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Abstract

Computing incremental contribution of performance ratios like Sharpe, Treynor, Cal-
mar or Sterling ratios is of paramount importance for asset managers. Leveraging
Euler’s homogeneous function theorem, we are able to prove that these performance
ratios are indeed a linear combination of individual modified performance ratios. This
allows not only deriving a condition for a new asset to provide incremental performance
for the portfolio but also to identify the key drivers of these performance ratios. We
provide various numerical examples of this performance ratio decomposition.
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1. Introduction

When facing the investment question to invest in various funds (whether mutual or hedge

funds) and more generally assets, it is a standard market practice to rank them according to

their Sharpe ratio, or other performance ratios like Treynor or recovery ratio. This is quite

natural as these ratios achieve two important investment goals: measuring performance

taking into account risk, providing an effective way to mix assets and funds as these ratios

can also be applied at the portfolio level. The usual performance metric is the eponymous

Sharpe ratio established in Sharpe (1966). It is a simple number easy to derive and intuitive

to understand as it computes the ratio of the excess return over the strategy standard

deviation. It makes a lot of sense as a high Sharpe ratio over time can not just be the

result of some luck of the asset manager Benhamou, Saltiel, Guez, and Paris (2019g). As it

uses the first two moment, it intuitively relates to the normal distribution whose properties

are remarkable Benhamou, Guez, and Paris (2020) and can even be related to the operator

norm of sub Gaussian tailed random matrices Benhamou, Atif, and Laraki (2019c). In

case of non normal distribution, it can be shown that there are tight connection between

sharpe and omega ratio Benhamou, Guez, and Paris1 (2019e). Moreover, one can also find

some properties of the denominator of the sharpe ratio as sample variance distribution can

be derived in a more general setting Benhamou (2018a) thanks to its Gram Charlier and

Edgeworth expansion Benhamou (2018b) or looking at the T- statistics of an autoregressive

process as presented in Benhamou (2018c). However, the Sharpe ratio has various limitations

that have been widely emphasized by various authors (Pilotte and Sterbenz (2006), Sharpe

(1998), Nielsen and Vassalou (2004)) leading to other performance ratios like Treynor ratio

(see Treynor and Black (1973)), but also Calmar (see Young (1991)), Sterling (see McCafferty

(2003)) or Burke ratio (see Burke (1994)). Other authors have also tried to provide additional

constraints to the Sharpe as in Bertrand (2009) or more recently in Darolle, Gourieroux, and

Jay (2012) or to use option implied volatility and skewness as in DeMiguel, Plyakha, Uppal,

and Vilkov (2013). There have been also numerous empirical work on Sharpe ratio as for

the most recent ones in Giannotti and Mattarocci (2013), Anderson, Bianchi, and Goldberg

(2014). There has been also an interesting approach by Challet (2017) to compute Sharpe

ratio through total drawdown duration.

An important feature that has been noted in Darolle et al. (2012) or Steiner (2011) but

only for the Sharpe ratio is the fact that most of the performance ratios are so called 0 Euler

homogeneous with respect to the portfolio weights. In financial terms, there are not sensitive

to the leverage of the portfolio.

The contribution of our paper is to exploit this mathematical property and re-derive
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well known results on the Sharpe ratio in a new manner. As a consequence, we obtain the

condition for a new asset to increase the overall Sharpe of a portfolio. We also extend the

incremental performance marginal sensitivity to all performance ratios that are 0 Euler ho-

mogeneous with respect to the portfolio weights. This allows in particular to understand the

performance ratios drivers. We finally show how to decompose performance ratios between

a benchmark and the individual portfolio constituents.

