
HAL Id: hal-03189235
https://hal.science/hal-03189235

Submitted on 13 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Approximate computation of projection depths
Rainer Dyckerhoff, Pavlo Mozharovskyi, Stanislav Nagy

To cite this version:
Rainer Dyckerhoff, Pavlo Mozharovskyi, Stanislav Nagy. Approximate computation of pro-
jection depths. Computational Statistics and Data Analysis, In press, 157, pp.107166.
�10.1016/j.csda.2020.107166�. �hal-03189235�

https://hal.science/hal-03189235
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Approximate computation of projection depths

Rainer Dyckerhoffa, Pavlo Mozharovskyib,∗, Stanislav Nagyc

aInstitute of Econometrics and Statistics, University of Cologne
Albertus-Magnus-Platz, 50923 Köln, Germany

bLTCI, Telecom Paris, Institut Polytechnique de Paris
19 Place Marguerite Perey, 91120 Palaiseau, France

cFaculty of Mathematics and Physics, Charles University
Sokolovská 83, Praha 8, CZ-186 75, Czech Republic

Abstract

Data depth is a concept in multivariate statistics that measures the centrality

of a point in a given data cloud in Rd. If the depth of a point can be represented

as the minimum of the depths with respect to all one-dimensional projections

of the data, then the depth satisfies the so-called projection property. Such

depths form an important class that includes many of the depths that have

been proposed in literature. For depths that satisfy the projection property an

approximate algorithm can easily be constructed since taking the minimum of

the depths with respect to only a finite number of one-dimensional projections

yields an upper bound for the depth with respect to the multivariate data. Such

an algorithm is particularly useful if no exact algorithm exists or if the exact

algorithm has a high computational complexity, as is the case with the halfspace

depth or the projection depth. To compute these depths in high dimensions,

the use of an approximate algorithm with better complexity is surely preferable.

Instead of focusing on a single method we provide a comprehensive and fair

comparison of several methods, both already described in the literature and

original.

Keywords: data depth, projection property, approximate computation,

∗Corresponding author
Email addresses: rainer.dyckerhoff@statistik.uni-koeln.de (Rainer Dyckerhoff),

pavlo.mozharovskyi@telecom-paris.fr (Pavlo Mozharovskyi), nagy@karlin.mff.cuni.cz
(Stanislav Nagy)

Preprint submitted to Computational Statistics and Data Analysis November 20, 2020

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0167947320302577
Manuscript_679bfee9d407b27819b4556e70e4b665

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0167947320302577
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0167947320302577

non-convex optimization, unit sphere, random search, grid search, simulated

annealing, great circles, coordinate descent, Nelder-Mead

2010 MSC: 62G05, 62H12, 90C26

1. Introduction

A statistical depth function is a generalization of the concept of quantiles

to multivariate data. Given a probability measure or a data sample in Rd, the

depth assigns to any point of the space Rd a real number, often scaled to [0, 1],

which characterizes its degree of centrality w.r.t. this distribution or data set.5

By providing a non-parametric, affine-invariant, and (often) robust multivariate

ordering, data depth finds numerous applications, e.g., in descriptive statistics,

statistical inference, or risk measurement to name only a few (Liu et al., 1999;

Cascos, 2010). For more information on applications of data depth we refer to

surveys Zuo and Serfling (2000) and Mosler (2013).10

Application of the depth-based methods requires efficient algorithms for the

computation of depths. Since many depth notions are fully data-driven and ro-

bust, their computation may constitute a challenge. For example, computation

of the halfspace depth (Tukey, 1975) — one of the most important depth notions

in the literature — is an NP-hard problem (Johnson and Preparata, 1978), and15

the only exact existing algorithm for computation of the projection depth (Liu

and Zuo, 2014) is still very slow. For this reason, theoretical developments

on the data depth are accompanied by a substantial body of literature on its

computation, which still contains a number of open problems. Since exact com-

putation of certain depth notions can come at a very high computational cost20

(see, e.g., Dyckerhoff and Mozharovskyi, 2016 for the halfspace depth and Liu

and Zuo, 2014 for projection depth), approximations have been proposed.

Dyckerhoff (2004) described a class of depths which satisfy the weak projec-

tion property. Out of the existing variety, these can be calculated in a universal

way by minimizing depth in univariate projections. For this, in each direction,25

only the univariate depth of n observations should be computed, which often has

2

computational time complexity only O(n). This class of depths constitutes the

focus of the current work. Among the depths that satisfy the projection prop-

erty, Mahalanobis (Mahalanobis, 1936), zonoid (Koshevoy and Mosler, 1997),

halfspace (Tukey, 1975), projection (Zuo and Serfling, 2000) and asymmetric30

projection (Dyckerhoff, 2004) depth are considered here.

Several authors have already applied approximation techniques to the (sam-

ple) depth computation, notably for the halfspace depth and projection depth.

Purely random methods seem most intuitive and have been used, e.g., by

Cuesta-Albertos and Nieto-Reyes (2008) for the halfspace depth and Liu and35

Zuo (2014) for the projection depth. More sophisticated procedures were pro-

posed as well. Rousseeuw and Struyf (1998) minimize univariate halfspace depth

after projecting data onto directions based on a random combination of sample

points. Chen et al. (2013) first project data on subspaces orthogonal to linear

spans of 0 < k ≤ d points from the sample, and then employ a brute-force40

approximation of the halfspace depth in these projections. Mozharovskyi et al.

(2015) accelerate the problem of approximation of the halfspace depth of many

points (and of the sample itself) w.r.t. a sample by preliminary sorting the data

in all projections. Dutta and Ghosh (2012) use the Nelder-Mead algorithm

(Nelder and Mead, 1965, run in Rd) for approximation of the projection depth.45

In this work, a systematic experimental approach is used to study the be-

havior of the approximation of the sample depth by minimizing it on univariate

directions. For minimization of the univariate depth, we contrast eight ap-

proximation algorithms in an extensive simulation study. As algorithms we

considered: (i) random search, (ii) grid search, (iii) refined random search, (iv)50

refined grid search, (v) random simplices, (vi) simulated annealing, (vii) coor-

dinate descent, (viii) Nelder-Mead. Since the performance of the algorithms

depends on chosen parameters, we start by fine-tuning of the algorithms. After

this, the algorithms are compared in different settings to provide a trustworthy

conclusion.55

Throughout this paper we use the following notation. Vectors are notated

with bold letters, e.g., x,y, z. R+
0 denotes the set of non-negative real numbers.

3

The d − 1 dimensional unit sphere in Rd is denoted by Sd−1. The transpose

of a vector x is denoted by xT . The d × d identity matrix is denoted by Id,

or shortly I, and 0 or 0d denotes the origin in Rd. For a set A we denote by60

U(A) the uniform distribution on the set A, and B and N denote Bernoulli

and Gaussian distributions, respectively. The elements of a vector x ∈ Rd are

denoted by x1, . . . , xd. By
d
= we mean equality in distribution.

2. Preliminary material

In Section 2.1 we give a short introduction into the notion of depth and65

discuss the projection property and its implications for the computation of depth.

We will see that for depths satisfying the projection property, the computation

of the depth is equivalent to minimizing an objective function over the unit

sphere. Therefore, in Section 2.2 we will have a closer look on the unit sphere

and describe its geometry.70

2.1. Data depth

Depth is a concept that measures the centrality of a given point z ∈ Rd

w.r.t. a probability distribution P on (Rd,Bd) where Bd denotes the Borel σ-

algebra on Rd. A generic depth is denoted by D(z|P). In applications, the

probability measure P is often the empirical measure on a set of data points75

X = (x1, . . . ,xn). In that case we write D(z|X). Every reasonable notion of

depth should satisfy the following set of axioms.

D1: Affine invariance. For every non-singular d × d-matrix A and b ∈ Rd

it holds true that D(z |X) = D(Az + b |AX + b), where AX + b =

(Ax1 + b, . . . ,Axn + b).80

D2: Vanishing at infinity. lim‖z‖→∞D(z |X) = 0.

