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Introduction

In 1928, Hardy and Littlewood [1] first established boundedness properties for Riemann-Liouville fractional integrals. The classical Hardy inequality for fractional integrals states that

x β-α x 0 f (y) y β (x -y) 1-α dy L p (0,b) ≤ C f L p (0,b)
with 0 < α < 1, where α -1 p < β < 1 q , 1 q + 1 p = 1 and 0 < b ≤ ∞. On the other hand, 10 years later, classical inequality was discussed, duo to Hardy, Littlewood and Sobolev, states that [1] R n R n f (x)|x -y| -λ g(y)dxdy ≤ C n,p,q ||f || L q ||g|| L p for all f ∈ L q (R n ), g ∈ L p (R n ), 1 < p, q < ∞, 1 p + 1 q + λ n = 2, 0 < λ < n and q = q q-1 . In this sense, Lie and Loss [START_REF] Chen | The best constant in a weighted Hardy-Littlewood-Sobolev inequality[END_REF], discussed an estimate for the constant C n,p,q .

The Hardy-Littlewood-Sobolev inequality was extended by Stein and Weiss to the following Stein-Weiss inequalities [19] R n R n |x| -α |x -y| -λ f (x)g(y)|y| -β dxdy ≤ C n,α,β,p,q ||f || L q ||g|| L p where 1 < p, q < ∞, β, α and λ satisfying the following conditions. 1 q + 1 p + α+β+λ n = 2, 1 q + 1 p ≥ 1, α + β ≥ 0, α < n q , β < n p and 0 < λ < n. Over these 92 years since the first ideas of Hardy-Littlewood inequality, numerous results have been addressed, in particular, applications. We also highlight new extensions to the Hardy-Littlewood inequality, in particular, with the fractional Poisson kernel [START_REF] Leindler | Some inequalities of Hardy-Littlewood type[END_REF][START_REF] Bondarenko | An inequality of Hardy-Littlewood type for Dirichlet polynomials[END_REF][START_REF] Love | Generalizations of a classical inequality[END_REF][START_REF] Everitt | Some Examples of Hardy-Littlewood Type Integral Inequalities[END_REF][15]. We also highlight the extent to the Hardy-Littlewood-Polya inequality [16]. It is noted that the importance and impact of the first result on the inequality of Hardy and Littlewood, caused in theory. Other inequalities involving Hardy and Littlewood can be found in the articles [17,18,20].

As seen above, the first results of the Hardy-Littlewood inequality in the sense of fractional integrals, was discussed only for the case of Riemann-Liouville. As is known, by means of the Riemann-Liouville fractional integral, the fractional derivatives of Caputo and Riemann-Liouville are defined. However, over the decades, new versions of fractional integrals have emerged. Then, there was a need to propose a new general operator that contained as particular cases, a wide class of existing fractional integrals [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Kilbas | Fractional integral and derivatives (theory and applications)[END_REF]. So, we have the Riemann-Liouville fractional integral call with respect to another function, that is, ψ(•), as will be presented below:

Let α ∈ (0, 1) and 

ξ ∈ L 1 [a, b] , [a, b] be a finite or infinite interval of the real line R (-∞ ≤ a < b ≤ ∞). Also let ψ : [a, b] → R be
I α;ψ a+,x ξ (x) = 1 Γ (α) x a ψ (t) (ψ (x) -ψ (t)) α-1 ξ (t) dt
The right-sided fractional integrals of a function f with respect to another function ψ on [a, b], is defined in an analogous way I α;ψ

x,b-(•). Let α > 0 and δ > 0.Then, we have the following semigroup property given by [2, 3]

I α;ψ a+,x I δ;ψ a+,x ξ (x) = I α+δ;ψ a+,x ξ (x) .
Since we have a fractional integration operator that contains and a unique (operator) a wide class of possible particular cases, then the following question arises: what conditions about the ψ-Riemann-Liouville fractional integral and about Hardy's inequality-Littlewood is necessary and enough, so that we can extend it? So, motivated by these issues and the work above, in this paper we consider the boundedness of ψ-Riemann-Liouville fractional integrals. More precisely we are going to prove the following result:

