
HAL Id: hal-03189428
https://hal.science/hal-03189428v2

Submitted on 1 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An adaptive parareal algorithm: application to the
simulation of molecular dynamics trajectories

Frédéric Legoll, Tony Lelièvre, Upanshu Sharma

To cite this version:
Frédéric Legoll, Tony Lelièvre, Upanshu Sharma. An adaptive parareal algorithm: application to the
simulation of molecular dynamics trajectories. SIAM Journal on Scientific Computing, 2022, 44 (1),
pp.B146-B176. �10.1137/21M1412979�. �hal-03189428v2�

https://hal.science/hal-03189428v2
https://hal.archives-ouvertes.fr

An adaptive parareal algorithm: application to the simulation of

molecular dynamics trajectories

Frédéric Legoll, Tony Lelièvre, Upanshu Sharma

October 1, 2021

Abstract

The aim of this article is to design parareal algorithms in the context of thermostated molecular
dynamics. In its original setup, the fine and coarse propagators used in the parareal algorithm solve
the same dynamics with different time-steps, with the goal of achieving accuracy in the limit of small
time-step of the integrators involved. This is typically not useful in molecular dynamics, where one is
interested in extremely long trajectories and where the time-step of the fine propagator is in practice
chosen as large as possible, that is close to the limit of stability of the numerical scheme. In this article,
we consider a version of the parareal algorithm which is better suited to molecular dynamics simulations,
and wherein the propagators involved use the same time-step while employing different potential energy
landscapes to drive the dynamics.

Although the parareal algorithm always converges, it suffers from various limitations in this context:
intermediate blow-up of the trajectory (which makes it impossible to postprocess) may be observed;
in certain cases the trajectory encounters undefined values before converging (the way the algorithm
handles them might depend on the computer architecture); more critically, the computational gain of
the algorithm in terms of wall-clock time (compared to a standard sequential integration) converges to one
when the time-horizon increases. We highlight these issues with numerical experiments and provide some
elements of theoretical analysis. We then present a modified version of the parareal algorithm wherein the
algorithm adaptively divides the entire time-horizon into smaller time-slabs where the aforementioned
issues are circumvented. Using numerical experiments on toy examples, we show that the adaptive
algorithm overcomes the various limitations of the standard parareal algorithm, thereby allowing for
significantly improved gains.

1 Introduction

A central objective in molecular dynamics (MD) is the computation of ensemble averages and dynamical
quantities, both of which involve averages over long trajectories of stochastic dynamics. Computations using
such dynamics are often difficult in practice since typical quantities of interest evolve on time-scales which
are orders of magnitude larger than those accessible by classical numerical methods. Consequently, the
development of numerical algorithms which speed up computations is a challenging perspective in MD. More
specifically, these issues arise due to extremely high-dimensional non-convex potential energy landscapes,
which trap the system in a certain region for extremely long times, before letting it explore other parts
of the state space (a phenomenon called metastability). In practice, this issue may be mitigated by using
approximate potentials, which are cheaper to compute (and thus make it less challenging to reach the
requested long time horizons) while retaining the essential features of the original potential. However this
strategy suffers from the obvious drawback that it only captures the original dynamics approximately.

In this article we present a numerical method that aims at efficiently simulating the original dynamics
over long trajectories. To this end, we consider an adjusted version of the parareal algorithm, using an
approximate potential as a predictor and the original potential as a corrector. We recall that the parareal
algorithm has been originally proposed in [LMT01] to efficiently solve initial-value problems using parallel-
in-time computations. More precisely, the algorithm exploits the presence of multiple processors to reduce

1

the wall-clock time needed to obtain a solution on some time interval. It is based on a decomposition of the
time interval into subintervals and makes use of a predictor-corrector strategy, in which the calculation of the
corrections is performed concurrently, in parallel, on the different processors that are available. The algorithm
has been successfully applied to many problems, see e.g. [FC03, FHM05, GEF05]. Several variants of the
algorithm have been proposed for specific applications: we refer e.g. to [BBK10, Mad07], [LLS13] and [Eng09]
for multiscale-in-time problems, to [DLBLM13, DM13] for Hamiltonian ODEs or PDEs, to [Bal, LLMS20] for
stochastic differential equations (with a specific emphasis, in [LLMS20], to high-dimensional SDEs stemming
from MD and for which qualitative features, such as positivity and norm conservation of the associated
probability distribution, are to be preserved), and also to [FC03, GLFE06].

Let us now briefly introduce the classical version of the parareal algorithm (as first presented in [LMT01]
and next reinterpreted in [BM02]). To fix the ideas, we consider the simple evolution problem given by

dx

dt
= f(x), x(0) = x0, x(t) ∈ Rd, t ∈ [0, T]. (1.1)

Assume that we have at hand two propagators for this system: F∆t is a fine, expensive propagator which
accurately approximates the exact flow of (1.1), and C∆t is a coarse, less expensive propagator which is also
less accurate. In the classical approach, F∆t and C∆t are often integrators of the same dynamics (1.1) over
the time range ∆t with a given discretization scheme, using a small time-step for F∆t and a large time-step
for C∆t. More precisely, F∆t advances the system over the time ∆t by performing several time-steps of
small length δtF , whereas C∆t advances the system over the time ∆t by performing a few (or even only one)
time-steps of length δtC > δtF . The parareal algorithm iteratively builds a sequence of N -tuples {xkn}1≤n≤N
(with N = T/∆t) such that, at every parareal iteration k ≥ 0, xkn is an approximation of x(n∆t). For k = 0,
the initial approximation is obtained using the coarse propagator C∆t in a sequential manner:

xk=0
n+1 = C∆t(xk=0

n), xk=0
n=0 = x0.

The subsequent parareal iterations are given by

xk+1
n+1 = C∆t(xk+1

n) + F∆t(x
k
n)− C∆t(xkn), xk+1

n=0 = x0. (1.2)

The solution to (1.2) can be computed efficiently in parallel using the following procedure. Once the solution
at a parareal iteration k has been computed, i.e. once {xkn}0≤n≤N is known, the corrections F∆t(x

k
n)−C∆t(xkn)

are first computed in parallel over each subinterval [n∆t, (n+ 1)∆t], 0 ≤ n ≤ N − 1. These corrections are
then propagated sequentially, by adding C∆t(xk+1

n) to the stored correction F∆t(x
k
n)−C∆t(xkn), which yields

the solution at parareal iteration k + 1. Note that the fine propagator is never used sequentially in the
algorithm. A crucial property of the parareal algorithm is that, for sufficiently large k, it always converges
to the reference solution (given by the fine propagator), since it can be checked (see e.g. [BBM+02, BM02])
that

∀k ≥ n, xkn = Fn∆t(x0). (1.3)

This result is however not very useful to understand the computational gain one can expect from (1.2), that
we now discuss.

The computational gain of the parareal algorithm arises from the key observation that, in (1.2), the fine
propagator can be computed in parallel over different processors (since it only depends on the previous
iteration). Suppose that the cost of a single evaluation of F∆t is considerably larger than the cost of
propagating the system according to C∆t over the complete time range [0, T]. Assuming that the cost of
one call to the fine-scale propagator F∆t is c0, the cost of K iterations of the parareal algorithm is K c0.
This cost is to be compared to the cost of computing the reference solution using the fine-scale propagator
sequentially, which is equal to N c0. Assuming that the algorithm has converged after K parareal iterations,
the computational gain is then N/K. This gain is always larger than one since the number of parareal
iterations required to obtain convergence is smaller than or equal to N , in view of (1.3). In practice,
for many applications, convergence is actually reached for a number of iterations K considerably smaller
than N , thus the practical efficiency of the algorithm. A noteworthy exception is the case of hyperbolic

2

problems, where a larger number K of iterations is often needed to reach convergence, as observed e.g.
in [DLBLM13, DM13].

In this article, we are interested in accurately and efficiently computing long trajectories in the context of
MD. Specifically, we focus on the so-called Langevin dynamics (see (2.1) below), which is a popular dynamics
to simulate molecular systems at fixed temperature. In applications, it is observed that the limiting time-
step is not determined by the required accuracy of the dynamics, but by its stability: simulations are thus
performed with a time-step at the limit of stability of the numerical method. Therefore, the classical approach
to parareal algorithms as described above, with different time-steps for the fine and coarse propagators, is
not viable. Indeed, a typical choice would consist in choosing the time-step of the fine propagator close
to the limit of stability (because this is how a reference computation would be performed), and thus a
coarse propagator based on the same numerical scheme for a larger time-step would be unstable. Instead,
it is more appropriate in MD to use propagators with the same time-step but different potentials: the fine
propagator solves the Langevin dynamics with the original potential Vf , while the coarse propagator uses
an approximate potential Vc. Using different evolutions for the propagators is atypical for the parareal
literature, with the exception of [BBM+02] (see also [DLBLM13, Section 7]), where the authors employ
propagators with different dynamics and different time-steps in the context of short-time computations in
ab-initio MD. More precisely, in [BBM+02, Sect. 5], the fine and the coarse propagators both perform ab-
initio MD simulations, using pseudo-potentials (for the computation of the electronic configuration) of very
different complexity (thus the difference in cost between C∆t and F∆t, which both perform a unique time-step
to advance the system over the time range ∆t). In contrast to our work here, the dynamics considered there
is the Hamiltonian dynamics (i.e. the Newton equations of motion, integrated using a Verlet algorithm of
time-step ∆t) rather than the Langevin dynamics, and it is integrated until a rather short time horizon:
the final time corresponds to T = 30∆t. On this short time range, the parareal algorithm performs nicely,
providing accurate trajectories and a very good energy preservation after only 5 parareal iterations.

The article is organised as follows. In Section 2, we present our MD setting, including two examples
that are used throughout the article. Subsequently, in Section 3, we discuss various features of the parareal
algorithm in the context of MD. We furthermore detail two limitations when dealing with long trajectories:

• The parareal trajectory, as a function of k, typically goes through an intermediate regime wherein the
error is extremely large before converging.

• The gain N/K of the parareal algorithm converges to one as the time-horizon over which the algorithm
is used gets larger.

Both of these limitations are discussed with numerical examples, and obviously affect the utility of the
parareal algorithm in MD. In Section 4, we present an adaptive version of the parareal algorithm, which
overcomes these issues by adaptively choosing the size of the time-slab over which the trajectory is computed.
On this smaller time-slab (say [0, T̃1] ⊂ [0, T], to fix the ideas), the parareal trajectory quickly stabilises.

Once the computation has converged on [0, T̃1], the algorithm moves to the subsequent part of the time

domain (here [T̃1, T]) and again adaptively chooses the size of the time-slab (say [T̃1, T̃2] ⊂ [T̃1, T]) so that
convergence is quickly reached over that time range. The procedure is repeated until we reach the targeted
time horizon T . The numerical results reported in Section 4 show that the gain dramatically improves
compared to the standard version of parareal, which consists in running the algorithm at once on the whole
time range [0, T]. In Section 5 we present conclusions and additional discussions. We next collect in Section 6
some theoretical analysis on a toy example, which sheds light on the limitations of the standard parareal
algorithm. From that theoretical viewpoint, studying the Langevin dynamics is challenging, and we therefore
prefer to consider a simpler problem, namely the case of (1.1) in dimension d = 1, with forces driven by
harmonic potentials. Even though simple, this case is useful for a two-fold reason. First, we observe on
that case the same limitations of the classical parareal algorithm as those pointed out above and discussed
in Section 3 for more realistic problems. Second, it allows to understand the interplay (on the qualitative
behaviour of the algorithm along the parareal iterations k) between the time horizon T and the difference
between the coarse and fine propagators. The analysis helps to quantify (on admittedly a toy-problem case)
the expected fact that the algorithm can be used on longer time windows whenever the coarse propagator

3

is closer (in a sense made precise) to the fine propagator. Stated otherwise, for a given couple of coarse and
fine propagators, there is a maximum time horizon beyond which the parareal algorithm does not behave
satisfactorily. Our main result in that section is Proposition 6.5.

2 The molecular dynamics model problem

In this article we consider the Langevin dynamics

dqt = pt dt,

dpt = −∇V (qt) dt− γ pt dt+
√

2 γ β−1 dWt,
(2.1)

with initial condition (q0, p0). Here (qt, pt) ∈ R2md are the positions and momenta at time t of m particles
in dimension d, V : Rmd → R is the potential energy of the system, γ > 0 is the friction coefficient, β is the
inverse temperature and Wt is a standard Brownian motion in Rmd. We have set the mass of each particle
to unity for simplicity. Throughout this article, we use the following numerical scheme (see [JS12, Eq.(4.2)])
to integrate the Langevin dynamics:

pn+ 1
4 = pn − ∆t

2
∇V (qn),

qn+1 = qn + ∆t pn+ 1
4 ,

pn+ 1
2 = pn+ 1

4 − ∆t

2
∇V (qn+1),

pn+1 = e−γ∆t pn+ 1
2 +

√
(1− e−2γ∆t)β−1Gn,

(2.2)

where Gn is a standard Gaussian random variable. This scheme uses a Verlet integration for the Hamiltonian
part of (2.1) (which corresponds to the first term in the right hand side of both lines in (2.1)) and an explicit
solution for the Ornstein-Uhlenbeck part of (2.1) (which corresponds to the last two terms in the right-hand
side of the second line of (2.1)).

As stated in the introduction, in the MD context, it is more appropriate to use propagators with the same
time-step but different potentials V , and thereby the propagators solve different dynamics. Henceforth, the
fine (resp. coarse) propagator F∆t (resp. C∆t) corresponds to (2.2) with the potential Vf (resp. Vc). Note
that F∆t and C∆t amount to advancing the system for a time range ∆t by performing a single time-step
of the integrator (2.2). Of course, for the parareal algorithm to converge, it is crucial that the coarse and
fine dynamics are driven by the same noise. We thus use Gaussian increments Gn in (2.2) which, at a given
time-step n, are the same for both propagators F∆t and C∆t and throughout all parareal iterations.

Remark 2.1 (Overdamped Langevin dynamics). While here we focus on the Langevin dynamics since it
is preferred in practice, other choices are also possible. For instance, one can use the overdamped Langevin
dynamics

dqt = −∇V (qt) dt+
√

2β−1 dWt, (2.3)

which arises as the large-friction limit of (2.1) (see [LRS10, Section 2.2.4]). It turns out that the difficulties
we encountered when applying the parareal algorithm described in this article to the Langevin dynamics
also appear when working with its overdamped limit (2.3).

