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Abstract37

We investigate the role of sub-proton dynamics in inducing large-scale transitions in the solar38

wind magnetic field by means of dynamical systems metrics based on instantaneous fractal di-39

mensions. By looking at the corresponding multiscale features, we observe a break in the average40

attractor dimension occurring at the crossover between the inertial and the sub-proton regime.41

Our analysis suggests that large-scale transitions are induced by sub-proton dynamics through an42

inverse cascade mechanism driven by local correlations, while electron contributions (if any) are43

hidden by instrumental noise.44

The solar wind has been shown to be a natural laboratory for plasma physics, covering a45

wide range of scales and being characterized by a large variety of phenomena as turbulence,46

intermittency, waves, instabilities, and so on [1]. A lot of attention has been directed towards47

understanding the scale-invariant features and self-organization of both the MHD/inertial48

and the kinetic/dissipative regimes [2–4]. Indeed, by searching for scaling-law behaviors and49

looking at high-order statistics several insights have been provided on turbulence and inter-50

mittency [5] as well as on both the direct and inverse energy/enstrophy cascade mechanisms51

[6, 7]. When exploring the multiscale variability of solar wind parameters, these approaches52

are not able to investigate scale-to-scale effects, only providing a global view of the sys-53

tem over a specific range of scales. Moreover, with the solar wind being characterized by54

nonlinearities, emergent phenomena, and cross-scale coupling, the natural framework to ob-55

tain a suitable description of scale-dependent features is via dynamical system theory [8, 9].56

Within this framework, Alberti et al. [10] recently introduced a novel formalism to deal with57

the characterization of the multiscale nature of fluctuations by deriving suitable multiscale58

measures of complexity when looking at the behavior of scale-dependent phase-space tra-59

jectories. The basic idea is to combine a time series decomposition method (like Empirical60

Mode Decomposition [11]) and the concept of generalized fractal dimensions [12] to char-61

acterize how complexity varies among scales in a complex system, allowing a description of62

scale-dependent underlying (multi)fractal features [10]. Let x(t) be a time series assumed to63

be composed of dynamical patterns at a ”collection” of scales, i.e., x(t) = x0 +
∑

τ δτx(t),64

with δτx(t) being a fluctuation at a mean scale τ and x0 the steady-state average value.65

∗ tommaso.alberti@inaf.it
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Then, for each scale τ ′ we can define a natural measure µτ ′ such that66

Dq,τ ′ =
1

q − 1
lim
`→0

1

log `
log

∫
dµτ ′(x)µτ ′ (Bx,τ ′(`))

q−1, (1)67

with Bx,τ ′(`) being the hyperball of size ` centered at the point x on the scale-dependent68

phase-space of
∑

τ<τ ′ δτx(t) [10]. This approach has been demonstrated to be very promising69

for revealing different dynamical features and behaviors of both paradigmatic model systems70

and real-world time series [10, 13]. A modification of this newly introduced formalism is71

to replace the generalized fractal dimensions, allowing a global topological and geometric72

view of the scale-dependent phase-space, with instantaneous measures of the actual degrees73

of freedom of a system, namely the local dimension [14] and phase-space local persistence.74

As shown by Caby et al. [15], these quantities can be formally related to generalized fractal75

dimensions and the local stability of the system. In particular, the distribution of the local76

dimensions is modulated by the multifractal properties of the system.77

In this Letter, we extend the formalism introduced by Alberti et al. [10] to characterize78

the scale-dependent phase-space topology of solar wind magnetic field fluctuations over a79

wide range of scales, moving from the kinetic, through the sub-proton to the inertial scales.80

We use measurements coming from the Fast Plasma Investigation (FPI) instrument on board81

of the Magnetospheric Multiscale Mission (MMS) satellites. Our goal is to test whether this82

formalism is able to highlight the nature of the sudden changes in the large-scale dynamics83

of the solar wind by looking at the interplay between the sub-proton and the inertial range84

in triggering those transitions.85

On November 24, 2017, the MMS orbit allowed to collect measurements in the pristine86

solar wind, well outside the Earth’s magnetosheath and the bow shock, for a long period (i.e.,87

a few times longer than the typical correlation scale) of approximately 1 hour from 01:10 to88

02:10 UT. Figure 1 (upper panel) displays an overview of the magnetic field measurements89

collected by the FIELDS instrument suite [16] on board of MMS1 with a temporal resolution90