D3: Upper semicontinuity. For each α > 0 the set {z ∈ Rd |D(z|X) ≥ α}

is closed.

4

D4: Monotone decreasing on rays. For each point x0 of maximal depth

and each r ∈ Rd, r 6= 0, the function λ 7→ D(x0 + λr |X), λ ≥ 0, is85

monotone non-increasing.

Properties D1, D2, and D4 have been introduced by Liu (1990). A further set

of axioms for a depth has been given by Zuo and Serfling (2000). The main

difference between their axioms and ours is that they do not require a depth

to be upper semicontinuous. In addition, they require that for distributions90

having a properly defined unique center of symmetry, the depth attains its

maximum value at this center. However, for centrally symmetric distributions,

this follows already from our axioms. For further discussion on these axioms,

see e.g., Dyckerhoff (2004). In the rest of this paper we assume that a depth

satisfies the four axioms D1, D2, D3 and D4.95

We consider five depth notions; they all satisfy the four above mentioned

properties.

For a point z ∈ Rd, its Mahalanobis depth (MD) (Mahalanobis, 1936) w.r.t.

a data set X = (x1, ...,xn) is defined as follows:

DM (z|X) =
(
1 + (z − x)TS−1X (z − x)

)−1
.

Here, x and SX denote the mean and the empirical covariance matrix of X,

respectively.

The halfspace depth (HD) (Tukey, 1975; Donoho and Gasko, 1992) is defined

by

DH(z|X) = min
p∈Sd−1

1

n
#{i : 〈xi,p〉 ≥ 〈z,p〉 , i = 1, ..., n}

where #A denotes the number of elements of a set A.100

The zonoid depth (ZD) (Koshevoy and Mosler, 1997) is given by

DZ(z|X) = sup{α ∈ (0, 1] : z ∈ Zα(X)} ,

where Zα(X) is the zonoid α-trimmed region, defined by

Zα(X) =

{
n∑
i=1

λixi : 0 ≤ λi ≤
1

nα
,

n∑
i=1

λi = 1

}

5

and the convention sup ∅ = 0 is used.

The projection depth (PD) (Zuo and Serfling, 2000) is given by

DP (z|X) = min
p∈Sd−1

(
1 +
| 〈z,p〉 −med(〈X,p〉)|

MAD(〈X,p〉)

)−1
,

where 〈X,p〉 is understood to be the univariate data set obtained by projecting

each point of X on p, med is the univariate median, and MAD is the median

absolute deviation from the median.

Since PD is always symmetric around its deepest point, the asymmetric

projection depth (APD) (Dyckerhoff, 2004) has been defined as

DAP (z|X) = min
p∈Sd−1

(
1 +

(〈z,p〉 −med(〈X,p〉))+
MAD+(〈X,p〉)

)−1
,

with (a)+ = max{a, 0} being the positive part of a and MAD+ being the median105

of the positive deviations from the median.

All of the above depths satisfy the (weak) projection property, defined as

follows.

Definition 1. A depth D satisfies the (weak) projection property, if for each

point y ∈ Rd and each sample X it holds:

D(y|X) = inf{D(〈p,y〉 | 〈p,X〉)|p ∈ Sd−1} .

If a depth satisfies the projection property, its computation is equivalent to

minimization of the (possibly non-differentiable) objective function

φz,X : Sd−1 → R+
0 , p 7→ D(〈p, z〉 | 〈p,X〉) .

Therefore, classical optimization methods can be used to compute the depth.

Particular attention should be paid here to the domain of the function φz,X110

which is the the unit sphere Sd−1. Of course, the function φz,X could be eas-

ily extended to a function φ̃z,X defined on Rd \ {0} by setting φ̃z,X(p) =

D(〈p, z〉 | 〈p,X〉). However, because of the affine invariance of the depth, φ̃z,X

is constant on lines through the origin. Therefore, we claim that it should be

advantageous to use optimization methods which are adapted to the particular115

domain Sd−1. This claim will be confirmed in the simulation studies in Section 4.

6

To get some insights in the behavior of the objective function φz,X , e.g.,

whether there are local minima or not, we present several plots of φz,X in the

case d = 3 for different depths and data sets in Figure 1. The figures suggest

that (at least for common distributions and in the case d = 3) local minima120

seem not to be a major problem.

Zonoid depth Halfspace depth Projection depth

Trivariate normal distribution

Trivariate Cauchy distribution

Trivariate uniform distribution

Figure 1: The map φz,X for trivariate data. A total of n = 1000 data points were simulated

from a trivariate distribution. The univariate depth (of a single randomly chosen point z)

in direction p is shown on a color scale from violet (low univariate depth) to dark red (high

univariate depth). The sphere S2 is mapped on the plane using the so-called Mollweide

projection, see Snyder (1987).

A further important observation is the following. All of the above depths are

bounded above by unity. Therefore, the range of φz,X depends on the depth of

z, i.e., if D(z |X) = c0, then the range of φz,X is a subset of [c0, 1]. The larger

the depth of z, the smaller is the variation of φz,X . In the extreme case that125

c0 = 1 the function φz,X is constant, φz,X(p) = 1 for all p ∈ Sd−1. Therefore,

7

evaluating the univariate depth for a single direction only already gives the exact

multivariate depth. In that sense, it should be easier to compute the depth of

a point with high depth.

2.2. The geometry of the unit sphere130

The set

S(a, r) = {x ∈ Rd|‖x− a‖ = r}

is called the sphere with center a ∈ Rd and radius r ≥ 0. The sphere with

radius one and center 0 is called the unit sphere in Rd, it is denoted by Sd−1.

The intersection of the unit sphere with an affine subspace is called a small

sphere. If the affine subspace contains the origin (i.e., if it is a linear subspace),

then the intersection is called a great sphere. In the special case that the affine135

subspace is a plane, i.e., has dimension 2, then the intersection is called small

circle (if the plane does not pass through the origin) or great circle (if the plane

passes through the origin).

The intersection of the unit sphere with a closed (open) halfspace is called

closed (open) spherical cap. If the bounding hyperplane of the halfspace passes140

through the origin, the spherical cap is called a hemisphere.

The distance between two points u,v ∈ Sd−1 on the sphere as measured in

the ambient space Rd is given by the Euclidean distance,

de(u,v) = ‖u− v‖ =

√√√√ d∑
i=1

(ui − vi)2 .

However, when we measure the distance between two points u,v ∈ Sd−1 in the

sphere itself, then the distance is given by the great-circle distance, that is the

length of the shorter arc of a great circle passing through u and v,

dg(u,v) = arccos(〈u,v〉) .

It holds 0 ≤ dg(u,v) ≤ π, i.e., the great-circle distance between two points on

the unit sphere is at most π.

8

The Euclidean distance and the great-circle distance are related as follows:

de(u,v) = 2 sin

(
dg(u,v)

2

)
.

The transformation [0, π] → [0, 2], φ 7→ 2 sin(φ/2), is continuous and strictly

increasing. Therefore, both metrics generate the same topology of open sets on

Sd−1. The ε-neighborhood of a point a ∈ Sd−1 is given by

B(a, ε) = {p ∈ Sd−1| dg(p,a) < ε} = {p ∈ Sd−1| 〈a,p〉 > cos(ε)} .

It consists of all points in the sphere that have a great-circle distance less than ε

to a. Since B(a, ε) is the intersection of the unit sphere Sd−1 with the halfspace

{x ∈ Rd| 〈a,x〉 > cos(ε)}

the set B(a, ε) is a spherical cap and its topological boundary is the small sphere

{x ∈ Sd−1| 〈a,x〉 = cos(ε)} .

The shortest path between two points x and y on the unit sphere Sd−1 is given

by the shorter arc of a great circle which passes through x and y. Therefore,

the great circles on a sphere are the geodesics, i.e., generalizations of straight

lines from the usual Euclidean space. A great circle through x and y is unique

as long as y 6= ±x. Let ỹ = y − 〈x,y〉x. Then, x and ỹ are orthogonal.