2. Euler homogeneous functions and its application to

performance ratios

2.1. Euler’s theorem

In mathematics, one call a homogeneous function one that has a multiplicative scaling

behaviour. If we multiply all its arguments by a constant factor, then its value is multiplied

by some power of this factor. If we denote by f : Rn → R a multidimensional function from

Rn to R, then the function f is said to be homogeneous of degree k if the following holds:

f(αv) = αkf(v) (1)

for all positive α > 0 and v ∈ Rn. If the function is continuously differentiable ( and this

generalized also to almost surely continuously differentiable function), the Euler’s homoge-

neous function theorem 1 states that the function is homogeneous if and only if

x · ∇f(x) = kf(x) (2)

where ∇f(x) stands for the gradient of f . This theorem (shown in various book like

for instance Lewis (1969)) gives in particular a nice decomposition of any homogeneous

function provided we can compute the gradient function as it says that the function is a

linear combination of partial derivatives as follows:

f(x) =
1

k

∑
i=1..n

xi
∂f

∂xi
1This theorem is trivially proved by differentiating f(αv) = αkf(v) with respect to α for the implication

condition and by integrating the differential equation x · ∇f(x) = kf(x) for the reverse condition
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2.2. Intuition with Sharpe ratio

Let us see how this can be applied to any homogeneous performance ratio. In order to

build our intuition, we will start by the Sharpe ratio as this is a simple and well know ratio.

We assume we have a portfolio of n assets with weights wi. We denote by Rf the risk free

rate and Rp the portfolio return. The Sharpe ratio is defined as the fraction of the portfolio

excess return rp over the portfolio volatility σp and given by

Sp =
Rp −Rf

σp
=
rp
σp

(3)

If we decompose the portfolio excess return rp as the convex combination of its assets ex-

cess returns with percentage weights wi, we get that the Sharpe ratio is a convex combination

of the modified Sharpe

Sp =

∑n
i=1wiri
σp

=
n∑
i=1

wi
ri
σp

(4)

This says that if we were looking at a modified Sharpe ratio of each portfolio constituent

where the volatility of the constituent is modified into the one of the portfolio, then the

Sharpe ratio of the portfolio is simply the convex combination of these modified Sharpe ratio.

This is nice from a theoretical point of view but not very useful as this forces us to compute

the volatility of the portfolio and does not give any hindsight about asset i volatility. This

is where Euler homogeneous formula comes at the rescue. The Sharpe ratio like many other

performance ratio has the particularity that it is the fraction of two homogeneous function

of degree 1. The decomposition for the excess return in terms of a linear combination of the

portfolio weight is obvious.

More subtle is the fact that the volatility of the portfolio can also be decomposed as the

convex sum of individual volatility contributions. Indeed, the volatility is an homogeneous

function of degree 1 of the portfolio weights as scaling the weights by a factor increases the

portfolio by the same factor. In the sequel, we will denote for asset i, ρi,p its correlation

with portfolio P , σi its volatility and Si its Sharpe ratio. Thanks to Euler’s homogeneous

function theorem, we know that the portfolio volatility can be written as follows

Proposition 1. The weighted marginal contributions to volatility sum up to portfolio volatil-

ity as follows:

σp =
n∑
i=1

wi
∂σp
∂wi

=
n∑
i=1

wiρi,pσi (5)

Proof. trivial consequence of Euler’s homogeneous function theorem and given in A.0.1.
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This results was first derived in Bertrand (2009) and in Maillard, Roncalli, and Teiletche

(2010) in the case of equally weighted portfolio and was also noted in Darolle et al. (2012).

Euler property has been mentioned as early as in Litterman (1996) and Tasche (1999). Using

this first property, it is now easy to derive a convex combination for the portfolio Sharpe

ratio as follows.

Proposition 2. The portfolio Sharpe ratio is a convex combination of individual Sharpe

ratios weighted by the inverse of the asset i correlation with portfolio P , ρi,p:

Sp =
n∑
i=1

θi
1

ρi,p
Si (6)

The risk weights (θi)i=1..n sums to one and are given by

θi =
wiρi,pσi
σp

(7)

The coefficient 1/ρi,p measures the diversification effect. It increases Sharpe ratio for low

correlation.

Proof. given in A.0.2.

As a byproduct, we get the condition for a new asset to improve the overall portfolio

Sharpe summarized below

Proposition 3. It is optimal to include an asset i in a portfolio if and only if

Si ≥ ρi,pSp (8)

Proof. See A.0.3.