H-L Theorem 1.1. Let 0 < α < 1 and p ∈ [1, ∞], then the following statements are satisfied:

(1) If 1 ≤ p < 1 α , then the operators

I α;ψ a+ , I α;ψ b-: L p [a, b] → L q [a, b] are continuous for every q ∈ 1, p 1-αp , (2) If α = 1 p , then the operators I α;ψ a+ , I α;ψ b-: L p [a, b] → L q [a, b] are continuous for every q ∈ [1, ∞), (3) If α ∈ 1 p , 1 , then the operators I α;ψ a+ , I α;ψ b-: L p [a, b] → L q [a, b] are continuous for every p ≤ q ≤ ∞. (4) If p = ∞, then the operators I α;ψ a+ , I α;ψ b-: L p [a, b] → C[a, b] ∩ L ∞ [a, b] are continuous.

Hardy-Littlewood type result

In this section, we are going to prove Theorem 1.1. We start our analysis with the following remark. Let α ∈ (0, 1) and ψ be an increasing and positive continuous function on (a, b] with ψ ∈ C(a, b), ψ = 0 and ψ increasing. Then, for x ∈ (a, b] we have HL01 HL01 (2.1)

x a ψ (t)(ψ(x) -ψ(t)) α-1 dt ≤ (ψ(b) -ψ(a)) α α .
In fact, by doing the change of variable u = ψ(x) -ψ(t) and since ψ is increasing then

x a ψ (t)(ψ(x) -ψ(t)) α-1 dt = ψ(x)-ψ(a) 0 u α-1 du = (ψ(x) -ψ(a)) α α ≤ (ψ(b) -ψ(a)) α α .
Next, we consider the boundedness of I α;ψ a + in L p spaces.

H-L1 Lemma 2.1. Let p ∈ [1, ∞] and u ∈ L p (a, b). Then x a ψ (t)(ψ(x) -ψ(t)) α-1 |u(t)|dt < ∞ for a.e. x ∈ (a, b]. Moreover, I α;ψ a+ u ∈ L p (a, b) with HL02 HL02 (2.2) I α;ψ a+ u L p (a,b) ≤ (ψ(b) -ψ(a)) α Γ(α + 1) u L p (a,b) . Proof. Let p = ∞, then by (2.1) we obtain x a ψ (t)(ψ(x) -ψ(t)) α-1 |u(t)|dt ≤ u L ∞ (a,b) x a ψ (t)(ψ(x) -ψ(t)) α-1 dt ≤ (ψ(b) -ψ(a)) α α u L ∞ (a,b) , x ∈ (a, b]. Let p = 1, next b a |I α;ψ a+ u(x)|dx = b a 1 Γ(α) x a ψ (t)(ψ(x) -ψ(t)) α-1 u(t)dt dx ≤ 1 Γ(α) b a x a ψ (t)(ψ(x) -ψ(t)) α-1 |u(t)|dtdx ≤ 1 Γ(α) b a x a ψ (x)(ψ(x) -ψ(t)) α-1 |u(t)|dtdx = 1 Γ(α) b a |u(t)| b t ψ (x)(ψ(x) -ψ(t)) α-1 dxdt = 1 Γ(α + 1) b a (ψ(b) -ψ(t)) α |u(t)|dt ≤ (ψ(b) -ψ(a)) α Γ(α + 1) b a |u(t)|dt.
Now, we consider the case 1 < p < ∞. Let q > 0 such that

