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ABSTRACT

Context. The size of convective cores remains uncertain, despite their substantial influence on stellar evolution, and thus on stellar
ages. The seismic modeling of young subgiants can be used to obtain indirect constraints on the core structure during main sequence,
thanks to the high probing potential of mixed modes.
Aims. We selected the young subgiant KIC10273246, observed by Kepler, based on its mixed-mode properties. We thoroughly
modeled this star, with the aim of placing constraints on the size of its main-sequence convective core. A corollary goal of this study
is to elaborate a modeling technique that is suitable for subgiants and can later be applied to a larger number of targets.
Methods. We first extracted the parameters of the oscillation modes of the star using the full Kepler data set. To overcome the
challenges posed by the seismic modeling of subgiants, we propose a method that is specifically tailored to subgiants with mixed
modes and uses nested optimization. We then applied this method to perform a detailed seismic modeling of KIC10273246.
Results. We obtain models that show good statistical agreements with the observations, both seismic and non-seismic. We show
that including core overshooting in the models significantly improves the quality of the seismic fit, optimal models being found for
αov = 0.15. Higher amounts of core overshooting strongly worsen the agreement with the observations and are thus firmly ruled out.
We also find that having access to two g-dominated mixed modes in young subgiants allows us to place stronger constraints on the
gradient of molecular weight in the core and on the central density.
Conclusions. This study confirms the high potential of young subgiants with mixed modes to investigate the size of main-sequence
convective cores. It paves the way for a more general study including the subgiants observed with Kepler, TESS, and eventually
PLATO.
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1. Introduction

One of the most important current open questions in stellar
physics is the extent of convective cores. Several physical pro-
cesses are known to extend the convective core boundaries
beyond the standard Schwarzschild limit. The most frequently
quoted are overshooting of ascending blobs of fluids due to their
inertia, rotational mixing or semi-convection. All these processes
remain poorly described by theory, and the way they interact is
understood even less. They are therefore generally modeled, in
stellar evolution codes, as an extension of the mixed core over a
distance dov, which is often referred to as the distance of over-
shoot, even though other processes can contribute as well. In
practice, this can either be achieved by simply extending the
fully mixed central region, or by treating overshooting as a dif-
fusive process, following a behavior found in numerical sim-
ulations (Freytag et al. 1996). In both cases, a free parameter
controlling the extent of the additional mixing is required.
Observations are therefore necessary to better constrain those
processes.

Initial constraints have been obtained thanks to the study
of the HR diagram of clusters (see e.g., Maeder & Mermilliod
1981, VandenBerg et al. 2006), and the modeling of eclipsing
binaries (Claret & Torres 2016). Most of those studies favor
adding overshooting, to various extents. Typically, dov is around
0.2 Hp, where Hp is the pressure scale height. Claret & Torres

(2016) found that αov, the ratio between dov and Hp, increases
with mass for stars under 2 M� before reaching a plateau. How-
ever, this result is still debated (Constantino & Baraffe 2018,
Claret & Torres 2019).

Over the last decade, asteroseismology allowed us to
probe the structure of stellar cores. Thanks to the data of
CoRoT (Baglin et al. 2006), Kepler (Borucki et al. 2010) and
now TESS (Ricker et al. 2014) missions, we have been able
to precisely measure the oscillation frequencies of numer-
ous pulsators. The study of pressure (p) modes in low-
mass main sequence (MS) stars, showed the need for core
overshooting to correctly reproduce the observed frequencies
(Goupil et al. 2011, Deheuvels et al. 2010, Silva Aguirre et al.
2013). Deheuvels et al. (2016), modeling several MS stars,
found that αov increases with the mass. Moreover, gravity (g)
mode pulsators, like slowly-pulsating B (SPB) stars, are interest-
ing targets to constrain the additional mixing around convective
cores. Indeed, gravity modes probe the inner chemical structure
of the star and allow detailed investigation of the convective core
extensions. Moravveji et al. (2015, 2016), when modeling SPB
stars, found that overshoot was necessary, and they favored dif-
fusive overshooting over a simple extension of the central mixed
region.

Post-main-sequence stars are another way to put constraints
on the amount of overshooting. Once the central hydrogen is
exhausted, nuclear energy production stops, leaving an inert
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radiative helium core. This core then contracts, heating the
surrounding hydrogen layers of the star until shell burning starts.
At that moment, the star begins its subgiant phase, and evolves
on a nuclear timescale for masses below about 1.5 solar masses
(M�). For stars that are close to the terminal-age main sequence
(TAMS), the structure and the evolution remain highly influ-
enced by the properties of the MS convective core. Interestingly,
the star begins to exhibit mixed modes at that moment. These
modes behave like gravity modes in the internal propagation
cavity and pressure modes in the outer one. Thus, they allow
us to finely probe the deepest layers of the star, all the while
being observable. This and the proximity of the subgiant to the
TAMS make the mixed modes of young subgiants valuable data
in studying the extension of convective cores.

Another particularity of mixed modes is their very fast evolu-
tion, compared to the nuclear evolution timescale of the subgiant
phase. Indeed, mixed mode frequencies change dramatically
over the course of a few million years. This makes their seismic
modeling challenging. Recently, increasing efforts have been
made to model subgiants (Huber et al. 2019; Stokholm et al.
2019; Metcalfe et al. 2020; Deheuvels et al. 2020; Li et al. 2019,
2020), driven by both their great physical interest and the sud-
den increase of seismic data for these stars. Most of those works
focused on finding the optimal stellar parameters for one or sev-
eral subgiants. So far, few studies have used subgiants as tools to
test stellar physics, mainly due to the challenges of their model-
ing, as mentioned above.

Deheuvels & Michel (2011) successfully constrained αov
from a subgiant observed by CoRoT, HD 49385, which exhibits
only one g-dominated mode and is therefore very close to the
TAMS. They found that either no overshooting, or a model with
αov = 0.19 were giving equally good results. In this work, we
modeled a young subgiant, KIC10273246, which was observed
by Kepler over almost 1000 days. That star exhibits two g-
dominated modes, which allows us to better constrain its inner
structure. We performed a thorough seismic modeling of the star,
in order to precisely estimate its stellar parameters and to place
constraints on the extension of its MS convective core.

In Sect. 2, we show the utility of having access to two
g-dominated mixed modes in young subgiants. In Sect. 3, we
present the surface observables of KIC10273246 and perform a
fresh analysis of its oscillation spectrum using the full Kepler
data set. We then describe, in Sect. 4, the modeling technique
that we adopted, which is an improved version of the method
developed by Deheuvels & Michel (2011). Section 5 presents
our optimal stellar models and the constraints that were obtained
from the extent of the MS convective core for KIC10273246.
We discuss these results in Sect. 6, and Sect. 7 is dedicated to
our conclusions.

2. Probing potential of mixed modes

Just after the main sequence, the oscillation spectra of solar-
like pulsators show the presence of mixed modes, which are due
to the coupling between the observed p-modes and low radial-
order g-modes (ng = 1, 2, 3, ng being the number of nodes in
the g-mode cavity). The frequency spacing between low-order
g-modes is large (several times the large separation of p modes),
so that only a few are in the observable frequency window dur-
ing the subgiant phase. Moreover, with ng being low, the pure
g modes that couple to p modes do not follow an asymptotic
behavior (as described in Shibahashi 1979, Tassoul 1980). The
oscillation spectra of subgiants therefore constrast with those
of more evolved stars, which typically have more g-dominated

modes than p-dominated modes, and for which ng is of the order
of several tens (e.g., Mosser et al. 2012).

The frequencies of mixed modes are mostly determined by
two structural features of the star. The first is the g-mode (G)
cavity, which is delimited by the Brunt-Väisälä frequency N. The
second is the evanescent zone between the g-mode and p-mode
(P) cavities, the latter being delimited by the Lamb frequency S l.

The G cavity affects the frequency of the g-mode that is
involved in the mixed mode frequency. G-mode frequencies, in
the asymptotic theory, can be approximated by

νn,l ≈

√
l(l + 1)

2π2(n − 1/2)

∫ r2

r1

N
r

dr, (1)

l being the degree of the mode, r1 and r2 the turning points in
the G cavity, and r the local radius of the star. In our case, ng is
low for the observed modes, so the asymptotic expression given
in Eq. (1) should not apply. However, it has been shown that
it can provide qualitative information about the behavior of the
mixed mode frequencies (Deheuvels et al. 2010). It tells us that
g-dominated modes should give strong constraints on the Brunt-
Väisälä frequency in the G cavity. One can write it in the follow-
ing form (e.g., Kippenhahn et al. 2012):

N2 =
gδ

Hp

(
∇ad − ∇ +

φ

δ
∇µ

)
, (2)

where g is the local gravity, δ = −(∂ ln ρ/∂ ln T )P,µ, φ =
(∂ ln ρ/∂ ln µ)P,T , ∇ad = (∂ ln T/∂ ln P)ad, ∇ = ∂ ln T/∂ ln P, and
∇µ = ∂ ln µ/∂ ln P. The Brunt-Väisälä frequency consequently
carries information about both the thermal (two first terms in
parentheses) and compositional structure (last term) of the star.

