

633

• Assume further that N 1 = 3, p ≡ 2 mod 3 and sk ≡ 0 634 mod 4. We have:

635 636 m(q b -1)(q r -q r/2 ) q b N 637 ≤ w b (c) 638 ≤ m(q b -1)(q r + 2q r/2 ) q b N .

639

• Assume further that N 1 = 3, p ≡ 2 mod 3 and sk ≡ 2 640 mod 4. We have:

641 642 m(q b -1)(q r -2q r/2 ) q b N 643 ≤ w b (c) 644 ≤ m(q b -1)(q r + q r/2 ) q b N .

645

• Assume further that N 1 = 4 and p ≡ 3 mod 4. We have: as in [START_REF] Wolfmann | New bounds on cyclic codes from algebraic curves[END_REF], that

646 647 m(q b -1)(q r -q r/2 ) q b N 648 ≤ w b (c) 649 ≤ m(q b -1)(q r + 3q r/2 ) q b N .
655 w H (c (b) (f )) = 1 q b-1 (q b -1)/(q-1) j=1 w H (c(δ j f )). ( 26 
)
656

Here δ j for 1 ≤ j ≤ (q b -1)/(q -1) are chosen as in the 657 proof of Theorem IV.4. Using [START_REF] Güneri | Hasse-Weil bound for additive cyclic codes[END_REF] we also have

658 w H (c(δ j f )) = 1 m w H (c(δ j f )) (27) 
659 for 1 ≤ j ≤ q b -1)/(q -1). Using [5, Theorem 17] we further 660 obtain 661 662

(q -1)(q r -q r/2 ) qN ≤ w H (c(δ j f )) (28) 663 664 ≤ (q -1)(q r + q r/2 ) qN , 665
Combining (26), ( 27) and ( 28) we conclude that m(q b -1)(q rq r/2 )

q b N ≤ w H (cc(δ j f )) (29) 
≤ (q b -1)(q r + q r/2 ) q b N .

Taking the ceiling and floor integer parts of both sides of (29) we complete the proof of the case N 1 = 2.

Assume next that N 1 = 3, p ≡ 2 mod 3 and sk ≡ 0 mod 4. In this case, using [START_REF] Ding | Hamming weights in irreducible cyclic codes[END_REF]Theorem 19] we obtain (q -1)(q rq r/2 ) qN ≤ wH (c(θj f )) ≤ (q -1)(q r + 2q r/2 ) qN instead of (28) of the case N 1 = 2. Using the same arguments with this change we complete the proof of the current case.

Assume next that N 1 = 3, p ≡ 2 mod 3 and sk ≡ 2 mod 4. In this case, using [5, Theorem 19] we obtain

(q -1)(q r -2q r/2 ) qN ≤ wH (c(θjf )) ≤ (q -1)(q r + q r/2
) qN instead of (28) of the case N 1 = 2. Using the same arguments with this change we complete the proof of the current case.

Assume next that N 1 = 3, p ≡ 2 mod 3 and sk ≡ 2 mod 4. In this case, using [5, Theorem 20] we obtain

(q -1)(q r -q r/2 ) qN ≤ wH (c(θjf )) ≤ (q -1)(q r + 3q r/2
) qN instead of (28) of the case N 1 = 2. Using the same arguments with this change we complete the proof of the current case.

Now we summarize and compare the bounds of this section. Theorem IV.4 is a special subcase of Corollary 2 with n = q r -1. In terms of the bounds, Corollary 3 is a special subcase of Corollary 2 with N 1 = 1. Corollary 4 improves Corollary 2 in some concrete cases only if N 1 ∈ {2, 3, 4}. We present some concrete examples illustrating also these improvements below. V. b-SYMBOL WEIGHTS FOR ARBITRARY CYCLIC CODES Throughout this section we assume that C is a cyclic code of length n dividing q r -1. Let U be the nonzero set of C and let U 1 , . . . , U ρ be the distinct q-cyclotomic cosets of Z/nZ

included in U . Note that U = U 1 U 2 • • • U ρ and ρ ≥ 1,
where indicates that the sets U 1 , . . . , U ρ in the union are pairwise disjoint. As in Section IV we assume that U = {0} in order to avoid the trivial case. Choose u j ∈ U j and put

k j = |U j | for 1 ≤ j ≤ ρ. Note that for the F q -dimension k of C we have k = k 1 + • • • + k ρ .
We first generalize our stability theorem (see Theorem IV.3) to arbitrary cyclic codes. Recall that γ ∈ F * q r is a primitive n-th root of 1. We introduce some notation. For 0 ≤ t ≤ n-1, let v t be the vector in F ρ q r defined as

v t = γ tu1 , γ tu2 , . . . , γ tuρ . ( 30 
)
For 1 ≤ t ≤ n -1, let V (t) ⊆ F ρ q r be the F q -linear subspace defined as

V (t) = Span Fq {v 0 , v 1 , . . . , v t-1 } .
The following lemma is useful.

Lemma V.1: Under the above notation, we have

dim Fq V (t) = t if 1 ≤ t ≤ k -1, k if k ≤ t ≤ n -1. Moreover, {v 0 , . . . , v t-1 } is an F q -basis of V (t) if 1 ≤ t ≤ k -1. Also {v 0 , . . . , , v k-1 } is an F q -basis of V (t) if k ≤ t ≤ n -1.
Proof: Recall that F q (γ uj ) denotes the smallest finite field extension over F q containing γ uj . For the index of this extension we have [F q (γ uj ) :

F q ] = k j . Let m j (x) ∈ F q [x]
be the minimal polynomial of γ j over F q . It is clear that

deg m j (x) = k j and the set {m 1 (x), m 2 (x), . . . , m ρ (x)}
consists of irreducible polynomials over F q and the elements of this set are pairwise distinct.

We first show that dim Fq V (k) = k. Assume the contrary, and let e 0 , e 1 , . . . , e k-1 ∈ F q such that

e 0 v 0 + e 1 v 1 + • • • + e k-1 v k-1 = 0. (31) 
Let 1 ≤ j ≤ ρ. Considering the j-th coordinates of the both sides of (31) we get

e 0 + e 1 γ uj + • • • + e k-1 γ (k-1)uj = 0. ( 32 
) Let h(x) = e 0 + e 1 x + • • • + e k-1 x k-1 ∈ F q [x]
, which is a nonzero polynomial of degree at most k -1. It follows from (32) that γ uj is a root of h(x). Hence we conclude that

h(γ uj ) = 0 for each 1 ≤ j ≤ ρ.
As m j (x) is the minimal polynomial of γ uj over F q and 756 h(x) ∈ F q [x] we obtain that 757 m j (x) | h(x) for each 1 ≤ j ≤ ρ.

758

Recall that {m 1 (x), m 2 (x), . . . , m ρ (x)} consists of irre-759 ducible polynomials over F q and that the elements of this 760 set are pairwise distinct. These arguments yield that the 761 polynomial ρ j=1 m j (x) divides h(x) and hence

762 deg h(x) ≥ ρ i=1 deg m j (x) = ρ j=1 k j = k.
763 This is a contradiction as h(x) is a nonzero polynomial of 764 degree at most k -1.