2.1 Two examples

We now present two pairs of fine and coarse potentials that are used throughout this article.

4

2.1.1 One-dimensional harmonic potentials (Har-1d)

In the first example, we consider Vf and Vc to be two different harmonic potentials in dimension d = 1, i.e.,
for some ω > 0 and for any q ∈ R,

Vf (q) =
q2

2
, Vc(q) = ω

q2

2
. (2.4)

We consider this toy example since it has sufficient complexity to exhibit, in the parareal context, the same
issues as those appearing with more complex choices while also being amenable to theoretical analysis (see
Section 6 below).

2.1.2 Two-dimensional Lennard-Jones 7-atom cluster (LJ7-2d)

For a more realistic model, we consider a 7-atom (m = 7) cluster in dimension d = 2 with pairwise Lennard-
Jones interaction. The energy landscape has four local minima which correspond to four stable configurations
(see Figure 1). The fine potential Vf : R14 → R is

Vf (q) =
1

2

∑
i,j∈{1,...,7}

i 6=j

φf (|qi − qj |), φf (r) = r−12 − 2 r−6,

where | · | is the 2-dimensional Euclidean norm. The coarse potential Vc is the harmonic approximation of Vf
around the initial well, i.e. the well in which the initial condition lies (see Appendix A for explicit formulae).
In practice, we choose the initial position to be the global minimizer of the potential energy, that is the
deepest well (see Figure 1a). The choice of initial momenta is discussed in the following Section 2.2.1.

6 7 3

1 2

5 4

(a) V = −12.53

6 7

3

1

2

5 4

(b) V = −11.50

6 7

3

1

2

5 4

(c) V = −11.48

6

7

3

1 2

5 4

(d) V = −11.40

Figure 1: Local minima of the potential energy for the Lennard-Jones cluster with seven atoms in 2D. Also
indicated are the associated potential energy levels.

2.2 Implementation issues

We now briefly discuss some implementation issues.

2.2.1 Initial conditions

We first discuss how initial conditions are chosen. The invariant measure for the Langevin dynamics is the
Boltzmann-Gibbs measure with density

µ(q, p) = Z−1 exp

(
−β
[
|p|2

2
+ Vf (q)

])
,

where | · | is the Euclidean norm in Rmd and where Z is the normalisation constant which ensures that µ is
a probability density. In the Har-1d case, since Vf (q) = q2/2, we simply draw the initial condition q0 and
p0 independently according to N (0, β−1). Throughout this article, for Har-1d, we work with β = 3, and the
corresponding initial condition is (q0, p0) = (−0.386593, 0.48453).

5

For the LJ7-2d, we cannot use the same strategy as above to choose an initial condition, since it is in
practice very challenging to draw q0 according to the correct probability measure. Instead we follow a burn-
in procedure which we now describe. We start the particles with random initial momenta (drawn from the
invariant measure N (0, β−1 Id) for the momenta, where Id is the identity matrix of size md×md) and initial
positions at the bottom of the deepest well corresponding to Figure 1a (six atoms located π/3 radians apart
on a unit circle and one in the centre), and we next run the Langevin dynamics. We integrate this dynamics
until the time Nburn−in ∆t with Nburn−in chosen such that the average kinetic energy (averaged over time,
dimension and number of atoms)

1

14Nburn−in

Nburn−in∑
n=1

∑
i∈{1,...,7}

1

2

∣∣pi(n∆t)
∣∣2

is sufficiently close to its target value 1/(2β). This configuration, obtained at time Nburn−in ∆t, is then
chosen as the initial condition for the parareal procedure.

2.2.2 Translation-invariance for LJ7-2d

We impose translation invariance, since it ensures that translating the entire system does not contribute to
the errors. This is implemented by using zero-mean noise in both directions. More precisely, for each particle
i ∈ {1, . . . , 7} and at each time-step, we draw a Gaussian random variable Gix for the x-coordinate, and Giy

for the y-coordinate (recall (2.2)). The idea is then to replace Gix by Gix −
1

7

7∑
j=1

Gjx, and likewise Giy by

Giy−
1

7

7∑
j=1

Gjy. Using that Vf satisfies

7∑
j=1

∂Vf

∂qjx
=

7∑
j=1

∂Vf

∂qjy
= 0, we then deduce from (2.2) that, if

7∑
j=1

pjn = 0,

then

7∑
j=1

pjn+1 = 0. The center of mass of the system hence does not move. We note that this scheme actually

corresponds to integrating the Langevin dynamics projected on the manifold
{

(q, p) ∈ R14,
∑7
j=1 p

j = 0
}

.

We underline that the conclusions drawn on that case also hold in the absence of translation invariance, that
is when we directly implement (2.2) without modification of the Gaussian increments. Since it is commonly
employed in MD, we have decided here to implement this translation-invariance feature.

2.2.3 Parareal within a single well of the potential energy

In all the experiments on LJ7-2d, we work with parameters (time horizon T , friction coefficient γ, inverse
temperature β, . . .) such that the fine trajectory remains within the deepest well in which it initially lies.
This requirement is imposed keeping in mind that using a harmonic approximation around the initial well
is not a reasonable choice when the trajectory is close to a saddle point or leaves the well. The question of
choosing a good coarse potential is a challenging one and often requires an understanding of the system being
studied. In this article we are interested in the general features of the parareal algorithm, and consequently
the study of better coarse potentials on the entire state space is left to future work (see Section 5.2 below
for additional details).

2.2.4 Choice of the friction coefficient

One possible way to choose the friction coefficient γ in the Langevin equation (2.1) is by using the syn-
chronisation rate. Considering two initial conditions which are close one to each other, we write the two
dynamics (2.1) starting from these two initial conditions. Assuming that we can linearize the potential,
we take the difference between both dynamics (the Brownian motions thus cancelling each other) and we
look for γ such that the difference (both in position and momentum) converges to zero with the largest

6

possible rate. This is the case when γ is set at the so-called synchronisation rate, which is equal to twice the
square-root of the smallest eigenvalue of the Hessian of the potential at the bottom of the well.

In the Har-1d case, where Vf (q) = q2/2, the synchronisation rate is thus equal to 2. In the LJ7-2d
case, we ignore the first three eigenvalues of the Hessian, which correspond to translation and rotation in
dimension d = 2, and are very close to zero. The first non-zero eigenvalue for this setup is 69.1, which gives
a synchronisation rate of 16.62.

We will not systematically use exactly these values, but we will consider values of γ of this order of
magnitude for each system. We will observe below that the efficiency of the parareal algorithm significantly
depends on γ.

3 Numerical results using the classical parareal algorithm

We now introduce some quantities useful to study the parareal algorithm. For k ∈ {1, . . . , N}, the relative
error (for the entire trajectory) between two consecutive parareal trajectories is defined as

E(k,N, γ, β) =

∑N
n=1 |qkn − qk−1

n |∑N
n=1 |q

k−1
n |

. (3.1)

Since the parareal algorithm always converges, for a fixed parameter δconv > 0 (convergence criterion), we
stop the algorithm at the first parareal iteration k for which E(k,N, γ, β) < δconv. For a given δconv, the
gain of the parareal algorithm is then defined as

gain(N, γ, β) =
N

k
. (3.2)

Note that this definition of gain assumes in particular that the cost of the coarse propagator is negligible
in comparison with the cost of the fine propagator. This definition is also centered around the notion of
wall-clock time, in contrast to the notion of total CPU cost. As soon as several parareal iterations are used,
the total CPU cost of the parareal algorithm is larger than the cost of a single, sequential computation of the
trajectory using the fine propagator. But the wall-clock time may be smaller, and this is precisely quantified
by (3.2). For the sake of simplicity we choose

δconv = 10−5 (3.3)

for all the numerical experiments in this article.

The relative error (for the entire trajectory) between the fine trajectory (which, we recall, is denoted
(q(t), p(t)) for 0 ≤ t ≤ T = N ∆t) and the parareal trajectory is

Ef (k,N, γ, β) =

∑N
n=1 |q(n∆t)− qkn|∑N

n=1 |q(n∆t)|
. (3.4)

Since the parareal algorithm always converges, we have E(N + 1, N, γ, β) = 0 = Ef (N,N, γ, β).

Remark 3.1 (Error at terminal time). Note that the relative error E defined by (3.1) is quite strong since

it requires convergence over the entire trajectory. Another (weaker) measure of error is
|qkN − q

k−1
N |

|qk−1
N |

, which

keeps track of the relative error between two consecutive parareal trajectories only at the terminal time-step.
On the examples we have considered, it turns out that this error scales the same way as E. Consequently,
in this article, we use the relative errors for the entire trajectory (3.1) or (3.4) as a measure of error. We
comment in Section 5.1 below on other measures of error, well adapted to the MD context.

The standard parareal algorithm exhibits two crucial features when computing long trajectories (i.e., when
T = N∆t is large) which we now discuss.

7

3.1 Intermediate explosion of error for large times

For small N , the parareal trajectory converges to the reference trajectory fairly quickly when k increases.
This is illustrated in Figure 2, where we plot the relative error Ef between the parareal and the fine trajectory
as a function of k for various values of γ. For k of the order of 10, we have a converged trajectory over
a time horizon N∆t with N of the order of 100 (thus a gain of the order of 10). When γ increases, this
convergence improves as well. This is explained by the fact that γ is the friction parameter in the Langevin
dynamics (2.1), and therefore increasing γ leads to the system becoming increasingly dissipative and thus
less movement of the particles. In addition, for very large values of γ, the physical forces term in the second
line of (2.1) is dominated by the next two terms, and thus the coarse and the fine propagators integrate
dynamics which are close one to each other.

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

2 4 6 8 10 12 14

E
f
(k
,2

0
0
,γ
,3

)

k

γ = 1
γ = 3
γ = 5

(a) Har-1d: ω = 0.1, N = 200, T = N∆t = 10

10−7

10−6

10−5

10−4

10−3

10−2

10−1

2 4 6 8 10 12 14

E
f
(k
,1

00
,γ
,1

0)

k

γ = 15
γ = 20
γ = 30
γ = 40

(b) LJ7-2d: N = 100, T = N∆t = 1

Figure 2: Plot of Ef (k,N, γ, β) as a function of k for various γ. Left: Har-1d with ∆t = 0.05, ω = 0.1, β = 3
and N = 200. Right: LJ7-2d with ∆t = 0.01, β = 10 and N = 100.

We now comment upon the non-monotone profile of Ef for γ = 15 that we observe in Figure 2b. As
we shall now see, this is a typical feature of the parareal algorithm. When T = N∆t is large, the parareal
trajectory has an intermediate non-monotone error profile with respect to the fine trajectory: the error on
[0, T] typically increases to very large values when k increases, before eventually decreasing and converging
to zero. This is obvious in Figure 3, where we have run the same experiments as in Figure 2 (with essentially
the same values of γ) but for a much larger value of N . We observe that the error Ef reaches extremely large
values for intermediate values of k. In fact, in some cases, the parareal trajectory has undefined (NaN) values
for certain parareal iterations, before converging when k becomes closer to N . For instance, the curve for
γ = 30 in Figure 3b corresponds to such a situation: it is not complete and reaches NaN values at k ≈ 240.

This phenomenon is explained by the fact that the parareal trajectory goes far away from the fine trajectory
(and in fact takes extremely large values) before eventually converging. This is illustrated in Figure 4 for
Har-1d (where we have set N = 3000 as in Figure 3a), where, for an intermediate value of k, the parareal
trajectory has values that are orders of magnitude larger than the fine, reference trajectory. We work here
with γ = 3, which corresponds to the purple curve in Figure 3a. We observe there that the error is maximal
for k ≈ 40. On the top right of Figure 4, we show the parareal trajectory for k = 40: for n ≥ 1400, it
takes values that are extremely large compared to the reference values, thus the very large error. When
we perform additional parareal iterations and consider k = 80, the error is much smaller, as can be seen in
Figure 3a, although still large. The parareal trajectory for k = 80 (see bottom left of Figure 4) now blows
up only for n ≥ 2700, and is a least of the correct order of magnitude (if not accurate) for n ≤ 2700. We can
expect from Figure 3a that the error is small for k = 150, a fact confirmed by the plot on the bottom right
of Figure 4: the parareal trajectory for k = 150 can essentially be superimposed to the reference trajectory
shown on the top left of Figure 4.

8

10−6

10−4

10−2

100

102

104

106

108

1010

1012

50 100 150 200 250 300 350 400 450 500

E
f
(k
,3

0
00
,γ
,3

)

k

γ = 3
γ = 5
γ = 7

(a) Har-1d: ω = 0.1, N = 3000, T = N∆t = 150

10−5

100

105

1010

1015

50 100 150 200 250 300 350

E
f
(k
,5

00
,γ
,1

0)

k

γ = 15
γ = 20
γ = 30
γ = 40

(b) LJ7-2d: N = 500, T = N∆t = 5

Figure 3: Plot of Ef (k,N, γ, β) as a function of k for various γ. Left: Har-1d with ∆t = 0.05, ω = 0.1, β = 3
and N = 3000. Right: LJ7-2d with ∆t = 0.01, β = 10 and N = 500. The gap in the right figure for γ = 30
corresponds to undefined (NaN) values for Ef .

Remark 3.2. In Figures 2, 3 and 4, we have chosen to work with ω = 0.1 for the coarse potential in the
Har-1d case (which is then a bad approximation of the fine potential) to mimick the fact that, for realistic
examples, it may be difficult to design coarse potentials Vc which are at the same time less expensive to
compute than Vf and sufficiently close to Vf . On purpose, we have chosen here a bad coarse potential.