The evanescent zone affects the coupling between the two
cavities, whose strength is linked to the size of this region and
the value of N inside it (e.g., Unno et al. 1989). Using a toy
model, Deheuvels & Michel (2011) showed that a strong cou-
pling induces a shift of the l ≥ 1 p-dominated frequencies that
are close to a g-mode. The p-dominated frequencies therefore
provide complementary information about the internal structure
of the subgiant.

In this work, we investigated whether having several g-
dominated modes in the observed oscillation spectrum could
offer more information regarding the extension of the MS core.
From above, we know that the frequencies of the g-dominated
mixed modes are related to the N/r integral between the turn-
ing points of the G cavity. Figure 1 shows the propagation
diagram of a subgiant close to the TAMS, highlighting the fre-
quencies of the first two g-dominated l = 1 mixed modes, that
is, those that arise due to the coupling of p modes with g modes
of radial orders ng = 1 and 2. We denote their turning points in
the G cavity as ri1, ro1 for the mode with ng = 1, and ri2, ro2
for the mode with ng = 2. The difference between the two fre-
quencies is thus mainly related to the Brunt-Väisälä frequency
value between ro1 and ro2 (as the one in the [ri1, ri2] region is
negligible). This region, as it can be seen in Fig. 1, is domi-
nated by the µ-gradient contribution. This gradient is related to
the characteristics of the hydrogen-burning shell, especially the
nuclear energy generation, and thus its temperature and compo-
sition. It has been shown that a H-burning shell structure depends
on the MS core features, and especially on the amount of core
overshooting. One can see this in Fig. 5 of Deheuvels & Michel
(2010), which exhibits two Brunt-Väisälä profiles of stars hav-
ing the same evolutionary stage and position in the HR diagram,
but computed with different αov. The two profiles differ mainly
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Fig. 1. Typical propagation diagram of a low-mass subgiant star. The
Brunt-Väisälä frequency is represented in blue, delimiting the g-mode
cavity (light blue). The Lamb frequency, in orange, delimits the p-mode
cavity (light orange). Two g-dominated mixed mode angular frequen-
cies, with ng = 1, 2, are represented (solid lines in propagation zones,
dotted lines in evanescent zones). The G cavity turning points are noted
as ri1, ri2 and ro1, ro2. Finally, the thermal and chemical contributions to
the Brunt-Väisälä frequency are represented in green (dashed) and red
(dot-dashed), respectively.

in the peak caused by the µ-gradient, and these structural dif-
ferences are large enough to have a significant impact on the
eigenfrequencies of the star.

For all those reasons, stars with two visible g-dominated
modes are therefore expected to be interesting targets on which
to place constraints on the efficiency of core overshooting.
That criterion led us to the choice of KIC10273246, a subgiant
with two g-dominated modes and a mass of 1.26 ± 0.10 M�
(Creevey et al. 2012), which places it safely in the mass range
where stars are expected to have a convective core during the
MS.

3. Observational properties of KIC 10273246

3.1. Surface constraints

3.1.1. Constraints from spectroscopy

Surface constraints were obtained for KIC10273246 by
Creevey et al. (2012). The authors used different algorithms on
the same spectra obtained with the FIES spectrograph. For our
target, they found effective temperatures (Teff) ranging from
5933 to 6380 K. A weighted mean gives us a value of 6150±100
K, which we have used to constrain our seismic modeling. The
star was also found to have to have a sub-solar metallicity, with
[Fe/H] = −0.13 ± 0.1 dex.

3.1.2. Constraints from broadband photometry

To obtain a reliable value of the luminosity of the star, we
performed a spectral energy distribution (SED) fit, following
the procedure of Stassun & Torres (2016). We extracted pho-
tometric values using the VizieR photometry tool. Those data
come from the NUV filter from GALEX (Martin et al. 2005),
the BT and VT filters from Tycho-2 (Høg et al. 2000), the J,H
and Ks filters from 2MASS (Skrutskie et al. 2006), the gri fil-
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Fig. 2. Best fit of the SED using Kurucz atmosphere models. The orange
points represent the observations with the corresponding error bars, and
the blue curve represents the best fit SED model.

ters from SDSS (Skrutskie et al. 2006), the W1-W4 filters from
WISE (Wright et al. 2010), and the G magnitude from Gaia
(Evans et al. 2018). The atmosphere model comes from the
Kurucz atmosphere grid (Kurucz 2005), with the surface grav-
ity (log g) derived from the seismic relations (see Sect. 3.2.4),
and the metallicity coming from spectroscopic measurements.
We then fit the photometry points to the spectrum, with the Teff

and extinction Av as free parameters. We also used the spectro-
scopic data from Creevey et al. (2012) and the extinction from
Green et al. (2019) as priors. With a reduced χ2 of 0.7, we found
Teff = 6000 ± 33 K, and Av = 0.00+0.037

−0.000 mag. The fit spectrum
and the photometric data are represented in Fig. 2. Finally, we
integrated the flux over all the wavelengths and used the dis-
tance from Gaia to obtain the luminosity of the star. According
to Zinn et al. (2019), a parallax bias exists in the Kepler field,
which depends on the G-band magnitude and the pseudo-color
νeff (effective wavenumber of the photon flux distribution in the
Gaia band) of the star. We found $ −$Gaia = 39.15 ± 9.46 µas,
which gives L = 5.74±0.17 L�. This result is, as expected, lower
than the Gaia archive value (5.92 ± 0.13 L�) due to the parallax
offset.

3.2. Seismic constraints

3.2.1. Preparation of Kepler light curve

The subgiant KIC10273246 was observed with Kepler between
quarters Q0 and Q11 (total duration of 978 days) in short
cadence (58.85 s). An early seismic analysis of the target was
performed by Campante et al. (2011) using the first four quarters
of Kepler observations (325 days of data). They estimated the
frequencies of oscillation modes of degrees l = 0, 1, and 2 over
eight overtones. We revisited this analysis using the complete
Kepler data set. The light curve of the star was processed using
the Kepler pipeline developed by Jenkins et al. (2010). Correc-
tions from outliers, occasional drifts and jumps were performed
following the method of García et al. (2011). The power den-
sity spectrum (PSD) was then obtained by applying the Lomb-
Scargle periodogram (Lomb 1976, Scargle 1982).

The PSD is shown in the shape of an échelle diagram in
Fig. 3. We recall that the échelle diagram is built by divid-
ing the PSD in consecutive chunks with a length corresponding
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Fig. 3. Échelle diagram of KIC10273246, folded with ∆ν = 48.2 µHz.
For clarity, the spectrum was smoothed over a 0.2-µHz boxcar. The
white symbols indicate the frequencies that have been extracted for
modes of degree l = 0 (crosses), l = 1 (diamonds), and l = 2 (triangles)
in Sect. 3.2.2. The two l = 1 g-dominated mixed modes are circled in
red.

to the large separation of acoustic modes ∆ν, and piling them
up. Here, we used the estimate of ∆ν = 48.2 µHz obtained
by Campante et al. (2011). The main interest of échelle dia-
grams is that acoustic modes of the same degree align in nearly
straight ridges, which eases mode identification. The neighbor-
ing l = 0 and l = 2 ridges are readily identified on the left part of
the échelle diagram (modes indicated by crosses and triangles,
respectively, in Fig. 3).

The ridge of l = 1 modes (indicated by diamonds in Fig. 3)
deviates from the nearly-vertical line that is expected for purely
acoustic modes. This behavior is known to arise for dipolar
modes in the presence of avoided crossings between low-order g
modes and p modes in subgiants. Each avoided crossing is char-
acterized by the presence of an additional mode, which lies away
from the ridge of theoretical purely acoustic l = 1 modes (which
would be a nearly vertical line at an abscissa of about 35 µHz in
Fig. 3). This mode is most strongly trapped in the core and is thus
g-dominated. The neighboring l = 1 modes are p-dominated,
but their frequencies are nevertheless affected by the presence of
the g-dominated mode. The modes with frequencies larger than
the g-dominated mode are shifted to higher frequencies (to the
right in the échelle diagram) and those with frequencies below
the g-dominated mode are shifted to lower frequencies (to the
left in the échelle diagram). These features are clearly visible
in Fig. 3, corresponding to two l = 1 avoided crossings. The
l = 1 g-dominated modes associated to these avoided crossings
are circled in red in Fig. 3.

3.2.2. Extraction of oscillation mode parameters

To extract the parameters of the oscillation modes, we followed
the method of Appourchaux et al. (2008). Here, we briefly recall
the main steps of the procedure and refer the reader to that paper
for more details.

Prior to fitting the individual oscillation modes, we mod-
eled the background of the PSD. The contribution from gran-
ulation was modeled by two Harvey-like profiles, following the
prescription of Karoff et al. (2013), and we added a white noise
component to account for photon noise. The overall contribution
from the oscillations was modeled as a Gaussian function. We
fit this model to the PSD using maximum-likelihood estimation

(MLE). The central frequency of the Gaussian function gives an
estimate of the frequency of maximum power of the oscillations
νmax. To determine the error on this quantity, we subdivided the
Kepler light curve in ten chunks of equal duration, and fit the
background model on the PSD calculated with these time series.
The error on νmax was taken as the standard deviation of the
measurements of this quantity for each chunk. We thus obtained
νmax = 843 ± 20 µHz. The PSD was then divided by the optimal
background model.