765

It is clear that 

V (t -1) ⊆ V (t) and 766 0 ≤ dim Fq V (t) -dim Fq V (t -1) ≤ 1 (33) 767 for each 2 ≤ t ≤ n-1. Moreover, V (1) = Span Fq {[1, . . . ,
V (k + i) ⊆ V (k) for 1 ≤ i ≤ 775 n -k -1.
We prove this by induction on i. First we consider 776 the induction step

i = 1. Let m(x) = m 1 (x)m 2 (x) • • • m ρ (x), 777 which is a monic polynomial of degree k. Considering the 778 coefficients of m(x) let 779 m(x) = x k + e k-1 x k-1 + • • • + e 1 x + e 0 ,
780 where e k-1 , . . . , e 1 , e 0 ∈ F q . As m(γ uj ) = 0 for each 1 ≤ 781 j ≤ ρ, the arguments above in this proof imply that

782 v k + e k-1 v k-1 + • • • + e 1 v 1 + e 0 v 0 = 0. 783 This shows that v k ∈ V (k) and hence V (k + 1) ⊆ V (k). 784 Assume the induction hypothesis that V (k + i) ⊆ V (k). Let 785 h(x) = x i m(x), which is a monic polynomial of degree k + i. 786 Considering the coefficients of h(x) let 787 k(x) = x k+i + e k+i-1 x k+i-1 + • • • + e 1 x + e 0 ,
788 where e k+i-1 , . . . , e 1 , e 0 ∈ F q . Similarly we obtain that Proof: We use the notation fixed in this section so that

789 v k+i + e ki-1 v ki-1 + • • • + e 1 v 1 + e 0 v 0 = 0.
806 {u 1 , u 2 , . . . , u ρ } is a basic nonzero set of C. Let f (x) = 807 a 1 x u1 + a 2 x u2 + • • • + a ρ x uρ ∈ F q r [x] \ {0} be an arbitrary 808 nonzero polynomial in P ({u 1 , u 2 , . . . , u ρ }). Let c (k) (f ) ∈ 809 C (k) and c (b) (f ) ∈ C (b) be the corresponding codewords. 810 Note that 811 c (b) (f ) = Tr(f (γ)), Tr(f (1) (γ)), • • • , Tr(f (b) (γ)) , 812
where f (t) (x) is defined in Definition III.1. Namely we have 813

f (t) (x) = η tu 1 a1 x u 1 + η tu 2 a2 x u 2 + • • • + η tuρ aρx uρ . (34) 814 Let i be an integer in the range 0 ≤ i ≤ n-1. Let c (b) i (f ) ∈ F b q 815 be the i-th symbol of the codeword c (b) (f ) ∈ F b q n so that 816 c (b) (f ) = c (b) 0 (f ), c (b) 1 (f ), . . . , c (b) n-1 (f ) . 817 Let y 1 = a 1 γ iu1 , y 2 = a 2 γ iu2 ,…, y ρ = a ρ γ iuρ all in F * q r . 818 Note that 819 c (b) i (f ) = (Tr(y 1 + y 2 + • • • + y ρ ) , 820 +Tr (γ u1 y 1 + γ u2 y 2 + • • • + γ uρ y ρ ) , • • • , 821 +Tr γ (b-1)u1 y 1 + γ (b-1)u2 y 2 + • • • 822 +γ (b-1)uρ y ρ ).
823

Similarly for the i-th symbol c 

(k) i (f ) ∈ F k q of the codeword 824 c (k) (f ) ∈ F k q n we have
γ tu1 , γ tu2 , . . . , γ tuγ = v t ,
where v t is defined in (30). Using Lemma V.1 we obtain that v t ∈ V (k) and hence there exist e 0 , e 1 , . . . , e k-1 ∈ F q such that

U := γ tu1 , γ tu2 , . . . , γ tuγ = e 0 [1, 1, . . . , 1] +e 1 [γ u1 , γ u2 , . . . , γ uγ ] + • • • +e k-1 γ (k-1)u1 , γ (k-1)u2 , . . . , γ (k-1)uγ .
Multiplying both sides with [y 1 , . . . , y ρ ] using the Euclidean inner product in F ρ q r we get

A := γ tu1 y 1 + γ tu2 y 2 + • • • + γ tuγ y ρ = e 0 (y 1 + y 2 + • • • + y ρ ) +e 1 (γ u1 y 1 + γ u2 y 2 + • • • + γ uρ y ρ ) + • • • +e k-1 (γ (k-1)u1 y 1 + γ (k-1)u2 y 2 + • • • +γ (k-1)uρ y ρ ).
Taking trace of both sides and noting e 0 , e 1 , . . . , e k-1 ∈ F q yield

Tr γ tu1 y 1 + γ tu2 y 2 + • • • + γ tuγ y ρ = e 0 Tr (y 1 + y 2 + • • • + y ρ ) +e 1 Tr (γ u1 y 1 + γ u2 y 2 + • • • + γ uρ y ρ ) . . . +e k-1 Tr γ (k-1)u1 y 1 + • • • + γ (k-1)uρ y ρ . (37)
As (36) holds by assumption, we have

0 = Tr(y 1 + y 2 + • • • + y ρ ) = Tr(γ u1 y 1 + γ u2 y 2 + • • • + γ uρ y ρ ) . . . = Tr γ (k-1)u1 y 1 + • • • + γ (k-1)uρ y ρ .
for these terms in the right hand side of (37). Therefore using (37) we conclude that

Tr γ tu1 y 1 + γ tu2 y 2 + • • • + γ tuγ y ρ = 0.
This conclusion holds for each integer t in the range k ≤ t ≤ b -1, which completes the proof of Claim 1.

Theorem V.2 implies that it is enough to study b-symbol Hamming weights of an arbitrary cyclic code C of dimension

k only for 1 ≤ b ≤ k instead of the much larger integral interval 1 ≤ b ≤ n -1 in general.
Next we present our bounds on b-symbol Hamming weights on arbitrary cyclic codes for 1 ≤ b ≤ k. We will need the following condition if q is not a prime. Condition V.3: Assume that gcd(n, q) = 1 and let 1 ≤ u ≤ n -1. Let ū be the q-cyclotomic coset of Z/nZ containing u, namely ū = {uq i mod n : 0 ≤ i ≤ n -1}. Let S(u) be the subset of ū given by S(u) = {v ∈ ū : gcd(v, q) = 1}. If u = 0, then we say that u satisfies Condition V.3 if both of the followings are satisfied:

• S(u) is not empty.

• u = min S(u).

If u = 0, then we say that u satisfies Condition V.3.

Remark 7:

If q is a prime, then u satisfies Condition V.3 if u is the smallest element in ū. Hence if q is a prime then Condition V.3 is satisfied automatically as we are free to choose any element from ū in considering C. Remark 8: If q is not a prime, then there may be some q-cyclotomic cosets which do not satisfy Condition V.3.

However, there is a rich collection of nontrivial C such that Condition V.3 is satisfied and q is not prime so that we present our results for arbitrary q. Now we give some toy examples in order to illustrate why Condition V.3 is needed in some cases. Let q = 4, r = 2, n = q r -1.

The q-cyclotomic cosets {10} and {2, 8} have no element u such that u satisfies Condition V.3. For the q-cyclotomic coset Z 1 = {1, 4}, the element u = 1 satisfies Condition V.3 and it is the smallest element of Z 1 as in the case that q is a prime.

However, for the q-cyclotomic coset Z 2 = {6, 9}, the element u = 9 satisfies Condition V.3 but 9 is not the smallest element of Z 2 . This is different from the case that q is a prime (see Remark 7).