The fact that the parareal trajectory goes extremely far away for intermediate values of k is not the sole
reason for slow convergence of the iterations. Actually, for large T , the parareal algorithm converges slowly
even when stable. This is illustrated in Figure 5, where we use the following “trust-region based” fine and
coarse potentials:

V trust
f (q) =


q2

2
if q ∈ [−3, 3]

0 otherwise
, V trust

c (q) =

ω
q2

2
if q ∈ [−3, 3]

0 otherwise
. (3.5)

We consider the same numerical parameters as in Figure 4. We see on the top left plot of that figure that
the fine trajectory always satisfies |q(t)| ≤ 3. Changing the fine potential from Vf to V trust

f hence does

not affect the fine, reference trajectory. By using these potentials V trust
f and V trust

c , we make sure that the
parareal trajectory experiences zero force when leaving the trust-region. As a result, the parareal trajectory
(and consequently the error) stays bounded (see Figure 5). However, the parareal trajectory using these
modified potentials converges to the reference trajectory as slowly as when using the original propagators.
This substantiates the claim that the parareal algorithm, even when stable, converges slowly for large time
horizon T > 0. This is consistent with the theoretical analysis for harmonic potentials presented in Section 6
(see in particular Figures 12a and 12b, in which the error remains bounded but may converge extremely
slowly to zero).

The intermediate explosion discussed above leads to various practical issues. In MD, one is typically
interested in certain features of the trajectory that need to be calculated online, such as the current basin of
attraction. However, these quantities cannot be computed (or are meaningless) for such parareal trajectories
due to the unphysically large values. Furthermore, the NaN values pose obvious issues since they are
architecture dependent.

In Figure 6, we plot E (the relative error between two consecutive iterations) and Ef (the relative error
with respect to the reference trajectory) as a function of k, on a simulation performed with again the same
numerical parameters as in Figure 3. Recall that the parareal algorithm only uses E, and not Ef , as a

9

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000 2500 3000

n

p(n∆t)
q(n∆t)

10−4

10−2

100

102

104

106

108

1010

1012

1014

0 500 1000 1500 2000 2500 3000

n

p40
q40

10−4

10−2

100

102

104

0 500 1000 1500 2000 2500 3000

n

p80
q80

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000 2500 3000

n

p150
q150

Figure 4: Plot of fine and parareal trajectories as a function of the time index for Har-1d with ∆t = 0.05,
N = 3000, β = γ = 3 and ω = 0.1. Top left: plot of the fine trajectory. Top right: plot of (q40

n , p
40
n) in

log-scale for k = 40 (the gaps in the graph correspond to negative values). Bottom left: plot of (q80
n , p

80
n) in

log-scale for k = 80 (the gaps in the graph correspond to negative values). Bottom right: plot of (q150
n , p150

n)
for k = 150. While the trajectory is stable at larger k, it blows up for intermediate k.

10−6

10−4

10−2

100

102

104

106

108

1010

1012

0 50 100 150 200 250 300 350 400 450 500

E
f
(k
,3

00
0
,3
,3

)

k

Classical parareal
Trust-region based propagators

Figure 5: Plot of Ef (k, 3000, 3, 3) as a function of k for Har-1d with ω = 0.1, ∆t = 0.05, N = 3000 and
β = γ = 3 with different propagators. The classical parareal curve corresponds to the potentials defined
by (2.4). The trust-region curve corresponds to the potentials defined by (3.5).

10

stopping criterion. However, as clearly seen on the figure, the explosion of the parareal trajectory and
therefore Ef can be correlated to an increase in E beyond a certain threshold. This observation plays a key
role in the adaptive parareal algorithm introduced in Section 4.

1

2

3

4

5

6

7

8

9

5 10 15 20 25 30 35 40 45 50

k

E(k, 3000, 3, 3)

(a) Har-1d: ω = 0.1, γ = β = 3, ∆t =
0.05, N = 3000, T = N∆t = 150

10−4

10−2

100

102

104

106

108

1010

1012

50 100 150 200 250 300 350 400 450 500

k

E(k, 3000, 3, 3)
Ef (k, 3000, 3, 3)

(b) Har-1d: ω = 0.1, γ = β = 3, ∆t =
0.05, N = 3000, T = N∆t = 150

10−5

100

105

1010

1015

50 100 150 200 250 300 350

k

E(k, 500, 15, 10)
Ef (k, 500, 15, 10)

(c) LJ7-2d: γ = 15, β = 10, ∆t = 0.01,
N = 500, T = N∆t = 5

Figure 6: Left and Center: Plot of E(k,N, γ, β) and Ef (k,N, γ, β) for Har-1d for the first 50 (resp. 500)
parareal iterations (the left plot is a zoom of the center plot for the first parareal iterations; it clearly
shows the maximum value attained by the error E, a value which is to be compared with the threshold
δexpl introduced in Section 4 below). Right: Plot of E(k,N, γ, β) and Ef (k,N, γ, β) for LJ7-2d for the first
350 iterations. Note that an increase in E(k,N, γ, β) beyond a threshold indicates explosion of parareal
trajectory.

3.2 Gain converges to one for large N

We now focus our investigations on the gain provided by the algorithm, which is defined by (3.2).

We numerically observe that the gain converges to one when N (or equivalently T) becomes larger, and
consequently the parareal algorithm does not offer any advantage, for long time simulations, over using the
fine integrator in a sequential manner. This is illustrated in Figure 7, where we plot the gain for both
examples as a function of N for different values of γ. Note that, while increasing γ improves the gain at
fixed N (recall that we have already observed in Figure 2 that the error is smaller when considering larger
values of γ), the gain nevertheless converges to one when N →∞, whatever the value of γ.

0

5

10

15

20

25

30

35

40

45

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ga
in

(N
,γ
,3

)

N

γ = 1
γ = 3
γ = 5

(a) Har-1d: ω = 0.1, T ∈ {5, 10, . . . , 500}

0

2

4

6

8

10

12

14

16

18

20

100 200 300 400 500 600 700 800 900 1000

ga
in

(N
,γ
,1

0)

N

γ = 15
γ = 30
γ = 50
γ = 70

(b) LJ7-2d: T ∈ {1, 2, . . . , 10}
Figure 7: Plot of gain(N, γ, β) as a function of N for various γ. Left: Har-1d with ∆t = 0.05 and β = 3.
Right: LJ7-2d with ∆t = 0.01 and β = 10.

An expected feature of the parareal algorithm is that the gain decreases as the coarse potential becomes a

11

worse approximation of the fine integrator. This is illustrated in Figure 8, where we plot the gain for Har-1d
case, as a function of ω, for fixed N , γ and β. As expected, the gain decreases as ω takes values further away
from the reference value ωref = 1. A similar conclusion also follows from the theoretical analysis presented
in Section 6. Comparing the left and the right plot in Figure 8, we also observe that the algorithm behaves
differently whether ω > ωref or ω < ωref , a fact again consistent with the analysis of Section 6, where the
sign of y defined by (6.4) (or equivalently the sign of ω − ωref) matters.

0

100

200

300

400

500

600

700

800

900

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ga
in

(5
00

0,
3,

3)

ω

50

100

150

200

250

300

350

2 4 6 8 10 12

ga
in

(5
00

0,
3,

3)
ω

Figure 8: Plot of gain(5000, 3, 3) for Har-1d (with β = γ = 3, ∆t = 0.05 and N = 5000, hence T = N∆t =
250) as a function of ω. Left: ω < 1. Right: ω > 1. Note the different scale on the vertical axis of the two
curves.

In Table 1 (given at the end of Section 4 below), we collect in blue the gains for LJ7-2d for various γ and
β. Note that, for smaller β, the gain is rather insensitive to the value of β, whereas it considerably increases
for β ≥ 18. This is due to the fact that for larger β, the effect of the noise becomes less pronounced in
the Langevin dynamics and the system tends to stay close to the bottom of the well, where the harmonic
approximation of the potential is an excellent approximation. In contrast, for smaller β, the noise has a
considerable effect on the trajectory, which explores a much larger part of the state space.

4 Adaptive algorithm

Let us summarise the two important observations from Section 3:

• The relative error between the fine and the parareal trajectory decreases when T decreases. We have
observed this behaviour in all the above numerical experiments. This behaviour is also consistent with
the theoretical analysis presented in Section 6.

• If the relative error between consecutive parareal trajectories remains larger than some threshold (say
larger than 1), then the gain of the parareal algorithm is very limited (see in particular the discussion
at the end of Section 3.1, where values of E larger than 1 are correlated with blow-up of the error).

Based on these observations, we now introduce an adaptive parareal algorithm.

Starting from the time-slab [0, T], the idea is to run the parareal algorithm until the relative error between
consecutive trajectories is either larger than an explosion threshold δexpl > 0 (we denote kcur the parareal
iteration at which this is attained), or smaller than the convergence threshold δconv (which, we recall, has
been fixed at δconv = 10−5, see (3.3)). In the latter case, the method has converged on the time range [0, T].
In the former case, for the parareal iteration kcur, we find the first time iteration Nfinal ≤ N for which the
relative error exceeds δexpl, and change the slab to [0, (Nfinal − 1)∆t]. We then proceed with the parareal
iterations on the smaller time-slab [0, (Nfinal − 1)∆t] (note that we do not need to perform again the first

12

kcur iterations, we can just proceed from the knowledge of {xkcurn }0≤n≤Nfinal−1), until the relative error (now
of course on [0, (Nfinal − 1)∆t]) between consecutive trajectories is either larger than δexpl, or smaller than
δconv. In the latter case, the method has converged on the time range [0, (Nfinal − 1)∆t]. In the former case,
we again reduce the size of the time-slab. We hence continue to find smaller and smaller slabs until the
parareal algorithm converges, and we denote [0, T̃1] = [0, m̃1∆t] the slab which has eventually been found.

Once we have a converged parareal trajectory on [0, m̃1∆t], we proceed with the next part of the time
range and define the new time-slab as [m̃1∆t, T]. We proceed with the parareal iterations (starting from
the converged configuration at time m̃1∆t), and possibly reduce the size of the time-slab to [m̃1∆t, m̃2∆t]
in order to reach convergence.

This procedure is repeated until we have reached the time horizon T .

The pseudocode for this algorithm is presented in Algorithm 1, where we use the following notation for
the relative error over a given time interval: for Ninit, Nfinal ∈ N with Ninit ≤ Nfinal and two trajectories
{xprev

n }Ninit≤n≤Nfinal
and {xcur

n }Ninit≤n≤Nfinal
, the relative error is

E(Ninit, Nfinal;x
prev, xcur) =

∑Nfinal

n=Ninit
|xcur
n − xprev

n |∑Nfinal

n=Ninit
|xprev
n |

.

The relative error between two consecutive parareal trajectories is computed in line 11 of the algorithm. We
actually do not wait to reach the current end point of the time-slab to compute it, but rather compute it for
each new time point in [Ninit∆t,Nfinal∆t], and exit the computation (to redefine a new endpoint) whenever
this relative error is larger than δexpl. Note that it is of course advantageous to compute independently the
numerator and the denominator of this relative error (which are easy to increment for each new value of
xcur
n+1, with Ninit +1 ≤ n+1 ≤ Nfinal). The while instruction on line 5 corresponds to the parareal iterations:

as long as δ > δconv (no convergence yet) and δ < δexpl (no explosion), we proceed with the iterations. Note
that we always exit this while loop, since we know that, for sufficiently large k, the parareal algorithm
converges (recall (1.3)): if the trajectory does not blow up (i.e. if δ remains smaller than δexpl), then the
algorithm reaches some iteration where δ < δconv. The else condition on line 20 corresponds to the case
δ < δconv (since we have exited the while loop, we can only have δ > δexpl or δ < δconv).

The key parameter in the adaptive algorithm is the threshold of explosion, which we have denoted by δexpl.
More precisely, the algorithm adaptively chooses the slab size for which the relative error is smaller than
δexpl. This means that for smaller δexpl, these slabs are of smaller size and we need a larger number of slabs
to reach the final time horizon T . In contrast, if δexpl were chosen very large, the relative error would always
be smaller than δexpl and a unique slab, namely [0, T], would be used. This is illustrated in Figure 9 for the
Har-1d case for two large values of N . The influence of δexpl on the gain is discussed below. We simply point
out for now that, in this particular case and for N = 5000 (see Figure 10a and also, for larger values of N ,
Figure 11a), the optimal choice for best gain is δexpl = 5. Figure 9 shows that the algorithm builds 4 slabs
(resp. 20 slabs) to converge on [0, N∆t] with N = 5000 (resp. N = 30000), and the size of these slabs varies
from one to the next. The number of CPUs required in practice to obtain a perfect parallelization of the
fine propagators thus corresponds to the largest slab-size. For instance, the case N = 30000 and δexpl = 1
(resp. δexpl = 5) requires close to 440 (resp. 2700) CPUs. While this may be considered as a large number
(and while some of these CPUs are not used when the slab size is shorter), it is considerably less compared
to the classical parareal algorithm which would require N = 30000 CPUs. Furthermore the number of CPUs
required is fairly robust when N increases (compare the left and the right plots of Figure 9, e.g. for δconv = 1
and for δconv = 3). We also observe that the fluctuation of the size of the slabs seems to depend on δexpl,
and seems to be larger when δexpl is larger.