We then performed a fit of the oscillation modes, which
were modeled as Lorentzian functions to account for their finite
lifetimes. Each mode profile of degree l, radial order n, and
azimuthal order m was characterized by its central frequency
νn,l,m, its height Hn,l,m and its line width Γn,l,m. Since dipolar
modes have a mixed character, it cannot be assumed that they
share similar heights and line widths with the neighboring radial
modes, as is often done for main sequence solar-like pulsators.
Most quadrupolar modes are expected to be p-dominated, owing
to the weak coupling between the P and G cavities for these
modes. We therefore assumed that the l = 2 modes have the
same heights and widths as their closest l = 0 modes, with
the exception of one g-dominated l = 2 mode, which is dis-
cussed below and in Sect. 3.2.3. Non-radial modes are split into
multiplets by rotation. Owing to the slow rotation of subgiants,
the effects of rotation on the mode frequencies can be found by
applying a first-order perturbation analysis. The components of
a rotational multiplet are thus expected to be equally spaced by
the rotational splittings δνn,l. We also assumed that they share
similar line widths, and that their height ratios depend only on
the inclination angle i of the star following the expressions given
by Gizon & Solanki (2003). In principle, mixed modes can have
different rotational splittings, because they probe the rotation at
different depths in the star. This has been used to probe the inter-
nal rotation of subgiants (e.g., Deheuvels et al. 2014).

To test whether individual rotational splittings can be
measured in KIC10273246, we first performed local fits of
the non-radial modes. Following the method described by
Deheuvels et al. (2015), we fit each mode using two different
models: one under the H0 hypothesis (no rotation, so that each
mode is modeled as a single Lorentzian), and one under the H1
hypothesis (rotation is considered and each mode is modeled
as a set of 2l + 1 Lorentzians separated by the rotational split-
ting). It is clear that hypothesis H1 necessarily provides better
fits to the data than hypothesis H0 since it involves two addi-
tional free parameters (inclination angle and rotational splitting).
The significance of hypothesis H1 can be tested using the like-
lihoods `0 and `1 of the best fits obtained under the H0 and H1
hypotheses, respectively. As shown by Wilks (1938), the quan-
tity ∆Λ ≡ 2(ln `1 − ln `0) follows the distribution of a χ2 with
∆n degrees of freedom, where ∆n is the difference between the
number of free parameters involved in hypotheses H1 and H0
(here, ∆n = 2)1. For each multiplet, we thus obtained a value of
∆Λ. The false-alarm probability was then given by the p-value
p = P(χ2(2 d.o.f.) > ∆Λ), which corresponds to the probability
that a mode under the null hypothesis can produce such a high
value of ∆Λ.

For dipolar modes, the lowest p-value that we found is
0.08, which is too high to consider the measurement as signif-
icant. This means that we cannot reliably extract individual rota-
tional splittings for dipolar modes in this star. The most likely

1 We note that the definition of ∆Λ in Sect. 3.1 of Deheuvels et al.
(2015) contains an erroneous minus sign. This is just a typo and the
results presented in the paper consider the correct expression for ∆Λ.
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Fig. 4. Oscillation spectrum of KIC102773246 in the vicinity of a
quadrupolar mode that was found to be significantly split by rotation
(see Sect. 3.2.2). The thick red curve corresponds to our best-fit model
of the spectrum. Two quadrupolar mixed modes are visible (around
779.4 µHz and 783.9 µHz) and one radial mode (around 785.6 µHz).

explanation is that the modes have large line widths compared to
the rotational splitting. For quadrupolar modes, only one mode
(the one with a frequency around 779.4 µHz) was found to have
a low p-value, of about 4 × 10−5, which shows a very high sig-
nificance level. A rotational splitting of 0.53 ± 0.03 µHz was
obtained for this mode (see Fig. 4). This mode is in fact a g-
dominated mixed mode, as we show in Sect. 3.2.3.

We then performed a global fit of the modes (all the modes
are fit simultaneously). Since individual splittings cannot be
measured, we assumed a common rotational splitting for all
l = 1 and l = 2 modes (except for the aforementioned
l = 2 mode around 779.4 µHz). Since most non-radial modes
are p-dominated, we expect the common rotational splitting to
essentially measure the rotation in the envelope. The best fit
corresponds to a rotational splitting of δν = 0.45 ± 0.02 µHz
for non-radial modes and an inclination angle of i = 55 ± 6◦. As
was done for local fits, we also performed an additional fit of the
modes without including the effects of rotation (null hypothesis).
We could therefore estimate the p-value corresponding to the
measurement of a mean rotational splitting. We found p ∼ 10−4,
which indicates a high level of significance. Our results are com-
patible with the estimates of Campante et al. (2011), who had
found i & 20◦ for this star, and optimal values of the rotational
splitting slightly below 0.5 µHz.

The best-fit parameters for the oscillation modes (frequen-
cies, heights, and line widths) are given in Table A.1. The uncer-
tainties of the fit dipolar mode frequencies range from 0.08 to
0.50 µHz. The measured mode frequencies are in quite good
agreement with the ones found by Campante et al. (2011). Dis-
crepancies at the level of 3σ were found for only two modes
(the dipole mode around 1055 µHz and the quadrupole mode
around 880 µHz). Using the complete Kepler data set enabled us
to detect l = 0 and l = 2 modes over three additional radial over-
tones compared to Campante et al. (2011). Our results are also
in very good agreement with the recent measurements of mode
frequencies for KIC10273246 by Li et al. (2020) using the com-
plete Kepler data set (agreement at the level of 2σ or better for
all oscillation modes).

3.2.3. Detection of an l = 2 mixed mode

We mentioned above that the l = 2 mode with a frequency of
about 779.4 µHz is the only mode for which an individual rota-

tional splitting could be measured. This mode also has other dis-
tinctive features. It is separated from the closest radial mode by
6.1 ± 0.2 µHz. By comparison, for the other radial orders, the
average separation between the l = 2 mode and the neighbor-
ing l = 0 mode is 4.4 µHz, with a standard deviation of 0.4 µHz.
This suggests that this mode might be an l = 2 mixed mode, the
frequency of which is modified by the coupling between the p-
and g-mode cavities. This hypothesis is strengthened by the fact
that it has a short line width (0.26 ± 0.08 µHz) compared to the
width of the neighboring l = 2 modes (between 1.7 and 2.4 µHz).
Indeed, if the mode under study is a g-dominated mixed mode,
it should have a higher inertia than p-dominated l = 2 modes,
and therefore a shorter line width. Figure 4 shows the profile of
the radial mode that is closest to the l = 2 mode under study.
There appears to be an additional mode in the left wing of the
radial mode, at a frequency of about 783.9 µHz. To determine
the significance of this mode, we performed local fits assuming
either its presence (H1 hypothesis) or absence (H0 hypothesis).
We found a p-value of 0.01, indicating a reasonable significance
level. This also supports the identification of the l = 2 mode at
779.4 µHz as a mixed mode. In this case, the additional mode at
783.9 µHz would also be an l = 2 mixed mode undergoing an
avoided crossing with its close neighbor. As is shown in Sect. 5,
the best-fit models for KIC10273246 do show a pair of mixed
modes in the vicinity of these two modes, which confirms our
identification.

3.2.4. First estimates of stellar parameters using seismic
scaling relations

To obtain first estimates of the global stellar parameters of the
star, we used seismic scaling relations, which relate the global
seismic parameters ∆ν and νmax to stellar properties such as the
mass, radius and surface gravity (Brown et al. 1991). These rela-
tions could be derived because νmax scales to an equally good
approximation as the acoustic cut-off frequency (Brown et al.
1991; Stello et al. 2008; Belkacem et al. 2011).

To estimate the asymptotic large separation of acoustic
modes, we followed the prescription of Mosser et al. (2013). We
fit an expression of the type

νn,0 =

[
n +

α

2
(n − nmax)2 + εp

]
∆νobs (3)

to the observed radial modes, where ∆νobs is the observed large
separation around νmax, α measures the curvature correspond-
ing the to the second-order term in the asymptotic develop-
ment, εp is an offset, and nmax = νmax/∆νobs. We thus obtained
∆νobs = 48.47 ± 0.02 µHz, which translates into an asymp-
totic large separation of ∆νas = 50.63 ± 0.02 µHz, following
Mosser et al. (2013).

Using our estimates of ∆νas, νmax from Sect. 3.2.2, and Teff

from Sect. 3.1, we could apply seismic scaling relations to derive
preliminary estimates of the star’s mass, radius, and surface
gravity. We obtained M = 1.24 ± 0.12 M�, R = 2.10 ± 0.07 R�,
and log g = 3.88 ± 0.03.

4. Seismic modeling method

4.1. Physics of the models

We used MESA v10108 (Paxton et al. 2015) evolution models,
with OPAL equation of states and opacity tables (Rogers et al.
1996, Iglesias & Rogers 1996), with the solar mixture from
Asplund et al. (2009). The models were computed with an
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Eddington-gray atmosphere. The convection regions were
treated using the standard mixing length theory (MLT) as pre-
scribed in Cox & Giuli (1968), with a free parameter αconv
corresponding to the ratio between the mixing length and
the pressure scale height. Microscopic diffusion was taken
into account, unless otherwise specified, using the Burg-
ers formalism (Burgers 1969) and diffusion coefficients from
Stanton & Murillo (2016). However, radiative accelerations have
not been included in the computed models, as the increase in
computational time could not be afforded in this study. The
impact of those processes are discussed in Sect. 6.2.

