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In the present paper, we investigate the existence, uniqueness, regularity and continuous dependence of mild solutions to a fractional diffusive logistic equation with memory in Bessel potential spaces, through Banach fixed point theorem and Gronwall inequality.

Introduction

The logistic population model is considered as an important type of nonlinear differential equations due to ability to model several biological phenomena. The study of the logistical equation over the decades has been the subject of a study for many differential purpose [START_REF] Amann | Linear and quasilinear parabolic problems[END_REF][START_REF] Cushing | Volterra integrodifferential equations in population dynamics[END_REF][START_REF] Goddard | Diffusive logistic equation with non-linear boundary conditions[END_REF][START_REF] Hadeler | Diffusion equations in biology[END_REF] and references therein. In the context of differential equation (integer order), it has also been considered, see for example [START_REF] Dyson | Asymptotic behaviour of solutions to abstract logistic equations[END_REF][START_REF] Du | The parabolic logistic equation with blow-up initial and boundary values[END_REF][START_REF] Feng | Asymptotic periodicity in diffusive logistic equations with discrete delays[END_REF] and references therein. Gopalsamy [START_REF] Gopalsamy | Stability and oscillations in delay differential equations of population dynamics[END_REF] had his research directed at the asymptotic behavior of non-constant solutions of delay logistic equations. Feng and Lu [START_REF] Feng | Asymptotic periodicity in diffusive logistic equations with discrete delays[END_REF], also dedicated to investigating the asymptotic periodicity in diffusive logistic equations with discrete delay, i.e., as follows ∂u(t, x) ∂t -Au(t, x) = u(t, x) a(t, x) -b(t, x)u(t, x) - u(x, 0) = u 0 (x) for (t, x) ∈ (0, ∞) × Ω, was proved by Schiaffino [START_REF] Schiaffino | On a diffusion Volterra equation[END_REF] and Yamada [START_REF] Yamada | On a certain class of semilinear Volterra diffusion equations[END_REF].

On the other hand, fractional derivatives provide excellent instrument for the description of memory. In this sense, several approaches regarding the fractional logistic equation have been and over the years it has gained more prominence [START_REF] Wu | Discrete fractional diffusion equation[END_REF][START_REF] Kumar | A moving boundary problem with space-fractional diffusion logistic population model and density-dependent dispersal rate[END_REF]. In 2018, Ezz-Eldiem [START_REF] Ezz-Eldien | On solving fractional logistic population models with applications[END_REF], discussed a numerical approach on solving fractional logistic population models via Jacobi polynomials. In 2020, Marinelli and Mugnai [START_REF] Marinelli | Fractional generalized logistic equations with indefinite weight: quantitative and geometric properties[END_REF], discussed quantitative and geometric properties for the fractional generalized logistic equation given by

(-∆) s u (x) = λ(β(x)u(x) -g(x, u(x))), in Ω u = 0, on R N /Ω when N > 2s, s ∈ (0, 1), λ ∈ R, Ω ⊂ R N is a bounded domain of class C 2α
for some 0 < α ≤ 1 and g : Ω × R → R is a self-limiting factor for the populations. Other works on fractional logistic equation can be obtained at [START_REF] Wu | Discrete fractional diffusion equation[END_REF][START_REF] Kumar | A moving boundary problem with space-fractional diffusion logistic population model and density-dependent dispersal rate[END_REF]. Motivated by the works above, in this paper, we consider the fractional logistic equation with memory effect from the initial data given by

(1.1) c D α t ξ (t, x) = ∆ξ (t, x) + ξ (t, x) a -b t 0 λ (t -s) ξ (s, x) ds
where c D α t ξ (•) is the Caputo partial fractional derivative of order 0 < α < 1 , with ξ (t, x) is the population concentration in x and t > 0, a and b are the growth rates and the agglomeration effect, respectively. Here, λ : R → R is a function as a delay kernel representing the history of the species that influences the current growth rate.