Remark 9: In our proofs in the rest of this section we apply

Hasse Weil bound to Artin-Schreier type curves

A(y) = a 1 x u1 + a 2 x u2 + • • • + a ρ x uρ , ( 38 
)
over F q r , where A(y) are certain additive polynomials. Condition V.3 guarantees that the curve in ( 38) is absolutely irreducible over F q r . This is automatically satisfied by choosing the smallest choice of u i in each q-cyclotomic coset of C if q is a prime. If q is not a prime and Condition V.3 is not satisfied, then we need to consider further methods. For example, if the curve in (38) has irreducible components, then applying

Hasse-Weil bound to all of the irreducible components gives similar bounds on the weight of the cyclic code. However, this would be very complicated depending on {u 1 , u 2 , . . . , u ρ } as we need to consider all (a 1 , a 2 , . . . , a ρ ) ∈ F ρ q r \{(0, 0, . . . , 0)}.

There is a general method presented in [START_REF] Guneri | Weil-serre type bounds for cyclic codes[END_REF] that uses involved symbolic computations and tools from algebra for studying all possible irreducible components in order to get such bounds on the weight of the cyclic code. If ρ = 1, then all these are simple and implicitly used in Remark 2.

We first consider the case of length n = q r -1 as we use methods from algebraic function fields (see also [START_REF] Wolfmann | New bounds on cyclic codes from algebraic curves[END_REF]).

We extend our results to arbitrary length n | (q r -1) in Remark 14 below.

In the next theorem we present our bound in the case b ≤ min{k 1 , k 2 , . . . , , k ρ }. Note that this case is much more general than the case of Section IV. Indeed it is possible, for 948 example, that k 1 = k 2 = . . . = k ρ and ρ is a large positive 949 integer.

950

Theorem V.4: Let C be an arbitrary cyclic code of length 951 n = q r -1 over F q . Let U 0 = {u 1 , u 2 , . . . , u ρ } be a basic 952 nonzero set of C. Assume that U 0 = {0} and each element 953 of U 0 satisfies Condition V.3. Put u * = max{u 1 , u 2 , . . . , u ρ }. 954 Let γ ∈ F * q r be a primitive n-th root of 1. For 1 ≤ j ≤ ρ, let k j 955 be the index [F q (γ uj ) : F q ] of the field extension F q (γ uj )/F q . 956 Let c ∈ C be an arbitrary nonzero codeword. For 1 ≤ b ≤ 957 min{k 1 , k 2 , . . . , k ρ }, let w b (c) denote the b-symbol Hamming 958 weight of c. We have

959 960 q r -q r-b - (q b -1)(u * -1) 2q r/2 2q b 961 ≤ w b (c) 962 ≤ q r -q r-b + (q b -1)(u * -1) 2q r/2 2q b . 963 Proof: Let f (x) = a 1 x u1 + a 2 x u2 + • • • + 964 a ρ x uρ ∈ F q r [x] \ {0} be an arbitrary nonzero polynomial in 965 P ({u 1 , . . . , u ρ }). Let c (b) (f ) ∈ C (b) be the corresponding 966 codeword. Recall that 967 f (t) (x) = η tu 1 a1 x u 1 + η tu 2 a2 x u 2 + • • • + η tuρ aρx uρ (39) 968 for 0 ≤ t ≤ b -1, where f (0) (x) = f (x). Let L ⊆ F q r [
x] be 969 the F q -linear subspace of polynomials defined as 970 L = Span Fq {f (x), f (1) (x), . . . , f (b-1) (x)}.

971

First we show that dim Fq L = b. Indeed assume the contrary 972 that there exists (e 0 , e 1 , . . . , e b-1 ) ∈ F n q \ {[0, 0, . . . , 0]} such 973 that 974 e 0 f (x) + e 1 f (1) 

(x) + • • • + e b-1 f (b-1) (x) = 0.
(40) 975

Note that the polynomial in the left hand side of (40) 976 has monomials with possibly nonzero coefficients only at 977 x u1 , x u2 , . . . , x uρ . As f (x) = 0, there exists at least one 978 coefficient a j0 such that a j0 = 0. Using (39), (40) and the 979 coefficient of the monomial x uj 0 in the left hand side of (40) 980 we obtain that

981 e 0 + e 1 γ uj 0 + e 2 γ 2 uj 0 + • • • + γ (b-1)uj 0 = 0. ( 41 
) 982 Let e(x) ∈ F q [x] be the nonzero polynomial of degree at most 983 b -1 such that 984 e(x) = e 0 + e 1 x + • • • + e b-1 x b-1 . 985 Let m j0 (x) ∈ F q [x] be the minimal polynomial of γ uj 0 986 over F q . Let k j0 = deg m j0 (x). Note that b ≤ k j0 by the 987 assumption b ≤ min{k 1 , k 2 , . . . , b ρ }.
Using (41) we obtain 988 that e(γ uj 0 ) = 0 and hence m j0 (x) | e(x). However, this is a 989 contradiction as deg e(x) ≤ b -1 < k j0 . This completes the 990 proof of the statement that dim Fq L = b.

991

For 0 ≤ ≤ b -1, let F be the algebraic function field 992 F = F q r (x, y ) such that y q y = f (x). Let g(F ) denote 993 the genus of F . Using Condition V.3 it follows from [16, 

994 Proposition 3.2.8] that g(F ) ≤ (q-1)(u * -1) 2 .
Let F be the algebraic function field F = F q r (x, y 0 , y 1 , . . . , y b-1 ), which is the compositum of the function fields F 0 , F 1 , . . . , F b-1 . Let g(F ) denote the genus of F . As dim Fq L = b, it follows from [6, Corollary 6.7] (see also [START_REF] Gáneri | Improvements on generalized Hamming weights of some trace codes[END_REF]Proposition 3.6] and [17, Lemma 2.4 and (3)]) that

g(F ) ≤ (q b -1)(u * -1) 2 . ( 42 
)
Let N (aff) (F ) denote the number of affine rational places of F .

As in the proof of Theorem IV.4, for the Hamming weight

w H (c (b) (f )) of c (b) (f ) we have w H (c (b) (f )) = q r - N (aff) (F ) q b . ( 43 
)
Moreover, there is only one rational place of F at infinity.

Hence using (42) and Serre's improvement on the Hasse-Weil bound [16, Theorem 5.3.1] yields

|N (aff) (F )| ≤ q r + (q b -1)(u * -1) 2 2 q r/2 . ( 44 
)
Combining ( 43) and (44) we complete the proof.

Remark 10: There is a codeword of C such that the genus bound (42

) is tight. Indeed let f (x) = a 1 x u1 + a 2 x u2 + • • • + a ρ x uρ ∈ F q r [x]\{0} such that the coefficient a * corresponding to x u * is nonzero.
Then the genus bound in (42) becomes equality. This always holds if ρ = 1 and we have equality

g(F ) = (q b -1)(u * -1)
2 in Remark 2 instead of the inequality in (42).

In the next remark we explain how Theorem V. to arbitrary b and arbitrary q for some cyclic codes.

First we recall that an algebraic function field F with full constant field F q is called a maximal function field if it attains the upper bound of Hasse-Weil inequality. Namely if N (F )

denotes the rational places of F and g(F ) denotes the genus of F , then F is a maximal function field if and only if

N (F ) = 1 + q r + 2g(F )q r/2 .