As Gabriel et al. (2014) stated, for stars that have a growing
convective core, it is necessary to use the Ledoux criterion to
determine the radius of the convective core Rcc. This way, we
avoid the creation of unphysical convective zones outside the
core in strongly chemically stratified regions, which may have
an impact on the composition profile of the star and thus on
its evolution. Moreover, we used the predictive mixing scheme
(Paxton et al. 2018).

Core overshooting was modeled as a step extension of the
convective core, over a distance

dov = αov min
(
Hp,Rcc/αconv

)
, (4)

where dov is the distance of instant mixing overshooting, Hp the
pressure scale height, and αov a free parameter quantifying the
phenomenon. Equation (4) replaces the traditional expression
dov = αovHp in order to prevent dov from becoming unphysically
large when the core is small (Hp → ∞ when r → 0). It is impor-
tant to note that this definition varies from one evolution code
to another (see, e.g., Eq. (1) of Deheuvels & Michel 2011 for
Cesam2K). Low-mass stars have small convective cores, there-
fore those differences must be kept in mind when comparing
models coming from different codes. Additionally, the impact
on our results of using a diffusive overshooting, as proposed by
Freytag et al. (1996), is discussed in Sect. 6.1.

The adiabatic oscillations of the models were computed
using ADIPLS (Christensen-Dalsgaard 2008), and the surface
effects were corrected for using the cubic term of the prescrip-
tion of Ball & Gizon (2014).

4.2. Why modeling subgiants is challenging

The frequencies of g-dominated mixed modes evolve over a very
short time, with a non-linear change of several µHz per million
years, which is much larger than the usual uncertainties coming
from Kepler data. As this timescale is several orders of magni-
tude shorter than the typical nuclear evolution time of low-mass
subgiants, reproducing the mixed modes with a traditional grid
technique requires extremely small steps in mass and age. This
makes this method prohibitive when the number of free param-
eters is large, as is required to test the model physics. Interpola-
tion in age is possible (Li et al. 2020), but somewhat difficult for
l = 2 g-dominated modes, which we observed in KIC10273246.
Interpolation across tracks (as used e.g., in AIMS, Rendle et al.
2019) could mitigate the need for extremely fine steps in mass,
but needs to be tested for subgiants, especially regarding the
extreme sensitivity of the g-dominated frequencies to the masses
of the models. Additionally, an “on-the-fly” optimization tech-
nique may perform badly due to the highly non-linear behavior
of the mixed modes, especially during the computation of the
derivatives in the case of a gradient-descent kind of algorithm.

To overcome those difficulties, a new approach is neces-
sary. We thus developed a nested optimization, where we opti-
mize the physical parameters of models (e.g., metallicity, initial
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Fig. 5. HR-diagram representing the evolution tracks of stellar mod-
els with masses varying from 1.2 M� (lightest gray) to 1.3 M� (darkest
gray) and otherwise identical physics. Each evolution is stopped when
νg is correctly reproduced.

helium abundance etc.) that have been optimized in mass and age
beforehand. This way, we can handle those two sensitive param-
eters using a dedicated and specific procedure, separately from
the other ones for which a more traditional technique is possi-
ble. This modeling method originates from Deheuvels & Michel
(2011) and has been adapted to make it more robust. In the fol-
lowing, we recall the basic principles of this method and high-
light the differences with the one used in the present study.

4.3. Optimization in mass and age

In that part of the optimization process, we compute models with
only two free parameters, the mass and the age of the star, the
rest being fixed. The optimization of those two parameters can
be made easier thanks to the fact that, if all the other physical
parameters (such as metallicity, mixing-length parameter...) are
fixed, reproducing only ∆ν and the frequency νg of a g-mode is
enough to precisely constrain the mass and the age.

A physical justification of that approach can be found in
Deheuvels & Michel (2011). We remind the reader of it here
using a HR-diagram represented in Fig. 5. It shows the iso-∆ν
line, as L ∝ T 5

eff
for models with the same large separation, and

the iso-νg line, computed from stellar evolution models. The two
lines meet at a unique point, that can be reached by tuning only
the mass (i.e., choosing the “right” evolution path) and age (i.e.,
stopping at the right moment on that path). In concrete terms,
our first step is, at a given mass, to find the age that correctly
reproduces the νg frequency.

As we only see mixed modes and not pure g-modes, we
cannot directly measure νg. A possible solution would be to
choose a g-dominated mode (i.e., a non-radial mode far from
its ridge) frequency. Unfortunately, such a frequency does not
evolve monotonously with age, as can be seen in the upper panel
of Fig. 6. We thus preferred to look at the distance between that
g-dominated mode and its closest radial mode, which we call δν.

As we can see in the top panel of Fig. 6, this value always
decreases with age, but it also keeps the interesting proper-
ties of the mixed modes as it evolves very quickly during an
avoided crossing, allowing us to tightly constrain the age. This
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Fig. 6. Evolution of δν (top panel) and ν1,11 (bottom panel) with age for
a 1.3 M� star, after the main sequence. Here, like in our modeling of
KIC10273246, δν is defined as ν1,11 − ν0,13, and the observed value is
represented by the dotted line. The plot has been strongly magnified in
order to see the 1-σ uncertainties from the data.

step would be equivalent to following a unique evolution path in
Fig. 5 and stopping it when it crosses the iso-νg line.

We then optimize on those “good-age” models in order to
correctly reproduce the large separation. In practice, to do this
we minimize the χ2 of only the radial modes, which we define
as

χ2
rad =

∑
n

(
νmod

0,n − ν
obs
0,n

)2

σ2
0,n

. (5)

We do not take into account the non-radial modes at this stage to
eliminate the complexity of behavior of the mixed modes. This
approach differs from the one followed by Deheuvels & Michel
(2011), who at this stage searched for models that minimized
the difference between the observed average large separation and
the one coming from the models. By using all the radial modes
instead here, we found that the optimization process is more
robust regarding the correction of near-surface effects. It may
be observed that the behavior of ∆ν (and, in turn, of the radial
frequencies) is close to linear when varying the mass. Then, a
simple Newton-type algorithm (such as a Levenberg-Marquard
algorithm) is enough to quickly find the optimal mass. This step
would then be equivalent to the right evolution path that leads to
the meeting points of the two iso-lines on Fig. 5.

Figure 7 shows the échelle diagram of a model that we
can obtain after that first step, with arbitrary physical param-
eters: metallicity [Fe/H] = −0.2 dex, mixing-length parameter
αconv = 1.5, initial helium abundance Y0 = 0.28. We can see that
the radial modes and δν = ν1,11 − ν0,13 (the proxy for νg) are, by
construction, correctly reproduced. However, the other frequen-
cies are far from the observed ones. Especially, the g-dominated
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Fig. 7. Échelle diagram of a model optimized in mass and age (open
symbols) and of the observed frequencies (full, with their 3-σ error
bars). The radial and dipolar modes are represented by crosses and dia-
monds, respectively, with their radial order indicated.

mode ν1,18 is about 10 µHz away from the observations. Thus, to
find a better matching model, we adjust the other parameters.

4.4. Optimizing the other parameters

Now that we have a method to correctly find the mass and the age
of a star at a given physics, we must find the other parameters
of the stars, this time taking into account all the observational
constraints. Thus, we define a new χ2 as

χ2 =

Nobs∑
i=1

(
xobs

i − xmod
i

)2

σ2
i

=

Nobs∑
i=1

∆i, (6)

where Nobs is the total number of observational constraints, both
seismic and non-seismic, xobs

i , xmod
i the values of those observed

constraints or their computed equivalent, and σi their respec-
tive uncertainties. We also introduced the quantities ∆i ≡ (xobs

i −

xmod
i )2/σ2

i , which indicate the contributions of every observable
to the χ2, to be used later.

As those parameters have a lower impact on the frequencies
than the mass and age, it is now possible to use more traditional
approaches. One possibility is to compute grids of models, where
each model of the grid is optimized in mass and age. Another
option is to perform an optimization using an iterative method,
where again each iteration consists of an optimization of the
mass and age. To model KIC10273246, we opted for a hybrid
method, which is described in the following section.

4.5. Fitting procedure adopted for KIC10273246

For the modeling of KIC10273246, we left the initial metallic-
ity [Z/X]0, the mixing-length parameter αconv, the initial helium
abundance Y0, and, of course, the overshoot parameter αov as
free parameters. At first, to explore the global behavior of the
χ2, we computed a very loose grid ([Fe/H] between −0.2 and
0.2, step 0.1; Y0 between 0.24 and 0.28, step 0.02; αconv between
1.5 and 2.1, step 0.2 and αov between 0.0 and 0.2, step 0.05). We
recall that each model of this grid is optimized in mass and age
as explained in Sect. 4.3. The purpose of this loose grid was to
investigate whether double solutions or local minima exist. No
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Table 1. Characteristics of the best models, for every value of αov.