We also consider a more general Cauchy-Dirichlet problem in the sense of the Caputo partial fractional derivative, given by (1.2)

       c D α t ξ (t, x) = ∆ξ (t, x) + ξ (t, x) a -b t 0 λ (t -s) (-∆) η ξ (s, x) ds in (0, ∞) × Ω ξ = 0 in (0, ∞) × Ω ξ (x, 0) = ξ 0 (x) in Ω
in a sufficiently regular domain Ω ⊂ R n . Note that, the Eq.(1.2) comes down to Eq.(1.1), when η = 0. In order to define the fractional derivative, it is important to recall some facts about the theory of fractional calculus. For α > 0, define the function g α : R → R [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF] (1.3)

g α (t) :=    1 Γ(α) t α-1 , t > 0 0 , t ≤ 0
where Γ(α) is Euler's Gamma function. Now, assume that T > 0. For a function v ∈ L 1 ((0, T ), X), the Riemann-Liouville fractional integral of order α of ξ is given by [1, 2, 3, 4, 5]

I α t ξ(t) := g α * ξ(t) = 1 Γ(α) t 0 (t -s) α-1 ξ(s)ds, t ∈ [0, T ].
Observe that the previous identification associates the properties of convolutions with the definitions of fractional integral operator. Hence, based of the definition of Riemann-Liouville fractional integral operator, we present the Caputo fractional differential operator. Definition 1.1. [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF][START_REF] Samko | Fractional integrals and derivatives, theory and applications[END_REF][START_REF] Herrmann | Fractional calculus: an introduction for physicists[END_REF][START_REF] Agrawal | Some generalized fractional calculus operators and their applications in integral equations[END_REF] Let α ∈ (0, 1) and T > 0. Consider v ∈ C([0, T ], X) such that the convolution g 1-α * v ∈ W 1,1 ((0, T ), X). The expression

c D α t ξ(t) := d dt I 1-α t (ξ(t) -ξ(0)) = d dt 1 Γ(1 -α) t 0 (t -s) -α (ξ(s) -ξ(0))ds
is called the Caputo fractional derivative of order α of the function ξ(•). Now, we consider the following conditions: (H). We assume that 1 < p < ∞, σ ∈ (0, 2) \ {1/p} and σ ≥ 2β + N 2p .

Under these conditions, we use results contained in [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF] to obtain the embedding

(1.4) H σ,p 0 → H σ,p (Ω) → H 2β,2p (Ω) → L 2p (Ω) → L p (Ω) .
Inspired by above questions, we will use the Banach fixed point and Gronwall inequality to consider the existence, uniqueness, regularity and continuous dependence of mild solution for the fractional diffusive logistic equation Eq.(1.2) involving Caputo fractional derivative in H σ,p 0 , in other words, we investigate the following: Theorem 1.2. Let λ : R → R be a locally integrable function and assume that (H) holds and

(t 1 -s) α-1 - (t 2 -s) α-1 ≤ L (t 2 -t 1 ) α-1 with t 2 > t 1 , 0 < α < 1 and that exist (E α (t α ∆)) -1 . Given v 0 ∈ H σ,p 0 , there exist τ > 0 and r > 0 such that for every ξ 0 ∈ B H σ,p 0 (v 0 , r) the fractional Cauchy-Dirichlet problem Eq.(1.2) possesses a unique mild solution ξ : [0, τ ) → H σ,p 0 . Further, ξ ∈ C (0, τ ]; H σ1,p 0 for σ 1 ∈ [ σ/
2)\ {1/p} and the solution continuous dependence on the initial data.

Our paper is organized as follows: Section 2, we present the Gronwall inequality and the definition of mild solution for Eq.(1.2). In this sense, we investigated an essential result for the development of this paper (see Lemma 2.5). In section 3, we investigate the main results of this paper, i.e., the existence, uniqueness, regularity and continuous dependence of mild solution to Eq.( 1.2) in Bessel potential space H σ,p 0 .

Mathematical Background -Auxiliary Results

Consider the initial data in the Bessel space [START_REF] Steiger | Navier-Stokes equations with first order boundary conditions[END_REF] (2.1)

H σ,p 0 = θ 1 ∈ H σ,p (Ω) ; θ 1 | ∂Ω = 0 with 1 < p < ∞ e 0 < σ < 2.
Given a Banach space Y, as usual, • Y denotes the norm associated to Y. The ball of radius and centered at x ∈ Y is denoted by B Y (x, r). If X and Y are Banach spaces, X → Y means that X is continuously and densely embedded in Y.