∆t = 128 sample/s [17].91

With the solar wind being usually considered as an example for nonlinear multiscale92

dynamical systems, we diagnose its dynamical properties of the instantaneous (in time)93

and local (in phase-space) states as represented by the three components of the magnetic94

field. We use two dynamical systems metrics [18], the local dimension (d) and the in-95

verse persistence (θ). The former is a measure of the active number of degrees of free-96
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dom, while the latter is a measure of phase-space persistence [19, 20]. Those instantaneous97

metrics are obtained by sampling the recurrences of a state ζB and observing that they98

are distributed according to extreme value theory. Formally, let ζB be a state of inter-99

est in phase-space and g(B(t), ζB) = − log [dist(B(t), ζB)] be the logarithmic return, where100

dist(B(t), ζB) is the Euclidean distance between B(t) and ζB. If we define exceedances as101

X(ζB) = g(B(t), ζB)− s(q, ζB), with s(q, ζB) being an upper threshold corresponding to the102

q–th quantile of g(B(t), ζB), then the Freitas-Freitas-Todd theorem modified by Lucarini103

et al. [21] states that the cumulative distribution F (X, ζB) converges to the exponential104

member of the Generalized Pareto family105

F (X, ζB) ' exp

[
−θ(ζB)

X(ζB)

d−1(ζB)

]
, (2)106

where 0 ≤ d <∞ is the local dimension and 0 ≤ θ ≤ 1 is the inverse persistence of the state107

ζB in units of ∆t [22]. Figure 1 shows the behavior of the local dimension d (middle panel)108

and the inverse persistence θ (lower panel). For all computations, we fix q = 0.98.109
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FIG. 1. (From top to bottom) The magnetic field components in the GSE reference system collected

by the flux-gate magnetometer (FGM) on board of MMS1 at a resolution of ∆t = 128 sample/s,

the local dimension d, and the inverse persistence θ. The blue, red, and yellow lines refer to Bx,

By, and Bz, respectively.

We observe a wide range of variability for the local dimension of 1 . d . 9 with an110

average value 〈d〉 = 2.3 ± 0.3, while the inverse persistence θ is strictly confined to values111
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lower than 0.2 with 〈θ〉 = 0.07± 0.02. This suggests that globally, the number of degrees of112

freedom is less than the phase-space dimension (i.e., 〈d〉 < 3). This means that the dynamics113

is different from that of a stochastic process, for which d should exhibit small fluctuations114

around 3 and θ = 1 [23]. A visual inspection suggests that larger d, θ are found in close115

correspondence with sudden changes in both Bx and Bz. The high number of degrees of116

freedom (d > 3) associated with sudden variations in magnetic field components suggests117

the existence of an unstable fixed point in the proximity of the transitions [14]. This is118

also observed in fluid turbulence showing multi-stability [24] and hints at the existence of119

an underlying strange stochastic attractor, i.e., the system lies in a subset of points of the120

whole phase-space. Indeed, although the cascade mechanism involves a wide range of scales,121

some of them seem to be less important than others and their description can arise from122

stochastic theory [24]. However, only looking at the whole time series does not provide123

information on the topology and the triggers of these transitions which depend on processes124

occurring at different scales.125

To complete this analysis, we use Multivariate Empirical Mode Decomposition (MEMD)126

[25] to evaluate the scale-dependent fluctuations of magnetic field measurements. By defin-127

ing the multivariate signal Bµ(t) = [Bx(t), By(t), Bz(t)]
T , MEMD acts on its multivariate128

instantaneous properties to decompose it into a finite number of multivariate oscillating129

patterns Cµ,k(t), called Multivariate Intrinsic Mode Functions (MIMFs), and a monotonic130

trend Rµ(t) as131

Bµ(t) =
N∑
k=1

Cµ,k(t) + Rµ(t). (3)132

The core of the MEMD is the so-called sifting process that allows to derive the MIMFs in133

an adaptive way by exploiting the instantaneous local properties of a signal in terms of local134

extrema interpolation [see Ref. 25, for more details]. Each Cµ,k(t) is a multivariate pattern135

representative of a peculiar dynamical feature that evolves on a typical mean scale136

τk =
1

T

∫ T

0

t′〈Cµ,k(t
′)〉µdt′, (4)137

with T being the total length of the signal and 〈· · · 〉µ denoting an ensemble average over the138

µ-dimensional space [13]. Moreover, the spectral features of the multivariate signal Bµ(t)139

can also be easily investigated by introducing an estimator of the power spectral density140

(PSD) as141

S(τ) =
(
E
[
C2
µ,k(t)

]
− E [Cµ,k(t)]

2) · τk, (5)142

6



where E denotes the expectation value. Thus, MEMD is particularly suitable for deriving143

scale-dependent patterns embedded in magnetic field data, providing the starting point for a144

multiscale characterization of the different dynamical regimes. The multivariate signal Bµ(t)145

is now interpreted as a collection of scale-dependent fluctuations belonging to different dy-146

namical regimes (noise, kinetic, sub-proton, inertial, . . . ) that can be used to investigate how147

they contribute to the collective properties of the whole measurements. Indeed, following148