αov Age (Gyr) M/M� R/R� Teff (K) L/L� [Z/X]0 (dex) αconv Y0 χ2

Uncert. 0.25 0.030 0.021 83 0.20 0.010 0.089 0.020 –
0.00 4.08 1.21 2.11 6109 5.60 0.005 1.77 0.29 315
0.05 3.89 1.20 2.10 6187 5.85 −0.034 1.81 0.29 255
0.10 4.03 1.22 2.11 6134 5.72 −0.030 1.74 0.28 201
0.15 3.88 1.22 2.11 6192 5.89 −0.073 1.74 0.28 127
0.20 3.96 1.27 2.12 6226 6.11 −0.155 1.64 0.24 446
0.25 3.26 1.31 2.13 6537 7.50 −0.184 2.06 0.26 3020

such features have been found. Moreover, those grids allowed us
to identify the region of the best parameters.

We thereafter refined those parameters. As mentioned in
Sect. 4.4, the optimization of [Z/X], αconv, Y0, αov can be per-
formed either through a grid approach or an iterative procedure.
We therefore conducted several tests, using stellar models as
mock observations, to determine which method is preferable.
We found the best robustness when following a hybrid approach:
for given values of Y0 (0.26 through 0.31, step 0.01) and αov (0
through 0.25, step 0.05), we conducted iterative optimizations
with the Levenberg-Marquardt algorithm to find optimal values
of [Fe/H] and αconv. This method differs from the one used in
Deheuvels & Michel (2011) where a single grid was used for all
the free parameters.

Among those models, we considered only those that were
compatible with the observational estimates of the chemical
enrichment law ∆Y0/∆Z0. Typical values quoted for ∆Y0/∆Z0
range from 1.4 to 4 (e.g., Chiappini et al. 2002, Balser 2006,
Casagrande et al. 2006). We consequently had a conservative
approach and took into account all models with ∆Y0/∆Z0 < 5.

5. Results

In this section, we describe the general characteristics of the best
models, before commenting the constraints on αov. We finally
investigate at the internal structures of the best models and the
constraints brought by the mixed modes.

5.1. General characteristics of the best models

Following the method described in Sect. 4.5, we obtained opti-
mal models for each value of αov, whose characteristics are in
Table 1. The best model, with αov = 0.15, has a reduced χ2 of
3.2. The échelle diagram of this model is represented in Fig. 8.
Also, surface observables are consistent with the ones found in
the literature, or with the SED fitting previously described: we
find a less than 1-σ difference for the effective temperature Teff ,
the metallicity [Fe/H], and the luminosity L. We found a radius
and a mass that are consistent with the seismic scaling relations
as well. We can note that, as expected from the mass-based pre-
diction, all good models had a convective core during the MS.
This supports our choice of using this star to constrain αov.

We note that our best-fit models are significantly less massive
and are older than those of Li et al. (2020), who also performed
a seismic modeling of KIC20173246 and found M = 1.49 ±
0.08 M� and an age of 2.84±0.60 Gyr. These discrepancies could
be partially explained by the different assumptions made on the
input physics. For instance, Li et al. (2020) considered a solar-
calibrated mixing length parameter, while we left this parameter
free in our study. Also, contrary to us, Li et al. (2020) neglected
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Fig. 8. Échelle diagram of the best model, with αov = 0.15. Symbols
and colors are identical to those in Fig. 7.

element diffusion and adopted the mixture of Grevesse & Sauval
(1998). Finally, we stress that the agreement with the observed
dipole mode frequencies, in particular for the g-dominated mode
ν1,18, is significantly better in the present study than it is for the
best-fit models of Li et al. (2020) (compare Fig. 10 of Li et al.
2020 to Fig. 8 of the present paper). These mismatches between
models and observations for dipole modes are acknowledged by
Li et al. (2020), and the authors attribute them to an imprecise
modeling of the core structure.

For each combination of (αov, Y0), our minimization using
the LM algorithm can be used to derive uncertainties in the
stellar parameters. The error bars in the free parameters of
the fit ([Fe/H] and αconv) are obtained as the diagonal coeffi-
cients of the inverse of the Hessian matrix. The uncertainties
on the other parameters can then be obtained using Eq. (10) of
Deheuvels et al. (2016). We thus obtain very small error bars,
of the order of 0.007 for [Fe/H] and 0.002 for αconv, which
translates into uncertainties of approximately 0.004 M� for the
stellar mass and 0.04 Gyr for the age. This means that for a
given combination of (αov, Y0), the available observables pro-
vide very strong constraints on the stellar parameters. By com-
parison, we find that optimal models with different Y0 can yield
similar agreement with the observations (statistically equivalent
χ2) but have quite different stellar parameters. This degeneracy
of stellar models with respect to Y0 is addressed in more detail in
Sect. 6.3. It thus seems that the uncertainties in the stellar param-
eters are dominated by the model degeneracy in Y0. We thus used
the optimal models with different Y0 to estimate uncertainties in
the stellar parameters. For a given αov, we fit a second order
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polynomial to the χ2 curve and retrieved the interval of values
corresponding to χ2

min + 1. This gave us the 1-σ uncertainties,
which are reported in Table 1.

5.2. Constraints on core overshooting

Figure 9 shows the variation in the χ2 of the optimal models with
αov. We can see that adding overshooting allows us to reproduce
the observed frequencies significantly better, with the χ2 of the
models without overshoot and with αov = 0.15 being 315 and
127, respectively.

To better understand which frequencies allow us to favor
models with overshoot, we investigated the contributions of the
different observables to the χ2 (∆i in Eq. (6)). We denote the χ2

contributions of the observables coming from the optimal mod-
els without overshoot as ∆nov

i and the equivalent from models
with αov = 0.15 as ∆ov

i . Figure 10 represents the differences
∆nov

i − ∆ov
i , positive values meaning that the observable is bet-

ter reproduced by the αov = 0.15 model. As expected, we can
see that the main χ2 difference is due to the dipolar modes,
which have a mixed behavior. However, we observe that the g-
dominated modes (indicated by the dotted vertical lines) hardly
contribute to distinguishing the models with and without over-
shooting. Both types of model fit the g-dominated frequencies
well. The main contributors to the χ2 differences are in fact
the l = 1 p-dominated modes in the neighborhood of the g-
dominated modes. As explained in Sect. 2, the frequencies of
these modes are mainly influenced by the coupling between the
P and the G cavities. The intensity of that coupling thus accounts
for the main part of the differences between the models. We note
that all those models correctly reproduce ν1,18, as the high sen-
sitivity of this g-dominated mode strongly constrains the region
of parameters of the models with the smallest χ2. The major role
played by the dipolar modes in the constraints on αov is also
illustrated in Fig. 9, where the colored regions indicate the con-
tributions to the χ2 of the surface observables and modes depend-
ing on their degree.

Moreover, Fig. 9 indicates that the contribution to the χ2

of the l = 2 modes hardly changes with αov. This was partly
expected, because their evanescent zone is larger than that of the

(a)(b)(c)11 13 15 17 19 21 9 11 13 15 17 19 21 5 8 10 12 14 17
Radial order

−2

0

2

4

6

∆no
v

i
−

∆ov i

Surface
l = 0
l = 1
l = 2
g-dom. modes

Fig. 10. Difference of the χ2 contributions of the different observables,
between αov = 0.0 and 0.15 models. The two dipolar g-dominated
modes are represented by dotted vertical lines. (a), (b), and (c) are Teff ,
L, and [Fe/H], respectively.

dipole modes, making the coupling between the G and P cavities
weaker. Most of the detectable modes are therefore very strongly
p-dominated and do not constrain the deep structure of the star,
hence αov. Yet, one g-dominated l = 2 mode was detected (ν2,10,
see Sect. 3.2.3). It is interesting to see that, in a similar way
to the previous paragraph, its frequency is equally well repro-
duced by models with and without overshooting. One can see
this in Fig. 10, where ∆nov

i − ∆ov
i of that mode is less than 1-σ.

On the other hand, the (2, 11) mode, whose frequency is close
enough to ν2,10 to be influenced by the coupling, varies substan-
tially with αov. Figure 10 shows a 3-σ difference, despite the
high 0.65 µHz observational uncertainty, confirming the key role
of the coupling in the constraint on αov. Interestingly, however,
while the αov = 0.15 model better reproduces the dipolar modes,
the (2, 11) mode is better fit in the model without overshooting.
Nevertheless, its large observational uncertainty prevents it from
being too constraining.

Finally, we notice that adding a larger amount of overshoot-
ing (αov > 0.15) strongly worsens the quality of the fit, placing
a strong maximum limit on the value of αov. To better under-
stand this behavior, we investigate the seismic constraints on the
internal structure of the models in the next section.