This result is complementary from the standard mean variance approach as presented in

Lobo, Fazel, and Boyd (2007) and generalized in Goto and Xu (2015), which investigates

about the optimal weights in a mean variance framework and states that the optimal weights

are the result of a normal equation.

2.3. General case

A large number of performance ratios like Sharpe, Treynor, Sortino, Calmar, Sterling,

information ratios or M2 write as the fraction of an excess return or a return or a return over

a benchmark over some risk measure. The numerator and the denominator are homogeneous
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functions of degree 1. This leads to a performance ratio that is an homogeneous function of

degree 0. In financial terms, the performance ratio is insensitive to leverage.

We will write therefore any portfolio leverage-insensitive ratio PR(p) as the fraction of an

portfolio homogeneous return Rp over an homogeneous function of degree 1, f(p) as follows:

PR(p) =
Rp

f(p)
(9)

We will also denote for the asset i by f(i) its denominator function and PR(i) its corre-

sponding performance ratio. Since the general return is an homogeneous functions of degree

1, it can be written as the convex combination of individual asset general returns:

Rp =
n∑
i=1

wiRi (10)

Since the denominator is an homogeneous functions of degree 1, it can be written as

a convex combination of individual asset contribution thanks to the Euler’s homogeneous

function theorem:

f(p) =
n∑
i=1

wi
∂f

∂wi
(11)

Combining equations 10 and 11 leads to a decomposition of the leverage-insensitive ratio

PR into individual or incremental performance ratio for each asset i

PR(p) =
n∑
i=1

wi
∂f
∂wi

f(p)
× f(i)

∂f
∂wi

× Ri

f(i)
=

n∑
i=1

θi ×Di × PR(i) (12)

The risk factor θi and the diversification factor Di are given respectively by

θi =
wi

∂f
∂wi

f(p)
, Di =

f(i)
∂f
∂wi

(13)

As in the case of the Sharpe, it is then easy to derive a condition for a new asset to

improve the overall portfolio performance ratio summarized below

Proposition 4. It is optimal to include an asset i in a portfolio in order to maximize the

performance ratio PR(p) if and only if

PR(i) ≥ PR(p)

Di

⇔ PR(i) ≥
∂f
∂wi

f(i)
× PR(p) (14)
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Proof. See A.0.4.

The real work at this stage is to compute the derivative function of the denominator with

respect to its weight ∂f
∂wi

. We provide results for various performance ratios in the table below

performance definition performance diversification

ratio = Rp

f(p)
marginal sensitivity = ∂f

∂wi
factor= f(i)/ ∂f

∂wi

Sharpe Sp =
rp−rf
σp

ρi,pσi 1/ρi,p

Sortino Sorp =
rp−rf
TSDp

ρi,pTSDi 1/ρi,p

Information IRp = rp−rb
σp−b

ρi,p−bσi 1/ρi,p−b × σi−b/σi
Treynor Tp =

rp−rf
βp

βi 1

Recovery Recp =
rp−rf
MDDp

M̃DDi MDDi/M̃DDi

Calmar Calp =
rp−rf

MDD36m
p

M̃DD
36m

i MDD36m
i /M̃DD

36m

i

Sterling Sterp =
rp−rf
ALDp

ÃLDi ALDi/ÃLDi

Table 1: We provide here above the results for the most common performance ratios

In table 1, we have used the following notations:

• TSD stands for target semi deviation(standard deviation of return below target).

• rb is the benchmark return.

• σp−b is the standard deviation of the difference between the portfolio and benchmark

returns.

• MDD (respectively MDD36m, ALD ) stands for the maximum drawdown, the maxi-

mum drawdown over 36 months and the annual average maximum drawdown over the

entire historical period.

Proof. See A.0.5.