Let S ⊂ R and X be a Banach space. For 1 ≤ p ≤ ∞, L p (S, X) denotes the Banach space of L p integrable functions v : S → X if p < ∞ and the essential bounded functions when p = ∞. W 1,p (S, X) is the subspace of L p (S, X) consisting of functions such that the weak derivative v t belongs to L p (S, X). Both spaces L p (S, X) and W 1,p (S, X) are endowed with their standard norm.

Let α and β be strictly positive real numbers. Then, E α,β (z) : C → C is the Mittag-Leffler function of two-parameters, given by [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF] (2.2)

E α,β (z) = ∞ k=0 z k Γ (αk + β)
.

Choosing β = 1, we have the Mittag-Leffler function of one-parameter, given by

(2.3) E α (z) = ∞ k=0 z k Γ (αk + 1)
.

Theorem 2.1.

[6] (Gronwall inequality)Let u, v be two integrable functions and g a continuous function, with domain

[0, T ]. Let ψ ∈ C 1 [0, T ] be an increasing function such that ψ (t) = 0, ∀t ∈ [0, T ].
Assume that functions u and v are nonnegative and g in nonnegative and nondecreasing. If

(2.4) u (t) ≤ v (t) + g (t) t 0 ψ (τ ) (ψ (t) -ψ (τ )) α-1 dτ
t ∈ [0, T ] and v be a nondecreasing function on [0, T ], then

(2.5) u (t) ≤ v (t) E α (g (t) Γ (α) [ψ (T ) -ψ (0)] α ) ∀t ∈ [a, b]
, where E α (•) is the Mittag-Leffler function given by Eq.(2.3).

Definition 2.2. A continuous function ξ : [0, τ ] → H σ,p 0 is said to be a mild solution for Eq.(1.2), if it is a solution of the following integral equation

(2.6) ξ (t) = E α (∆t α ) ξ 0 + t 0 (t -s) α-1 E α,α ((t -s) α ∆) ξ (s) a -b s 0 λ (s -r) (-∆) η ξ (r) dr ds.
Let 1 < p < ∞ and let σ ∈ (0, 2) \ {1/p}. Note that, the Bessel potential space H σ,p 0 coincides with the complex interpolation space W 2,p ∩ W 1,p , L p (Ω) σ/2 for 0 < σ < 2, σ = 1/p.

It is well known that the Dirichlet Laplacian ∆ is a sectorial operator from W 2,p ∩ W 1,p 0 into L p (Ω). Therefore, the operator E α (∆t α ) : L p (Ω) → L p (Ω) satisfies the following estimative [START_REF] Amann | Linear and quasilinear parabolic problems[END_REF][START_REF] Carvalho Neto | Fractional differential equations: a novel study of local and global solutions in Banach spaces[END_REF] (2.7)

t σ 1 2 -σ 2 E α (∆t α ) θ 1 H σ,p 0 ≤ L θ 1 H σ,p 0 
for all θ 1 ∈ H σ,p 0 and t > 0 , where L ≥ 1. Here 0 ≤ σ ≤ σ 1 < 2 and neither of σ, σ 1 is equal to 1/p. In particular, if σ ∈ (0, 2) \ {1/p}, then

(2.8) t α σ 2 E α (∆t α ) θ 1 H σ,p 0 ≤ L θ 1 Lp
for all θ 1 ∈ L p (Ω) and t > 0.

Remark 2.3. [START_REF] Caicedo | A diffusive logistic equation with memory in Bessel potential spaces[END_REF] The following estimate is essential to treat the term which involves the fractional Laplacian

(2.9) (-∆) σ/2 θ 1 Lp ≤ L θ 1 H σ,p
for all θ 1 ∈ H σ,p . This is a consequence of the equivalence between the norms (-∆) σ (•)

Lp and I -(-∆) σ (•) Lp the fact the I -(-∆) σ (•) Lp(R N )
is a norm on H 2 σ,p R N , and that the extension operator E : H s,p (Ω) → H s,p R N is continuous.