5.3. Constraints on the internal structure from mixed modes

5.3.1. Constraints on central density

A tight link is expected between the g-dominated frequen-
cies and the central density ρc. This comes from the relation
between the g-mode frequencies and the Brunt-Väisälä fre-
quency, which approximately scales as ρc (see Eq. (15) from
Deheuvels & Michel 2011). To verify this, we investigated the
constraints placed on ρc by the frequency of a g-dominated dipo-
lar mode. For this purpose, we considered the values of ρc in
the models computed in the loose grids defined in Sect. 4.5, in
which models are optimized in mass and age in order to repro-
duce ∆ν and the frequency of a g-dominated mode (here ν1,11, as
described in Sect. 4.3). We observed that, despite the wide range
of parameters considered, the standard deviation of ρc among
those models is as low as 32.4 g cm−3, which represents around
1% of the mean central density ρ̃c = 2100 g cm−3. This standard
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Fig. 11. Evolution of ρc with age, for models with different αov that have
been optimized in mass and age in order to reproduce ∆ν and νg.

deviation even decreases to 10 g cm−3 if we only keep the 200
best models, illustrating the tight relation between ρc and the
frequency of a g-dominated mixed mode.

This plays a role in the increase of χ2 for αov > 0.15. To
illustrate this point, we computed models with the same values
of [Z/X], Y0, and αconv, but with different values of αov. Each
of these models was optimized in mass and age, as described
above. Figure 11 shows the evolution of ρc with age for those
models. One can see that they all reach approximately the same
value of central density, ρ̃c, in accordance with the previous para-
graph. Moreover, the intensity of the ρc jump that is due to the
post-MS core contraction increases with αov. We can explain
this by the fact that for bigger cores, the layers where hydrogen
remains are more distant from the center. They are colder and
require a stronger core contraction, hence a stronger jump in ρc,
to reach the fusion temperature. Therefore, when αov increases,
models that reach ρ̃c are closer to the TAMS. When the model
gets too close to the TAMS, this impacts the whole stellar struc-
ture. Internally, the µ-gradient in the core is very much affected,
because the nuclear reactions in the H-burning shell did not have
enough time to smooth its shape. In the outer layers, the convec-
tive envelope, which expands during the subgiant phase, has a
different size. Those processes alter the frequencies (the g- and
p-dominated ones, respectively), which are thereby not compat-
ible with the observations.

5.3.2. Constraints on the Brunt-Väisälä profile.

Based on Eq. (1), we expect the frequency of mixed modes to
place constraints on the integral of the Brunt-Väisälä frequency
in the G cavity. To investigate this, in Fig. 12 we plot the N2

profiles for the models of the loose grid defined in Sect. 4.5,
which all reproduce the low-frequency g-dominated mode (ν1,11)
and ∆ν. We observe that reproducing both already strongly con-
strains the part of the Brunt-Väisälä frequency dominated by the
thermal term (∇ad − ∇), which corresponds to the most central
layers (r < 0.05 R�). This was expected because of the 1/r fac-
tor in the Eq. (1) integral. On the contrary, the part of N2 that
is dominated by the µ-gradient changes significantly within the
grid.

We expect that part to be strongly determined by the dipolar
modes. We therefore investigated the constraints brought by the
two most determining seismic features (see Sect. 2): the cou-

pling intensity and the frequency of pure g-modes. As those
two are not directly measurable, we used observational prox-
ies. The intensity of the coupling can be quantified by δ ≡
ν1,12 − ν1,11, which is from Deheuvels & Michel (2011). That
value is the difference between the low-frequency g-dominated
mode (ν1,11) and the following dipolar p-dominated mode (ν1,12).
Thus, δ increases with the coupling. The frequency of a pure
g-mode is measured through ν1,18, which is the high-frequency
g-dominated mode. For those two values, we color-coded, in
Fig. 12, the profiles of the Brunt-Väisälä and Lamb frequencies
based on their agreement with the observations (left panel for δ
and right panel for ν1,18).

One can see on the right panel that models correctly repro-
ducing the coupling (i.e., dark profiles) have very similar H-
burning shell positions (N2 peak around r = 0.05 R�). However,
the Brunt-Väisälä profiles become more degenerate for higher
r: several different profiles can reproduce δ within 1-σ. This
degeneracy is lifted thanks to the high-frequency g-dominated
mode: on the left panel, models closely reproducing ν1,18 all have
similar Brunt-Väisälä profiles. This corroborates our theoreti-
cal approach in Sect. 2: the high-frequency g-dominated mode
adding tight constraints on the shape of the µ-gradient. Impor-
tant gains in structural constraints are therefore obtained from
having a second detectable g-dominated mode.

6. Discussion

6.1. Diffusive overshooting

During this study, overshooting was modeled as a step extension
of the convective core. However, Freytag et al. (1996) proposed
another prescription, based on results coming from 2D simula-
tions of A-stars and white dwarfs. Overshoot is then modeled as
a diffusive process, with a coefficient Dov exponentially decaying
from the boundary of core, following the expression

Dov = Dconv exp
[
−

2(r − Rcc)
fovHp

]
, (7)

with Dconv being the MLT derived coefficient taken just below
Rcc, and fov a free parameter that tunes the length scale of the
overshooting region.

In order to compare the results coming from the two types of
overshooting, we first found the fov that is equivalent to a given
value of αov. In order to do this, we searched for the value of fov
that gives models reaching the TAMS at the same age as models
computed with a step overshooting and αov = 0.15. We found
fov = 0.01. After that, we modeled it using a method similar to
the one used in Sect. 5 and compared the best model with the
one computed with a step overshoot.

As we can see in Fig. 13, the differences between the fre-
quencies and observables of the best models with step and diffu-
sive overshoot are mainly less than 1-σ. We note the exception
of the g-dominated ν2,10 mode, which is better reproduced by the
diffusive overshoot model. However, its impact on the global χ2

is counter-balanced by the generally better reproduced dipolar
frequencies of the step overshoot model. Moreover, the differ-
ence between the characteristics of the two models are within
the uncertainties of Table 1. Therefore, we cannot discriminate
between the two kinds of modelings with the current set of data.

6.2. Effect of microscopic diffusion

The models presented in Sect. 5 of our study include both
gravitational settling and chemical diffusion. Such processes,
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Fig. 12. N2 profiles of the loose grid models. The left and right panel profiles are colored in relation to the difference between the models and the
observations of ν1,18 and δ, respectively. Those differences are normalized by the observational uncertainties. The blue horizontal lines represent
the observed g-dominated frequencies.
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Fig. 13. Differences in the χ2 contributions of the observables coming
from the best models with step and diffusive overshoot.

which happen to be necessary in order to correctly reproduce the
helioseismic observations (Christensen-Dalsgaard et al. 1993),
are expected to have an impact on our results for two main rea-
sons. The first is the sinking during the main sequence of heavier
elements because of the gravitational settling. This reduces the
hydrogen abundance in the core and shortens the main sequence,
which eventually decreases the age of models with same mean
density. The second is the smoothing of the structure of the sub-
giant. High µ-gradient peaks, like the one produced by the with-
drawal of the convective core, are strongly smoothed out by the
chemical diffusion, which impacts the mixed mode frequencies.
Thus, it is interesting to see how gravitational settling and chem-
ical diffusion change the characteristics and the quality of the
fit. We therefore modeled the star following a similar methodol-
ogy, but without including those two processes. We found that
the best model also has αov = 0.15, but provides a significantly
worse agreement with the observations than the best diffusion
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Fig. 14. Brunt-Väisälä profiles of the best models with gravitational
settling and chemical diffusion (blue) and without those two processes
(orange).

model, with χ2
nodiff − χ

2
diff = 71. It is more massive (1.29 M�)

and older (4.85 Gyr), as was expected from the fact that heavy
elements do not sink during the MS. We note that the surface
observables are less well reproduced, with a best model that is
too cold (5874 K, which represents 1.84 times the observational
uncertainty) and has too low a luminosity (5.0 L�, which repre-
sents 4.3σ).

Moreover, similarly to what we found in Sect. 5, the quality
of the fit improves as αov increases for αov ≤ 0.15. However,
this is less significant (χ2

αov=0 − χ
2
αov=0.15 = 24). For higher val-

ues, the quality of the fit strongly worsens, in a comparable way
to what has been found with gravitational settling and chemical
diffusion.

Figure 14 illustrates the differences in the Brunt-Väisälä
profiles between the two best models, with and without both
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Fig. 15. Échelle diagrams of the best model (blue, Y0 = 0.28) and the
best model for Y0 = 0.24 (orange). 3-σ uncertainties from the observa-
tions are represented by black bars.

Table 2. Characteristics of the two models of Fig. 15.

Param Y0 = 0.24 model Y0 = 0.28 model

M (M�) 1.292 1.222
R (R�) 2.152 2.109
Age (Gyr) 4.13 3.88
L (L�) 5.95 5.89
Teff (K) 6145 6192
[Fe/H] (dex) −0.098 −0.072
αconv 1.70 1.73
Y0 0.24 0.28
χ2 159 127

diffusive processes. One can see the high ∇µ peak (at r =
0.06 R�) is, as expected, smoothed out by the chemical diffu-
sion. Otherwise, the two profiles are remarkably similar, despite
the different physics of the models, which highlights the robust-
ness of the constraints coming from the mixed modes.