Therefore, the (unique) great circle through x and y is given by{
z(φ) = cos(φ)x+ sin(φ)

ỹ

‖ỹ‖

∣∣∣∣φ ∈ (−π, π]

}
. (1)

Simple algebra shows that the great-circle distance between x and z(φ) is |φ|.

Further, z(0) = x and z(dg(x,y)) = y.145

3. Algorithms for approximating projection depths

In this section we present several algorithms to compute the depth of a

given point z w.r.t. a data cloud X = (x1, . . . ,xn). We assume that the depth

satisfies the projection property so that the depth can be computed as the

minimum of the projected univariate depths over the unit sphere Sd−1. Most of150

the algorithms are presented in pseudocode.

9

3.1. Simple random search (RS)

If a depth satisfies the projection property, then for each p ∈ Sd−1 the value

D(〈p, z〉 | 〈p,X〉) is an upper bound for D(z|X). Therefore, it seems reasonable

to compute the univariate depths D(〈p, z〉 | 〈p,X〉) for several values of p. The155

minima of these values constitute a decreasing sequence of upper bounds for the

true value of the depth. One can show that under weak conditions this sequence

of upper bounds converges to the true value. The following proposition can be

found in Dyckerhoff (2004).

Proposition 1. Let z ∈ Rd and D a depth that satisfies the projection prop-

erty. Further, let the mapping Sd−1 → [0,∞), p 7→ D(〈p, z〉 | 〈p,X〉), be upper

semicontinuous. If p1,p2, . . . is a sequence of independent random vectors dis-

tributed uniformly on Sd−1, then, almost surely,

lim
N→∞

min
1≤i≤N

D(〈pi, z〉 | 〈pi,X〉) = D(z|X) .

Because of the affine invariance of the depth it holds true that D(〈p, z〉 | 〈p,X〉) =160

D(〈−p, z〉 | 〈−p,X〉). Therefore, one can restrict p to a hemisphere.

Proposition 1 motivates the following algorithm which we will call simple

random search. Generate a “large number”N of random directions p1, . . . ,pN ∈

Sd−1, independently drawn from the uniform distribution on Sd−1. For each of

these directions compute the univariate depth. The (multivariate) depth is then

approximated by

min
1≤i≤N

D(〈pi, z〉 | 〈pi,X〉) .

It is well known that random vectors from the uniform distribution on the sphere

Sd−1 can easily be simulated by generating d independent random numbers from

a standard normal distribution and normalizing the resulting vector to have

norm one. For the sake of completeness we present this algorithm in pseudocode165

as Algorithm 1.

The simple random search is presented in pseudocode as Algorithm 2.

In implementing the above algorithm, one could think of two possibilities for

choosing the number of iterations N . First, the number N could be chosen in

10

Algorithm 1 Random vectors from uniform distribution on the sphere

1: function rndSphere(d)
2: s← 0
3: for i← 1 to d do
4: xi ← rndNormal() . random number from a N (0, 1)-distribution
5: s← s+ x2i
6: for i← 1 to d do xi ← xi/

√
s

7: return (x1, . . . , xd)

Algorithm 2 Simple random search

1: function randomSearch(z,X)
2: dmin ←∞
3: for j ← 1 to N do
4: p← rndSphere(d)
5: dmin ← min(D(〈p,z〉 | 〈p,X〉), dmin)

6: return dmin

advance, depending on n, d and the desired accuracy. Second, random directions170

would be generated until a certain stopping criterion is satisfied. In the first case,

it seems reasonable to assume that N (for a given accuracy) should depend on

d but not on n. It further seems reasonable to require N(d) ∝ N(2)d−1. This

would result in an overall complexity of the algorithm of order O(N(2)d−1n)

provided the complexity of computing the univariate depth is of order O(n),175

which holds for all the considered depths. However, this is not desirable since

the complexity grows exponentially with the dimension d.

The convergence of min1≤i≤N D(〈pi, z〉 | 〈pi,X〉) for the halfspace depth and

the projection depth has been extensively studied in Nagy et al. (2020). Given

a precision ε, these results can be used to find N(ε) such that the error is180

approximately ε.

Of course, an algorithm that uses a larger number of univariate depth eval-

uations should give a better result than with a smaller number. Therefore,

for a fair comparison of different algorithms one should limit the number of

depth evaluations to a given number. Following this logic, we choose not to185

use a stopping criterion in the random search but rather use a fixed number

N of iterations. This number should be the same for all compared algorithms.

In Sections 4.2 and 4.3 where we compared several algorithms and parameter

11

combinations, N ∈ {100, 1000, 10000} was used.

3.2. Simple grid search (GS)190

Since in the random search the directions are distributed randomly on the

sphere, it might be tempting to use a deterministic grid of directions instead.

Thus, the second algorithm that we discuss is a grid search on the sphere. A

parametrization of the sphere Sd−1 is given by generalized spherical coordinates:

x1 = cos(φ1),

x2 = sin(φ1) cos(φ2),

...
...

xd−1 = sin(φ1) . . . sin(φd−2) cos(φd−1),

xd = sin(φ1) . . . sin(φd−2) sin(φd−1),

where φ1, . . . , φd−2 ∈ [0, π], φd−1 ∈ [0, 2π). Here, φ1 is called polar angle. For

φ1 = 0 we get the north pole (1, 0, . . . , 0)T = e1, for φ1 = π we get the south

pole (−1, 0, . . . , 0)T = −e1. Since

dg(x, e1) = arccos(〈x, e1〉) = arccos(x1) = φ1 ,

the polar angle φ1 of a point x ∈ Sd−1 is the great-circle distance of x from the

north pole.

As was mentioned earlier, we can always restrict the direction p to a hemi-

sphere. In the implementation we used a grid where the first angle φ1 was

restricted to the interval [0, π/2] which corresponds to a grid on the northern195

hemisphere.

However, a severe drawback of using generalized spherical coordinates is the

fact that the resulting grid is not uniform, the so-called pole problem. This is

best illustrated in the case of the usual 2-sphere in R3. The meridians (the

lines for which φ2 is constant) converge at the two poles. Thus, near the poles200

the distance between grid points is smaller than at the equator which leads to

an (unwanted) oversampling in the neighborhood of the poles. Further, the

12

representation of the poles is obviously not unique since all coordinate vec-

tors (0, φ2, . . . , φd−1), φ2, . . . , φd−2 ∈ [0, π], φd−1 ∈ [0, 2π), represent the north

pole. More generally, if an angle φi is equal to 0 or π, then for all values of205

φi+1, . . . , φd−1 we get the same point on the sphere.

Contrary to the trivial case of the 1-sphere, it is for dimension d > 2 not

possible to perfectly uniformly distribute an arbitrary number of points on Sd−1.

This is closely connected to the existence of convex regular polytopes. As a

consequence, a perfectly uniform grid on Sd−1 is for d > 2 only possible for210

finitely many values of N . In particular, a regular grid on Sd−1 cannot be made

arbitrarily fine.

However, there are grids on the sphere which are nearly uniform. Such quasi-

uniform grids do not suffer from the pole problem. They are used in geophysics,

climate modeling, or astronomy. Examples of quasi-uniform grids include the215

Kurihara grid (Kurihara, 1965), the icosahedral grid (Williamson, 1968), the

cubed sphere grid (Ronchi et al., 1996), or the Yin-Yang grid (Kageyama and

Sato, 2004). The disadvantage of these grids is that they are more complicated

to implement or that they only work for the case of the 2-sphere. Since it

will become obvious that there are methods that are clearly superior to the220

simple random search or the simple grid search for the computation of depth,

we decided not to spend much time on implementing these more complicated

quasi-uniform grids. In our simulations we use a simple uniform grid in the

hyper-cubic domain that is based on generalized spherical coordinates.