Lemma 2.4. [START_REF] Caicedo | A diffusive logistic equation with memory in Bessel potential spaces[END_REF] Let λ : R → R be a locally integrable function. Assume that (H) holds and consider the function g : [0, ∞) × H σ,p 0 → L p defined by

g (t, θ 1 ) = θ 1 a -b t 0 λ (t -s) (-∆) β θ 1 ds .
Then, given θ 1 , θ 2 ∈ H σ,p 0 , there exists c > 0 such that

g (t, θ 1 ) -g (t, θ 2 ) L p (Ω) ≤ c θ 1 -θ 2 H σ,p 0 θ 1 H σ,p 0 + θ 2 H σ,p 0 + 1 and g (t, θ 1 ) L p (Ω) ≤ c θ 1 H σ,p 0 λ L 1 (0,t) + θ 1 H σ,p 0 + 1
where the constant c depends on a, b, [Ω] (the Lebesgue volume of Ω) and the embedding (1.4).

Lemma 2.5. Let λ : R → R be a locally integrable function. Assume that (H) holds and consider functions

ξ i : [0, τ ] → H σ,p 0 such that (2.10) sup t∈[0,τ ] ξ i (t) H σ,p 0 ≤ µ , i = 1, 2
where µ > 0 and we suppose that λ : [0, ∞) → [0, ∞) is locally integrable. Then, we have

t 0 E α,α (∆(t -s) α ) (g (r, ξ 1 (r)) -g (r, ξ 2 (r))) drds H σ,p 0 ≤ Lc sup s∈[0,t] ξ 1 (s) -ξ 2 (s) H σ,p 0 2 λ L 1 loc (0,t) µ + 1 2t 1-σ 2 2 -σ and t 0 E α,α (∆ (t -s) α ) g (r, ξ 1 (r)) drds H σ,p 0 ≤ Lcµ 2 λ L 1 loc (0,t) µ + 1 2t 1-σ 2 2 -σ .
Proof. Indeed, using the Remark 2.3 and Lemma 2.4, yields

t 0 E α,α (∆(t -s) α ) (g (r, ξ 1 (r)) -g (r, ξ 2 (r))) drds H σ,p 0 ≤ t 0 L (t -s) -α σ 2 g (r, ξ 1 (r)) -g (r, u 2 (r)) L p (Ω) drds ≤ Lc t 0 (t -s) -α σ 2 ξ 1 (r) -ξ 2 (r) H σ,p 0 λ L 1 loc (0,t) ξ 1 (r) H σ,p 0 + ξ 2 (r) H σ,p 0 + 1 drds ≤ Lc sup s∈[0,t] ξ 1 (r) -ξ 2 (r) H σ,p 0 2 λ L 1 loc (0,t) µ + 1 2t 1-σα 2 2 -σα . (2.11)
On the other hand, we have

t 0 E α,α (∆ (t -s) α ) g (r, ξ (r)) drds H σ,p 0 ≤ L t 0 (t -s) -α σ 2 g (r, ξ (r)) L p (Ω) drds ≤ Lcµ 2 λ L 1 loc (0,t) µ + 1 2t 1-σα 2 2 -σα . (2.12)

Proof of Theorem 1.2

In this section, we discuss the main results of this paper, that is, the existence, uniqueness, regularity and continuous dependence of mild solutions of type Eq.(2.6) in Bessel potential space H σ,p 0 .

Proof. Let 0 < µ ≤ 1 and 0 < α < 1. Choose τ > 0 small enough so that, for all t ∈ [0, τ ],

(3.1)

E α (∆t α ) v 0 -v 0 H σ,p 0 ≤ µ 3 and (3.2) Lc λ L 1 (0,t) µ + 1 µ 2 2α -σα t α-α σ/2 < µ 3 
where

µ := µ + v 0 H σ,p 0 . Set r = µ 3L
. In this sense, yields

(3.3) E α (∆t α ) ξ 0 -v 0 H σ,p 0 ≤ 2µ 3 .
Now, we define

(3.4) B = ξ ∈ C [0, τ ] ; H σ,p 0 , sup t∈[0,t] ξ (t) -v 0 H σ,p 0 ≤ µ .
For proving these results, we consider the map Λ : B → B defined by

(3.5) (Λξ) (t) = E α (∆t α ) ξ 0 + t 0 (t -s) α-1 E α,α (∆ (t -s) α ) ξ (s) a -b s 0 λ (s -r) (-∆) η ξ (r) dr ds.
First, let us prove that Λ is well defined, that is, Λ B ⊂ B. Hence, for 0 ≤ t 1 < t 2 ≤ τ , we have