Finally, the effects of gravitational settling are expected to be
somewhat counter-balanced in the envelope by radiative acceler-
ations, which can have a significant impact on stars with masses
greater than 1.1 M� (Deal et al. 2018). However, including the
effects of radiative accelerations in the models increases the
computational time of stellar evolution calculation by orders of
magnitude, and it could not be afforded in the present study. To
test the impact of this process on our modeling, we computed
a model that takes into account radiative accelerations, with the
same parameters as the best model for αov = 0.15. We obtained
slightly different large separations (∆νrad − ∆νnorad = 0.12 µHz)
but very similar frequencies, once normalized by the large sep-
aration. Radiative accelerations are therefore not expected to
change the conclusions of this study.

6.3. Helium degeneracy

To model KIC10273246, we initially performed optimizations
with fixed αov and considering Y0, αconv and [Fe/H] as free
parameters. In this case, we observed an unwanted sensitivity
of the Y0 parameter to the guess value of our optimization pro-

cess. This led us to the hybrid approach described in Sect. 4.5,
using optimizations with fixed values of Y0 and varying [Fe/H],
αconv. We found that optimal models with different values of Y0
indeed have surprisingly close frequencies, despite their wide
range of mass. This is illustrated in Fig. 15, which shows the
échelle diagrams of the best model with Y0 = 0.28 (blue) and
the best model with Y0 = 0.24 (orange), both of which have
αov = 0.15. Those models have quite different characteristics, as
reported in Table 2. However, their frequencies are almost indis-
tinguishable, despite the very small uncertainties on the mode
frequencies from Kepler data. Only the g-dominated l = 2 mode
allows us to slightly favor the Y0 = 0.28 model. Such degeneracy
is related to the anti-correlation between mass and Y0, that has
been observed in MS stars (see e.g., Lebreton & Goupil 2014) as
well as subgiant stars (Li et al. 2020). Additionally, we note that
no monotonic behavior has been found between the age and Y0.
We therefore conclude that the seismic modeling of subgiants,
despite bringing strong constraints on the deep structure of the
star, does not lift the degeneracy between Y0 and the mass.

6.4. Internal rotation

We mentioned in Sect. 3.2.2 that a rotational splitting of 0.53 ±
0.03 µHz could be measured with a high level of significance for
the l = 2 mode at 779.4 µHz. This is obviously not enough to
probe the internal rotation in detail. However, since this mode is
g-dominated, it can be used to place approximate constraints on
the rotation in the core of the star.

Using our best-fit model from Sect. 5, we were able to com-
pute the rotational kernel K(r), which relates the splitting δνs of
this mode to the rotation profile Ω(r) :

δνs =

∫ R

0
K(r)Ω(r)/(2π) dr. (8)

This can be re-written as δνs = Kg〈Ωg〉 + Kp〈Ωp〉, where 〈Ωg〉

and 〈Ωp〉 are average rotation rates in the g- and p-mode cavi-
ties, respectively, and Kg (resp. Kp) corresponds to the integral
of K(r) in the g-mode (resp. p-mode) cavities. For the l = 2
mode under study, using our best-fit stellar model we found that
84% of the kernel energy is enclosed in the g-mode cavity, which
confirms that the mode is indeed g-dominated.

Campante et al. (2011) found a clear rotational modulation
in the Kepler light curve of KIC10273246. They thus estimated
the surface rotation rate of the star to about 0.5 µHz (rotation
period of about 23 days). This value is comparable to the aver-
age rotational splitting of 0.45±0.02 µHz that we obtained in this
study. As mentioned in Sect. 3.2.2, this average splitting is dom-
inated by the contribution of p-dominated modes, to the extent
that it essentially measures the envelope rotation rate. Taken
together, these two measurements suggest a low rotation con-
trast within the p-mode cavity, which is in line with the con-
clusions of Benomar et al. (2015) and Nielsen et al. (2015) for
main-sequence solar-like pulsators.

The splitting measured for the l = 2 g-dominated mode is
close to the rotation rate inferred for the envelope, which sug-
gests a low amount of radial differential rotation in the star. If
we take 〈Ωp〉/(2π) ≈ 0.45 µHz, we obtain a core rotation rate
of about 0.65 µHz (rotation period of about 18 days). Clearly,
more rotational splittings would be required to precisely mea-
sure the core rotation rate. However, our results indicate that
KIC10273246 could be rotating nearly as a solid-body, like
the two Kepler subgiants whose internal rotation profiles were
recently measured (Deheuvels et al. 2020).
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7. Conclusion

In this study, we performed a seismic modeling of
KIC10273246, a subgiant observed by Kepler, and obtained
strong constraints on the size of its MS convective core. We
chose this target because it exhibits two dipolar g-dominated
modes, which we expected to bring stronger constraints on the
internal structure. We extracted the mode parameters from the
oscillation spectrum of the star using the full Kepler data set
and thus updated the mode frequencies that were previously
obtained by Campante et al. (2011).

The seismic modeling of subgiants is notoriously com-
plex. We here elaborated on the algorithm proposed by
Deheuvels & Michel (2011). This method consists of a two-step
approach. The purpose of the first step is to find the mass and age
that match the large separation of p modes and the frequency of
one g-dominated mixed mode. The second step optimizes the
other free parameters ([Fe/H], Y0, αconv and αov) to reproduce
the other frequencies as closely as possible. In this work, we
improved this algorithm to make it more robust. This enabled us
to perform a detailed seismic modeling of KIC10273246, with
a particular emphasis on the investigation of the size of the MS
convective core.

We found models in good agreement with the observations,
with a reduced χ2 of 3.2 for the best model, and with surface
observables that are reproduced to within less than 1σ. One key
result of this study is that models with core overshooting during
the MS reproduce the observations significantly better, with an
optimal value of αov = 0.15. For higher values of αov, the quality
of the fit significantly worsens. We found that such models are
very close to the TAMS. Their internal structure thus differs from
that of the lower-αov solutions, and their seismic properties show
strong mismatch with the observations. We tested the robustness
of our conclusions by considering other choices for the input
physics. No significant difference was found when modeling
core overshooting as a diffusive process. Models computed with-
out microscopic diffusion also favor models with αov = 0.15,
albeit less significantly, and show a strong mismatch compared
with the observations for higher values of αov. However, they
yield poorer agreement with the seismic and surface observables
compared to the models computed with microscopic diffusion.
This study thus confirms the high potential of young subgiants
with mixed modes to measure the extent of the MS convective
cores.

We also investigated the information conveyed by the mixed
modes about the core structure. We showed that the combined
knowledge of the large separation ∆ν and the frequency of one
g-dominated mixed mode is enough to estimate the central den-
sity ρc to a precision of about 1%. This helps us understand why
models with a greater amount of core overshooting (αov > 0.15)
are not compatible with the observations. Because of their larger
MS convective core, they have a higher ρc just after the end of
the MS, and they thus reach the optimal central density closer to
the TAMS. We then studied the roles of the different mixed mode
frequencies in determining the profile of the Brunt-Väisälä fre-
quency inside the star. While the first g-dominated mixed mode
strongly constrains the thermal part, the second one helps con-
strain the part of the Brunt-Väisälä frequency that is dominated
by the µ-gradient. We therefore confirm that having access to two
g-dominated mixed modes helps better characterize the Brunt-
Väisälä profile.

Also, despite the strong constraints that were obtained on
the internal structure, we noted the existence of a degeneracy
between the stellar mass and the initial helium abundance Y0.

This degeneracy, which is already well known for MS stars (e.g.,
Lebreton & Goupil 2014), is not lifted by the mixed modes. We
find that it is in fact the main source of uncertainties in the deter-
mination of the stellar parameters. This should be kept in mind
when modeling subgiants. Current modeling techniques, such as
traditional grid-based methods, tend to miss a significant frac-
tion of the best-fit models because of the size of the mesh. In
such conditions, the degeneracy between Y0 and mass could be
explored only partially, thus causing the uncertainties on the stel-
lar parameters to be underestimated.

As a byproduct of this work, we obtained partial constraints
on the internal rotation of KIC10273246. We were not able not
measure individual rotational splittings for the dipolar mixed
modes, but we obtained a splitting of 0.53 ± 0.03 µHz for the
only g-dominated l = 2 mixed mode in the spectrum of the star.
Interestingly, this value is close to the surface rotation rate of
0.5 µHz that was found for this star by Campante et al. (2011)
using photometric data from Kepler. This suggests that this star
might be rotating nearly as a solid-body, similarly to the two
young subgiants recently studied by Deheuvels et al. (2020).

This work highlights the large potential of the seismic mod-
eling of young subgiants to indirectly obtain constraints on the
core structure of the star during the MS. The next step will
be to use this method on a larger sample of stars drawn from
the targets observed with Kepler and TESS, and therefore place
quantitative constraints on the overshooting process in low-mass
stars. The data from the upcoming PLATO mission (Rauer et al.
2014) will add a large amount of potential targets for this type of
analysis.