A major drawback of the grid search is that it suffers from the curse of225

dimensionality. For example assume that we only use four subdivisions per

angle. Then, for a data set of dimension d, which means that the grid based

on spherical coordinates is of dimension d − 1, the grid consists of 4d−1 grid

points. For d = 11 we already have more than a million grid points, for d = 20

we already have 2.7 · 1011 grid points, a number far exceeding the capacity of230

most computers. Therefore, we choose not to use the grid search for dimensions

larger than d = 10. For the same reason we do not provide a description of the

grid search in pseudocode.

13

In the simulations in Sections 4.2 and 4.3 we used the same mesh size for

all spherical coordinates apart from the first (the polar angle) where we used235

half of this mesh size. This is motivated by the fact that points on the sphere

that differ only in their polar angle have the same distance regardless of the

other coordinates whereas the distances between points that differ in the other

spherical coordinates converge to zero near the poles. The mesh size was chosen

so that the number of depth evaluations was approximately equal to a given240

number N .

3.3. Refined random search (RRS)

In the simple random search the whole surface of the sphere is searched with

the same intensity. Therefore, a lot of time is wasted searching areas which are

far away from the minimum of the objective function. The idea of the refined245

random search is to concentrate the search in the neighborhood of directions

with low depth.

At the start of the algorithm the neighborhood of a point on the sphere is

defined to be the hemisphere with pole at that point. We choose N1 directions

at random in the neighborhood of the current best point. Every time a new250

direction with minimum depth is found, this point is chosen as the new center of

the neighborhood. As the search continues we choose the neighborhood smaller

and smaller.

We first discuss how to sample from a neighborhood of the north pole e1.

The ε-neighborhood B(e1, ε) of the north pole consists of all points whose great-255

circle distance to the north pole is less than ε. Since the distance to the north

pole is the polar angle, the ε-polar cap is the set of all points whose polar angle

is less than ε. Therefore, in a first step we choose the polar angle φ1 from a

uniform distribution on [0, ε] and get the first coordinate of the sampled point,

x1 = cos(φ1). In the second step we choose a point from a uniform distribution260

on the small sphere {x ∈ Sd−1|x1 = cos(φ1)} which has radius
√

1− cos2(φ1).

This is described in pseudocode in Algorithm 4.

14

Sampling from a uniform distribution in the first step means that the dis-

tance of the points from e1 is uniformly distributed. Note that this does not

yield a uniform distribution on the ε-polar cap but a distribution where points265

near the pole have a higher density than points farther away. However, this

seems desirable in the refined random search since it means that points near the

current minimum have a higher probability to get drawn.

On the contrary, assume that we would choose new points from a uniform

distribution on the ε-polar cap. In high dimensions, most of the surface area of270

the spherical cap is concentrated near the base of the cap. Therefore, with a

very high probability we would get points that have a large distance from the

north pole e1. For example, if d = 10 and ε = 0.1 there is a probability of 0.998

to draw a point which has a distance between 0.05 and 0.1 from e1, whereas

the probability to draw a point that has a distance between 0 and 0.05 is only275

0.002. This is even worse in higher dimensions. Therefore, we decided to draw

the polar angle from a uniform distribution.

Note further that the density of x depends only on the polar angle φ1 which

measures the distance from the pole.

To sample from the neighborhood of an arbitrary point p, we look for an

transformation Q of the sphere that transforms the north pole e1 to p and does

not change distances. Such a transformation is given by a Householder matrix

(Golub and Van Loan, 1989):

Q = I − 2

vTv
vvT , (2)

where v is some non-zero vector and I is the identity matrix. A Householder

matrix is symmetric, orthogonal and thus involutory. Geometrically, Q is a

reflection at the hyperplane through the origin whose normal is v. It can easily

be seen that choosing v = p−e1 does the trick, i.e., Qe1 = p. Therefore, if x is

sampled from the ε-polar cap B(e1, ε), then Qx is sampled from the spherical

cap B(p, ε). To compute Qx we first note that vTv = (p − e1)T (p − e1) =

15

‖p‖2 − 2p1 + 1 = 2(1− p1) since ‖p‖2 = 1. Therefore,

Qx = x− 2

2(1− p1)
(p−e1)(p−e1)Tx = x− p

Tx− x1
1− p1

(p−e1) = x−λ(p−e1)

where λ = (〈p,x〉 − x1)/(1 − p1). For the first component we get (Qx)1 =280

x1 − λp1 + λ whereas for the remaining components we have (Qx)i = xi − λpi.

Algorithm 3 describes the Householder transformation in pseudocode.

Algorithm 3 Householder transformation

. The Householder transformation that maps e1 to p is applied to x
1: function Householder(x,p)
2: if p1 = 1 then return x

3: λ← (〈p,x〉 − x1)/(1− p1)
4: x1 ← x1 + λ
5: for i← 1 to d do xi ← xi − λ · pi
6: return x

The generation of a random point from the spherical cap is described in

Algorithm 4. The refined random search is presented in Algorithm 5.

Algorithm 4 Random vectors from a spherical cap

. Generate a random number from a spherical cap with size ε around p
1: function rndSphericalCap(p, ε)
2: x1 ← rndUnif() . random number from a U([0, 1])-distribution
3: x1 ← cos(ε · x1)
4: (x2, . . . , xd)←

√
1− x21 · rndSphere(d− 1)

5: x← (x1, . . . , xd)
6: return Householder(x,p)

Algorithm 5 Refined random search

1: function refinedRandomSearch(z,X)
2: pmin ← e1 . start with the North Pole
3: dmin ← D(〈pmin,z〉 | 〈pmin,X〉)
4: ε← π/2 . initial neighborhood is a hemisphere
5: for i← 1 to Nref do
6: for j ← 1 to Nit do
7: pcur ← rndSphericalCap(pmin, ε)
8: dcur ← D(〈pcur,z〉 | 〈pcur,X〉)
9: if dcur < dmin then

10: dmin ← dcur
11: pmin ← pcur

12: ε← ε · α . shrinking the neighborhood

13: return dmin

16

There, a geometric shrinking of the neighborhood is applied, i.e., in each285

refinement step the size of the neighborhood is multiplied by a factor α < 1.

Of course, other shrinking schemes are possible. For example, one could apply

an arithmetic shrinking scheme. For our simulations we choose a geometric

shrinking scheme.

The refined random search depends on the parameters Nref , Nit and α. For290

Nref and α we tried several parameter combinations and compared them in

Section 4.2. The parameter Nit was always chosen such that the total number

of depth evaluations was equal to a given number N , i.e., Nit = N/Nref was

used. The fine-tuning of these parameters is described in Section 4.2, see also

the figures in the Supplementary Materials.295

A drawback of the refined random search is that the algorithm might be

trapped in a local minimum. However, the plots in Figure 1 suggest that – at

least in simple situations – this should not be a major problem.

3.4. Refined grid search (RGS)

Since the grid search suffers from the curse of dimensionality, we may use300

the same ideas as in the refined random search, i.e., we start with a relatively

coarse grid and apply successive refinements of the grid in the neighborhood

of the current minimum. As in the refined random search the spherical cap

neighborhood may be used. The oversampling near the pole may be sensible in

this case, since it means oversampling near the current minimum.305

As the refined random search, the refined grid search depends on the pa-

rameters Nref , the number of refinements, and α, the shrinking factor of the

spherical cap. The mesh size of the grids was chosen such that the total number

of depth evaluations was approximately equal to the given value of N . Again,

the fine-tuning of these parameters is described in Section 4.2. For Nref and α310

the same parameter sets as for the refined random search were used. For the

same reasons as in the case of the grid search, the refined grid search was used

only for d ≤ 10 in the simulations in Section 4. Because of this limitation and

for the sake of brevity we also do not provide a description of the algorithm in

17

pseudocode.315

3.5. Random simplices (RaSi)

In this algorithm random directions are used that are derived from the data

points x1, . . . ,xn themselves. Similar strategies have already been used by

Rousseeuw and Struyf (1998) for the halfspace depth and by Christmann et al.