1 p + 1 q = 1.
Next, by Hölder inequality we get

|I α;ψ a+ u(x)| = 1 Γ(α) x a ψ (t)(ψ(x) -ψ(t)) α-1 u(t)dt ≤ 1 Γ(α) x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] 1 q [ψ (t)(ψ(x) -ψ(t)) α-1 ] 1 p |u(t)|dt ≤ 1 Γ(α) x a ψ (t)(ψ(x) -ψ(t)) α-1 dt 1/q x a ψ (t)(ψ(x) -ψ(t)) α-1 |u(t)| p dt 1/p ≤ 1 Γ(α) (ψ(b) -ψ(a)) α α 1/q x a ψ (t)(ψ(x) -ψ(t)) α-1 |u(t)| p dt 1/p . So, since ψ is increasing we obtain b a |I α;ψ a+ u(x)| p dx ≤ 1 [Γ(α)] p (ψ(b) -ψ(a)) α α p/q b a x a ψ (t)(ψ(x) -ψ(t)) α-1 |u(t)| p dtdx ≤ 1 [Γ(α)] p (ψ(b) -ψ(a)) α α p/q b a x a ψ (x)(ψ(x) -ψ(t)) α-1 |u(t)| p dtdx = 1 [Γ(α)] p (ψ(b) -ψ(a)) α α p/q b a |u(t)| p b t ψ (x)(ψ(x) -ψ(t)) α-1 dxdt ≤ 1 [Γ(α)] p (ψ(b) -ψ(a)) α α p/q (ψ(b) -ψ(a)) α α b a |u(t)| p dt = 1 [Γ(α)] p (ψ(b) -ψ(a)) α α p q +1 b a |u(t)| p dt.
Therefore

I α;ψ a+ u L p (a,b) ≤ (ψ(b) -ψ(a)) α Γ(α + 1) u L p (a,b) .
Now, we are ready to give the proof of Theorem 1.1. Proof of Theorem 1.1:

(1) The case p = q ∈ [1, ∞] was proved in Lemma 2.1, were we obtain HL03 HL03 (2.3)

I α;ψ a+ u L p (a,b) ≤ (ψ(b) -ψ(a)) α Γ(α + 1) u L p (a,b) .
Now we consider the case p = 1 and 1 ≤ q < 1 1-α . The case q = 1 is given by (2.3), therefore we consider the case 1 < q < 1 1-α . By Hölder inequality we have

|I α;ψ a+ u(x)| ≤ 1 Γ(α) x a ψ (t)(ψ(x) -ψ(t)) α-1 |u(t)|dt = 1 Γ(α) x a ψ (t)(ψ(x) -ψ(t)) α-1 |u(t)| 1 q |u(t)| 1-1 q dt ≤ 1 Γ(α) x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] q |u(t)|dt 1/q x a |u(t)|dt 1-1 q . Hence HL04 HL04 (2.4) |I α;ψ a+ u(x)| q ≤ 1 [Γ(α)] q x a [ψ (t)(ψ(x) -ψ(t)) α -1] q |u(t)|dt u q-1 L 1 (a,b) .
Next,

|I α;ψ a+ u q L q (a,b) ≤ 1 [Γ(α)] q b a x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] q |u(t)|dtdx u q-1 L 1 (a,b) ≤ 1 [Γ(α)] q b a |u(t)| b t [ψ (x)(ψ(x) -ψ(t)) α-1 ] q dxdt u q-1 L 1 (a,b) = 1 [Γ(α)] q b a |u(t)|[ψ (b)] q-1 b t ψ (x)(ψ(x) -ψ(t)) (α-1)q dxdt u q-1 L 1 (a,b) = [ψ (b)] q-1 [Γ(α)] q b a |u(t)| (ψ(b) -ψ(t)) 1-(1-α)q 1 -(1 -α)q dt u q-1 L 1 (a,b) ≤ [ψ (b)] q-1 (ψ(b) -ψ(a)) 1-(1-α)q (1 -(1 -α)q)[Γ(α)] q u q L 1 (a,b) . Therefore HL05 HL05 (2.5) |I α;ψ a+ u L q (a,b) ≤ [ψ (b)] q-1 (ψ(b) -ψ(a)) 1-(1-α)q (1 -(1 -α)q)[Γ(α)] q 1/q u L 1 (a,b) , ∀1 ≤ q < 1 1 -α
Continuing with our analysis, we consider the case 1 < p < 1 α and p ≤ q < p 1-αp . The case q = p was considered in (2.3), so we only consider the case p < q < p 1 -αp .