We define the cost (as above, in terms of wall clock time and neglecting the cost of the coarse propagator
compared to the fine propagator) for the adaptive parareal algorithm as follows. Consider a tentative time-
slab [m̃j∆t, T], which has possibly been eventually shortened to [m̃j∆t, m̃j+1∆t] in order for the parareal
iterations to reach convergence on that interval. Since the fine propagations are performed in parallel, the
cost of the algorithm over the time-slab [m̃j∆t, m̃j+1∆t] is the total number Cj of parareal iterations that

13

Algorithm 1: Adaptive parareal algorithm

Numerical parameters: N , δconv, δexpl

1 Set Ninit := 0, Nfinal := N and δ := (δconv + δexpl)/2;
2 Compute {xcur

n }Ninit≤n≤Nfinal
: xcur

0 := x0 and sequential update xcur
n+1 := C∆t(xcur

n);
3 Set Cost := 0;
4 while Ninit < N do

5 while δ ∈ [δconv, δexpl] do

6 Define {xprev
n }Ninit≤n≤Nfinal

as xprev
n := xcur

n ;
7 Compute {Jn}Ninit≤n≤Nfinal

(in parallel): Jn := F∆t(x
prev
n)− C∆t(xprev

n);
8 Cost = Cost +1;
9 for n← Ninit to Nfinal − 1 by 1 do

10 xcur
n+1 := C∆t(xcur

n) + Jn;
11 Compute the relative error δ = E(Ninit, n+ 1;xprev, xcur);
12 if δ > δexpl then
13 Nexpl := n+ 1;
14 break; // exit the for loop if condition satisfied; we also exit the while

loop since δ is too large

15 end

16 end

17 end
18 if δ > δexpl then
19 Nfinal := Nexpl − 1;
20 else
21 Ninit := Nfinal;
22 Compute {xcur

n }Ninit≤n≤N : xcur
Ninit

:= xcur
Nfinal

and sequential update xcur
n+1 := C∆t(xcur

n);

23 Nfinal := N ;

24 end
25 Set δ := (δconv + δexpl)/2;

26 end
Output of the algorithm: {xcur

n }0≤n≤N and Cost

have been performed for the trajectory to converge on [m̃j∆t, m̃j+1∆t] (or equivalently the number of times
the fine integrator has been called to propagate the system from m̃j∆t to (1 + m̃j)∆t; of course, on the
time-slab [m̃j∆t, m̃j+1∆t], the fine propagator has to be called to propagate the system further in time than
(1 + m̃j)∆t, but this is performed in parallel and thus should not be accounted for in terms of wall-clock
time). We then define the cost of the adaptive variant as the sum of these Cj over all the time-slabs that
have been needed to reach the final time horizon T : if the time interval [0, T] has been decomposed by the

adaptive algorithm as [0, T] = ∪0≤j≤J−1[m̃j∆t, m̃j+1∆t], then the cost is defined as
∑

0≤j≤J−1

Cj . The reason

for this definition is that the computation from one time-slab to the next is performed in a sequential manner
(the trajectory should be converged on [m̃j∆t, m̃j+1∆t] before we move on to [m̃j+1∆t, m̃j+2∆t]), and thus
the wall clock times should add up. The computation of this cost is performed in line 8 of the algorithm.

Following the definition (3.2) of the gain for the classical parareal algorithm, we define the gain of the
adaptive parareal algorithm (compared to a sequential computation) as the ratio of N divided by the cost
defined above. Note that, if the adaptive variant turns out to use a unique slab to reach the final time
horizon, then both definitions of gain, (3.2) and the present one, coincide. In Figure 10 we compare the gain
of the classical and the adaptive parareal algorithm as a function of N (the targeted time horizon), for various
values of δexpl. For moderate values of δexpl (say 0.1 ≤ δexpl ≤ 5 for the Har-1d case, and 1 ≤ δexpl ≤ 102

14

0

200

400

600

800

1000

1200

1400

1600

5 10 15 20 25 30 35

sl
ab

-s
iz

e
δexpl = 1
δexpl = 3
δexpl = 5

(a) N = 5000, ∆t = 0.05 (T = N∆t = 250)

0

500

1000

1500

2000

2500

3000

20 40 60 80 100 120 140 160

sl
ab

-s
iz

e

δexpl = 1
δexpl = 3
δexpl = 5

(b) N = 30000, ∆t = 0.05 (T = N∆t = 1500)

Figure 9: We use the Adaptive parareal algorithm for the Har-1d case with ω = 0.1 and β = γ = 3. For two
different values of the time horizon (left: T = 250; right: T = 1500), and different choices of δexpl, we plot
the list of the sizes of the time-slabs found by the algorithm. For instance, when N = 5000 and δexpl = 1,
the total time interval [0, T] is eventually divided into 31 slabs, each of which of size of the order of 160
time-steps. The 12-th slab is the longest and its length is of the order of 350 time-steps. The 31st slab, which
is the last one needed to reach the final horizon, is the shortest with a length of the order of 50 time-steps.
When N = 5000 and δexpl = 5, the total time interval [0, T] is eventually divided into 4 slabs, of length close
to 1300, 1500, 1200 and 1000 time-steps.

for the LJ7-2d case), the gain seems to be fairly robust and independent of N . Comparing the left and
the right plots of Figure 10, we note that the gain increases when γ increases. As expected, for the largest
values of δexpl, the adaptive parareal algorithm is identical to the classical parareal algorithm. It thus leads
to the same gain, which converges to 1 when N increases, as already discussed in Section 3.2. For large
values of N (which is our regime of interest here), the adaptive algorithm always outperforms the classical
version. For a good choice of δexpl, we can reach a gain of the order of 30 for the Har-1d case, and of 7 for
the LJ7-2d case. In the LJ7-2d case, and in contrast to the Har-1d case, we also observe that the adaptive
variant outperforms the classical variant even for small values of N .

In Figure 11, we plot the gain as a function of δexpl, for fixed N , γ and β. Note that the gain is fairly
stable for long-times: we have already observed this in Figure 10, and we confirm this observation by
comparing the two curves in the Har-1d case in Figure 11a. The large plateau in the LJ7-2d case is due to
the fact that the relative error E has extremely high spikes (recall Figure 6c): whether we set δexpl = 0.1 or
δexpl = 100, adaptivity of the time-slabs is triggered at the same moment, corresponding to the high spikes.
The comparison between Figures 11b and 11c allows to investigate the influence of γ. We observe that, when
γ increases, the plateau increases in size as well, which is in agreement with the fact that the algorithm is
more stable when γ increases. In all the plots of Figure 11, the gain is maximal for a certain optimal choice
of δexpl, which we expect to be system-dependent. When δexpl becomes larger than the optimal choice, the
adaptive algorithm allows for larger slabs and thereby tends to behave like the classical parareal algorithm,
which explains the diminishing gain. In contrast, when δexpl is much smaller than the optimal choice, the
time-slabs become very short, and there is almost no parallelisation over different subintervals anymore, thus
again a diminishing gain.

We collect in Table 1 the gains for LJ7-2d for various γ and β, for the classical parareal algorithm (in
blue) and for the adaptive variant (in black). We observe that, when the classical variant does not perform
satisfactorily (and provides a gain close to 1), then the adaptive variant significantly outperforms it. We have
not observed gains smaller than 4 with the adaptive variant. When the classical variant already performs
in an efficient manner, then the adaptive variant provides similar (if not larger) gains. For smaller values of

15

0

5

10

15

20

25

30

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ga
in

(N
,3
,3

)

N

Classical para.
δexpl = 0.1
δexpl = 1
δexpl = 5
δexpl = 8
δexpl = 10

(a) Har-1d: ω = 0.1, γ = 3, T ∈ {5, 10, . . . , 500}

0

5

10

15

20

25

30

35

40

45

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ga
in

(N
,5
,3

)

N

Classical para.
δexpl = 0.1
δexpl = 1
δexpl = 5
δexpl = 8
δexpl = 10

(b) Har-1d: ω = 0.1, γ = 5, T ∈ {5, 10, . . . , 500}

1

2

3

4

5

6

7

8

9

100 200 300 400 500 600 700 800 900 1000

ga
in

(N
,1

6
,1

0
)

N

Classical para.
δexpl = 1

δexpl = 102

δexpl = 104

δexpl = 108

δexpl = 1025

(c) LJ7-2d: γ = 16, T ∈ {1, 2, . . . , 10}

1

2

3

4

5

6

7

8

9

10

100 200 300 400 500 600 700 800 900 1000

ga
in

(N
,3

0,
1
0)

N

Classical para.
δexpl = 1

δexpl = 102

δexpl = 104

δexpl = 108

δexpl = 1025

(d) LJ7-2d: γ = 30, T ∈ {1, 2, . . . , 10}
Figure 10: Plot of gain(N, γ, β) as a function of N for various γ for the classical and the adaptive parareal
algorithm. Top: Har-1d with ∆t = 0.05, β = 3 and γ = 3 (left) or γ = 5 (right). Bottom: LJ7-2d with
∆t = 0.01, β = 10 and γ = 16 (left) or γ = 30 (right).

16

5

10

15

20

25

30

0.1 1 2 3 4 5 6 7 8 9

ga
in

(N
,3
,3

)

δexpl

N = 1× 106

N = 2× 106

(a) Har-1d: ω = 0.1, T ∈ {5000, 10000}

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

10−2 10−1 1 101 102 103 104 105 106 107 108 109 1010

ga
in

(1
00

0,
1
6
,1

0)

δexpl

(b) LJ7-2d: T = 10

1

2

3

4

5

6

7

8

10−2 10−1 1 101 102 103 104 105 106 107 108 109 1010

ga
in

(1
20

0,
30
,1

0)

δexpl

(c) LJ7-2d: T = 12

Figure 11: Plot of gain(N, γ, β) as a function of δexpl. Top: Har-1d with ∆t = 0.05, β = γ = 3, N = 106

and N = 2 × 106. Bottom left: LJ7-2d with ∆t = 0.01, γ = 16, β = 10, N = 1000. Bottom right: LJ7-2d
with ∆t = 0.01, γ = 30, β = 10, N = 1200.

17

β
γ

1 5 10 15 20 25 30 35 40 45 50

5
1.16 1.26 1.29 1.36 1.31 1.58 1.46 1.65 1.78 1.97 2.07
3.85 4.42 4.74 5.46 6.13 6.75 7.57 8.13 9 9.9 10

8
1.3 1.07 1.36 1.38 1.13 1.44 1.46 1.43 1.44 1.45 1.55
4.38 4.69 4.97 5.68 6.13 6.41 7.3 7.63 8.2 8.85 9.71

10
1.22 1.29 1.21 1.34 1.41 1.4 1.24 1.45 1.72 1.83 1.9
4.69 5.05 5.62 6.09 6.94 7.63 8 8.69 10.41 11.11 12.04

13
1.3 1.29 1.34 1.42 1.26 1.38 1.56 1.59 1.89 2.04 2.09
5.05 5.71 6.58 7.04 7.81 8.69 10.1 11.24 12.19 12.5 12.99

15
1.29 1.3 1.42 1.44 1.24 1.69 1.69 1.93 2.22 2.07 2.96
5.46 6.29 6.76 7.41 8.26 10.1 10.53 11.76 12.05 13.89 15.38

18
1.28 1.15 1.26 1.47 1.78 1.79 2.34 2.82 3.31 4.27 4.59
5.88 6.71 7.46 8.93 9.71 10.75 11.76 13.33 14.92 15.38 16.39

20
1.22 1.42 7.75 12.34 14.08 15.87 17.86 19.61 21.74 23.81 25.64
6.58 8.33 7.75 12.34 14.08 15.87 17.86 19.61 21.74 23.81 25.64

Table 1: This table collects the gain(N, γ, β) for LJ7-2d with ∆t = 0.01 and N = 1000 for various γ and
β. The values in blue correspond to the classical parareal algorithm and those in black to the adaptive
parareal algorithm with δexpl = 1. Note that, for each different value of β, a different initial condition has
been chosen, using the burn-in procedure described in Section 2.2.1.

β, the adaptive variant performances are slightly increasing when β increases. They dramatically improve
for larger values of β. In contrast to the classical variant, the evolution of the performances of the adaptive
variant as a function of β is smoother. In addition, when γ increases, the gain of the adaptive variant steadily
increases, in contrast to the classical variant for which the gain increase may be very limited.

5 Discussions

In this article, we have considered a version of the parareal algorithm using integrators based on different
dynamics and we have outlined its limitations, which include possible intermediate explosion and poor
gain for longer trajectories. We have then introduced a modified version of the parareal algorithm which
adaptively chooses the size of the time-slabs. The adaptive variant does not show the above mentioned
shortcomings. We have observed that it systematically outperforms the classical version of the algorithm,
and that it always provides significant gains on the problems we have studied.

5.1 Some comments on alternative ideas

We comment here on some related ideas from the literature about the parareal algorithm in the MD context
and some associated numerical tests that we have performed.

Stabilising the parareal algorithm with projections. The authors of [DLBLM13] consider Hamilto-
nian systems (which have traditionally been challenging test cases for the parareal algorithm) and introduce
symmetrised variants of the parareal algorithm (we also refer to [DM13] for a study of the wave equation).
The additional idea in [DLBLM13] is to perform a projection within the parareal iteration, such that the
energy (i.e. the Hamiltonian) of the parareal trajectory matches with that of the fine trajectory. Such
a projection is of course motivated by the fact that, in the Hamiltonian setting, the energy is preserved
along the exact dynamics. In principle, similar ideas can be applied to the Langevin dynamics, wherein we
could ensure that the parareal trajectory matches the value of either the Hamiltonian (physical energy) or
of some Lyapunov function (see e.g. [Tal02, Eq. (2.1)]) along the fine trajectory. Recall in particular that

18

such Lyapunov functions (which are built by considering the Langevin dynamics without noise) are very
useful functions to explain convergence to equilibrium of the Langevin equation. Furthermore, in contrast
to the physical energy, they depend on γ, and may thus appear to be a more adapted choice to a given
Langevin dynamics than the Hamiltonian energy. It turns out that these matching algorithms lead to ex-
tremely slow convergence (if not lack of convergence at all). The reason is that the Langevin dynamics does
not have a purely dissipative structure (which would be relevant for Lyapunov matching), neither of course
a Hamiltonian structure.

γ-adaptive parareal algorithm. Recently, the authors of [MM20] consider a variant of the classical
parareal algorithm, where the time-step of the fine integrator is adaptively decreased along the parareal
iterations. The heuristics behing this strategy is that it is useless, for the first few parareal iterations, to
accurately compute the fine propagator, since these first iterations only serve as an “initial guess” for the
latter ones. This strategy is shown to lead to better gains. While decreasing the step-size is not a feasible
strategy in the MD context, a similar idea could be implemented by choosing a fine integrator which starts
at a larger value of γ (since parareal is more stable at larger γ) and then adaptively reduces γ to the original
value along the parareal iterations. While this idea offers positive results when the original dynamics starts
with large γ, it does not even converge for intermediate values of γ such as the ones discussed in this article.
A typical result is that the first parareal iterations are somewhat stable. Then, when γ decreases below a
certain threshold (irrespective of how slowly γ decreases along the parareal iterations), instabilities appear
and prevent the algorithm from converging.

Trust-region based parareal algorithm. Another possible strategy, inspired by trust-region optimisa-
tion, is to introduce a modified coarse propagator which uses the coarse potential when inside the trust-region
and the fine potential otherwise (it is thus a different – although related – idea than (3.5)). A motivation is
that instabilities appear when the trajectory leaves the domain where it should be, and that reverting to the
fine potential in that case may help fix the instabilities. It turns out that this strategy is costly in terms of
wall-clock time, since the expensive fine propagator happens to be evaluated in a sequential manner, which
defeats the purpose of the parareal algorithm in the first place. In fact, even when a zero potential (instead
of Vf) is used for the coarse-propagator outside the trust-region, the gain behaves as in the classical parareal
case (see Equation (3.5), Figure 5 and the corresponding discussion).