Moreover, we show in this study that detecting several g-
dominated dipole modes places stronger constraints on the shape
of the Brunt-Väisälä profile, and therefore on the µ-gradient in
the stellar core. It could thus be anticipated that more evolved
subgiants, which show a larger number of g-dominated mixed
modes, would be more favorable targets for our purpose. How-
ever, these stars are also further from the end of the MS, and a
worry is that the chemical composition in the core might be less
dependent on the properties of the MS core. We plan, therefore,
to study this effect in a subsequent study.
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Appendix A: Observed frequencies

Table A.1. Estimated mode parameters for KIC10273246.

l ν (µHz) H (ppm2 µHz−1) Γ (µHz)

0 594.58 ± 0.13 10.9+2.8
−2.2 1.4+0.4

−0.3
0 642.73 ± 0.11 10.5+3.3

−2.5 1.2+0.5
−0.3

0 690.80 ± 0.23 7.9+1.7
−1.4 3.5+1.0

−0.8
0 738.19 ± 0.10 18.4+2.7

−2.3 1.7+0.2
−0.2

0 785.00 ± 0.13 17.3+2.1
−1.8 2.2+0.2

−0.2
0 833.65 ± 0.13 18.9+2.4

−2.1 2.4+0.3
−0.3

0 883.30 ± 0.12 18.7+2.3
−2.1 2.2+0.2

−0.2
0 932.16 ± 0.17 13.0+1.6

−1.5 2.8+0.3
−0.3

0 981.26 ± 0.30 8.9+1.4
−1.2 4.9+1.0

−0.8
0 1030.30 ± 0.38 4.4+0.9

−0.7 4.2+0.9
−0.8

0 1078.72 ± 0.38 3.2+1.0
−0.8 3.0+1.2

−0.9
1 622.85 ± 0.16 6.2+1.8

−1.4 1.6+0.5
−0.4

1 662.16 ± 0.17 6.3+1.3
−1.0 2.4+0.5

−0.4
1 695.96 ± 0.10 11.1+5.7

−3.8 0.7+0.5
−0.3

1 724.33 ± 0.10 12.9+2.6
−2.1 1.5+0.3

−0.3
1 764.19 ± 0.12 13.0+1.7

−1.5 2.6+0.3
−0.3

1 809.76 ± 0.08 23.7+3.4
−3.0 1.7+0.2

−0.2
1 857.24 ± 0.09 19.6+2.6

−2.3 2.0+0.2
−0.2

1 905.14 ± 0.10 16.3+2.1
−1.8 2.3+0.3

−0.2
1 950.42 ± 0.15 9.1+1.2

−1.1 3.0+0.4
−0.3

1 978.28 ± 0.10 11.9+5.2
−3.6 0.5+0.3

−0.2
1 1008.23 ± 0.21 5.8+0.8

−0.7 3.5+0.5
−0.5

1 1054.85 ± 0.48 2.4+0.4
−0.4 6.2+1.3

−1.1
1 1103.65 ± 0.50 2.0+0.5

−0.4 6.1+3.1
−2.0

2 590.15 ± 0.21 5.4+1.4
−1.1 1.4+0.4

−0.3
2 638.42 ± 0.22 5.2+1.6

−1.2 1.2+0.5
−0.3

2 685.80 ± 0.46 4.0+0.8
−0.7 3.5+1.0

−0.8
2 733.83 ± 0.19 9.2+1.3

−1.2 1.7+0.2
−0.2

2 779.53 ± 0.03 54.2+19.0
−14.1 0.3+0.1

−0.1
2 784.03 ± 0.65 12.5+3.2

−2.5 1.5+0.5
−0.4

2 829.97 ± 0.21 9.4+1.2
−1.1 2.4+0.3

−0.3
2 878.97 ± 0.20 9.3+1.2

−1.0 2.2+0.2
−0.2

2 927.47 ± 0.23 6.5+0.8
−0.7 2.8+0.3

−0.3
2 976.97 ± 0.66 4.4+0.7

−0.6 4.9+1.0
−0.8

2 1025.32 ± 0.65 2.2+0.4
−0.4 4.2+0.9

−0.8
2 1074.32 ± 0.72 1.6+0.5

−0.4 3.0+1.2
−0.9

A187, page 14 of 14

http://linker.aanda.org/10.1051/0004-6361/202040055/15
http://linker.aanda.org/10.1051/0004-6361/202040055/15
http://linker.aanda.org/10.1051/0004-6361/202040055/16
http://linker.aanda.org/10.1051/0004-6361/202040055/17
http://linker.aanda.org/10.1051/0004-6361/202040055/18
http://linker.aanda.org/10.1051/0004-6361/202040055/19
http://linker.aanda.org/10.1051/0004-6361/202040055/20
http://linker.aanda.org/10.1051/0004-6361/202040055/21
http://linker.aanda.org/10.1051/0004-6361/202040055/22
http://linker.aanda.org/10.1051/0004-6361/202040055/23
http://linker.aanda.org/10.1051/0004-6361/202040055/24
http://linker.aanda.org/10.1051/0004-6361/202040055/25
http://linker.aanda.org/10.1051/0004-6361/202040055/26
http://linker.aanda.org/10.1051/0004-6361/202040055/27
http://linker.aanda.org/10.1051/0004-6361/202040055/28
http://linker.aanda.org/10.1051/0004-6361/202040055/29
http://linker.aanda.org/10.1051/0004-6361/202040055/30
http://linker.aanda.org/10.1051/0004-6361/202040055/31
http://linker.aanda.org/10.1051/0004-6361/202040055/32
http://linker.aanda.org/10.1051/0004-6361/202040055/33
http://linker.aanda.org/10.1051/0004-6361/202040055/34
http://linker.aanda.org/10.1051/0004-6361/202040055/34
http://linker.aanda.org/10.1051/0004-6361/202040055/35
http://linker.aanda.org/10.1051/0004-6361/202040055/36
http://linker.aanda.org/10.1051/0004-6361/202040055/37
http://linker.aanda.org/10.1051/0004-6361/202040055/38
http://linker.aanda.org/10.1051/0004-6361/202040055/39
http://linker.aanda.org/10.1051/0004-6361/202040055/40
http://linker.aanda.org/10.1051/0004-6361/202040055/41
http://linker.aanda.org/10.1051/0004-6361/202040055/42
http://linker.aanda.org/10.1051/0004-6361/202040055/43
http://linker.aanda.org/10.1051/0004-6361/202040055/44
http://linker.aanda.org/10.1051/0004-6361/202040055/45
http://linker.aanda.org/10.1051/0004-6361/202040055/46
http://linker.aanda.org/10.1051/0004-6361/202040055/47
http://linker.aanda.org/10.1051/0004-6361/202040055/48
http://linker.aanda.org/10.1051/0004-6361/202040055/49
http://linker.aanda.org/10.1051/0004-6361/202040055/50
http://linker.aanda.org/10.1051/0004-6361/202040055/51
http://linker.aanda.org/10.1051/0004-6361/202040055/51
http://linker.aanda.org/10.1051/0004-6361/202040055/52
http://linker.aanda.org/10.1051/0004-6361/202040055/53
http://linker.aanda.org/10.1051/0004-6361/202040055/54
http://linker.aanda.org/10.1051/0004-6361/202040055/55
http://linker.aanda.org/10.1051/0004-6361/202040055/56
http://linker.aanda.org/10.1051/0004-6361/202040055/57
http://linker.aanda.org/10.1051/0004-6361/202040055/58
http://linker.aanda.org/10.1051/0004-6361/202040055/59
http://linker.aanda.org/10.1051/0004-6361/202040055/60
http://linker.aanda.org/10.1051/0004-6361/202040055/60
http://linker.aanda.org/10.1051/0004-6361/202040055/61
http://linker.aanda.org/10.1051/0004-6361/202040055/62
http://linker.aanda.org/10.1051/0004-6361/202040055/63
http://linker.aanda.org/10.1051/0004-6361/202040055/64
http://linker.aanda.org/10.1051/0004-6361/202040055/65
http://linker.aanda.org/10.1051/0004-6361/202040055/66
http://linker.aanda.org/10.1051/0004-6361/202040055/67
http://linker.aanda.org/10.1051/0004-6361/202040055/68
http://linker.aanda.org/10.1051/0004-6361/202040055/69
http://linker.aanda.org/10.1051/0004-6361/202040055/70
http://linker.aanda.org/10.1051/0004-6361/202040055/71
http://linker.aanda.org/10.1051/0004-6361/202040055/71
http://linker.aanda.org/10.1051/0004-6361/202040055/72
http://linker.aanda.org/10.1051/0004-6361/202040055/73
http://linker.aanda.org/10.1051/0004-6361/202040055/74
http://linker.aanda.org/10.1051/0004-6361/202040055/75

	Introduction
	Probing potential of mixed modes
	Observational properties of KIC 10273246
	Surface constraints 
	Constraints from spectroscopy
	Constraints from broadband photometry

	Seismic constraints
	Preparation of Kepler light curve
	Extraction of oscillation mode parameters 
	Detection of an l=2 mixed mode
	First estimates of stellar parameters using seismic scaling relations


	Seismic modeling method
	Physics of the models
	Why modeling subgiants is challenging
	Optimization in mass and age
	Optimizing the other parameters
	Fitting procedure adopted for KIC10273246

	Results
	General characteristics of the best models
	Constraints on core overshooting
	Constraints on the internal structure from mixed modes
	Constraints on central density
	Constraints on the Brunt-Väisälä profile.


	Discussion
	Diffusive overshooting
	Effect of microscopic diffusion
	Helium degeneracy
	Internal rotation

	Conclusion
	References
	Observed frequencies