(2002) for the regression depth and classification.320

To be more specific, a random sample xi0 ,xi1 , . . . ,xid of size d+ 1 is drawn

without replacement from the n data points. If these points are in general

position, they form a simplex. In the next step, on the facet opposite to xi0 a

point xo =
∑d
j=1 wjxij is chosen, where the weights (w1, . . . , wd)

T are drawn

from a symmetric Dirichlet distribution with parameter α. Finally, the direction325

p = xi0−xo is used to project the data and compute the univariate depth. This

process is repeated N times and the minimum attained depth is returned. The

algorithm is described in pseudocode as Algorithm 6.

Algorithm 6 Random simplices

1: function randomSimplices(z,X)
2: dmin ←∞
3: for i← 1 to N do
4: (i0, i1, . . . , id)← rndSubset(d+ 1, {1, . . . , n})
5: (w1, . . . , wd)← rndDirichlet(d, α)

6: p←∑d
k=1 xikwk − xi0

7: p← p/‖p‖
8: dmin ← min(D(〈p,z〉 | 〈p,X〉), dmin)

9: return dmin

Besides N , the number of iterations, the only parameter is the parameter

α of the Dirichlet distribution. For α = 1 we get a uniform distribution on330

the facet defined by xi1 , . . . ,xid . The higher α, the more the distribution is

concentrated around the center of that facet. Fine-tuning of the parameter α is

described in Section 4.2.

3.6. Simulated annealing (SA)

In the refined random search we might get trapped in a local minimum.

Simulated annealing avoids this by accepting also worse solutions with a certain

18

probability. Let dcur denote the current depth and dnew the depth of a new

trial solution. Then, dnew is chosen as the new solution with probability

p = min

{
exp

(
−dnew − dcur

T

)
, 1

}
.

If dnew < dcur, the new solution is always accepted. However, if dnew > dcur,335

the new solution is still accepted with positive probability p.

The parameter T is called temperature. If T is high, the probability of

accepting a worse solution is high. Conversely, if T is low, worse solutions

are accepted only with small probability. In the course of the algorithm the

temperature (and thus the probability of accepting worse solutions) is slowly340

decreased. The way the parameter T is decreased is called cooling schedule.

Often a linear cooling schedule, T (t) = T (0) − η t where η > 0 is a chosen

parameter, or a geometric cooling schedule, T (t) = T (0)αt where α ∈ (0, 1), is

used. Note, that the choice of the cooling schedule can have a significant impact

on the performance of simulated annealing. If the temperature is decreased too345

fast, then the algorithm may be trapped in a local minimum. If the temperature

is decreased too slowly, the convergence of the algorithm is also very slow. A

description of simulated annealing where an exponential cooling schedule is used

is shown in Algorithm 7.

Simulated annealing has already been applied to the computation of a special350

projection depth by Shao and Zuo (2012).

Since the sequence of values dcur is in general not decreasing, the last value

dcur needs not necessarily be the minimum depth found during the course of

the algorithm. Therefore, in Algorithm 7 we keep track of the minimum depth

found so far and return this value.355

Simulated annealing depends on a lot of parameters. The performance of the

algorithm depends strongly on the fine-tuning of these parameters. In particu-

lar, to apply the algorithm (i) the starting solution, (ii) the used neighborhood,

(iii) the probability distribution for generating a new candidate, (iv) the number

of iterations, (v) the starting temperature, (vi) the temperature at which the360

algorithm is stopped, and (vii) the cooling schedule have to be specified.

19

Algorithm 7 Simulated annealing

1: function simulatedAnnealing(z,X)
2: if Start = Mn then ucur ← z − x

3: if Start = Rn then ucur ← rndSphere(d)

4: ε← (π/2)/β . size of the spherical cap
5: dcur ← D(〈ucur,z〉 | 〈ucur,X〉)
6: dmin ← dcur
7: T ← T0 . starting temperature, T0 = 1
8: repeat
9: for j ← 1 to Nit do

10: unew ← rndSphericalCap(ucur, ε)
11: dnew ← D(〈unew,z〉 | 〈unew,X〉)
12: p← min

(
exp

(
− dnew−dcur

T

)
, 1
)

13: with probability p do
14: ucur ← unew

15: dcur ← dnew

16: dmin ← min(dcur, dmin)

17: T ← T · α . cooling schedule
18: until T < Tmin . Tmin = 0.001
19: return dmin

In our simulations the temperature T (0) at the start of the algorithm was

always chosen as 1, the temperature Tmin at which the algorithm stops was

always chosen as 0.001. For the starting solution a parameter Start having two

possible values Mn and Rn was passed. For Start=Rn the algorithm was started365

with a direction randomly drawn from U(Sd−1). For Start=Mn the direction

u = z − x joining the mean of the data points and z was used. Especially for

the case of spherical distributions this should give a good starting solution. For

the neighborhood we used the spherical cap of size ε. The size ε of the spherical

cap was controlled by a parameter β via ε = (π/2)/β. A new candidate solu-370

tion was drawn from the spherical cap using the function rndSphericalCap

described in Section 3.3 and in Algorithm 4. In the simulations we always used

a geometric cooling schedule. The speed of cooling was controlled by a param-

eter α. The number Nit of iterations was chosen such that the total number of

univariate depth evaluations was equal to a given value N . The fine-tuning of375

the parameters α, β and Start is described in Section 4.2.

20

3.7. Coordinate descent (CD)

In the coordinate descent algorithm for finding the minimum of a function

f : Rd → R in the Euclidean space Rd one proceeds as follows. Start with an

initial value x0 = (x01, . . . , x
0
d)
T . In the k-th iteration we solve d minimization

problems,

xk+1
j = arg min

y∈R
f(xk+1

1 , . . . , xk+1
j−1 , y, x

k
j+1, . . . , x

k
d) , j = 1, . . . , d.

This yields a sequence x0,x1,x2, . . . for which f(x0) ≥ f(x1) ≥ f(x2) ≥

The function φz,X : Sd−1 → R+
0 , p 7→ D(〈p, z〉 | 〈p,X〉) can be extended to

a function φ̃z,X on the domain Rd \ {0}. To the function φ̃z,X the coordinate380

descent could be applied without major modifications. However, because of the

affine invariance of the depth, φ̃z,X is constant on lines, i.e., for λ 6= 0 holds

φ̃z,X(λp) = φ̃z,X(p). We believe that the performance of the coordinate descent

should profit from taking into account the special geometry of the domain of

φz,X . Therefore, we adapted the coordinate descent for the special case that385

the domain of the objective is the unit sphere Sd−1. Hence, we cannot use the

coordinate directions since they are not contained in the unit sphere. Instead,

we replace the straight lines by great circles which are the geodesics on the

unit sphere. As noted earlier, we can always restrict ourselves to minimize the

univariate depth over a hemisphere. So we do not have to minimize over a whole390

great circle, but only over a great semi-circle.

From (1) it follows that for two orthogonal directions u,v ∈ Sd−1 the great

semi-circle between v and −v passing through u is given by

S(u,v) =
{

cos(α)u+ sin(α)v
∣∣∣α ∈ (−π

2
,
π

2

]}
.

In the k-th iteration we solve d−1 (univariate) minimization problems. Denote

by u(k,0) the current point at the beginning of the k-th iteration. We choose

d− 1 directions p1, . . . ,pd−1 such that the vectors u(k,0),p1, . . . ,pd−1 form an

orthonormal system of vectors in Rd. Thus, u(k,0) + span{p1, . . . ,pd−1} is a395

hyperplane which is tangent to the unit sphere at u(k,0). Together with the

21

current point the directions pj determine the great circles for the univariate

optimization problems.

Denote by u(k,j), j = 1, . . . , d − 1, the solution of the j-th minimization

problem in the k-th iteration,

u(k,j) = arg min
v∈S(u(k,j−1),pj)

D(〈v, z〉 | 〈v,X〉).