It is a difficult open problem to characterize all maximal

function fields (see, for example, [START_REF] Garcia | On subfields of the Hermitian function field[END_REF], [START_REF] Garcia | Some maximal function fields and additive polynomials[END_REF], [START_REF] Stichtenoth | Algebraic Function Fields and Codes[END_REF]). 

F = F q r (x, y) of the form A(y) = f (x),
where A(y) is a given q-additive polynomial of degree q b splitting over F q r and f (x) ∈ F q r [x] is a suitable polynomial.

For example if we choose m and put r = 2m, then for any divisor u | (q m + 1) we obtain a maximal function field as a subcover of the Hermitian function field H = F q 2m (x, y) given by y q m + y = x q m+1 . We refer, for example, to [START_REF] Çakçak | Some Artin-Schreier type function fields over finite fields with prescribed genus and number of rational places[END_REF], [START_REF] Garcia | On subfields of the Hermitian function field[END_REF], [START_REF] Garcia | Some maximal function fields and additive polynomials[END_REF], for the details. Hence if u 1 , u 2 , . . . , u ρ are 1047 chosen so that u * becomes a divisor of (q m + 1), then there 1048 is a codeword of C corresponding to a maximal function field 1049 of the form A(y) = a 1 x u1 + a 2 x u2 + • • • + a ρ x uρ with full 1050 constant field F q r for some coefficients a 1 , . . . , a ρ ∈ F q r , not 1051 all zero. This implies that the lower bound of Theorem V.4 is 1052 tight.

1053

For a given 1 ≤ b < min{k 1 , k 2 , . . . , k μ }, let C be a cyclic 1054 code such that the lower bound of Theorem V.4 is tight for b. 1055 Then for the minimum distance d b (C) of C we have 

1056 d b (C) = q r -q r-b - q b -1 q b (u * -1)q r/
d b+δ (C) ≥ q r -q r-b-δ - (q b+δ -1)
q b+δ (u * -1)q r/2 .

(46) 1062 Using ( 45) and ( 46) we obtain that

1063 d b+δ (C) ≥ (q b+δ -1) (q b -1)q δ d b (C). ( 47 
) 1064
For q = 2 and b = δ = 1, then the inequality in (47) 1065 coincides with [19, Theorem 1], which holds for arbitrary 1066 binary cyclic codes of dimension at least 2. We have many 1067 further inequalities in (47) for various values of b, δ and q. 1068 For q = 2 and some small values of b and δ, the inequality 1069 in (47) gives 

1 < b ≤ min{k 1 , k 2 , . . . , k ρ } such that 1082 d b (C) = q r -q r-b - (q b -1)(u * -1)q r/2 q b .
1083

Then for any integer 1 ≤ ≤ b we have 1084 d (C) = q rq r--(q -1)(u * -1)q r/2 q .

1085 Proof: It follows from the proof of Theorem V.4, there 1086 exists f (x) ∈ P ({u 1 , u 2 , . . . , u ρ }) such that the function field 1087 F = F q r (x, y 0 , y 1 , . . . , y b-1 ), where y q i -y i = f (i) (x) for 1 ≤ 1088 i ≤ b-1, is a maximal function field. For 1 ≤ ≤ b-1, let F 1089 be the subfield of F defined as F = F q r (x, y 0 , y 1 , . . . , y -1 ). 1090 It is well known that subcovers of maximal function fields are 1091 maximal as well [START_REF] Lachaud | Sommes d'eisenstein et nombre de points de certaines courbes algébriques sur les corps finis[END_REF]. Hence F is a maximal function field (of 1092 a different genus in general). The proof of Theorem V.2 (see also Remark 11) implies that its bound on d (C) is tight. 

min{k 1 , k 2 , . . . , k ρ }, then d b+δ ≥ (q b+δ -1) (q b -1)q δ d b (C) if b + δ ≤ min{k 1 , k 2 , . . . , k ρ }. However, it follows from Theorem V.2 that d b+δ+1 (C) = d b+δ (C) if b + δ ≥ k 1 + k 2 . . . + k ρ .
We also recall that an algebraic function field F with full constant field F q is called a minimal function field if it attains the lower bound of Hasse-Weil inequality. Namely if N (F )

denotes the rational places of F and g(F ) denotes the genus of F , then F is a minimal function field if and only if Then for the maximal distance D b (C) of C we have

N (F ) = 1 + q r -2g(F )q r/2 .

Again characterization of all

D b (C) = q r -q r-b + q b -1 q b (u * -1)q r/2 . ( 48 
)
For δ ≥ 1 and assume that b

+ δ ≤ min{k 1 , k 2 , • • • , k ρ }. For (b+δ)-symbol minimum distance d b+δ (C) using Theorem V.4
we obtain

D b+δ (C) ≤ q r -q r-b-δ + (q b+δ -1) q b+δ (u * -1)q r/2 . ( 49 
)
Using ( 48) and (49) yield

D b+δ (C) ≤ (q b+δ -1) (q b -1)q δ D b (C).
We present the next corollary on maximum distances, which is an analog of Corollary 5. Its proof follows using similar arguments together with minimal function fields instead of maximal function fields. Note that it is also well known that a subcover of a minimal function field is minimal [START_REF] Lachaud | Sommes d'eisenstein et nombre de points de certaines courbes algébriques sur les corps finis[END_REF].

Corollary 6: We keep the notation and assumptions of Theorem V.4. Assume that there exists an integer b such that

1 < b ≤ min{k 1 , k 2 , . . . , k ρ } such that D b (C) = q r -q r-b + (q b -1)(u * -1)q r/2 q b .
Then for any integer 1 ≤ ≤ b we have 1141 D (C) = q rq r-+ (q -1)(u * -1)q r/2 q .

1142 We can assume that

1143 k 1 ≤ k 2 ≤ • • • ≤ k ρ (50) 1144
without loss of generality. It follows from Theorem V.2 that 1145 there is no need to consider b-symbol weights if

k 1 + k 2 • • • + 1146 k ρ < b ≤ n -1.
Hence there are exactly ρ + 1 regions given 1147 below to consider for the full b-symbol weight profile of C: 1148

Region 0:

1 ≤ b ≤ k 1 , Region 1: k 1 < b ≤ k 2 , . . . Region ρ -1: k ρ-1 < b ≤ k ρ , Region ρ: k ρ < b ≤ k 1 + k 2 + • • • + k ρ .
(51) 1149

It follows from (50) that Region 0 corresponds to Theorem V.4. 1150 Next we consider the remaining ρ regions. We need the 1151 following notation in order to present our results for the 1152 remaining regions neatly. For integers b, u ∈ N , let L, U : 1153 N × N → N be the functions defined as

1154 L(b, u) = q r -q r-b - (q b -1)(u * -1) 2q r/2 2q b , 1155 and 1156 U (b, u) = q r -q r-b + (q b -1)(u * -1) 2q r/2 2q b .
1157 Note that the functions L and U depend also on q and r, which 1158 we consider to be fixed. Moreover, these functions correspond 1159 to the lower and upper bounds of Theorem V.4. It is easy 1160 to observe that as the second parameter u increases (and the 1161 first parameter b is fixed), L(b, u) is a decreasing function and 1162 U (b, u) is an increasing function.

1163

We are ready to present our bounds for Region 1 in the next 1164 theorem. 