(Λξ) (t 1 ) -(Λξ) (t 2 ) H σ,p 0 ≤ t1 0 (t 1 -s) α-1 -(t 2 -s) α-1 [E α,α (∆ (t 1 -s) α ) -E α,α (∆ (t 2 -s) α )] H σ,p 0 × u (s) a -b s 0 λ (s -r) (-∆) η u (r) dr H σ,p 0 ds + E α (∆t α 1 ) ξ 0 -E α (∆t α 2 ) ξ 0 H σ,p 0 + t2 t1 (t 2 -s) α-1 E α,α (∆ (t 2 -s) α ) ξ (s) a -b s 0 λ (s -r) (-∆) η ξ (r) dr H σ,p 0 ds ≤ E α (∆t α 1 ) ξ 0 -E α (∆t α 2 ) ξ 0 H σ,p 0 + I -E α (∆ (t 1 -τ ) α ) (E α (∆ (t 2 -τ ) α )) -1 L(H σ,p 0 ) ×L t 0 (t 1 -s) α-1 -(t 2 -s) α-1 (t 2 -s) -α σ/2 ξ (s) a -b s 0 λ (s -r) (-∆) η ξ (r) dr L p (Ω) + t2 t1 (t 2 -s) α-α σ 2 -1 L ξ (s) a -b s 0 λ (s -r) (-∆) η ξ (r) dr L p (Ω)
ds

≤ E α (∆t α 1 ) ξ 0 -E α (∆t α 2 ) ξ 0 H σ,p 0 + I -E α (∆ (t 1 -τ ) α ) (E α (∆ (t 2 -τ ) α )) -1 L(H σ,p 0 ) ×Lcµ λ L 1 (0,t1) µ + 1 t1 0 (t 1 -s) α-1 -(t 2 -s) α-1 (t 2 -s) -α σ/2 ds +Lcµ λ L 1 (0,t1) µ + 1 t2 t1 (t 2 -s) α-α σ 2 -1 ds ≤ E α (∆t α 1 ) ξ 0 -E α (∆t α 2 ) ξ 0 H σ,p 0 + I -E α (-∆ (t 1 -τ ) α ) (E α (-∆ (t 2 -τ ) α )) -1 L(H σ,p 0 ) ×L 2 cµ λ L 1 (0,t1) µ + 1 (t 2 -t 1 ) α 2 (t 2 -t 1 ) 1-α σ 2 2 -α σ - 2t 2 1-α σ 2 2 -α σ +cLµ λ L 1 (0,t1) µ + 1 2 (t 2 -t 1 ) α(2-σ) 2 α (2 -σ) (3.6)
which converges to zero as either t 1 → t - 2 or t 1 → t + 1 . Using the Lemma 2.5, yields

(Λξ) (t) -v 0 H σ,p 0 ≤ E α (∆t α ) ξ 0 -v 0 H σ,p 0 + t 0 (t -s) α-1 × E α,α (∆ (t -s) α ) ξ (s) a -b s 0 λ (s -r) (-∆) η ξ (r) dr H σ,p 0 ds ≤ µ 3 + Lcµ λ L 1 (0,t1) µ + 1 t 0 (t -s) α-α σ 2 -1 ds < µ 3 + 2µ 3 = µ.
Hence, we concluded that, Λ is well defined. Next, we show that Λ is a contraction. For u, v ∈ B, by Lemma 2.5, yields

(Λξ) (t) -(Λv) (t) H σ,p 0 ≤ t 0 (t -s) α-1 E α,α (∆ (t -s) α ) (ξ (s) -v (s)) a -b s 0 λ (s -r) (-∆) η (ξ (r) -v (r)) dr H σ,p 0 ds ≤ Lc 2τ α-α σ/2 2α -α σ 2 λ L 1 (0,t1) µ + 1 sup s∈[0,t] ξ (s) -v (s) H σ,p 0 ≤ 1 3 sup s∈[0,t] ξ (s) -v (s) H σ,p 0 .
Using the Banach fixed point theorem, Λ has a unique fixed point ξ ∈ B. This is a mild solution for (1.2). If we repeat these steps, but using (2.7) instead of (2.8) and using the same reasoning as (3.6), we obtain

