Sonoporation: why microbubbles create pores
Résumé
Ultrasound contrast agents are commonly added to the blood stream in ultrasonic imaging: contrast-enhanced ultrasound (CEUS). They consist of microscopically small bubbles (microbubbles) encapsulated by elastic shells. The most common shell materials are phospholipids. During an ultrasound cycle microbubbles oscillate, i. e., they expand and subsequently contract. Depending on their elastic properties, on the local conditions, and on the acoustic settings, they move in the direction of the sound field, coalesce with other microbubbles, fragment, jet, cluster, release their contents, and dissolve in the surrounding liquid [1]. The diverse behaviour of encapsulated microbubbles in different acoustic regimes has triggered the idea to use them as ultrasound-controlled vehicles to facilitate the delivery of therapeutic agents to a site of interest. Such a noninvasive, localised, side-effect-free method would revolutionise drug delivery as we know it.
Domaines
Physique Médicale [physics.med-ph]Origine | Fichiers produits par l'(les) auteur(s) |
---|