), L(k 1 , u 1 )} 1172 ≤ w b (c) 1173 ≤ max {U (b, u * ), U(k 1 , u 1 )} 1174 
Proof: Let f (x) be an arbitrary nonzero polynomial in 1175 P ({u 1 , u 2 , . . . , y ρ }). Let f 1 (x) and g(x) be the uniquely 1176 determined polynomials in P ({u 1 , u 2 , . . . , y ρ }) such that 1177 f

1 (x) = a 1 x u1 , g(x) = a 2 x u2 + • • • + a ρ x uρ and f (x) = 1178 f 1 (x) + g(x)
. At least one of the polynomials f 1 (x) and g(x) 1179 is nonzero.

1180 If g(x) = 0, then, as b ≤ k 2 = min{k 2 , k 3 , . . . , k ρ }, 1181 we have 1182 dim Fq Span{f (x), f (1) (x), . . . , f (b-1) (x)} = b.
If a 2 = 0 and a 1 = 0, then similarly we have

L(k 2 , u 2 ) ≤ w b (c) ≤ U (k 2 , u 2 ). (58) 
Finally if a 2 = 0 and a 1 = 0, then we have

L(k 1 , u 1 ) ≤ w b (c) ≤ U (k 1 , u 1 ). (59) 
Combining ( 54), (57), ( 58) and (59) we complete the proof of the case b < k 1 + k 2 .

Example 7: Let q = 2, r = 12, n = 4095, ρ = 2, u 1 = 3 and u 2 = 5 under notation of Theorem V.6. Using Theorem V.6 we obtain that

2880 ≤ w 2 (c) ≤ 3264, 3360 ≤ w 3 (c) ≤ 3808, 3600 ≤ w 4 (c) ≤ 4080.
Theorems V.4, V.5 and V.6 present a method to obtain explicit formulas for the bounds on w b (c) for Region i with i ≥ 3 in (51). It is clear that presenting explicit formulas like in these theorems becomes more involved as the region number i increases. We refrain ourselves from presenting explicit formulas for Region i if 3 ≤ i ≤ ρ as they just use the same ideas and only become more complicated to state. Nevertheless the proofs of Theorems V.2, V.4, V.5 and V.6 give a method to derive lower and upper bounds on the b-symbol Hamming weights of arbitrary nonzero codewords of C using algebraic curves. Hence we solve this problem for all regions in (51) implicitly. For any practical situation, and Region i with 3 ≤ i ≤ ρ, the methods of this section would be enough to obtain explicit formulas as in Theorems V.4, V.5 and V.6.

Next we extend all of our previous bounds in this section to cyclic codes of length n | (q r -1). Let C be a cyclic code of length n | (q r -1) over F q . Let U 0 = {u 1 , u 2 , . . . , u ρ } be a basic nonzero set of C. Assume that U 0 = {0} and each element of U 0 satisfies Condition V.3. Let N = q r -1 n . For integers 0 ≤ i and 0 ≤ u ≤ n -1, it is easy to observe that uq i ≡ u mod n ⇐⇒ uN q i ≡ uN mod (q r -1). (60) Let Û = {u 1 N, u 2 N, . . . , u ρ N }. Using (60) we get that Û0 is a basic nonzero set for a cyclic code Ĉ of length nN = q r -1 over F q . Moreover, each element of Û0 satisfies Condition V.3 for the length q r -1.

Let f (x) = a 1 x u1 + a 2 x u2 + • • • + a ρ x uρ ∈ P (U 0 ) be a nonzero polynomial. Let c(f ) ∈ C be the codeword corresponding to f (x). Put f (x) = a 1 x u1 N + a 2 x u2 N + • • • + a ρ x uρN ∈ P ( Û0 ). Let ĉ( f ) ∈ Ĉ be the codeword corresponding to f (x).
As in the proof of Theorem IV.4 we conclude that for any integer

1 ≤ b ≤ n -1 we have w b (c(f )) = 1 N w b (ĉ( f )),
where w b (c) and w b (ĉ) denote the b-symbol Hamming weight of c(f ) and ĉ( f ), respectively. These arguments yield the following theorem, which generalizes Theorem V.4.

Theorem V.7:

Let n be a divisor of q r -1. Let C be an arbitrary cyclic code of length n over F q . Let U 0 = {u 1 , u 2 , . . . , u ρ } be a basic nonzero set of C. Assume that U 0 = {0} and each element of U 0 satisfies Condition V.3.

ii) for any z ∈ F \{0} we have that either z ∈ F or z -1 ∈ O. 1349 Example 8: Assume that F = K(x), the rational function 1350 field. Let r(x) ∈ K[x] be an irreducible polynomial. Then the 1351 set Let P be a place of F . There exists an element t ∈ P such 1364 that P = tO. This elements is not necessarily unique. Such an 1365 element is called a local parameter of P . As P is the maximal 1366 ideal of its valuation ring O P , the quotient ring F P = O P /P 1367 is a field. F p is called the residue field of P . It is well known 1368 that F p is a finite extension of K and the extension degree 1369 [F p : K] is called the degree of P . If the degree of P is one, 1370 then we also call that P is a rational place.

1352 O r(x) = a(x) b(x) : a(x), b(x) ∈ K[x], r(x) b(x)
1371 Example 9: Assume that K = F q and F = F q (x), 1372 the rational function field over F q . There are exactly q + 1 1373 rational places (degree one places) of F and they are given as 1374 follows: where a(x) and b(x) ∈ F q [x]. These form q (affine) 1378 rational places of F . Let s ≥ 1 be an integer. Let F be an algebraic function field 1413 with full constant field F q . Let F •F q s be the smallest extension 1414 of F containing F q s . Note that for s = 1 we have F = F • F q .

1415 Let N (F •F q s ) denote the number of rational places of F •F q s . 1416

The Hasse-Weil bound [START_REF] Stichtenoth | Algebraic Function Fields and Codes[END_REF]Theorem 5.2.3] states that there 1417 exists a nonnegative integer g(F ), which depends only on F, 1418 such that for each positive s integer we have 1419 |N (F • F q s ) -(q s + 1)| ≤ 2g(F )q s/2 .

(64) if F is an algebraic function field with full constant field F q , then |N (F ) -(q + 1)| ≤ g(F ) 2 q 1/2 . (65)

Let F be an algebraic function field with full constant field F q . Assume that F is an extension of the rational function field F q (x). Let P be a rational place of F . Recall that F q (x) has exactly q + 1 rational places. The affine rational places of F q (x) are P α ; where α ∈ F q , and P α defined in (61) in Example 9 above.

In general we call that P is an affine rational place of F if P ∩ F = P α for an α ∈ F q . Otherwise we call that P is a place of F at infinity. Example 10: Let r ≥ 2 be an integer. Let a(x) ∈ F q r [x] be a polynomial of degree coprime to q. Let = F q r (x)[y]/ < y qya(x) >. Then F/F q r (x) is a field extension of degree q and the full constant field of F is F q r . As in Example 9, for α ∈ F q r , let P α be an affine rational place of F q r , which corresponds to the irreducible polynomial xα ∈ F q r [x]. Let P ∞ denote the remaining rational place of F q r (x), which corresponds to the pole of x ∈ F q r (x).