Trajectorial versus statistical properties. In the present context of MD, we recall that statistical
properties of the system (as opposed to individual trajectories, which is the focus of this article in view of
the definition (3.4) of the error) are of interest. They are typically less demanding in terms of accuracy
for the numerical scheme: examples abound for which the numerical trajectory is plainly wrong but its
statistical properties are very accurate. However, as we have observed, the individual trajectories provided
by the classical parareal algorithm are far away from the fine trajectories at long times. They thus cannot be
expected to yield correct averages. From the perspective of statistical quantities, the classical variant thus
presents the same limitations as for trajectory computations.

5.2 Open questions

We now summarise some open problems and describe some perspectives of this work.

Why does the parareal trajectory explode before converging? We have shown that, in several MD
cases, the parareal trajectory blows-up before eventually converging to the fine trajectory. It is yet unclear
to us why exactly such an explosion occurs. Note that this feature is not observed in the (classical) setting
when the fine and coarse propagators solve the same parabolic (i.e. dissipative) dynamics with different
time-steps. We have observed it for parabolic problems when the two propagators are based on different
dynamics (see Section 6 below, in particular Figure 12). This issue has also been observed when solving
hyperbolic problems (see e.g. [DLBLM13, Figs. 4 and 5]).

19

Global coarse potential for LJ7-2d. In this article, we have used the harmonic approximation of the
fine potential around the deepest well as the coarse potential, and we have considered initial conditions in
that deepest well. However, such an approximation is a bad choice if one is interested in conformational
changes which involve a trajectory visiting multiple wells. A natural next step of this work is thus to explore
global coarse potentials and ascertain the gain achieved by the (classical and adaptive) parareal algorithms
in this setting. We intend to explore this question in future works on more realistic physical systems, using
various force fields.

Focus on dynamical quantities. Quantities of interest in MD include thermodynamic quantities and
dynamical quantities. For the computation of the former, several methods have been proposed in the
literature (see e.g. [LRS10]). Some of them rely on the long-time integration of the Langevin dynamics (and
then a time-parallelisation tool such as the adaptive strategy introduced in this article may be very useful).
But many other strategies, based on different ideas, have been proposed. In contrast, dynamical quantities
(such as velocity autocorrelation plots, diffusion coefficients of defects – vacancies, interstitials, . . . – in a
material, exit times from a given well, to name but a few) are defined on the basis of the dynamics. In this
context, it is of paramount interest to be able to speed-up the computation of long time trajectories, for
instance using the adaptive strategy introduced here. Investigating the efficiency of parareal algorithms for
the computation of such dynamical quantities is a very interesting question, and we intend to explore it on
more realistic systems in forthcoming works.

6 Theoretical analysis on a toy problem

In the above sections, we have studied parareal algorithms for the Langevin dynamics. These are not
straightforwardly amenable to numerical analysis, because the variable in a Langevin dynamics is necessar-
ily multi-dimensional. In this section, we analyse the error between the fine (reference) and the parareal
trajectories, for a simple ODE in dimension d = 1 driven by harmonic potentials (we are going to actually
consider the same potentials Vf and Vc as in the Har-1d case, see (2.4)). As we shall see, this simpler setting
offers explicit expressions of the propagators and of the solution xkn for any n and k, which allows us to
theoretically discuss various aspects of the classical parareal algorithm that we have outlined in Section 3
on the basis of numerical simulations. Our main result is Proposition 6.5, which describes the behaviour of
the relative error as a function of n and k, depending on the quality of the coarse propagator (namely, how
close the coarse and the fine propagators are).

Let us briefly mention that several theoretical analysis of parareal algorithms have already been proposed
in the literature. We refer e.g. to [MT02, MT05], to [Bal05, SR05] for stability investigation, to [GH08]
for a numerical analysis in a nonlinear context and to [GH14] for an analysis in the specific Hamiltonian
context. To the best of our knowledge, our result below is the first one to shed light on the interplay on the
error between the quality of the coarse propagator (with respect to the fine one) and the length of the time
interval on which the parareal algorithm is used.

Remark 6.1. Our analysis below applies to the setting of this article, namely when the coarse and fine
propagators integrate different dynamics (governed by different potentials). But it also applies to the classical
case when the coarse and fine propagators integrate the same dynamics with different time-steps and/or
different numerical schemes. All what matters (see e.g. our main result, Proposition 6.5) is the value of y
defined in (6.4) below.

Consider the reference ODE
dx

dt
= −V ′f (x) = −x, x(0) = x0, (6.1)

for x : [0, T]→ R, where T > 0 is the finite-time horizon over which we study the dynamics and where Vf is
the reference potential defined by (2.4). Without loss of generality, we assume that the initial condition x0

20

is positive: x0 > 0. As before, we divide the interval [0, T] into subintervals of length ∆t with N = T/∆t.
The fine propagator F∆t corresponding to (6.1) is linear and given by

F∆t(x) = Fx, where F = exp(−∆t).

For ω > 0, we define the coarse propagator as the propagator (over the time length ∆t) of the coarse model
dxt
dt

= −V ′c (xt) = −ω xt (where Vc is the coarse potential also defined by (2.4)). We therefore have

C∆t(x) = Cx, where C = exp(−ω∆t).

Denoting by xkn the solution at the k-th parareal iteration and n-th time-step, the parareal algorithm reads

xk+1
n+1 = C∆t(xk+1

n) + F∆t(x
k
n)− C∆t(xkn) = Cxk+1

n + (F − C)xkn, xk+1
0 = x0 (6.2)

and the 0-th parareal iteration is given by

x0
n+1 = C∆t(x0

n) = Cx0
n, x0

0 = x0. (6.3)

In what follows, we fix n, and study the relative error at the terminal point between the parareal and the
fine trajectory

Rn,k =
x(n∆t)− xkn
x(n∆t)

=
xnn − xkn
xnn

where k ∈ {0, . . . , n− 1},

where we have used the parareal algorithm property that xnn = x(n∆t). Note that Rn,k is mathematically
more tractable than the relative error for the entire trajectory that we have used to present the numerical
experiments in the above sections (recall Remark 3.1). A critical parameter in this study is

y =
F

C
− 1, (6.4)

which quantifies how much the coarse and the fine propagators are far apart. Using the explicit expressions
of F and C, we have y = exp

(
(ω − 1)∆t

)
− 1, which satisfies

y > 0 if ω > 1 and y ∈ (−1, 0) if ω ∈ (0, 1).

Of course, if the coarse and fine propagators are identical, namely if ω = ωref = 1, then y = 0.

The following result provides an explicit expression for xkn in terms of y, and is useful to prove the results
below.

Lemma 6.2. For any integer n ≥ 1, define (0)n = Cn and, for any p ∈ {1, . . . , n}, define (p)n = Cn yp
(
n

p

)
.

Then, for any n ≥ 1 and any k ∈ {1, . . . , n}, we have

xkn =

k∑
p=0

(p)n x0. (6.5)

Furthermore, we have xnn = Fn x0 = x(n∆t).

Proof. Using (6.2) and (6.3), the tuple zn+1 := (x0
n+1, x

1
n+1, . . . , x

k
n+1)T ∈ Rk+1, which contains the (n+1)th

time-iteration for the first k parareal iterations, evolves according to the matrix evolution

zn+1 = Lzn, with L =


C 0 . . . 0

F − C C
. . .

. . .

0 F − C C

 ,

21

where L ∈ R(k+1)×(k+1). Using this relation and denoting z0 = (x0, . . . , x0)T the initial condition, the
iterative formula for zn is

zn = Ln z0.

Since L is a lower triangular matrix, we find

Ln =


Cn 0 0 . . . 0
(1)n Cn 0 . . . 0
(2)n (1)n Cn

...
. . .

. . .
. . .

(k)n . . . (2)n (1)n Cn

 ,

where, for any p ∈ {1, . . . , k},

(p)n =
∑

i1,...,ip=0
i1+...+ip≤n−p

Ci1(F − C)Ci2(F − C) . . . Cip(F − C)C
n−p−

p∑
α=1

iα
.

Using that C and F − C are scalar numbers (a fact that would not hold for a true Langevin equation) and
therefore commute, we get

(p)n =
∑

i1,...,ip=0
i1+...+ip≤n−p

Cn−p (F − C)p = Cn−p (F − C)p
n!

p!(n− p)!
= Cn

(
F

C
− 1

)p (
n

p

)
.

Using the definition (6.4) of y, we obtain the expression of (p)n claimed in the lemma statement and thus (6.5).

In the particular case when k = n, we recover the fine propagator, since

x0

n∑
p=0

(p)n = x0 C
n

n∑
p=0

(
F

C
− 1

)p
1n−p

(
n

p

)
= Cn

(
F

C
− 1 + 1

)n
x0 = Fn x0.

This concludes the proof of Lemma 6.2.

Using Lemma 6.2, the relative error Rn,k can be written as

Rn,k =
1

Fn x0

(n∑
p=0

(p)n x0 −
k∑
p=0

(p)n x0

)
=

1

Fn

n∑
p=k+1

Cn yp
(
n

p

)

=
n!

(1 + y)n

n∑
p=k+1

yp

Γ(p+ 1)Γ(n− p+ 1)
, (6.6)

where Γ is the gamma function satisfying Γ(n + 1) = n! for any integer n. Since we are interested in the
analysis of Rn,k as a function of k for fixed n, the term inside the summation in the right-hand side of (6.6)
is the key term that dictates the behaviour of Rn,k. The following lemma (the proof of which is postponed
until Appendix B) provides a complete characterisation of this term.

Lemma 6.3. Consider some integer n > 1 and some real number y ∈ (−1, 0) ∪ (0,∞). For p ∈ {1, . . . , n},
define

η(p) =
|y|p

Γ(p+ 1)Γ(n− p+ 1)
. (6.7)

We introduce the digamma function defined by ψ =
Γ′

Γ
. Then y satisfies one (and only one) of the following

three cases (hereafter, log denotes the natural logarithm function):

22

1. If y satisfies
log |y| < ψ(2)− ψ(n), (6.8)

then η(p) is a strictly decreasing sequence in p ∈ {1, . . . , n}.

2. If y satisfies
log |y| > ψ(n+ 1)− ψ(1), (6.9)

then η(p) is a strictly increasing sequence in p ∈ {1, . . . , n}.

3. If there exists a real number p ∈ [1, n] such that

log |y| = ψ(p+ 1)− ψ(n− p+ 1), (6.10)

then

η(p)

{
is strictly increasing for p ∈ {1, . . . , bpc},
is strictly decreasing for p ∈ {dpe, . . . , n},

(6.11)

where b·c (resp. d·e) is the floor (resp. ceiling) function. In this case, p satisfies the following bound:

min

(⌈
n|y| − 2

1 + |y|

⌉
,

⌈
(n− 1)|y| − 1

1 + |y|

⌉)
≤ p ≤ max

(⌊
(n+ 1)|y|+ 1

1 + |y|

⌋
,

⌊
(n+ 2)|y|

1 + |y|

⌋)
. (6.12)

As pointed out in the proof below, the function ψ is increasing on (0,∞). Assuming that n > 2, the
condition (6.8) (resp. (6.9)) implies that y ∈ (−1, 0) ∪ (0, 1) (resp. y > 1). Remark 6.4 below discusses in
more details the two conditions (6.8) and (6.9), and shows that the values of y such that either (6.8) or (6.9)
is satisfied become somehow “less and less likely” when n increases. In the case (6.10) (which is hence the
most “frequent” case when n is large), we see that (6.12) means that p essentially scales (when n� 1) as

p ≈ n|y|
1 + |y|

. (6.13)

Remark 6.4. We discuss here the conditions (6.8) and (6.9), in terms of y (and hence of the parameter ω
of the coarse model) and n. In view of (B.2) below, we note that ψ(n) is equivalent to log n when n→∞.
More precisely, there exists some c > 0 such that

∀n ∈ N?, −c+ log n ≤ ψ(n) ≤ c+ log n.

Condition (6.8) hence yields not only that |y| < 1, but also that |y| ≤ c/n for some universal c > 0. The
parameter y is thus very close to 0, and hence the coarse and the fine models are close one to each other.
Using y = exp

(
(ω − 1)∆t

)
− 1, it follows that (6.8) is equivalent to

ω ∈
(

1 +
1

∆t
log
[
1− exp

(
ψ(2)− ψ(n)

)]
, 1
)
∪
(

1, 1 +
1

∆t
log
[
1 + exp

(
ψ(2)− ψ(n)

)])
.

For n = 1000 and ∆t = 0.05, which are typical values used in this article, this rewrites (after rounding) as
ω ∈ (0.97, 1) ∪ (1, 1.03), which thus corresponds to ω being very close to the reference value ωref = 1. If n
increases, this domain shrinks even further.

Similarly, Condition (6.9) not only yields that y > 1, but also that y ≥ c n for some universal c > 0. The
parameter y is thus very large, and the coarse and the fine models are very far apart each other. Using again
y = exp

(
(ω − 1)∆t

)
− 1, it follows that (6.9) for y ∈ (1,∞) holds if and only if

ω > 1 +
1

∆t
log
[
1 + exp

(
ψ(n+ 1)− ψ(1)

)]
.

As before, for n = 1000 and ∆t = 0.05, this condition rewrites as ω > 150.72, namely ω taking very large
values compared to the reference value ωref = 1. If n increases, this threshold value increases further.

For the sake of completeness, and to provide some rough orders of magnitude, we note that the value

y = 1 corresponds to F = 2C, and thus ω = 1 +
log 2

∆t
. For ∆t = 0.05, this corresponds to ω = 14.86.

23

Using Lemma 6.3, the following result, which is the main result of this section, describes the behaviour of
the relative error Rn,k as a function of k for fixed n. Its proof is postponed until Appendix C.