Alberti et al. [10], we can describe the dynamics at scales τ ′ < τ as149

Bτ
µ(t) =

∑
k|τk<τ

Cµ,k(t) (6)150

such that we can define a scale-dependent local dimension dk and inverse persistence θk by151

diagnosing the dynamical properties of Bτ
µ(t). To do this, we compute both dk and θk for152

reconstructions of the first k MIMFs as in Eq. (3) until k → N for which (dk, θk) → (d, θ).153

Figure 2 shows the distributions of both the local dimension and the inverse persistence as154

a function of the different scales τ .155
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FIG. 2. Probability distribution functions ρ(·) of the local dimension d (left panel) and the inverse

persistence θ as a function of the scale τ (colored lines).

We observe a decreasing d and a decreasing θ as τ increases, suggesting that the whole156

phase-space properties resemble those of a low-dimensional dynamical system. This is157

again reminiscent of the fluid-dynamical behavior as observed in the turbulent von Kar-158

man swirling flow, which despite very high Reynolds number, has been characterized by a159

low-dimensional stochastic attractor [24]. Conversely, larger d and larger θ characterize the160

short-term variability of the solar wind magnetic field, providing evidence for an underlying161

higher-dimensional structure. This seems to suggest a dynamical transition in the underly-162
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ing structure of the phase-space when moving from short- to long-term dynamics, i.e., when163

passing from sub-proton to inertial scales. To better underline these features we evaluate164

the average values of d and θ at the different scales τ and compared with the behavior of165

the PSD S(τ) (see Eq. 5) as reported in Figure 3.166
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FIG. 3. Average values 〈d〉 (left panel, red asterisks) and 〈θ〉 (right panel, red asterisks) at the

different scales τ as compared with the behavior of the PSD S(τ) (blue circles). The dashed and

dashed-dotted lines indicate the FGM instrumental noise limit (f ∼ 5 Hz) to the inverse of the

proton-cyclotron frequency (fcp = 1/τcp = eB/mp), respectively. The dashed blue line highlights

the Kolmogorov-like spectral scaling ∼ τ5/3.

The behavior of S(τ) evidences the existence of three different dynamical regimes: the167

instrumental noise range for τ < 0.2 s, the sub-proton range for 0.2 s < τ < 1.3 s, and168

the inertial range for τ > 1.3 s. These findings are well in agreement with the results of169

Bandyopadhyay et al. [17]. By looking at the behavior of 〈d〉 and 〈θ〉 at the different scales170

τ we clearly observe a scale-dependent behavior of 〈d〉 that resembles that highlighted by171

S(τ). The instrumental noise regime is characterized by 〈d〉 = 3 and 〈θ〉 ≈ 1 suggesting, as172

expected, a purely stochastic origin for the short-term variability of magnetic field fluctua-173

tions (i.e., τ < 0.2 s). From a dynamical system point of view, this means that ergodicity174

characterizes the phase-space, i.e., there exists a reference trajectory of a ”typical” point175

that can be used for deducing the average behavior of the system.176

The sub-proton regime (τnoise < τ < τcp) is instead characterized by an increasing 〈d〉 as177

τ increases, reaching a maximum value 〈d〉max ≈ 3.2 for τ ∼ τcp (i.e., larger than the topo-178

logical dimension of the system), together with a nonlinear decreasing 〈θ〉 with τ , reaching179

an inflection point for τ ∼ τcp . These features have not been reported before in the literature180
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and can be interpreted as an increase in the average number of degrees of freedom at sub-181

proton scales due to the nonlinear energy cascade effects moving energy towards these scales182

[5]. Moreover, the behavior of 〈d〉 and 〈θ〉 at τ ∼ τcp is clearly the reflection of a dynami-183

cal transition occurring at the boundary between the sub-proton and the inertial regimes.184

Indeed, going towards larger scales (i.e., approaching the inertial range), we observe a de-185

creasing 〈d〉 and 〈θ〉 with τ , reflecting a reduced-order nature of large-scale magnetic field186

fluctuations with an active number of degree of freedom that is lower than the topological187

dimension of the system (〈d〉 < 3). This points towards the possibility to describe the dy-188

namics across the inertial range as a low-dimensional dynamical system [9]. Furthermore,189

the reduced values of 〈θ〉 suggest a long residence time of the system in the dynamical states190

corresponding to the inertial range, indicating that they can be interpreted as a collection191

of marginally stable fixed points of the dynamics with sub-proton scale induced transitions.192