In fact, let

HL06 HL06 (2.6) δ = 1 p - 1 q , then 0 < δ < α < 1. Define r as HL07 HL07 (2.7) 1 r = 1 + 1 q - 1 p = 1 -δ =⇒ r = 1 1 -δ .
Note that r < q, next by Hölder inequality we have

|I α;ψ a+ u(x)| ≤ 1 Γ(α) x a ψ (t)(ψ(x) -ψ(t)) α-1 |u(t)|dt = 1 Γ(α) x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r q |u(t)| p q [ψ (t)(ψ(x) -ψ(t)) α-1 ] 1-r q |u(t)| p( 1 p -1 q ) dt ≤ 1 Γ(α) x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r |u(t)| p dt 1/q x a |u(t)| p dt 1 p -1 q × x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r dt 1-1 p = 1 Γ(α) [ψ (x)] r-1 (ψ(x) -ψ(a)) 1-(1-α)r 1 -(1 -α)r 1-1 p × x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r |u(t)| p dt 1/q x a |u(t)| p dt 1 p -1 q .
Note that the last expression is well defined since

1 r = 1 -δ > 1 -α =⇒ (1 -α)r < 1.
Therefore, we have

I α;ψ a+ u q L q (a,b) = b a |I α;ψ a+ u(x)| q dx ≤ 1 [Γ(α)] q b a x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r |u(t)| p dt u q-p L p (a,b) [ψ (x)] r-1 (ψ(x) -ψ(a)) 1-(1-α)r 1 -(1 -α)r q(1-1 p )   dx ≤ u q-p L p (a,b) [Γ(α)] q [ψ (b)] r-1 (ψ(b) -ψ(a)) 1-(1-α)r 1 -(1 -α)r q(1-1 p ) b a x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r |u(t)| p dtdx ≤ u q-p L p (a,b) [Γ(α)] q [ψ (b)] r-1 (ψ(b) -ψ(a)) 1-(1-α)r 1 -(1 -α)r q(1-1 p ) [ψ (b)] r-1 (ψ(b) -ψ(a)) 1-(1-α)r 1 -(1 -α)r u p L p (a,b) = 1 [Γ(α)] q [ψ (b)] r-1 (ψ(b) -ψ(a)) 1-(1-α)r 1 -(1 -α)r q(1-1 p )+1 u q L p (a,b) .
Hence HL08 HL08 (2.8)

I α;ψ a+ u L q (a,b) ≤ 1 Γ(α) [ψ (b)] r-1 (ψ(b) -ψ(a)) 1-(1-α)r 1 -(1 -α)r 1-1 p + 1 q u L p (a,b) ∀p ≤ q < p 1 -αp .
(2) Now we consider the case p = 1 α and 1 α ≤ q < ∞. Just we consider the case 1 α < q < ∞, since by (2.2) we have the case q = p.

Define δ and r as

δ = 1 p - 1 q = α - 1 q and 1 r = 1 -δ = 1 + 1 q - 1 p .
Note that 0 < δ < α < 1 and r < 1 1-α . Next by Hölder inequality HL09 HL09 (2.9)

|I α;ψ a+ u(x)| ≤ 1 Γ(α) x a ψ (t)(ψ(x) -ψ(t)) α-1 |u(t)|dt = 1 Γ(α) x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r q |u(t)| p q [ψ (t)(ψ(x) -ψ(t)) α-1 ] r(1-1 p ) |u(t)| 1-p q dt ≤ 1 Γ(α) x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r |u(t)| p dt 1/q × x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r(1-1 p )θ |u(t)| (1-p q )θ dt 1/θ , 1 q + 1 θ = 1.
By other side, by Hölder inequality we derive