3. Numerical application

3.1. Sharpe ratio

Let us apply the above formulas to a portfolio consisting of three assets with the char-

acteristics described in table 2. The portfolio weights are the optimal ones in terms of the

highest Sharpe ratio with the constraints of weights between 0 to 100% (no short selling al-

lowed neither extra leverage). We also provide in the characteristics the correlation between

the asset i and the portfolio as this is useful for risk decomposition.
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Asset I II III Total

Weight 34.87% 28.07% 37.06% 100.00%

Expected Return 3.20% 3.50% 4.50%

Volatility 4.87% 5.63% 5.12%

Correlation with portfolio 49.87% 37.55% 65.87%

Table 2: Portfolio characteristics

Once the characteristics established, we can easily compute the portfolio performance

ratio as provided in table 3. We compute the portfolio return as the convex combination

of the assets returns as well as the portfolio volatility. For the latter, we use the volatility

reconstruction formula 1. The portfolio Sharpe is then the fraction of the latter two. We can

notice that the resulting portfolio Sharpe (1.4000) is substantially higher than the best asset

Sharpe (0.8789). We are benefiting fully from the diversification effect. This diversification

effect can be ultimately connected to some signal like using Kalman filter like presented in

Benhamou (2018d), Benhamou, Atif, Laraki, and Saltiel (2019d) or in Benhamou, Atif, and

Laraki (2019b).

Portfolio

Expected Return 3.77%

Volatility 2.69%

Sharpe Ratio 1.4000

Table 3: Portfolio resulting Sharpe ratio: all these numbers are computed from table 2

The table 4 gives us a nice view of the Portfolio Sharpe decomposition. The asset III

has the highest Sharpe ratio (0.8789) but the lowest Sharpe diversification. This results in

particular in a the highest risk (46.46%), which is a strong indication that asset III contributes

more to the overall portfolio Sharpe ratio. Its risk weight (46.46%) is higher than its portfolio

weight (37.06%) indicating that the Sharpe contribution will be over-weighted. In contrast,

risk weights for asset I and II (31.48% and 22.06%) are smaller than their corresponding

portfolio weights ( 34.87% and 28.07%). They will contribute less and will be under-weighted

in the overall portfolio Sharpe ratio. Thanks to the strong asset III contribution and the

diversification, as noted above, the overall portfolio achieved a significant increase in its

Sharpe ratio (1.4000). In table 4, the Sharpe ratio relative contribution is defined as the

Sharpe ratio contribution divided by the portfolio Sharpe ratio. It sums to 100 %.
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Asset I II III Total

Asset Sharpe Ratio 0.6571 0.6217 0.8789

Sharpe Diversification 2.0054 2.6632 1.5182

Component Sharpe Ratio 1.3177 1.6557 1.3344

Risk Weight 31.48% 22.06% 46.46% 100.00%

Sharpe Ratio Contribution 0.4148 0.3652 0.6200 1.4000

Sharpe Ratio Relative Contribution 29.63% 26.09% 44.29% 100.00 %

Table 4: Portfolio Sharpe decomposition: all these numbers are computed from table 2

3.2. Recovery ratio

Recovery ratio is an important performance ratio in the funds’ world as it provides

the expected return divided by the maximum drawdown. Maximum drawdown is closely

monitored by professional investors as it gives an hint about the maximum potential loss

should they invest and dis-invest at the worst time. For the sake of comparison with the

previous study in section 3.1, we will first start with the same portfolio with the same

percentage weights. For each asset, we provide in table 5 its maximum drawdown as well its

performance marginal sensitivity (whose formula is ∂f
∂wi

) as provided in 1.

Asset I II III Total

Weight 34.87% 28.07% 37.06% 100.00%

Asset MDD 5.71% 6.34% 4.53%

Performance marginal sensitivity 3.14% 1.90% 4.07%

Table 5: Portfolio characteristics for recovery ratio

Like for the Sharpe ratio, we can compute the portfolio resulting characteristics in table

6. Expected return is like before computed as the convex combination of the asset returns

(and is the same as in table 3). The recovery ratio is then simply the fraction of the latter

two.