The following characterization of all rational places of F is known. Recall that Tr : F q r → F q is the trace map x → x + x q + • • • + x q r-1

. For α ∈ F q r and the affine place P α of F q r (x) we have two cases to consider:

• Case Tr (a(α)) = 0: In this case there are exactly q rational places Q α,1 , Q α,2 , . . . , Q α,q of F such that Q α,i ∩ F = P α for each 1 ≤ i ≤ r.

• Case Tr (a(α)) = 0: In this case there is no rational place Q of F such that Q ∩ F = P α .

Moreover there is a unique rational place

Q ∞ of F such that Q ∞ ∩ F = P ∞ .
Let N (aff) (F ) denote the number of affine rational places of F . These arguments imply that N (aff) (F ) = N (F ) -1 and N (aff) (F ) = q |{α ∈ F q r : Tr (a(α))}| .

3 2 d 1 (

 31 C) of Yaakobi et al. [19, Theorem 1], we obtain further inequalities between d b+δ (C) and d b (C) for some cyclic codes C.

  linear code of length n over F q . Let C (b) = π b (C) ⊆ A n be the image of C under the F q -linear map π b . Note that C (b) is closed under addition. Using the notation of Subsection II-A, the Hamming weight minimum distance of C (b) and the Hamming weight enumerator of C (b) are well defined. The Hamming weight minimum distance of C (b) is called the b-symbol Hamming minimum distance of C. The Hamming weight enumerator of C (b) is called the b-symbol Hamming weight enumerator of C. Similarly for a codeword c ∈ C, the Hamming weight of π b (c) ∈ A n is called the b-symbol Hamming weight of c.

234Example 3 :

 3 where we are free to choose an arbitrary basic nonzero set U 0 235 of C. Namely, a generic element c = (c 0 , c 1 , . . . , c n-1 ) of C 236 is given by 237 c = Tr(f (x)) ∈ F n q and f ∈ P (U 0 ).238Hence for f ∈ P (U 0 ), we also use the notation c(f ) to donate 239 the codeword 240 c(f ) = Tr(f (1)), Tr(f (γ)), . . . , Tr(f (γ n-1 )) 241 of C. 242 Let q = 4, n = 21 and r = 3. We keep the 243 notation of Example 2. Hence γ ∈ F * 4 3 is a primitive 21-th 244 root of 1 as in Example 2. 245 All 4-cyclotomic cosets modulo 21 are as follows: 246 0 = {0}, 1 = {1, 4, 16}, 2 = {2, 8, 11}, 247 3 = {3, 12, 6}, 5 = {5, 20, 17}, 7 = {7}, 248 9 = {9, 15, 18}, 10 = {10, 19, 13}, 14 = {14}. 249 Let C be the cyclic code of length 21 over F 4 defined in 250 Example 2. We observe that the nonzero set U of C is a 251 disjoint union of 4-cyclotomic cosets modulo 21 given by 252 U = {0} {5, 10, 17} {7} {9, 15, 18} (2) 253 {10, 19, 13}, 254 where indicates that the subsets {0}, . . . , {10, 19, 13} are 255 pairwise disjoint. Hence a basic nonzero set U 0 of C is 256 U 0 = {0, 5, 7, 9, 10}. 257 For an arbitrary codeword c = (c 0 , c 1 , . . . , c 20 ) of C ⊆ F 21 4, 258 there exists f (x) ∈ P (U 0 ) = {a 0 + a 5 x 5 + a 7 x 7 + a 9 x 9 + 259 a 10 x 10 : a 0 , a 5 , a 7 , a 9 , a 10 ∈ F 4 3 } such that c = c(f ). Namely 260 there exist a 0 , a 5 , a 7 , a 9 , a 10 ∈ F 4 3 such that 261 c i = Tr a 0 + a 5 γ 5i + a 7 γ 7i + a 9 γ 9 i + a 10 γ 10 i 262 for 0 ≤ i ≤ 20, where Tr is the trace map from F 4 3 onto F 4 . 263 III. TRACE REPRESENTATIONS OF C (b) 264 Note that the b-symbol Hamming weights of codewords 265 of C are defined in terms of the Hamming weights of the 266 codewords of C (b) over the alphabets F b

  Fq C. For any integer b in the interval k ≤ b ≤ n -1, the b-symbol Hamming weight enumerator of C is the same as the k-symbol Hamming weight enumerator of C.

iRemark 1 : 1 .n- 1 ) 1 )

 1111 (f ) contributes to the Hamming weight of the codeword c (k) (f ) of length n over the alphabet F k q if and only if c (b) i (f ) contributes to the Hamming weight of the codeword c (b) (f ) of length n over the alphabet F b q . Therefore the values of the Hamming weights (defined over their respective alphabets) of c (k) (f ) and c (b) (f ) are the same. This completes the proof. We note that Theorem IV.3 (and hence Theorem V.2 below) has useful engineering consequences in applications. For example it implies that increasing b for b-symbol for error correcting does give any further advantage if b ≥ k for these codes. Now we explain the connection of the codes of this section to irreducible cyclic codes. Let m = gcd(u, n) and put n = n/m. Note that γ ui = γ u(i+n) for i ≥ 0 as γ un = γ n u m = For a codeword c = (c 0 , c 1 , . . . , c n-1 ) ∈ C and a codeword c (b) ∈ C (b) , let c ∈ F n q and c(b) ∈ (F q ) n be the corresponding elements defined as 416 the shortenings 417 c = (c 0 , c 1 , . . . , c n-1 )andc (b) (10) 418 to the first n symbols. Let C ⊆ F n q and C(b) ⊆ F b q n be the 419 codes defined as 420 C = {c : c ∈ C} and C(b) = {c (b) : c (b) ∈ C (b) }. (11) 421 Using the fact that γ ui = γ u(i+n) for i ≥ 0 we observe 422 π b ( C) = C(b) . Moreover, between the Hamming weights of 423 c, c, c (b) and c(b) we have the relations 424 w H

429

  These arguments show that C is obtained from C via m times 430 replication so that 431 C = (c, c, . . . , c) : c ∈ C . 432 Next we study b-symbol Hamming weights of C for 433 b ∈ {1, 2, . . . , dim Fq C}, which determine the whole b-symbol 434 Hamming weights profile of all integers 1 ≤ b ≤ n -1 435 as proved in Theorem IV.3. Recall that 1-symbol Hamming 436 weight corresponds to the usual Hamming weight. First we 437 consider the case of length n = q r -1.

457

  As b ≤ k, it follows from Definition IV.1 and Corollary 1 458

558Example 5 :••••

 5 It is important to observe that the methods of this remark 559 is valuable in the following sense. If the assumption of 560 Theorem IV.4 that the nonzero set of C is exactly one 561 q-cyclotomic coset of Z/nZ does not hold, then we cannot 562 use[START_REF] Ding | Hamming weights in irreducible cyclic codes[END_REF] as in the proof of Theorem IV.4. This corresponds 563 to the general situation of arbitrary cyclic codes. We consider 564 arbitrary cyclic codes in Section V, where we develop and use 565 the methods similar to the methods of this remark. 566 We compare the bounds of Theorem IV.4 and 567 Remark 2 in the following concrete cases. 568 Case q = 3, b = 2, r = 10, u = 11, n = q r -1. 569 Theorem IV.4: 50336 ≤ w b (c) ≤ 54648. Remark 2: 50328 ≤ w b (c) ≤ 54648. 570 Case q = 3, b = 2, r = 10, u = 61, n = q r -1. 571 Theorem IV.4: 39528 ≤ w b (c) ≤ 65392. Remark 2: 39528 ≤ w b (c) ≤ 65448. 572 Case q = 2, b = 2, r = 10, u = 11, n = q r -1. 573 Theorem IV.4: 528 ≤ w b (c) ≤ 1006. Remark 2: 528 ≤ w b (c) ≤ 1008. 574 Case q = 2, b = 2, r = 10, u = 31, n = q r -1. 575 Theorem IV.4: 93 ≤ w b (c) ≤ 1488. Remark 2: 48 ≤ w b (c) ≤ 1488. 576 Using the methods in the proof of Theorem IV.4 and (12) 577 we obtain our bounds for the general length n | (q r -1) in 578 the next corollary.