x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r(1-1 p )θ |u(t)| (1-p q )θ dt ≤ x a [φ (t)(φ(x) -φ(t)) α-1 ] r 1-1 p θs dt 1/s x a |u(t)| 1-p q θm dt 1/m , 1 s + 1 m = 1, note that m = p(q -1) q -p , θ = q q -1 and s = p(q -1) q(p -1) =⇒ r 1 - 1 p θs = r and 1 - p q θm = p. Therefore HL10 HL10 (2.10) x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r(1-1 p )θ |u(t)| (1-p q )θ dt ≤ x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r dt q(p-1) p(q-1) x a |u(t)| p dt q-p p(q-1) = [ψ (x)] r-1 (ψ(x) -ψ(a)) 1-(1-α)r 1 -(1 -α)r q(p-1) p(q-1)
x a |u(t)| p dt q-p p(q-1) . Now, replacing (2.10) in (2.9) we get

|I α;ψ a+ u(x)| ≤ 1 Γ(α) x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r |u(t)| p dt 1/q [ψ (x)] r-1 (ψ(x) -ψ(a)) 1-(1-α)r 1 -(1 -α)r p-1 p × x a |u(t)| p dt q-p pq . So HL11 HL11 (2.11) |I α;ψ a+ u(x)| q ≤ 1 [Γ(α)] q [ψ (x)] r-1 (ψ(x) -ψ(a)) 1-(1-α)r 1 -(1 -α)r q 1-1 p x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r |u(t)| p dt × u q-p L p (a,b) .
Therefore HL12 HL12 (2.12)

I α;ψ a+ u q L q (a,b) = b a |I α;ψ a+ u(x)| q dx ≤ 1 [Γ(α)] q u q-p L p (a,p) b a [ψ (x)] r-1 (ψ(x) -ψ(a)) 1-(1-α)r 1 -(1 -α)r q 1-1 p x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r |u(t)| p dtdx ≤ u q-p L p (a,b) [Γ(α)] q [ψ (b)] r-1 (ψ(b) -ψ(a)) 1-(1-α)r 1 -(1 -α)r q 1-1 p b a x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r |u(t)| p dtdx ≤ u q-p L p (a,b) [Γ(α)] q [ψ (b)] r-1 (ψ(b) -ψ(a)) 1-(1-α)r 1 -(1 -α)r q 1-1 p b a b t [ψ (x)(ψ(x) -ψ(t)) α-1 ] r |u(t)| p dxdt ≤ u q-p L p (a,b) [Γ(α)] q [ψ (b)] r-1 (ψ(b) -ψ(a)) 1-(1-α)r 1 -(1 -α)r q 1-1 p [ψ (b)] r-1 (ψ(b) -ψ(a)) 1-(1-α)r 1 -(1 -α)r u p L p (a,b) = u q L p (a,b) [Γ(α)] q [ψ (b)] r-1 (ψ(b) -ψ(a)) 1-(1-α)r 1 -(1 -α)r 1+q 1-1 q .
That is

I α;ψ a+ u L q (a,b) ≤ 1 Γ(α) [ψ (b)] r-1 (ψ(b) -ψ(a)) 1-(1-α)r 1 -(1 -α)r 1-1 p + 1 q u L p (a,b) ∀p = 1 α ≤ q < ∞.
(3) Now we consider the case 1 α < p < ∞ and p ≤ q ≤ ∞.