Portfolio

Expected Return 3.77%

Portfolio Drawdown 3.14%

Portfolio recovery ratio 1.1999

Table 6: Portfolio resulting recovery ratio
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More interestingly is to analyze portfolio recovery decomposition as provided in table 6.

Again, thanks to portfolio diversification, we achieve a higher performance ratio (recovery of

1.1999) compared to the highest asset performance ratio (obtained for asset III 0.9939). Like

for the Sharpe ratio, the risk weight of asset III (48.12%) is over-weighted compared to its

portfolio weight (37.06%). The opposite situation arises for asset II (risk weight of 17.02%

compared to a 28.07%). By complete chance, risk and portfolio weight for asset I are equal

up to the fourth decimal (risk weight of 34.865% compared to portfolio weight of 34.872% ).

As in the case of the Sharpe ratio, we can check that the sum of the risk weights are equal

to 100%. In table 7, the recovery ratio relative contribution is defined as the recovery ratio

contribution divided by the portfolio recovery ratio. It sums to 100 %.

Asset I II III Total

Asset Recovery ratio 0.5609 0.5518 0.9939

Recovery Diversification 1.8182 3.3333 1.1111

Component Recovery 1.0198 1.8393 1.1043

Risk Weight 34.87% 17.02% 48.12% 100.00%

Recovery Contribution 0.3556 0.3130 0.5314 1.1999

Recovery Relative Contribution 29.63% 26.08% 44.28% 100.00%

Table 7: Portfolio recovery decomposition

A natural question that arises when looking at the recovery ratio for the portfolio is to

determine if the optimal weights for the Sharpe ratio are also optimal for the recovery ratio.

The answer is no in general. Recovery ratio is substantially different from Sharpe ratio.

Hence the optimal portfolio for the recovery ratio has no reason to have the same weights

as for the optimal portfolio for the Sharpe ratio. Because the recovery ratio implies a non

convex function, namely the maximum drawdown, there is no closed form solution for the

optimal portfolio as opposed to the Sharpe ratio settings. Using the GRG (that stands for

Generalized Reduced Gradient) method (as presented in Lasdon, Fox, and Ratner (1974)),

we can determine the optimal weights for this portfolio as provided in table 8. We can

also rely on non convex optimization as presented in Benhamou, Saltiel, Verel, and Teytaud

(2019h), Benhamou, Saltiel, Guez, and Paris (2019f) or for its discrete version Benhamou,

Atif, and Laraki (2019a) For this new portfolio, Asset performance marginal sensitivity

changes slightly as the portfolio drawdown times are different.
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Asset I II III Total

Weight 5.99% 24.78% 69.24%

Asset MDD 5.71% 6.34% 4.53%

Asset performance marginal sensitivity 3.74% 1.95% 3.49%

Table 8: Optimal Portfolio characteristics for maximum drawdown

We can recompute the new portfolio characteristics as provided in table 9. We achieve

a substantially higher portfolio recovery ratio (1.3379 versus 1.1999). This is due both to

a higher expected return (4.17% versus 3.77%) and a lower portfolio maximum drawdown

(3.12% versus 3.14%).

Portfolio

Expected Return 4.17%

Portfolio Drawdown 3.12%

Portfolio recovery ratio 1.3379

Table 9: Optimal Portfolio resulting recovery ratio

As for previous studies, we can look at maximum drawdown decomposition as provided

in table 10. Compared to the previous portfolio with same weights as the optimal ones for

the Sharpe ratio, the risk weight for asset III increases even more (77.38% versus 48.12%).

This is quite logical as this optimal portfolio for the maximum drawdown is indeed very

much geared towards asset III (asset weight of 69.24% versus 37.06%). Interestingly, thanks

to diversification, the recovery contribution for asset III (0.9986) is even higher to the asset

recovery ratio (0.9939 ).