Proposition 6.5. Fix n ∈ N with n > 1. If y ∈ (0,∞), then the sequence {0, . . . , n − 1} 3 k 7→ Rn,k is
strictly decreasing and we have the bound

0 < Rn,k ≤ 1− 1

(1 + y)n
. (6.14)

Furthermore, we have three (and only three) distinct possibilities:

1. If y satisfies (6.8), then k 7→ Rn,k is convex for k ∈ {1, . . . , n− 1}.

2. If y satisfies (6.9), then k 7→ Rn,k is concave for k ∈ {1, . . . , n− 1}.

3. If there exists p ∈ [1, n] such that (6.10) is satisfied, then k 7→ Rn,k is concave for k ∈ {1, . . . , bpc} and
convex for k ∈ {dpe, . . . , n− 1}, where we recall that p satisfies the bounds (6.12).

If y ∈ (−1, 0), then the series Rn,k =
n!

(1 + y)n

n∑
p=k+1

(−1)p η(p) is an alternating series and we have two

(and only two) distinct possibilities:

1. If y satisfies (6.8), then Rn,2` ≤ 0 and Rn,1+2` ≥ 0 for any n and `. The sequences ` 7→ |Rn,2`| and
` 7→ |Rn,1+2`| are both decreasing and we have the bound

|Rn,k| ≤ max(|Rn,0|, |Rn,1|) = max

(
1

(1 + y)n
− 1, 1− 1

(1 + y)n
− ny

(1 + y)n

)
(6.15)

for any k ∈ {0, . . . , n}. Furthermore, the oscillations of Rn,k, namely the sequence k 7→ |Rn,k+1−Rn,k|,
are decreasing when k increases.

2. If there exists p ∈ [1, n] such that (6.10) is satisfied, then the largest oscillation of Rn,k when k varies

(namely max
k∈{1,...,n}

|Rn,k −Rn,k−1|) is either
∣∣∣Rn,bpc −Rn,bpc−1

∣∣∣ or
∣∣∣Rn,dpe −Rn,dpe−1

∣∣∣, where we recall

that p satisfies (6.12). In addition, we have the bound

∀k ∈ {0, . . . , n}, |Rn,k| ≤ max
(∣∣Rn,bpc−1

∣∣, ∣∣Rn,bpc∣∣, ∣∣Rn,bpc+1

∣∣) , (6.16)

and the lower bound

max
k∈{0,...,n}

|Rn,k| ≥
1

2
min

q∈{bpc,dpe}

n!

q!(n− q)!
|y|q

(1 + y)n
. (6.17)

Some estimate of the right-hand side of (6.17), in terms of y and n, is given in (6.18)–(6.19) below.

When y > 0, the estimate (6.14) shows that, when n is fixed (i.e. the time-horizon is fixed) and y gets
closer to 0 (i.e. the coarse and the fine models get closer one to each other), then the bound on the relative
error becomes smaller (and converges to 0 when y → 0). Conversely, for a given y > 0, the estimate (6.14)
shows that, when n increases, the relative error remains bounded but may be not small. This is confirmed
by numerical experiments, as illustrated below (see Figures 12a and 12b and the corresponding discussion).

When y < 0 and for a fixed value of n, Condition (6.8) is satisfied for sufficiently small |y|. The esti-
mate (6.15) again shows that the bound on the relative error converges to 0 when y → 0.

When we consider a fixed value of y < 0 and when n increases, then Condition (6.8) cannot be satisfied
for sufficiently large n. Condition (6.10) is thus satisfied. The error (in absolute value) is maximal for k
equal to bpc or bpc ± 1, as shown by (6.16). This is confirmed by numerical experiments (see Figure 12c

24

below). The estimate (6.17) provides a lower bound on this error. Recasting (6.13) in the form p ≈ αn for
α = |y|/(1 + |y|) and using Stirling formula, we see that the right-hand side of (6.17) is of the order of

1

2
min

q∈{bpc,dpe}

n!

q!(n− q)!
|y|q

(1 + y)n
≈ 1

2

√
2πn (n/e)n

√
2πp (p/e)p

√
2π(n− p) ((n− p)/e)n−p

|y|p

(1 + y)n

≈ 1

2

nn√
2πα(1− α)n (αn)αn ((1− α)n)(1−α)n

|y|αn

(1 + y)n

=
1

2

1√
2πα(1− α)n ααn (1− α)(1−α)n

|y|αn

(1 + y)n

=
Cα√
n

(Dα,y)n, (6.18)

for some constant Cα (only depending on α, which is itself a function of |y|) and with

Dα,y =
1

αα (1− α)(1−α)

|y|α

1 + y
=

1

αα (1− α)(1−α)

αα

(1− α)α
1

1− α/(1− α)
=

1

1− 2α
, (6.19)

where we have used that |y| = α/(1− α) to obtain the second equality. Recalling that y ∈ (−1, 0), we have
α ∈ (0, 1/2), and thus Dα,y > 1. We thus infer from (6.18) that the maximum value of the error goes to ∞
when n → ∞, exponentially fast with respect to n. The equation (6.19) shows that the rate is increasing
when |y| ∈ (0, 1) increases. All these facts are confirmed by numerical experiments (see Figure 12d below).

Figure 12 illustrates the findings of Proposition 6.5. Except stated otherwise, we work with the parameters
n = 1000 and ∆t = 0.05. On the top left (Figure 12a), we plot k 7→ Rn,k as a function of k for various ω. All
the chosen values of ω are larger than 1, hence y > 0 in all these cases. The value ω = 1.02 falls in the case
when (6.8) holds (recall the numerical values from Remark 6.4), and hence Rn,k is convex with respect to k
(and in practice very close to 0 for most values of k). The value ω = 160 falls in the case when (6.9) holds
(recall again Remark 6.4), and hence k 7→ Rn,k is concave (and in practice very close to 1 for most values of
k). The remaining choices of ω correspond to intermediate values of y, falling in the case when (6.10) holds,
and where Rn,k is concave up to some p and then convex. We have shown with (6.13) that p essentially
scales as n|y|/(1 + |y|). For instance, when ω = 14.86, we have y = 1 and we thus expect p to be of the order
of n/2. This is indeed what we observe, with an inflection point of the function k 7→ Rn,k close to k = 500.
When ω becomes larger (resp. smaller) than 14.86, y increases (resp. decreases) and thus n|y|/(1 + |y|)
increases (resp. decreases) as well. We thus expect the inflection point to move to larger (resp. smaller)
values of k, which is indeed what we observe in Figure 12a.

On the top right (Figure 12b), we again plot k 7→ Rn,k as a function of k, for the same ω as in Figure 12a,
but for a value of n = 2000 twice larger. Comparing Figures 12a and 12b, we check that the inflection point
lies at values twice larger when n is twice as large. We have also performed computations with n = 500 and
n = 1500 (results not shown), which are also in perfect agreement with (6.13).

On the bottom left (Figure 12c), we plot k 7→ Rn,k for ω = 0.1 and n = 1000. We are in the case when
y ∈ (−1, 0) and Condition (6.10) holds for some p. We compute that y ≈ −0.044 and thus, according
to (6.12), we have 41 ≤ p ≤ 43. We have stated in Proposition 6.5 that the maximum oscillation of Rn,k
occurs for k ≈ p, and that |Rn,k| is maximal also for k ≈ p (see (6.16)), which is indeed what we observe in
Figure 12c.

On the bottom right (Figure 12d), we consider several values of ω all smaller than 1 (hence corresponding
to y ∈ (−1, 0)) and we consider values of n sufficiently large such that Condition (6.10) holds for all the
values of ω that we consider (this occurs for any n ≥ 700 for ω = 0.9, and for any n ≥ 75 for ω = 0.1). We

then plot
∣∣∣Rn,bpc∣∣∣ as a function of n, where p is approximated by (6.13). The figure shows that the maximum

error dramatically increases as a function of n: as expected from (6.18), it grows exponentially with respect
to n, with a rate which, as expected from (6.19), decreases when ω gets closer to ωref = 1.

Overall, the best possible case is when the coarse and fine models and the time window are such that
Condition (6.8) holds. If y > 0, this corresponds to a convex positive decreasing function Rn,k (and thus

25

an error which converges very fast to 0). If y < 0, the function Rn,k has decreasing oscillations and we
essentially have that |Rn,k| is decreasing. In both cases, the error decreases when the parareal iterations
proceed. As pointed out in Remark 6.4, Condition (6.8) only holds for y close to 0, i.e. ω close to ωref = 1
(and thus coarse and fine models close to each other), or for small enough values of n. In the intermediate
case when (6.10) holds, and if y > 0, there is an inflection point in the behaviour of Rn,k at k ≈ p. The error
Rn,k is always bounded, but it may take many parareal iterations to converge to zero (this is also true in
the case (6.9)). If y < 0, then neither Rn,k nor |Rn,k| is decreasing, and the error can reach extremely large
values.

(a) Case y > 0: plot of k 7→ Rn,k for n = 1000 (b) Case y > 0: plot of k 7→ Rn,k for n = 2000

(c) Case y < 0 and (6.10): plot of k 7→ Rn,k for n = 1000 (d) Case y < 0: plot of n 7→ |Rn,bpc|

Figure 12: We work with ∆t = 0.05. Top left: Plot of k 7→ Rn,k as a function of k for various ω, for n = 1000
(all these ω are larger than 1, hence y > 0 in all cases; the three possible cases (6.8), (6.9) and (6.10) are
represented). Top right: Plot of k 7→ Rn,k as a function of k for various ω, for n = 2000. Bottom left: Plot
of k 7→ Rn,k for ω = 0.1 and n = 1000 (y < 0 and (6.10) holds). Bottom right: Plot of |Rn,bpc| as a function
of n for various ω (in these cases, y < 0).

A Explicit formulae for LJ7-2d

The fine potential Vf for LJ7-2d is the sum of Lennard-Jones contributions:

Vf (q) =
1

2

∑
i,j∈{1,...,7}

i 6=j

φf (|qi − qj |), φf (r) = r−12 − 2 r−6,

26

where | · | is the d-dimensional Euclidean norm (here, d = 2). The corresponding force on the system is
Ff = −∇Vf , and the force on the i-th particle (here onwards we do not explicitly state that i, j ∈ {1, . . . , 7})
is

F if (q) = −∂Vf
∂qi

(q) =
∑
j 6=i

12

r2
ij

(
r−12
ij − r−6

ij

)(qix − qjx
qiy − qjy

)
, rij = |qi − qj |.

The coarse potential is a harmonic approximation of Vf around the well where the system initially lies. To
calculate this coarse force, we need the Hessian of the fine potential Vf , which is given (for any α, β ∈ {x, y}
and any i, j ∈ {1, . . . , 7}) by

∂2Vf
∂q`β∂q

i
α

(q) =


θ′(ri`)

q`β − qiβ
ri`

(qiα − q`α)− θ(ri`) δαβ if ` 6= i,∑
j 6=i

θ′(rij)
qiβ − q

j
β

rij
(qiα − qjα) +

∑
j 6=i

θ(rij) δαβ if ` = i,

where δαβ = 1 if α = β and zero otherwise, and

θ(r) =
φ′f (r)

r
= − 12

r14
+

12

r8
and

θ′(r)

r
=

12× 14

r16
− 12× 8

r10
.

Using q for the position of the well corresponding to the initial condition of the system, the (harmonic)
coarse potential is given by

Vc(q) =
1

2

∑
i,j

∑
α,β∈{x,y}

(qiα − qiα) (qjβ − q
j
β)

∂2Vf

∂qjβ∂q
i
α

(q),

and the corresponding force on the j-th particle in the β-th coordinate is

F j,βc (q) = −∂Vc
∂qjβ

(q) = −
∑
i

∑
α∈{x,y}

(qiα − qiα)
∂2Vf

∂qiα∂q
j
β

(q).

B Proof of Lemma 6.3

Differentiating the function [1, n] 3 p 7→ η(p) and using the digamma function ψ(p) = Γ′(p)/Γ(p), we find

η′(p) =
|y|p
(

log |y| − ψ(p+ 1) + ψ(n− p+ 1)
)

Γ(p+ 1)Γ(n− p+ 1)
. (B.1)

Using that ψ′ > 0 (a fact which directly stems from the series expansion of the polygamma function of order
one ψ1 = ψ′), we observe that the mapping

[1, n] 3 p 7→ f(p) = ψ(p+ 1)− ψ(n− p+ 1)

is strictly increasing, since f ′(p) = ψ′(p+1)+ψ′(n−p+1) > 0. We next observe that η′(p) =
|y|p
(

log |y| − f(p)
)

Γ(p+ 1)Γ(n− p+ 1)
.

We can thus distinguish three (mutually exclusive) cases:

• either log |y| < inf
p∈[1,n]

f(p),

• or log |y| > sup
p∈[1,n]

f(p),

• or inf
p∈[1,n]

f(p) ≤ log |y| ≤ sup
p∈[1,n]

f(p).

27

We successively study these cases.

Since f is increasing, the first case corresponds to log |y| < f(1) = ψ(2)− ψ(n), and we recover (6.8). In
that case, we have η′(p) < 0 for any p ∈ [1, n], and thus η is strictly decreasing on [1, n].

Since f is increasing, the second case corresponds to log |y| > f(n) = ψ(n+1)−ψ(1), and we recover (6.9).
In that case, we have η′(p) > 0 for any p ∈ [1, n], and thus η is strictly increasing on [1, n].

Again using the fact that f is increasing, the third case corresponds to the fact that there exists some
p ∈ [1, n] such that log |y| = f(p) = ψ(p + 1) − ψ(n − p + 1) and we recover (6.10). Using (B.1), we next
obtain (6.11).

We now establish explicit bounds on p. Using the fact that

ψ(p+ 1) = −γEM +

p∑
i=1

1

i
for any positive integer p, (B.2)

where γEM is the Euler-Mascheroni constant, we have

f(bpc) =



−
n−bpc∑
i=bpc+1

1

i
if 2bpc < n

0 if 2bpc = n
bpc∑

i=n−bpc+1

1

i
if 2bpc > n

and likewise f(dpe) =



−
n−dpe∑
i=dpe+1

1

i
if 2dpe < n

0 if 2dpe = n
dpe∑

i=n−dpe+1

1

i
if 2dpe > n

. (B.3)

We now write some easy and useful estimates. For any integer k such that k + 1 < n − k + 1, we have the
following upper and lower bounds:

log

(
n− k + 1

k + 1

)
=

∫ n−k+1

k+1

dx

x
=

n−k∑
i=k+1

∫ i+1

i

dx

x
≤

n−k∑
i=k+1

1

i
,

n−k∑
i=k+1

1

i
=

n−k−1∑
j=k

1

j + 1
≤
n−k−1∑
j=k

∫ j+1

j

dx

x
=

∫ n−k

k

dx

x
= log

(
n− k
k

)
.