ξ (t 1 ) -ξ (t 2 ) H σ 1 ,p 0 ≤ t1 0 (t 1 -s) α-1 E α,α (∆ (t 1 -s) α ) ξ (s) a -b s 0 λ (s -r) (-∆) η ξ (r) dr ds H σ,p 0 + t2 0 (t 2 -s) α-1 E α,α (∆ (t 2 -s) α ) ξ (s) a -b s 0 λ (s -r) (-∆) η ξ (r) dr ds H σ,p 0 + E α (∆t α 1 ) ξ 0 -E α (∆t α 2 ) ξ 0 H σ,p 0 ≤ I -E α (∆ (t 1 -τ ) α ) (E α (∆ (t 2 -τ ) α )) -1 L H σ 1 ,p 0 L 2 cµ λ L 1 (0,t1) µ + 1 × (t 2 -t 1 ) α    2 (t 2 -t 1 ) 1- α σ 1 2 2 -α σ 1 - 2t 1- α σ 1 2 2 2 -α σ 1    + Lcµ λ L 1 (0,t1) µ + 1 2 (t 2 -t 1 ) α(2-σ 1 ) 2 α (2 -σ 1 ) + I -E α (∆t α 1 ) (E α (∆t α 2 )) -1 L H σ 1 ,p 0 E α (∆t α 2 ) ξ 0 ≤ I -E α (∆ (t 1 -τ ) α ) (E α (∆ (t 2 -τ ) α )) -1 L H σ 1 ,p 0 L 2 cµ λ L 1 (0,t1) µ + 1 × (t 2 -t 1 ) α    2 (t 2 -t 1 ) 1- α σ 1 2 2 -α σ 1 - 2t 1- α σ 1 2 2 2 -α σ 1    + I -E α (∆t α 1 ) (E α (∆t α 2 )) -1 L H σ 1 ,p 0 Lt α σ 2 - α σ 1 2 u 0 H σ,p 0 (3.7) 0 < t 1 < t 2 ≤ τ . Consequently, ξ ∈ C [0, τ ] ; H σ1,p 0 
. This shows the existence and regularity of mild solution.

To finish the proof, we prove the uniqueness and consequently the continuous dependence on the data of the mild solution (see Eq.(2.6)). Let ξ be a mild solution of (1.2). Then, using the Lemma 2.4, yields Thus the mild solution of Eq.(1.2) is continuous dependence on the initial data. In this sense, we concluded the proof.

ξ (t) -ξ (t) H σ,p 0 ≤ t 0 (t -s) α-1 E α,α (∆ (t -s) α ) ξ (s) -ξ (s) a -b s 0 λ (s -r) (-∆) η ξ (r) -ξ (r) dr

C

  r (t, x)u(t -rT, x) , [0, ∞) × Ω B[u](t, x) = 0, [0, ∞) × ∂Ω u(s, x) = u 0 (s, x), [-mT, 0] × Ω.Under certain conditions, the existence of solutions to the problem∂u(t, x) ∂t = ∆u(t, x) + u(t, x) a -bu -t 0 λ(t -s)u(s, x)ds , [0, ∞) × Ω ∂u ∂n = 0

2 gH σ,p 0 drds≤ 2 fξ 1 2τ α-α σ 2 2α -α σ ≤ ξ 1 -ξ 2 Hξ 1 3 2 ξ 1 -

 2021212131 (ξ (r)) -g ξ (r) Lc 2 λ L 1 (0,t) η + 1 Lc 2 λ L 1 (0,t) η + 1 , (s)ds for all t ∈ [0, τ ]. Using the Gronwall inequality (Theorem 2.1), f (t) = 0 for all t ∈ [0, τ ] and uniqueness follows.Finally, takingξ 1 , ξ 2 ∈ B H σ,p0(v 0 , r) and for i = 1, 2, let ξ i (t) be the mild solution that starts at ξ i , i = 1, 2, . Then, using the same reasoning of inequality (3.8), we haveξ (t) -ξ (t) H σ,p 0 ≤ E α (∆t α ) ξ 1 -E α (∆t α ) ξ 2 H σ,p 0 +Lc 2 λ L 1 (0,t) µ + 1 (r) -ξ 2 (r) H σ,p 0 ds ≤ E α (∆t α ) ξ 1 -E α (∆t α ) ξ 2 H σ,p 0 +Lc 2 λ L 1 (0,t) µ + 1 sup s∈[0,t] ξ 1 (s) -ξ 2 (s) H σ,p 0 (s) -ξ 2 (s) H σ,p 0 ≤ ξ 2 H σ,p 0 .