Note that, when we move from u(k,j−1) to u(k,j), also the tangent hyperplane

has to be rotated accordingly. However, this rotation takes place in the plane

spanned by u(k,j−1) and pj and affects only these two vectors, leaving the other

vectors of the orthonormal system intact. Denote the image of pj under this

rotation by p̃j . Then, after j minimizations, the system of vectors is mapped

to

u(k,j), p̃1, . . . , p̃j ,pj+1, . . . ,pd−1 .

It is easy to see that this is still an orthonormal system of vectors. Note also, that

there is no need to compute the vectors p̃j since for the (j+ 1)-th minimization400

we only need u(k,j) and pj+1.

We still need to find the vectors p1, . . . ,pd−1. If H is a Householder matrix

from equation (2) that maps u(k,0) to the unit vector ed, then Hu(k,0) = ed

which is equivalent (H is orthogonal and symmetric) to u(k,0) = Hed. Thus,

the last column of H is equal to u(k,0). Since the columns of H form an

orthonormal system of vectors, p1, . . . ,pd−1 can be chosen as the first d − 1

columns of H. An easy calculation shows that

(pj)i =

− ujui

1−ud
if i 6= j, d,

1− u2
j

1−ud
if i = j,

uj if i = d,

where ui denotes the i-th component of u(k,0) and (pj)i is the i-th component

of pj . A description of the coordinate descent in pseudocode is given in Algo-

rithm 10. The stopping criterion that we used in our simulations guaranteed

22

that a specified number N of evaluations of the univariate depth was not ex-405

ceeded. In Algorithm 10 a procedure LineSearch is used. LineSearch(u,pj)

tries to find the minimum of D(〈a, z〉 | 〈a,X〉) for a in the great semi-circle

S(u,pj). For this line search several strategies are possible, e.g., a uniform

search (see Algorithm 8) over the semi great-circle or a golden section search

(see Algorithm 9).410

Algorithm 8 Line search (uniform spacing)

1: function lineSearch(u,p) . search along the great circle defined by u and p
2: fmin ←∞
3: for i← 0 to nLS do
4: λ← −π/2 + i · π/nLS

5: w ← cos(λ)u + sin(λ)p
6: f ← D(〈w,z〉 | 〈w,X〉)
7: if f < fmin then
8: fmin ← f
9: umin ← w

10: return (umin, fmin)

Algorithm 9 Line search (golden section)

1: function lineSearch(u,p) . search along the great circle defined by u and p
2: α← (

√
5− 1)/2

3: (a, b)← (−π/2, π/2)
4: λ← αa+ (1− α)b
5: µ← (1− α)a+ αb
6: w ← cos(λ)u + sin(λ)p
7: f1 ← D(〈w,z〉 | 〈w,X〉)
8: w ← cos(µ)u + sin(µ)p
9: f2 ← D(〈w,z〉 | 〈w,X〉)

10: fmin ← min(f1, f2)
11: while b− a > ε do
12: if f1 > f2 then
13: (a, λ, f1)← (λ, µ, f2)
14: µ← (1− α)a+ αb
15: w ← cos(µ)u + sin(µ)p
16: f2 ← D(〈w,z〉 | 〈w,X〉)
17: fmin ← min(f2, fmin)
18: else
19: (b, µ, f2)← (µ, λ, f1)
20: λ← αa+ (1− α)b
21: w ← cos(λ)u + sin(λ)p
22: f1 ← D(〈w,z〉 | 〈w,X〉)
23: fmin ← min(f1, fmin)

24: return (w, fmin)

In Section 4.2 we compare several strategies for the line search.

To test our hypothesis that the coordinate descent should profit from taking

23

Algorithm 10 Coordinate descent

1: function coordinateDescent(z,X)
2: u← rndSphere(d) . start with a random point
3: repeat
4: v ← u . v is u(k,0)

5: for j ← 1 to d− 1 do
6: for i← 1 to d− 1 do
7: pi ← −vi · vj/(1− vd)

8: pj ← 1 + pj
9: pd ← vj . p is pj

10: (u, dcur)← LineSearch(u,p)

11: until stopping criterion is satisfied
12: return dcur

into account the spherical geometry of the domain, we implemented the coor-

dinate descent such that by passing a parameter Space, having two possible

values Ec (Euclidean space) or Sp (Sphere), we could choose between the näıve415

application of the coordinate descent and the version specifically adapted to the

sphere. Further, a parameter LS can be passed that controls the line search

algorithm used. For LS equal to Eq the line search is done on an equally spaced

grid, for LS equal to GS the golden section method is used.

3.8. Nelder-Mead method (NM)420

The Nelder-Mead method (also known as downhill simplex method), origi-

nally proposed by Nelder and Mead (1965), is a well-known optimization method

that does not rely on derivatives. It is based on a simplex i.e., a polytope that

is defined by d + 1 vertices x1, . . . ,xd+1 ∈ Rd. Assume that the vertices are

ordered in such a way that the corresponding function values of an objective425

function f are increasing, f(x1) ≤ · · · ≤ f(xd+1). In each step of the algorithm

the vertex xd+1 with the worst function value is replaced by a new vertex in

a specified manner. The new vertex is chosen in such a way that the simplex

typically approaches a minimum of the function f . Denote by xo = 1
d

∑d
i=1 xi

the centroid of all but the worst vertices. The updating of the simplex is based430

on the following operations:

• Reflection: xr = xo + α(xo − xd+1), α > 0;

• Expansion: xe = xo + γ(xr − xo), γ > 1;

24

• Inside Contraction: xic = xo + ρ(xd+1 − xo), 0 < ρ < 1;

• Outside Contraction: xoc = xo + ρ(xr − xo), 0 < ρ < 1;435

• Shrinking: x′i = x1 + σ(xi − x1), i = 2, . . . , d+ 1, 0 < σ < 1.

A common choice for the parameters is α = 1, γ = 2, ρ = σ = 0.5, see Figure 2.

In the first four operations the new point lies on the straight line through xo

and xd+1, in the last operation new points are computed on the straight lines

through x1 and xi, i = 2, . . . , d + 1. The new simplex is then formed by the440

points x1 and x′2, . . . ,x
′
d+1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25−1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

b
x3

b
x1

b
x2

b
xo

b
xr

b
xe

b
xic

b
xoc

0 1 2 3 4 5 6 7 8 9 10 11 12 13−1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

b
x3

b
x1

b
x2

b x′
2

b

x′
3

Figure 2: Illustration of the Nelder-Mead algorithm. The original simplex is given in light

blue. In the left panel the points xr,xe,xic and xoc are shown together with the newly

formed simplices. In the right panel the shrunk simplex is shown in dark blue.

As in the case of the coordinate descent, it is possible to apply the Nelder-

Mead algorithm without any modifications to the function φ̃z,X that extends

φz,X on the domain Rd \ {0}. Again, we believe that it is better to take care of

the special geometry of the domain Sd−1 and adapt the Nelder-Mead method in445

a proper way. To do this the straight lines along which new points are computed

have to be replaced by proper curves. The natural choice are again the geodesics

on the sphere, i.e., the great circles.

Following (1) the great circle defined by x and y is given for ỹ = y−〈x,y〉x

by {
z(φ) = cos(φ)x+ sin(φ)

ỹ

‖ỹ‖

∣∣∣∣φ ∈ (−π, π]

}
.

25

Thus, the analogue of the point x + t(y − x) is given by z(tα), where α =

arccos(〈x,y〉) is the great-circle distance between x and y. We define the func-

tion γx,y : R→ Sd−1 by

γx,y(t) = cos(tα)x+ sin(tα)
ỹ

‖ỹ‖
.

Clearly, γx,y(t) is a point that lies on the great circle defined by x and y,

and the great-circle distance between γx,y(t) and x is t times the great-circle450

distance between y and x (provided that |tα| < π). For t ∈ [0, 1], the point

γx,y(t) can be seen as a spherical convex combination of x and y.