Asset I II III Total

Asset Recovery ratio 0.5609 0.5518 0.9939

Recovery Diversification 1.5268 3.2606 1.2984

Component Recovery 0.8563 1.7991 1.2905

Risk Weight 7.17% 15.45% 77.38% 100.00%

Recovery Contribution 0.0614 0.2779 0.9986 1.3379

Table 10: Optimal Portfolio maximum drawdown decomposition
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4. Concluding Remarks

We have introduced in this paper a unified framework for deriving asset contribution for

performance ratios that are homogeneous function. This allows us finding easily previous

results on incremental Sharpe ratio contribution of a new asset as well as extend this to

new performance ratios like Sortino, Information, Treynor, Recovery, Calmar or Sterling

ratios where this did not exist. We also compare the impact of a new asset to a portfo-

lio performance thanks to these incremental performance marginal sensitivity and show a

methodology to analyse asset contribution to a portfolio. In a companion paper Benhamou

(2019), we will analyze the statistical properties of the Sharpe
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Appendix A. Various Proofs

A.0.1. Proof of Proposition 1

Denoting by ρi,j the correlation between asset i andj, we can decompose the porfolio

variance as a combination of assets’ volatility as follows:

σ2
p =

∑
i=1...n

w2
i σ

2
i + 2

∑
i,j=1...n,i 6=j

wiwjρi,jσiσj (15)

Differentiating the above equation 15 with respect to wi, we have

2σp
∂σp
∂wi

= 2wiσ
2
i + 2

∑
j=1...n,j 6=i

wjρi,jσiσj (16)

We can notice that the correlation between asset i and the portfolio p is given by

ρi,p =
wiσ

2
i +

∑
j=1...n,j 6=iwjρi,jσiσj

σiσp
(17)

which shows that

∂σp
∂wi

= ρi,pσi (18)

Since the portfolio volatility is homogeneous of degree 1, the Euler’s homogeneous func-

tion theorem states that

σp =
∑
i=1...n

wi
∂σp
wi

=
∑
i=1...n

wiρi,pσi (19)

A.0.2. Proof of Proposition 2

Dividing and multiplying by ρi,pσi in the formula of the portfolio Sharpe ratio and re-

grouping the terms leads to the final results as follows:

Sp =
n∑
i=1

wi
ri
σp

=
n∑
i=1

wiρi,pσi
σp

1

ρi,p

ri
σi

=
n∑
i=1

θi
1

ρi,p
Si (20)
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A.0.3. Proof of Proposition 3

Let us denote by P (wi, i = 1..n) the portfolio composed of n assets with percentage

weights wi and n the new asset. The portfolio percentage weights sum to 1:
∑

i=1..nwi = 1.

The optimization program writes as follows:

maximize Sharpe Ratio(P (wi, i = 1..n)), (21)

subject to
∑
i=1..n

wi = 1 (22)

Using proposition 2 and multiplying and dividing by 1−θn (with the additional constraint

that θn 6= 1 2), the optimal solution is also the solution of this program

maximize (1− θn)
∑

i=1..n−1

θi
1− θn

1

ρi,P
Si + θn

1

ρn,P
Sn (23)

subject to
∑
i=1..n

θi = 1, θn 6= 1 (24)

Fixing θn and noticing that the weights θi
1−θn for i = 1..n− 1 sum to 1, the optimization

program is indeed a two steps program where we can optimize first in terms of the weights
θi

1−θn and then in terms of θn. As the n − 1 terms are indeed the percentage weights of an

n − 1 portfolio composed of n − 1 assets, the first optimization is exactly the same as the

optimization of the optimal portfolio with n− 1 assets in terms of its Sharpe ratio. The first

step therefore leads to the optimal portfolio without asset n for the Sharpe ratio. We will

denote this portfolio by P̃ . The maximization program is then equivalent to

maximize (1− θn)SP̃ + θn
1

ρn,P
Sn (25)

subject to 0 ≤ θn ≤ 1 (26)

This optimization program is a linear function whose optimal solution θn is not equal to

zero if and only if the slope coefficient is positive (which proves the result):

1

ρn,P
Sn − SP̃ ≥ 0⇔ Sn ≥ ρn,PSP̃ (27)