  579

Remark 4 :

 4 and Corollary 2 coincides with Theorem IV.4. If m = 1 and b = 1, then Corollary 2 coincides with [5, Theorem 24].

650Proof:

  First we assume that N 1 = 2. We use the 651 methods in the proof of Theorem IV.4 and we keep its 652 notation. In particular c (b) and c(b) denote the corresponding 653 nonzero codewords as in the proof of Theorem IV.4. We have, 654

Example 6 :

 6 We give concrete examples for the bounds of Corollary 3 and Corollary 4. • Case q = 2, b = 2, r = 12, u = 11, n = 1365. Corollary 2: 993 ≤ w b (c) ≤ 1056. Corollary 4: 1008 ≤ w b (c) ≤ 1056. • Case q = 2, b = 2, r = 10, u = 5, n = 341. Corollary 2: 240 ≤ w b (c) ≤ 271. Corollary 4: 240 ≤ w b (c) ≤ 264. • Case q = 3, b = 2, r = 8, u = 7, n = 1640. Corollary 2: 1406 ≤ w b (c) ≤ 1512. Corollary 4: 1440 ≤ w b (c) ≤ 1512. • Case q = 9, b = 3, r = 8, u = 47, n = 10761680. Corollary 2: 10742009 ≤ w b (c) ≤ 10751832. Corollary 4: 10745280 ≤ w b (c) ≤ 10751832. • Case q = 2, b = 2, r = 16, u = 17, n = 3855. Corollary 2: 2712 ≤ w b (c) ≤ 3072. Corollary 4 does not work in this case as N 1 = 17 in this case.

Remark 6 :

 6 As we consider cyclic and hence linear codes throughout this paper, our lower and upper bounds on the b-symbol Hamming weights of nonzero codewords mean lower and upper bounds on the b-symbol Hamming distances between distinct codewords. Hence our bounds throughout this paper also correspond to lower and upper bounds on b-symbol Hamming distance of the codes we consider.

790

  This yields v k+i ∈ V (k+i) and hence V (k+i+1) ⊆ V (k+i). 791 This completes the proof. 792 Next we present our stability theorem for arbitrary cyclic 793 codes. Again it says, but now for arbitrary cyclic codes, that 794 the b-symbol Hamming weight enumerators of C are the 795 same (and hence stable) for all b-symbol Hamming weights 796 if b ≥ dim Fq (C) (see also Theorem IV.3). There exists a 797 nonempty stability region for b except the trivial case that 798 dim Fq C = n -1. 799 Theorem V.2: Assume that gcd(n, q) = 1. Let C be an 800 arbitrary cyclic code of length n and U be its nonzero set 801 in Z/nZ. Assume that U = {0}. Let k = dim Fq C. For any 802 integer b in the interval k ≤ b ≤ n-1, the b-symbol Hamming 803 weight enumerator of C is the same as the k-symbol Hamming 804 weight enumerator of C.

  805

i=iClaim 1 .

 1 (f ) = (Tr(y 1 + y 2 + • • • + y ρ ) , 827 +Tr (γ u1 y 1 + γ u2 y 2 + • • • + γ uρ y ρ ) , • • • , 828 +Tr γ (k-1)u1 y 1 + γ (k-1)u2 y 2 + • • • 829 +γ (k-1)uρ y ρ ) 830 Hence c (b) i (f ) does not contribute to the Hamming weight 831 of the codeword c (b) (f ) if and only if8320 = Tr(y 1 + y 2 + • • • + y ρ ) 833 = Tr(γ u1 y 1 + γ u2 y 2 + • • • + γ uρ y ρ ) Tr γ (b-1)u1 y 1 + γ (b-1)u2 y 2 + • • • + γ (b-1)uρ y ρ . (f ) does not contribute to the Hamming weight 838 of the codeword c (k) (f ) if and only if 839 0 = Tr(y 1 + y 2 + • • • + y ρ ) 840 = Tr(γ u1 y 1 + γ u2 y 2 + • • • + γ uρ y ρ ) 841 . . . 842 = Tr γ (k-1)u1 y 1 + γ (k-1)u2 y 2 + • • • + γ (k-1)uρ y ρ .843 (36) 844 We will prove the following claim at the end of this proof. 845 The conditions in (35) and (36) are equivalent. 846 Assume Claim 1 holds. The weight of the contribution of the symbol c (b) i (f ) to the codeword c (b) (f ) is 0 or 1, which is identified with the condition in (35). The same holds for the symbol c (k) i (f ) to the codeword c (k) (f ) and the condition (36). Using Claim 1 and running through all indices 0 ≤ i ≤ n -1 we complete the proof. Now we prove Claim 1. As k ≤ b it is clear that (35) implies (36). Conversely assume that (36) holds. Let t be an integer in the range k ≤ t ≤ b -1. Note that

  4 generalizes an important result of Yaakobi et. al., namely [19, Theorem 1],

For 1 ≤Remark 11 :

 111 b ≤ n-1, let d b (C) denote the minimum b-symbol Hamming weight w b (c) of codewords as c runs through all nonzero elements of C. Note that d b (C) is the b-symbol Hamming minimum distance of C. Similarly let D b (C) denote the maximum b-symbol Hamming weight w b (c) of codewords as c runs through all nonzero elements of C. For any fixed b, there are cyclic codes satisfying the conditions of Theorem V.4 such that the lower bound on w b (c) of Theorem V.4 is tight. For instance these codes can be constructed using some maximal algebraic function fields as follows. Note that there are various examples of algebraic functions fields

Here if q = 2 ,1075Corollary 5 :

 25 and b = δ = 1, then we get the constant 3/2 1072 above, which corresponds to [19, Theorem 1]. For q = 3 and 1073 some small values of b and δ, the inequality in (47) gives 1074 In the next corollary we show that if d b (C) is tight for some 1076 1 < b ≤ min{k 1 , k 2 , . . . , k ρ } in Theorem V.4, then all d (C) 1077 are tight for 1 ≤ ≤ b. Note that there exist C and b such 1078 that d b (C) is tight (see Remark 11). 1079 We keep the notation and assumptions of 1080 Theorem V.4. Assume that there exists an integer b such that 1081

Remark 12 :

 12 Note that in Corollary 5, if the equality on d b (C) holds for some 1 < b ≤ min{k 1 , . . . , k ρ }, then all equalities on the minimum distances d (C) hold and these values decrease as decreases. However, in the other direction there is a natural bound by Theorem V.2 and it is important to assume that b + δ ≤ min{k 1 , . . . , k ρ }. Indeed if the bound of Theorem V.2 on d b (C) is tight for an integer 1 ≤ b ≤

  minimal function fields is a difficult open problem and we have minimal functions fields in the form of maximum function fields mentioned above. Therefore considering minimal function fields instead of maximal function fields we have analogous results of Remark 11 and Corollary 5 on the maximum distances D b (C).