The case q = p was considered in (2.3), so we only consider the case p < q ≤ ∞.. WE start considering the case p < q < ∞. Let

δ = 1 p - 1 q and 1 r = 1 -δ = 1 + 1 q - 1 p . So 0 < δ < α and 1 < r < 1 1 -α . Next |I α;ψ a+ u(x)| ≤ 1 Γ(α) x a ψ (t)(ψ(x) -ψ(t)) α-1 |u(t)|dt = 1 Γ(α) x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r q |u(t)| p q [ψ (t)(ψ(x) -ψ(t)) α-1 ] 1-r q |u(t)| p 1 p -1 q dt. Since 1 - r q = r 1 - 1 p ,
by Hölder inequality we derive HL13 HL13 (2.13)

|I α;ψ a + u(x)| ≤ 1 Γ(α) x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r q |u(t)| p q [ψ (t)(ψ(x) -ψ(t)) α-1 ] r 1-1 p |u(t)| p 1 p -1 q dt ≤ 1 Γ(α) x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r |u(t)| p dt 1/q x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] rθ 1-1 p |u(t)| pθ 1 p -1 q dt 1 θ
, where 1 q + 1 θ = 1. On the other hand HL14 HL14 (2.14)

x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] rθ 1-1 p |u(t)| pθ q-p pq dt dt ≤ x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] rθm 1-1 p dt 1 m × x a |u(t)| pθn 1 p -1 q dt 1/n , 1 m + 1 n = 1.
Note that θ = q q -1 , m = p(q -1) q(p -1) and n = p(q -1) q -p .

So, replacing (2.14) into (2.13) we get (4) Finally, the case p = q = ∞ was proved in (2.3).

|I α;ψ a + u(x)| ≤ 1 Γ(α) x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r |u(t)| p dt 1/q x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r p-1 p × x a |u(t)| p dt q-p pq ≤ 1 Γ(α) x a [ψ (t)(ψ(x) -ψ(t)) α-1 ] r |u(t)| p dt 1/q [ψ (x)] r-1 (ψ(x) -ψ(a)) 1-(1-α)r 1 -(1 -α)r p-1 p × u q-p q L p (a,b) . Therefore HL15 HL15 (2.15) |I α;ψ a + u(x)| q ≤ 1 [Γ(α)] q
Remark 1. Here, we present proof of the results only for the left operator I α;ψ a + (•), in an analogous way, follows to the operator the right I α;ψ b -(•).

  an increasing and positive continuous function, having a continuous and non decreasing derivatives ψ (x) = 0 on (a, b). The left-sided fractional integrals of a function f with respect to another function ψ on [a, b], is defined as[START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF][START_REF] Sousa | The ψ-Hilfer fractional calculus of variable order and its applications[END_REF] 

1 -( 1 --1 p + 1 qu

 111 t)(ψ(x) -ψ(t)) α-1 ] r |u(t)| p dt [ψ (x)] r-1 (ψ(x) -ψ(a)) 1-(1-α)r x)] r-1 (ψ(x) -ψ(a)) 1-(1-α)r 1 -(1 -α)r t)(ψ(x) -ψ(t)) α-1 ]|u(t)| p dtdx ≤ 1 [Γ(α)] q [ψ (b)] r-1 (ψ(b) -ψ(a)) 1-(1-α)r 1 -(1 -α)r 1+ q(p-1) p u q L p (a,b) .That is HL16 HL16 (2.16)I α;ψ a + u L q (a,b) ≤ 1 Γ(α) [ψ (b)] r-1 (ψ(b) -ψ(a)) 1-(1-α)r 1 -(1 -α)r 1L p (a,b) .Now we consider the case 1 α < p < ∞ and q = ∞.By Hölder inequality we derive|I α;ψ a + u(x)| ≤ 1 Γ(α) x a ψ (t)(ψ(x) -ψ(t)) α-1 |u(t)|dt ≤ 1 Γ(α)

  t)(ψ(x) -ψ(t)) α-1 ] r dt b)] r-1 (ψ(b) -ψ(a)) 1-(1-α)r 1 -(1 -α)r 1/r u L p (a,b) .Therefore HL17 HL17 (2.17)I α;ψ a + u L ∞ (a,b) ≤ 1 Γ(α) [ψ (b)] r-1 (ψ(b) -ψ(a)) 1-(1-α)r 1 -(1 -α)r 1-1 p u L p (a,b) .