2the particular case of θn = 1 can be handled easily by taking the left limit for θn ↑ 1
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A.0.4. Proof of Proposition 4

The proof is exactly the same as in A.0.3 and leads at the end to solve the following

linear maximization program where like in A.0.3 , we denote by P̃ the optimal portfolio with

n− 1 assets in terms of the performance ratio.

maximize (1− θn)PR(P̃ ) + θnDnPR(n) (28)

subject to 0 ≤ θn ≤ 1 (29)

This optimization program is a linear function whose optimal solution θn is not equal to

zero if and only if the slope coefficient is positive (which proves the result):

DnPR(n)− PR(P̃ ) ≥ 0⇔ PR(n) ≥ PR(P̃ )
Dn

(30)

A.0.5. Proof of Table 1 results

Results for Sharpe are already proved in A.0.1.

Denoting by rM the return of the market asset, the beta in the Treynor ratio is given by

βp =
Cov(rp, rM)

σ2
M

=
Cov(

∑n
i=1wiri, rM)

σ2
M

=
n∑
i=1

Cov(ri, rM)

σ2
M

(31)

A straight derivation leads to the results ∂f
∂wi

= βi

The target semi deviation is quite similar to the standard deviation with the additional

constraint that we only use returns that are below its mean. The proof is therefore similar

to the one of the portfolio in the Sharpe ratio with the additional constraint to use only

down returns, leading to a target standard deviation for the assets’ performance marginal

sensitivity:

∂f

∂wi
= ρi,pTSDi (32)

The proof for the recovery, Calmar and Sterling ratio are similar and we will detail only

the first one as the other derivation are just an averaging or windowing of the first proof. The
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maximum drawdown measures the largest peak-to-trough decline in the value of a portfolio.

Denoting by 0 to T the historical times at which we observe the portfolio return and by crjp

the cumulative return of the portfolio from time 0 to j with the convention that the return

at time 0 is null, the maximum drawdown can be written mathematically as the maximum

of the following discrete optimization program

MDD ≡ min
j=0..T, k=j..T

1 + crkp

1 + crjp
− 1 (33)

The portfolio contains n assets with percentage weights wi. Assuming no re-balancing,

the portfolio cumulative returns writes as the convex combination of the cumulative asset i

return, leading to the following definition of the maximum drawdown

MDD = min
j=0..T, k=j..T

∑n
i=1wi(1 + crki )∑n
i=1wi(1 + crji )

− 1 (34)

As this is a discrete optimization program, the optimum is attained for j∗ and k∗. Deriving

the maximum drawdown leads therefore to

∂

∂wi
MDD =

(
1 + crk∗i
1 + crj∗p

− 1

)
−

 1+crj∗i
1+crj∗p

× (1 + crk∗p )

1 + crj∗p
− 1

 ≡ M̃DDi (35)

Hence the sensitivity of the maximum drawdown is given by the difference of

• the drawdown between between the portfolio cumulative return at time j∗ and the

asset at time k∗

• the drawdown between between the portfolio cumulative return at time j∗ and the

portfolio return at time k∗ augmented by the difference of cumulative return between

the asset i and portfolio at time j∗

For the Calmar and Sterling ratio, similar formulas exist where the sensitivity of the

maximum drawdown is taken over 36 months, respectively as the annual average.

A.0.6. Correlation matrix for the three assets

For the sake of completeness, we provide below the correlation matrix. This matrix is

consistent with asset correlation with portfolio coefficients.
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Asset I II III

I 1.00 - 0.20 0.40

II - 0.20 1.00 0.30

III 0.40 0.30 1.00

Table 11: Asset correlation matrix

From this correlation matrix denoted by Σ and for asset i with the corresponding Kro-

necker delta vector defined by δi = (0...1...0)T with one at the ith row and zero elsewhere, it

is then straightforward to compute for any asset its correlation with portfolio (whose weight

vector is defined as W = (w1, ..wj, .., wn)T as follows:

ρi,p =
δiΣW√

δiΣδi
√
WΣW

(36)
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