Remark 13 :

 13 For any fixed b, there are cyclic codes satisfying the conditions of Theorem V.4 such that the upper bound on w b (c) of Theorem V.4 is tight. For existence we use similar arguments as in Remark 11 and minimal algebraic function fields instead of maximal algebraic function fields. For a given 1 ≤ b < min{k 1 , k 2 , . . . , k μ }, let C be a cyclic code such that the upper bound of Theorem V.4 is tight for b.

1165Theorem V. 5 :

 5 We keep the notation and assumptions of 1166 Theorem V.4. We also assume that (50) holds without loss 1167 of generality. Recall that u * = max{u 1 , . . . , u ρ } and w b (c) 1168 denotes b-symbol Hamming weight of a nonzero codeword c 1169 of C. If b is an integer in Region 1, i.e. k 1 < b ≤ k 2 , then we 1170 have 1171 min {L(b, u *

1375i)

  For α ∈ F q , let 1376 P α = a(x) b(x) : a(α) = 0, b(α) = 0 , (61) 1377

1379ii)n

  There is one rational place at infinity of F . It is defined 1380 as 1381 P ∞ = a(x) b(x) :, deg a(x) < deg b(x) , (62) 1382 where a(x) and b(x) ∈ F q [x]. IEEE TRANSACTIONS ON INFORMATION THEORYIn general, for m ≥ 1, an arbitrary place of F q (x) of degree 1384 m, different from P ∞ , is obtained as follows. Let r(x) ∈ F q [x] 1385 be an irreducible polynomial of degree m. Then1386 P r(x) = a(x) b(x) : r(x) | a(x), r(x) b(x) , (63)1387where a(x) and b(x) ∈ F q [x]. is a degree m place of F .1388The notation in (61) and (63) coincide for degree one places:1389P α = P x-α if α ∈ F q . 1390 Let Pbe a place of F . Let O P be its valuation ring and O × P 1391 be the group of units in O P . We choose a local parameter t 1392 of P . The discrete valuation v P is a map corresponding to P , if there exists n ∈ Z and u ∈ O × P such that z = t n u, ∞ otherwise (or equivalently if z = 0) 1395 It is well known that v P is independent from the choice of the 1396 local parameter. 1397 Assume that E and F are algebraic function fields with the 1398 same full constant field K. Assume further that E is a finite 1399 extension of F . Let P be a place of E. Then P = P ∩ F is a 1400 place of F . Moreover the residue field F P is a finite extension 1401 of the residue field F P . The extension degree [F P : F P ] is 1402 called the inertia degree of P |P and its is denoted as f (P |P ).

1403

  In particular P is a rational place of E if and only if P is a 1404 rational place of F and f (P |P ) = 1. Moreover there exists 1405 an integer e such that 1406 v P (z) = ev P (z) for all z ∈ F . 1407 This integer is called the ramification index of P |P and it 1408 is denoted as e(P |P ). Conversely if Q is a place of F , then 1409 there are a finite number of places Q 1 , . . . , Q in E such that 1410Q i ∩ F = Q for 1 ≤ i ≤ . A fundamental fact is that 1411 i=1 e(Q i |Q)f (Q i |Q) = [E : F ].

  1412

1420

  The integer g(F ) in (64) is called the genus of F . The 1421 definition of genus using (64) is not very common, which 1422 is an arithmetic method of definition. This definition requires 1423 the presentation of the Hasse-Weil bound for all constant field 1424 extension F • F q s with s ≥ 1. When we state the Hasse-Weil 1425 bound, we usually refer to the version of (64) with s = 1 1426 only. Alternative definitions of genus would require further 1427 background like Riemann-Roch Theorem and ramification 1428 theory, which we do not need in this paper. 1429 There is an improvement of the Hasse-Weil bound, which is 1430 Serre's improvement (see [16, Theorem 5.3.1]). It states that 1431

  For δ ≥ 1 and assume that b + δ ≤ min{k 1 , k 2 , . . . , k ρ } and 1058 hence we are in the range for application of Theorem V.4. For 1059 (b+δ)-symbol minimum distance d b+δ (C) using Theorem V.4 1060 we obtain

	2 .	(45) 1057
		1061

  We denote it O P and call 1362 it the valuation ring of P .

	1363

1353 is a valuation ring of F . 1354 Let O be a valuation ring of F . The group of units of O is 1355 O × = {u ∈ O : there exists v ∈ O such that uv = 1} . 1356 It is well known that O is a local ring, that there exists a unique 1357 maximal ideal P of O, which is given by P = O \ O × . 1358 A place P of F is the maximal ideal of a valuation 1359 ring O of F . Conversely the valuation ring O is also 1360 uniquely determined by its place P as follows: O = 1361 z ∈ F \ {0} : z -1 ∈ P ∪ {0}.
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Put N = q r -1 n and u * = max{u 1 , u 2 , . . . , u ρ }. Let γ ∈ F * q r be a primitive n-th of 1. For 1 ≤ j ≤ ρ let k j be the index [F q (γ uj ) : F q ] of the field extension F q (γ uj )/F q . Let c ∈ C be an arbitrary nonzero codeword. For 1 ≤ b ≤ min{k 1 , k 2 , . . . , k ρ }, let w b (c) denote the b-symbol Hamming weight of c. We have

In the following remark we explain how we obtain our bounds for length n | (q r -1) using our earlier bounds in this section. This method applies to all our bounds in Theorems V.4, V.5 and V.6 and we obtain explicit lower and upper bounds for Regions 0, 1 and 2 in (51) for any n dividing q r -1. Also our arguments after Theorem V.6 regarding the remaining regions, Region i with 3 ≤ i ≤ ρ, hold for any length n dividing q r -1. Therefore we implicitly solve the problem of obtaining formulas on lower and upper bounds of b-symbol weights for these regions if n is an arbitrary positive number dividing q r -1.

VI. CONCLUSION

Let C be an arbitrary cyclic code of length n over F q with gcd(n, q) = 1. Let b be an integer with

We gave tight lower and upper bounds for b-symbol weights of nonzero codewords of C using algebraic curves over finite fields. We obtained a stability theorem for arbitrary cyclic codes so that the weight enumerator of b-symbol Hamming weights of C is the same as the weight enumerator of k-symbol Moreover, generalizing our bounds to the repeated root case, i.e. gcd(n, q) = 1 is open.

APPENDIX

In this appendix we provide necessary background on algebraic function fields in order to make the paper self-contained. For further details we refer, for example, 1334 to [START_REF] Garcia | Algebraic function fields over finite fields with many rational places[END_REF], [START_REF] Stichtenoth | Algebraic Function Fields and Codes[END_REF].

1335

Let K be a finite field. An algebraic function field F over 1336 K is a finite extension of the rational function field K(x) such 1337 that any element of F that is algebraic over K is in K.

of degree m such that F = K(x, y) and the minimal 1341 polynomial of y over K(x) is h(T ). We also call F as an 1342 algebraic function field without mentioning K if it is clear 1343 that the constant field is K from the context.

1344

The simplest algebraic function field is F = K(x), where 1345 [F :