For computing γx,y(t), we first have to compute α. Although it is tempting

to simply compute α using the inverse cosine, there is a problem when x and y

are nearly parallel since the inverse cosine is numerically instable for values of

the argument near unity. Therefore, we recommend to use the following formula

to compute α:

α =

2 arcsin
(
1
2‖x− y‖

)
if 〈x,y〉 ≥ 0,

π − 2 arcsin
(
1
2‖x+ y‖

)
if 〈x,y〉 < 0.

(3)

For computing γx,y(t) we proceed as follows. First note that

‖ỹ‖2 = ‖y‖2 − 2 〈x,y〉2 + 〈x,y〉2 · ‖x‖2 = 1− 〈x,y〉2 = 1− cos2(α) = sin2(α)

and therefore ‖ỹ‖ = sin(α). Hence, γx,y(t) can be computed as follows

γx,y(t) = cos(tα)x+ sin(tα)
ỹ

‖ỹ‖

= cos(tα)x+
sin(tα)

sin(α)
(y − 〈x,y〉x)

=

[
cos(tα)− sin(tα)

sin(α)
〈x,y〉

]
x+

sin(tα)

sin(α)
y

=

[
cos(tα) sin(α)− sin(tα) cos(α)

sin(α)

]
x+

sin(tα)

sin(α)
y

=
sin(α− tα)

sin(α)
x+

sin(tα)

sin(α)
y

=
sin((1− t)α)

sin(α)
x+

sin(tα)

sin(α)
y .

26

Note that sin(α) can be computed as a byproduct when we compute α by (3),

sin(α) =

‖x− y‖
√

1+〈x,y〉
2 if 〈x,y〉 ≥ 0,

‖x+ y‖
√

1−〈x,y〉
2 if 〈x,y〉 < 0.

In the case 〈x,y〉 ≥ 0, this follows from

sin(α) = 2 sin
(α

2

)
cos
(α

2

)
= 2
‖x− y‖

2

√
1 + cos(α)

2
= ‖x− y‖

√
1 + 〈x,y〉

2

and analogously when 〈x,y〉 < 0. Therefore, to compute γx,y(t) we use the

function greatCircle, given in pseudocode in Algorithm 11.

Algorithm 11 Point on a great circle

1: function greatCircle(x,y, t)
2: sp← 〈x,y〉
3: if sp ≥ 0 then
4: sum← ‖x− y‖2
5: α← 2 · arcsin(0.5 · sqrt(sum))
6: sina← sqrt(sum · (1 + sp)/2)
7: else
8: sum← ‖x + y‖2
9: α← π − 2 · arcsin(0.5 · sqrt(sum))

10: sina← sqrt(sum · (1− sp)/2)

11: gx← (1− t) · α
12: gy ← t · α
13: if (Bound = y) and (abs(gy) > π/2) then
14: if gy > 0 then gy ← π/2 else gy ← −π/2
15: gx← α− gy
16: cx← sin(gx)/sina
17: cy ← sin(gy)/sina
18: z ← cx · x + cy · y
19: return z

In the Nelder-Mead method, the procedure greatCircle will be used for455

the operations Reflection, Expansion, Contraction and Shrinking. For t such

that tα /∈ [−π/2, π/2] the new point lies outside the closed hemisphere with

pole x. To avoid such a behavior the value of tα could be limited to the interval

[−π/2, π/2] in the routine greatCircle. This is described in lines 13 to 15 of

Algorithm 11.460

Besides generalizing the basic operations of the Nelder-Mead algorithm, we

also have to generalize the notion of a centroid to the case of a sphere. Given

points p1, . . . ,pn ∈ Sd−1, we have to define a spherical centroid c(p1, . . . ,pn) ∈

27

Sd−1. It is not quite clear how to do this in a sensible way. A natural gener-

alization seems to be the so-called Frchet mean (also called Riemannian center

of mass or Karcher mean, see Afsari, 2011; Grove and Karcher, 1973; Grove

et al., 1974a,b) of points p1, . . . ,pn on a Riemannian manifoldM with distance

function dist(·, ·), which is defined to be the minimizer of the sum of squared

distances,

cF (p1, . . . ,pn) = arg min
x∈M

n∑
i=1

dist2(x,pi) .

One problem with the Frchet mean is that it needs not be unique. To see this,

consider the case of two points on the 2-sphere S2. If the two points are the north

and the south pole, respectively, then the whole equator minimizes the sum of

squared distances which shows that the Frchet mean is not unique in this case.

However, if the points are contained in an open hemisphere, then the Frchet465

mean on the sphere is unique, see Buss and Fillmore (2001). Nevertheless,

there is no closed form expression for the Frchet mean, instead it has to be

computed by solving an optimization problem.

A much easier possibility would be to compute the centroid in the ambient

space Rd and then project the point back on the unit sphere Sd−1, i.e.,

cN (p1, . . . ,pn) =
p

‖p‖
, where p =

1

n

n∑
i=1

pi .

Although this mean is also not unique when p = 0, it is widely used in directional

statistics, see, e.g., Ley and Verdebout (2017). We will call this point the näıve470

mean.

Comparing the näıve mean and the Frchet mean, we decided to choose the

näıve mean in our simulations. The reason is that in the long run the simplex

formed by p1, . . . ,pd should be small. If we only consider a small region of the

sphere then its geometry is “nearly flat”. Therefore, if the simplex is small, the475

difference between the Frchet mean and the näıve mean should also be small.

Thus, we expect no great difference in performance between using the näıve

mean and the Frchet mean in the Nelder-Mead method.

The Nelder-Mead algorithm, adopted to the case of Sd−1 as the domain, is

28

given as Algorithm 12. Since in the operations Reflection, Expansion and Con-480

traction only the worst point pd is changed, the sequence (p1, f1), . . . , (pd−1, fd−1)

is still ordered so that f1 ≤ · · · ≤ fd. Therefore in line 28 of Algorithm 12 the

routine inPlaceMerge can be used. This routine expects two sorted sequences

as arguments and merges them into one sorted sequence. This is more efficient

than sorting the whole sequence. Only in the case when Shrinking is applied the485

subsequence (p1, f1), . . . , (pd−1, fd−1) has to be sorted which is done in line 27.

Algorithm 12 Spherical Nelder-Mead method

1: function sphericalNelderMead(z,X)
2: if Start = Mn then u← z − x

3: if Start = Rn then u← rndSphere(d)

4: ε← (π/2)/β . size of the spherical cap
5: for i← 1 to d do . finding the starting simplex
6: pi ← rndSphericalCap(u, ε)
7: fi ← D(〈pi,z〉 | 〈pi,X〉)
8: sort([(p1, f1), . . . , (pd, fd)]) . sort pairs (pi, fi) such that f1 ≤ · · · ≤ fd
9: repeat

10: xo ← cN (p1, . . . ,pd−1)
11: xr ← greatCircle(xo,pd,−α) . reflected point
12: fr ← D(〈xr,z〉 | 〈xr,X〉)
13: if f1 ≤ fr < fd−1 then (pd, fd)← (xr, fr)
14: else if fr < f1 then
15: xe ← greatCircle(xo,xr, γ) . expanded point
16: fe ← D(〈xe,z〉 | 〈xe,X〉)
17: if fe < fr then (pd, fd)← (xe, fe) else (pd, fd)← (xr, fr)

18: else . fd−1 ≤ fr
19: if fr < fd then xh ← xr else xh ← pd

20: xc ← greatCircle(xo,xh, ρ) . contracted point
21: fc ← D(〈xc,z〉 | 〈xc,X〉)
22: if fc < fd then (pd, fd)← (xc, fc)
23: else . reduction
24: for i← 2 to d do
25: pi ← greatCircle(p1,pi, σ)
26: fi ← D(〈pi,z〉 | 〈pi,X〉)
27: sort([(p1, f1), . . . , (pd−1, fd−1)])

28: inPlaceMerge([(p1, f1), . . . , (pd−1, fd−1)], [(pd, fd)]) . put (pd, fd) in the
. correct position

29: until stopping criterion is satisfied

In our implementation we used a common choice for the parameters, namely

α = 1, γ = 2, ρ = σ = 0.5. The stopping criterion was again chosen in order to

guarantee that a specified number N of evaluations of the univariate depth was

not exceeded. The starting simplex was chosen as follows. From an ε-spherical490

cap d points were chosen randomly using the procedure rndSpericalCap. The

29

pole of this cap was determined by a parameter Start with possible values Mn

and Rn. For Start=Rn the pole of the cap was randomly drawn from U(Sd−1)

whereas for Start=Mn the pole is given by u = z − x. The size ε of the cap

was controlled by a parameter β via ε = (π/2)/β. A further parameter Bound495

controlled whether the movement along the great circle in the routine great-

Circle(x,y, t) was limited to a maximum distance of π/2 between x and the

new point (Bound=y) or not (Bound=n). Further, we compared the adapted

version of the Nelder-Mead algorithm with applying the ordinary Nelder-Mead

algorithm to the function φ̃z,X . This was controlled by a parameter Space hav-500

ing possible values Ec (Euclidean space) and Sp (Sphere). The tuning of the

parameters Start, β, Bound and Space is again described in Section 4.2.