(B.4)

Proceeding similarly, we find, for any integer k such that k + 1 > n− k + 1, that

log

(
k + 1

n− k + 1

)
=

∫ k+1

n−k+1

dx

x
=

k∑
i=n−k+1

∫ i+1

i

dx

x
≤

k∑
i=n−k+1

1

i
,

k∑
i=n−k+1

1

i
=

k−1∑
j=n−k

1

j + 1
≤

k−1∑
j=n−k

∫ j+1

j

dx

x
=

∫ k

n−k

dx

x
= log

(
k

n− k

)
.

(B.5)

Using (B.3) and (B.4), we see that, if 2bpc < n, then f(bpc) < 0 and it satisfies

log

(
bpc

n− bpc

)
≤ f(bpc) ≤ log

(
bpc+ 1

n− bpc+ 1

)
. (B.6)

Similarly, if 2dpe < n, then f(dpe) < 0 and it satisfies

log

(
dpe

n− dpe

)
≤ f(dpe) ≤ log

(
dpe+ 1

n− dpe+ 1

)
. (B.7)

Alternatively, if 2bpc > n, we infer from (B.3) and (B.5) that f(bpc) > 0 and that it satisfies

log

(
bpc+ 1

n− bpc+ 1

)
≤ f(bpc) ≤ log

(
bpc

n− bpc

)
, (B.8)

28

and likewise, if 2dpe > n, then f(dpe) > 0 and it satisfies

log

(
dpe+ 1

n− dpe+ 1

)
≤ f(dpe) ≤ log

(
dpe

n− dpe

)
. (B.9)

Since f is increasing, it follows from (6.10), that we write in the form log |y| = f(p), that

f(bpc) ≤ log |y| ≤ f(dpe). (B.10)

We now distinguish three (mutually exclusive) cases:

(I) either 2bpc ≤ 2dpe < n,

(II) or n < 2bpc ≤ 2dpe,

(III) or 2bpc ≤ n ≤ 2dpe,

that we successively study.

In the case (I), we have 2dpe < n, hence log |y| ≤ f(dpe) < 0 and therefore |y| < 1. Inserting (B.6)
and (B.7) into (B.10), we find

log

(
bpc

n− bpc

)
≤ log |y| ≤ log

(
dpe+ 1

n− dpe+ 1

)
,

and thus

bpc ≤ n|y|
1 + |y|

,
(n+ 1)|y| − 1

1 + |y|
≤ dpe.

Using bpc ≥ dpe − 1, we infer that

n|y| − 2

1 + |y|
≤ bpc ≤ n|y|

1 + |y|
,

(n+ 1)|y| − 1

1 + |y|
≤ dpe ≤ (n+ 1)|y|+ 1

1 + |y|
,

and hence, since bpc and dpe are integer numbers, we get⌈
n|y| − 2

1 + |y|

⌉
≤ bpc ≤

⌊
n|y|

1 + |y|

⌋
,

⌈
(n+ 1)|y| − 1

1 + |y|

⌉
≤ dpe ≤

⌊
(n+ 1)|y|+ 1

1 + |y|

⌋
.

Using that bpc ≤ p ≤ dpe, we eventually get the bound⌈
n|y| − 2

1 + |y|

⌉
≤ p ≤

⌊
(n+ 1)|y|+ 1

1 + |y|

⌋
,

and hence (6.12).

We next turn to the case (II), when n < 2bpc. We then have log |y| ≥ f(bpc) > 0, thus |y| > 1 and hence
y > 1 (since y ∈ (−1, 0)∪ (0,∞)). Inserting (B.8) and (B.9) into (B.10) and proceeding as above, we obtain
the bounds

(n− 1)|y| − 1

1 + |y|
≤ bpc ≤ (n+ 1)|y| − 1

1 + |y|
,

n|y|
1 + |y|

≤ dpe ≤ (n+ 2)|y|
1 + |y|

,

and therefore ⌈
(n− 1)|y| − 1

1 + |y|

⌉
≤ p ≤

⌊
(n+ 2)|y|

1 + |y|

⌋
,

which again implies (6.12).

We eventually turn to the case (III), when 2bpc ≤ n ≤ 2dpe. If p is an integer, then 2p = n. In
addition, in view of (B.3), we have f(p) = 0, and thus (B.10) implies that |y| = 1, and hence y = 1 (since
y ∈ (−1, 0) ∪ (0,∞)). The bound (6.12) again holds.

29

If p is not an integer, then either (i) n = 2bpc or (ii) n = 1 + 2bpc or (iii) n = 2 + 2bpc = 2dpe. In the
case (i) (i.e. when n = 2bpc), we have, in view of (B.3), that f(bpc) = 0 and f(dpe) = 1/dpe+ 1/(dpe − 1).
In view of (B.10), this implies that

0 ≤ log |y| ≤ 1

dpe
+

1

dpe − 1
≤ log

(
dpe
dpe − 2

)
= log

(
n+ 2

n− 2

)
and hence

1 ≤ |y| ≤ n+ 2

n− 2
.

The left and right-hand sides of (6.12) then satisfy

min

(⌈
n|y| − 2

1 + |y|

⌉
,

⌈
(n− 1)|y| − 1

1 + |y|

⌉)
=

⌈
(n− 1)|y| − 1

1 + |y|

⌉
≤
⌈n

2

⌉
= bpc ≤ p

and

max

(⌊
(n+ 1)|y|+ 1

1 + |y|

⌋
,

⌊
(n+ 2)|y|

1 + |y|

⌋)
=

⌊
(n+ 2)|y|

1 + |y|

⌋
≥
⌊
n+ 2

2

⌋
= bpc+ 1 ≥ p,

where we have used that |y| ≥ 1 (for the first equalities) and the fact that |y| 7→ (n− 1)|y| − 1

1 + |y|
=

n

1 + 1/|y|
−1

and |y| 7→ (n+ 2)|y|
1 + |y|

are both increasing functions (for the first inequalities). This shows that (6.12) again

holds.

In a similar fashion, in the case (iii) (i.e. when n = 2dpe), we have, in view of (B.3), that f(dpe) = 0 and
f(bpc) = −1/(bpc+ 2)− 1/(bpc+ 1). In view of (B.10), this implies that

0 ≥ log |y| ≥ − 1

bpc+ 2
− 1

bpc+ 1
≥ − log

(
bpc+ 2

bpc

)
= − log

(
n+ 2

n− 2

)
and hence

1 ≥ |y| ≥ n− 2

n+ 2
.

The left and right-hand sides of (6.12) then satisfy

min

(⌈
n|y| − 2

1 + |y|

⌉
,

⌈
(n− 1)|y| − 1

1 + |y|

⌉)
=

⌈
n|y| − 2

1 + |y|

⌉
≤
⌈
n− 2

2

⌉
= dpe − 1 ≤ p

and

max

(⌊
(n+ 1)|y|+ 1

1 + |y|

⌋
,

⌊
(n+ 2)|y|

1 + |y|

⌋)
=

⌊
(n+ 1)|y|+ 1

1 + |y|

⌋
≥
⌊n

2

⌋
= dpe ≥ p,

where we have used that |y| ≤ 1 (for the first equalities) and the fact that |y| 7→ (n+ 1)|y|+ 1

1 + |y|
=

n

1 + 1/|y|
+1

and |y| 7→ n|y| − 2

1 + |y|
are both increasing functions (for the first inequalities). This shows that (6.12) again

holds.

We eventually consider the case (ii), when n = 1 + 2bpc = 2dpe − 1. In view of (B.3), we have that
f(bpc) = −1/(bpc+ 1) and f(dpe) = 1/dpe. In view of (B.10), this implies that

− log

(
n+ 1

n− 1

)
= − log

(
bpc+ 1

bpc

)
≤ − 1

bpc+ 1
≤ log |y| ≤ 1

dpe
≤ log

(
dpe
dpe − 1

)
= log

(
n+ 1

n− 1

)
and hence

n− 1

n+ 1
≤ |y| ≤ n+ 1

n− 1
.

30

Since the functions that map |y| to the left and right-hand sides of (6.12) are both increasing, we obtain

min

(⌈
n|y| − 2

1 + |y|

⌉
,

⌈
(n− 1)|y| − 1

1 + |y|

⌉)
≤ min

(⌈
n− 1

2
+

1

n

⌉
,

⌈
n− 1

2

⌉)
=

⌈
n− 1

2

⌉
= bpc ≤ p

and

max

(⌊
(n+ 1)|y|+ 1

1 + |y|

⌋
,

⌊
(n+ 2)|y|

1 + |y|

⌋)
≥ max

(⌊
n+ 1

2

⌋
,

⌊
n+ 1

2
− 1

n

⌋)
=

⌊
n+ 1

2

⌋
= bpc+ 1 ≥ p,

which again implies (6.12). This concludes the proof of Lemma 6.3.

C Proof of Proposition 6.5

The proof falls in two cases.

Case A. We first consider the case when y ∈ (0,∞). In view of (6.6), the sequence k 7→ Rn,k is a decreasing
sequence and therefore, for any k ∈ {0, . . . , n− 1}, we have

0 < Rn,k ≤ Rn,0 =
1

(1 + y)n

(
n∑
p=0

n! yp

p!(n− p)!
− 1

)
=

(1 + y)n − 1

(1 + y)n
,

which yields (6.14). In view of (6.6) and (6.7), we have Rn,k =
n!

(1 + y)n

n∑
p=k+1

η(p). The convexity properties

of Rn,k directly follow from the monotonicity properties of p 7→ η(p) established in Lemma 6.3.

Case B. We next consider the case when y ∈ (−1, 0). We have pointed out below Lemma 6.3 that Condi-
tion (6.9) cannot be satisfied in that case, and we thus only have to consider (6.8) or (6.10). In view of (6.6)
and (6.7), we have

Rn,k =
n!

(1 + y)n

n∑
p=k+1

(−1)p η(p), (C.1)

which is an alternating series.

Case B1. If y ∈ (−1, 0) satisfies (6.8), we know from Lemma 6.3 that η is a decreasing function. In view
of (C.1), we obtain that the oscillations of Rn,k are decreasing when k increases.

We claim that Rn,0 < 0. Indeed, if n is even, then we write

Rn,0 =
n!

(1 + y)n

[(
− η(1) + η(2)

)
+ . . .+

(
− η(n− 1) + η(n)

)]
and each term −η(j − 1) + η(j) (for even values of j) is negative. If n is odd, then

Rn,0 =
n!

(1 + y)n

[(
− η(1) + η(2)

)
+ . . .+

(
− η(n− 2) + η(n− 1)

)
− η(n)

]
and again, each term −η(j − 1) + η(j) (for even values of j) is negative, while −η(n) is also negative. We
hence have that Rn,0 < 0 for any n ≥ 1. With similar arguments, we can show that Rn,k ≤ 0 for any even k.
Furthermore, the sequence ` 7→ Rn,2` (namely, the relative error after an even number of parareal iterations)
is increasing.

We next claim that Rn,1 > 0. Indeed, if n is odd, then we write

Rn,1 =
n!

(1 + y)n

[(
η(2)− η(3)

)
+ . . .+

(
η(n− 1)− η(n)

)]

31

and each term η(j − 1)− η(j) (for odd values of j) is positive. If n is even, then

Rn,1 =
n!

(1 + y)n

[(
η(2)− η(3)

)
+ . . .+

(
η(n− 2)− η(n− 1)

)
+ η(n)

]
and again, each term η(j − 1) − η(j) (for odd values of j) is positive, while η(n) is also positive. We thus
have that Rn,1 > 0 for any n ≥ 2. With similar arguments, we can show that Rn,k ≥ 0 for any odd k,
and that the sequence ` 7→ Rn,1+2` (namely, the relative error after an odd number of parareal iterations) is
decreasing.

Since ` 7→ |Rn,2`| and ` 7→ |Rn,1+2`| are both decreasing, we have

max
k∈{0,...,n−1}

|Rn,k| = max(|Rn,0|, |Rn,1|),

with

0 < −Rn,0 =
−1

(1 + y)n

n∑
p=1

n! yp

p!(n− p)!
=

−1

(1 + y)n

(
(1 + y)n − 1

)
=

1

(1 + y)n
− 1

and

0 < Rn,1 =
1

(1 + y)n

n∑
p=2

n! yp

p!(n− p)!
=

1

(1 + y)n

(
(1 + y)n − 1− ny

)
= 1− 1

(1 + y)n
− ny

(1 + y)n
,

thus the bound (6.15).

Case B2. We eventually consider the case when y ∈ (−1, 0) and (6.10) is satisfied. Using Lemma 6.3, we
know that s 7→ η(s) is increasing (resp. decreasing) for s ≤ p (resp. s ≥ p). In view of (C.1), we get that

|Rn,k −Rn,k−1| =
n!

(1 + y)n
η(k). The largest oscillation for Rn,k is thus given by

max
k∈{1,...,n}

|Rn,k −Rn,k−1| =
n!

(1 + y)n
max

k∈{1,...,n}
η(k) =

n!

(1 + y)n
max

(
η(bpc), η(dpe)

)
= max

(∣∣∣Rn,bpc −Rn,bpc−1

∣∣∣, ∣∣∣Rn,dpe −Rn,dpe−1

∣∣∣).
For any q ∈ {1, . . . , n}, we have

max
k∈{0,...,n}

|Rn,k| ≥ |Rn,q| ≥ |Rn,q −Rn,q−1| − |Rn,q−1| ≥ |Rn,q −Rn,q−1| − max
k∈{0,...,n}

|Rn,k|,

and therefore max
k∈{0,...,n}

|Rn,k| ≥
1

2
|Rn,q −Rn,q−1|. Since this holds for any q ∈ {1, . . . , n}, we deduce, using

our previous result on the largest oscillation, that

max
k∈{0,...,n}

|Rn,k| ≥
1

2
min

q∈{bpc,dpe}
|Rn,q −Rn,q−1| =

1

2
min

q∈{bpc,dpe}

n!

q!(n− q)!
|y|q

(1 + y)n
,

which is (6.17). We are now left with showing (6.16).