Taking together the above results, we can firmly state that (i) the inertial range dynamics can193

be easily described as a reduced-order dynamical system, and (ii) the increasing dimension-194

ality of the sub-proton regime is a reflection of small-scale turbulence-induced magnetic field195

fluctuations due to a dynamical component that is external to the sub-proton physics, i.e.,196

dynamical information is introduced from processes occurring through the inertial regime197

and reflecting a direct energy cascade mechanism.198

To further support the claim that a larger number of degrees of freedom in magnetic field199

fluctuations is only due to processes occurring at sub-proton scales while global properties200

are mainly related to inertial processes, we compare the behavior of the d− θ plane at two201

different scales τcp and τI , with τI being the largest scale belonging to the inertial range (i.e.,202

τI ∼ 103 s) in dependence on the ratio between magnetic field fluctuations at that scale and203

their standard deviation as reported in Fig. 4.204

We observe that larger values of d are associated with larger fluctuations at sub-proton205

scales, thus suggesting a key role of the organization of sub-proton scales in regulating the206

active number of degrees of freedom of the system. We also show that a very wide range207

of θ values is observed at sub-proton scales, thus reflecting an unstable (from a dynamical208

system point of view) nature of fluctuations within this regime. Conversely, when inertial209

scales are reached we evidence a reduced range of θ, confined below 0.2, together with a210

clearly narrower range of d with respect to the sub-proton regime. This suggests that the211

MHD dynamics is dominated by marginally stable fixed points conferring a low-dimensional212
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FIG. 4. d − θ plane at two different scales τcp (left) and τI (right) in dependence on the ratio

between magnetic field fluctuations at that scale and their standard deviation (colors). White and

black asterisks correspond to the mean values of d and θ at the two different scales.

nature to the system.213

To quantitatively demonstrate these observations, we evaluated the mutual informa-214

tion [26] between d (θ) and Bτ
µ(t) (Eq. 6) as shown in Fig. 5. A statistically significant215

dependency is clearly found between d and magnetic field fluctuations below the proton-216

cyclotron scale τcp as well as between θ and the inertial range dynamics (τ & τcp). This217

quantitatively shows that the overall dynamics of solar wind magnetic field variability re-218

flects those observed at inertial scales, being characterized by a low-dimensional dynamics219

around marginally stable fixed points, while a larger number of degrees of freedom in con-220

junction with an unstable nature of the phase-space topology reflecting an externally forced221

dynamics is associated with the sub-proton range dynamics. The kinetic and electron scales222

contributions (if any) to the dynamics remain difficult to evaluate because of the prominent223

role of the noise overriding the kinetic and electron scales contributions at high frequency.224

Our results provide the first quantitative evidence of large-scale turbulence-induced fluc-225

tuations, thus being a quantitative proof of the Richardson cascade effects on the sub-proton226

regime from the inertial one. We found that the number of degrees of freedom is larger than227

the topological dimension of the system as represented by the magnetic field (D = 3) at228

sub-proton scales (τ > τcp), while a low-dimensional phase-space is found at MHD scales229

(τ < τcp). On one hand, this suggests the existence of an externally induced dynamics at230

sub-proton scales that can be related to the inertial range direct cascade mechanism; on231

the other hand, this also implies that there exists a degree of correlation between mag-232

netic field components that tends to reduce the effective number of degrees of freedom at233
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FIG. 5. Mutual information between d and Bτ
µ(t) (red) and between θ and Bτ

µ(t) (green). The

dashed and dashed-dotted lines correspond to the FGM instrumental noise cutoff (f ∼ 5 Hz)

and the inverse of the proton-cyclotron frequency (fcp = 1/τcp = eB/mp), respectively. The gray

shaded area denotes the 95% significance level.

MHD scales. The latter result points towards a 2D nature of magnetic field fluctuations234

at MHD scales with an inverse enstrophy cascade typically arising in near two-dimensional235

incompressible decaying turbulence. Taken together, we firmly demonstrated that sudden236

variations observed in magnetic field measurements are associated with unstable fixed points237

characterizing the dynamics at sub-proton scales. These large-scale intermittent-like vari-238

ations cannot be definitely associated with coherent intermittent events belonging to the239

MHD domain, but seem to be related to an underlying stochastic strange attractor [27], in240

close analogy with the results obtained by Raphaldini et al. [28, 29] for MHD and Faranda241

et al. [24] for fluid turbulence. Indeed, we also demonstrated the existence of a different242

fixed point nature across the different scales, moving from an unstable point approached243

at sub-proton scales to marginally stable fixed points at inertial scales. Thus, the overall244

dynamics of solar wind magnetic field fluctuations consists of multi-stable and multiscale245

fixed points, opening a novel way to describe the solar wind via stochastic low-dimensional246

models featuring a large number of degrees of freedom [24, 27].247
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