Case B2.1. In order to study |Rn,k|, we first assume that n and bpc are even. We claim that the sequence
` 7→ Rn,2` is decreasing when 0 ≤ ` ≤ bpc/2 and increasing when bpc/2 ≤ ` ≤ n/2. Indeed, using (C.1), we
have

Rn,2` −Rn,2+2` =
n!

(1 + y)n
(
η(2 + 2`)− η(1 + 2`)

)
,

which is positive when 0 ≤ ` ≤ bpc/2− 1 and negative when ` ≥ bpc/2 (since then 1 + 2` ≥ 1 + bpc > p). In
addition, for the final value ` = n/2, we of course have Rn,2` = 0.

32

Likewise, we claim that the sequence ` 7→ Rn,1+2` is increasing when 0 ≤ ` ≤ bpc/2 − 1 and decreasing
when bpc/2 ≤ ` ≤ n/2. Indeed, using again (C.1), we have

Rn,1+2` −Rn,3+2` =
n!

(1 + y)n
(
η(2 + 2`)− η(3 + 2`)

)
,

which is negative when 0 ≤ ` ≤ bpc/2−2 and positive when ` ≥ bpc/2. We also note that we cannot compare
the values of Rn,1+2` when ` = bpc/2− 1 and when ` = bpc/2, since their difference is

Rn,bpc−1 −Rn,bpc+1 =
n!

(1 + y)n
(
η(bpc)− η(1 + bpc)

)
,

the sign of which is unknown. In addition, for the final value ` = n/2−1, we have Rn,1+2` =
n! (−1)n η(n)

(1 + y)n
> 0

since we have assumed n to be even.

We now identify max
k∈{0,...,n}

|Rn,k|, supposing first that Rn,0 ≤ 0. Since ` 7→ Rn,2` is first decreasing and

next increasing and since it vanishes for ` = n/2, we have Rn,2` ≤ 0 for all 0 ≤ ` ≤ n/2, and therefore
max

`∈{0,...,n/2}
|Rn,2`| =

∣∣Rn,bpc∣∣. If Rn,1 ≥ 0, then using that ` 7→ Rn,1+2` is first increasing and next decreasing

and that it is positive for ` = n/2 − 1, we have Rn,1+2` ≥ 0 for all 0 ≤ ` ≤ n/2 − 1. This implies that
max

`∈{0,...,n/2−1}
|Rn,1+2`| = max

(∣∣Rn,bpc−1

∣∣, ∣∣Rn,bpc+1

∣∣), and we thus obtain (6.16). If Rn,1 < 0, then using

again that ` 7→ Rn,1+2` is first increasing and next decreasing and that it is positive for ` = n/2− 1, we have
that max

`∈{0,...,n/2−1}
|Rn,1+2`| = max

(∣∣Rn,1∣∣, ∣∣Rn,bpc−1

∣∣, ∣∣Rn,bpc+1

∣∣). We also observe that

Rn,0 −Rn,1 = − n!

(1 + y)n
η(1) < 0,

and thus 0 > Rn,1 > Rn,0. This implies that
∣∣Rn,1∣∣ < ∣∣Rn,0∣∣ ≤ max

`∈{0,...,n/2}
|Rn,2`|, and we thus again

obtain (6.16).

We next identify max
k∈{0,...,n}

|Rn,k| under the assumption that Rn,0 > 0. Using the same arguments as

above, we have max
`∈{0,...,n/2}

|Rn,2`| = max
(∣∣Rn,0∣∣, ∣∣Rn,bpc∣∣). Since Rn,1 > Rn,0, we have Rn,1 > 0, and

thus max
`∈{0,...,n/2−1}

|Rn,1+2`| = max
(∣∣Rn,bpc−1

∣∣, ∣∣Rn,bpc+1

∣∣). In addition, we have 0 < Rn,0 < Rn,1 ≤

max
`∈{0,...,n/2−1}

|Rn,1+2`|. We thus deduce (6.16).

Case B2.2. We now revisit the above arguments studying |Rn,k|, under the assumption that n is even and
that bpc is odd. We then have that the sequence ` 7→ Rn,2` is decreasing when 0 ≤ ` ≤ (bpc − 1)/2 and
increasing when (bpc + 1)/2 ≤ ` ≤ n/2. We also note that we cannot compare the values of Rn,2` when
` = (bpc − 1)/2 and when ` = (bpc+ 1)/2, and that, for the final value ` = n/2, we have Rn,2` = 0.

Similarly, the sequence ` 7→ Rn,1+2` is increasing when 0 ≤ ` ≤ (bpc − 1)/2 and decreasing when (bpc −
1)/2 ≤ ` ≤ n/2. For the final value ` = n/2− 1, we again have Rn,1+2` > 0.

Using the same arguments as above for identifying max
k∈{0,...,n}

|Rn,k| again leads to (6.16).

Case B2.3. We eventually consider the case when n is odd:

• if bpc is even, then the sequence ` 7→ Rn,2` is decreasing when 0 ≤ ` ≤ bpc/2, increasing when
bpc/2 ≤ ` ≤ (n− 1)/2, and is negative for the final value ` = (n− 1)/2. The sequence ` 7→ Rn,1+2` is
increasing when 0 ≤ ` ≤ bpc/2− 1, decreasing when bpc/2 ≤ ` ≤ (n− 1)/2, and vanishes for the final
value ` = (n− 1)/2.

33

• if bpc is odd, the sequence ` 7→ Rn,2` is decreasing when 0 ≤ ` ≤ (bpc − 1)/2, increasing when
(bpc+ 1)/2 ≤ ` ≤ (n− 1)/2, and negative for the final value ` = (n− 1)/2. The sequence ` 7→ Rn,1+2`

is increasing when 0 ≤ ` ≤ (bpc − 1)/2, decreasing when (bpc − 1)/2 ≤ ` ≤ (n− 1)/2, and vanishes for
the final value ` = (n− 1)/2.

In both cases, we can show (6.16). This concludes the proof of Proposition 6.5.

Acknowledgements

The work of FL and US was supported in part by the ANR project CINE-PARA (ANR-15-CE23-0019-
06). US also acknowledges support from the Alexander von Humboldt foundation and from DFG under
Germany’s Excellence Strategy-MATH+: The Berlin Mathematics Research Center (EXC-2046/1)-project
ID:390685689 (subproject EF4-4). This work was also partially funded by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No
810367; project EMC2) and from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 955701 (project Time-X). The JU receives support from the European Union’s Horizon
2020 research and innovation programme and Belgium, France, Germany, Switzerland. The authors would
like to thank Claude Le Bris, Yvon Maday, Danny Perez and Arthur Voter for stimulating interactions, and
Olga Gorynina and Gabriel Stoltz for their remarks on a draft version of this article.

References

[Bal] G. Bal. Parallelization in time of (stochastic) ordinary differential equations. Preprint available
at https://www.stat.uchicago.edu/∼guillaumebal/PAPERS/paralleltime.pdf.

[Bal05] G. Bal. On the convergence and the stability of the parareal algorithm to solve partial differential
equations. In R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and J. Xu,
editors, Domain decomposition methods in science and engineering, volume 40 of Lecture Notes
in Computational Science and Engineering, pages 425–432. Springer Berlin Heidelberg, 2005.

[BBK10] A. Blouza, L. Boudin, and S.-M. Kaber. Parallel in time algorithms with reduction methods for
solving chemical kinetics. Communications in Applied Mathematics and Computational Science,
5:241–263, 2010.

[BBM+02] L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zérah. Parallel-in-time molecular-
dynamics simulations. Physical Review E, 66(5):057701, 2002.

[BM02] G. Bal and Y. Maday. A parareal time discretization for nonlinear PDE’s with application to
the pricing of an American put. In L. Pavarino and A. Toselli, editors, Recent developments
in domain decomposition methods, volume 23 of Lecture Notes in Computational Science and
Engineering, pages 189–202. Springer Verlag, 2002.

[DLBLM13] X. Dai, C. Le Bris, F. Legoll, and Y. Maday. Symmetric parareal algorithms for Hamiltonian
systems. Mathematical Modelling and Numerical Analysis, 47(3):717–742, 2013.

[DM13] X. Dai and Y. Maday. Stable parareal in time method for first- and second-order hyperbolic
systems. SIAM J. Sci. Comput., 35:A52–A78, 2013.

[Eng09] S. Engblom. Parallel in time simulation of multiscale stochastic chemical kinetics. SIAM
Multiscale Modeling and Simulation, 8:46–68, 2009.

[FC03] C. Farhat and M. Chandesris. Time-decomposed parallel time-integrators: theory and feasi-
bility studies for fluid, structure, and fluid–structure applications. International Journal for
Numerical Methods in Engineering, 58:1397–1434, 2003.

34

[FHM05] P. Fischer, F. Hecht, and Y. Maday. A parareal in time semi-implicit approximation of the
Navier-Stokes equations. In R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund,
and J. Xu, editors, Domain decomposition methods in science and engineering, volume 40
of Lecture Notes in Computational Science and Engineering, pages 433–440. Springer Berlin
Heidelberg, 2005.

[GEF05] I. Garrido, M. Espedal, and G. Fladmark. A convergent algorithm for time parallelization
applied to reservoir simulation. In R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Wid-
lund, and J. Xu, editors, Domain decomposition methods in science and engineering, volume 40
of Lecture Notes in Computational Science and Engineering, pages 469–476. Springer Berlin
Heidelberg, 2005.

[GH08] M. Gander and E. Hairer. Nonlinear convergence analysis for the parareal algorithm. In
U. Langer, M. Discacciati, D. Keyes, O. Widlund, and W. Zulehner, editors, Domain decompo-
sition methods in science and engineering, volume 60 of Lecture Notes in Computational Science
and Engineering, pages 45–56. Springer Berlin Heidelberg, 2008.

[GH14] M. Gander and E. Hairer. Analysis for parareal algorithms applied to Hamiltonian differential
equations. Journal of Computational and Applied Mathematics, 259:2–13, 2014.

[GLFE06] I. Garrido, B. Lee, G. Fladmark, and M. Espedal. Convergent iterative schemes for time
parallelization. Mathematics of Computation, 75:1403–1428, 2006.

[JS12] R. Joubaud and G. Stoltz. Nonequilibrium shear viscosity computations with Langevin dynam-
ics. SIAM Multiscale Modeling and Simulation, 10(1):191–216, 2012.

[LLMS20] F. Legoll, T. Lelièvre, K. Myerscough, and G. Samaey. Parareal computation of stochastic
differential equations with time-scale separation: a numerical convergence study. Computing
and Visualization in Science, 23(9), 2020.

[LLS13] F. Legoll, T. Lelièvre, and G. Samaey. A micro-macro parareal algorithm: application to sin-
gularly perturbed ordinary differential equations. SIAM J. Sci. Comput., 35(4):A1951–A1986,
2013.

[LMT01] J.-L. Lions, Y. Maday, and G. Turinici. A “parareal” in time discretization of PDEs. C.R.
Math. Acad. Sci. Paris, 332:661–668, 2001.

[LRS10] T. Lelièvre, M. Rousset, and G. Stoltz. Free Energy Computations. Imperial College Press,
2010.

[Mad07] Y. Maday. Parareal in time algorithm for kinetic systems based on model reduction. In A. Ban-
drauk, M. Delfour, and C. Le Bris, editors, High-dimensional partial differential equations in
science and engineering, volume 41 of CRM Proceedings and Lecture Notes, pages 183–194.
American Mathematical Society, 2007.

[MM20] Y. Maday and O. Mula. An adaptive parareal algorithm. Journal of Computational and Applied
Mathematics, 377:112915, 2020.

[MT02] Y. Maday and G. Turinici. A parareal in time procedure for the control of partial differential
equations. C.R. Math. Acad. Sci. Paris, 335:387–392, 2002.

[MT05] Y. Maday and G. Turinici. The parareal in time iterative solver: a further direction to parallel
implementation. In R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and J. Xu,
editors, Domain decomposition methods in science and engineering, volume 40 of Lecture Notes
in Computational Science and Engineering, pages 441–448. Springer Berlin Heidelberg, 2005.

35

[SR05] G. Staff and E. Rønquist. Stability of the parareal algorithm. In R. Kornhuber, R. Hoppe,
J. Périaux, O. Pironneau, O. Widlund, and J. Xu, editors, Domain decomposition methods in
science and engineering, volume 40 of Lecture Notes in Computational Science and Engineering,
pages 449–456. Springer Berlin Heidelberg, 2005.

[Tal02] D. Talay. Stochastic Hamiltonian dissipative systems: exponential convergence to the invariant
measure, and discretization by the implicit Euler scheme. Markov Processes and Related Fields,
8(2):163–198, 2002.

(F. Legoll) École des Ponts ParisTech and Inria, 6-8 Avenue Blaise Pascal, Cité Descartes, 77455 Marne-la-
Vallée, France. E-mail address: frederic.legoll@enpc.fr

(T. Lelièvre) École des Ponts ParisTech and Inria, 6-8 Avenue Blaise Pascal, Cité Descartes, 77455 Marne-
la-Vallée, France. E-mail address: tony.lelievre@enpc.fr

(U. Sharma) Fachbereich Mathematik und Informatik, Freie Universität Berlin, Arnimallee 9, 14195 Berlin,
Germany. E-mail address: upanshu.sharma@fu-berlin.de (this work has been initiated when U. Sharma was
at École des Ponts ParisTech, 6-8 Avenue Blaise Pascal, Cité Descartes, 77455 Marne-la-Vallée, France).

36

mailto:frederic.legoll@enpc.fr
mailto:tony.lelievre@enpc.fr
mailto:upanshu.sharma@fu-berlin.de

	Introduction
	The molecular dynamics model problem
	Two examples
	One-dimensional harmonic potentials (Har-1d)
	Two-dimensional Lennard-Jones 7-atom cluster (LJ7-2d)

	Implementation issues
	Initial conditions
	Translation-invariance for LJ7-2d
	Parareal within a single well of the potential energy
	Choice of the friction coefficient

	Numerical results using the classical parareal algorithm
	Intermediate explosion of error for large times
	Gain converges to one for large N

	Adaptive algorithm
	Discussions
	Some comments on alternative ideas
	Open questions

	Theoretical analysis on a toy problem
	Explicit formulae for LJ7-2d
	Proof of Lemma 6.3
	Proof of Proposition 6.5