4. Simulation comparison

This section comprises the description and the results of our simulation

comparison. In Section 4.1 we define the benchmark distributions and describe505

the experimental study. Section 4.2 indicates the sets over which parameters

are tuned, and concludes on their final choice. Section 4.3 analyses the results

of the simulation study.

4.1. Distributional and simulation settings

The simulation study is based on the depth computation of a point z w.r.t.510

a sample X of n i.i.d. d-variate points. The point z is taken to be the average

of 10 arbitrary points of the sample. This guarantees that it belongs to the

convex hull of the data so that the depth is always strictly positive, but also

does not place it too deep in the data set to preserve the random nature of

the choice of z (since only 10 points out of 1000 are averaged). The following515

six distributions are used for the fine-tuning (due to the affine-invariance of the

considered depths we do not introduce any correlation structure):

• the standard normal distribution N (0d, Id);

• the spherically-symmetric Student t5 distribution;

30

• the spherically-symmetric Student t1 (Cauchy) distribution;520

• the uniform distribution on [0, 1]d;

• the skewed normal distribution generated in the following way (Azzalini,

2013): let U ∼ U([0, 1]), Z ∼ N (0d, Id), U and Z stochastically inde-

pendent, and δ ∈ Rd be a skewness parameter. Then the skewed normal

random vector equals

X
d
=

 Z if U ≤ Φ(δTZ) ,

−Z if U > Φ(δTZ) ,

where Φ(·) is the c.d.f. of the standard normal distribution. We set

δ = (5, 0, ..., 0)T ;

• a product of d independent exponential distributions (with parameter λ =

1).525

In the simulation study, we consider the five depth notions described in

Section 2.1. An explicit formula makes it unnecessary to approximate the Ma-

halanobis depth, which is in addition a quadratic (and thus everywhere smooth)

function. Since rather good results for optimization techniques are expected,

we include it for a qualitative comparison with random algorithms. Since the530

zonoid depth can be computed efficiently even in higher dimensions using the

algorithm of Dyckerhoff et al. (1996), it is also included as a benchmark.

When fine-tuning the algorithms, for each depth, for n = 1000 points, in

dimensions d = 5, 10, 15, 20, we use N ≈ 1000 random directions for each of

the algorithms and each combination of parameters. For each of the distribu-535

tions, we repeat the computation of the depth 1000 times and summarize the

results using two statistics based on the following idea. Since all the considered

algorithms report an upper bound on the actual depth, for the same z and a

data set one can compare parameters according to the obtained depth values,

because lower obtained depth is always closer to the exact value. We do it by540

reporting:

31

• the average rank of the obtained depth approximation (among all consid-

ered parameter combinations) over 1000 runs (the lower the better, with

1 being the best), which we shortly denote as AveRank;

• the percentage when the considered set of parameters achieved the small-545

est depth value (among all parameter combinations) over 1000 runs (the

higher the better, with 100% being the best), which we shortly denote as

PercBest.

We consider AveRank as the more important criterion. The reason is that

AveRank not only focuses on how many times a method is the best method550

(as does PercBest), but also takes into account the rank of a method when

it is not the best method. Often the best methods according to AveRank and

PercBest coincide. Therefore, we restrict to AveRank in the presentation,

and present both statistics in the Supplementary Materials.

4.2. Fine-tuning of the algorithms555

Before running the simulation study in Section 4.3, the variety of possible

settings of the algorithms should be reduced to a proper choice of (nearly op-

timal) parameters. We do this by means of a comparative benchmark. The

chosen parameters are then fixed for each algorithm throughout the subsequent

sections. Since the task of parameter tuning is to choose parameters for a single560

algorithm, we run (and analyze) each algorithm separately.

For each algorithm, out of a preliminary chosen range, we select a suitable set

of parameter values based on visual inspection and additional analysis in detail

if necessary. Note, that even with such an extensive simulation the validity

of the chosen parameters is still limited. We restrict the tuning process to565

rather small ranges of parameters since only several distributions are considered.

Also, such a tuning provides a certain degree of robustness, which is especially

desirable because the single chosen set of parameters will be used for all further

experiments. Finally, this simplifies visual presentation and manual analysis.

Table 1 summarizes the parameters’ ranges and their choices.570

32

Method Parameters Values Description

RRS Nref 5, 10, 15 Number of refinement steps
α 0.2, 0.5, 0.8 Shrinking factor of the spherical cap

RGS Nref 5, 10, 15 Number of refinement steps
α 0.2, 0.5, 0.8 Shrinking factor of the spherical cap

RaSi α 1.25, 1.5, 1.8 Parameter of the Dirichlet distribution

SA α 0.5, 0.8, 0.95 Cooling factor
β 5, 10, 15 Size of the spherical cap
Start Mn, Rn Starting value (mean, random)

CD Space Ec, Sp Euclidean space or sphere
LS Eq, GS Line search: equally spaced or golden section

NM Space Ec, Sp Euclidean space or sphere
Start Mn, Rn Starting value (mean, random)
β 1, 2, 4 Size of the spherical cap
Bound y, n Bound movement on great circles (yes/no)

Table 1: Considered and selected (in bold) parameters, obtained by the fine-tuning.

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

● ●
●

●

●

●

●

● ●
●

● ●

●
●

●

●

●
●

● ●

● ●
● ●

●

●

●
● ●

●

● ●

●

●

●

● ●

●

● ●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

● ●
●

●

Normal t−Dist Cauchy Uniform SkewNormal Exponential

5
10

15
20

MD ZD HD PD APD MD ZD HD PD APD MD ZD HD PD APD MD ZD HD PD APD MD ZD HD PD APD MD ZD HD PD APD

1.96

2.00

2.04

1.96

2.00

2.04

1.96

2.00

2.04

1.96

2.00

2.04

Depth

A
ve

ra
ge

 r
an

k Parameters

● (1.25)

(1.5)

(1.8)

Random simplex (RaSi)

Figure 3: AveRank for the random simplices (RaSi) algorithm. The only parameter is α,

taking values in {1.25, 1.5, 1.8}.

Algorithms random search (RS) and grid search (GS) do not require hyper-

parameters and thus need not to be tuned. For the six remaining algorithms,

we detail the parameter-tuning process below. All figures indicating computed

statistics can be found in the Supplementary Materials in Section 1. Here we

33

only place two illustrative ones: an example of a mixed result (random simplices,575

Figure 3) and of a clear winner (coordinate descent, Figure 4).

• Refined random search (RRS): Visual inspection and summary statistics

(average over all experiments) give no clear winner. However, the combi-

nations with a high value of Nref and a small value of α or vice versa, are

clearly inferior. Therefore we choose a pair where both parameters are in580

the middle of the ranges.

• Refined grid search (RGS): AveRank statistics mostly hint on the best

pair here.

• Random simplices (RaSi): AveRank statistics, plotted in Figure 3, do

not help in choosing the best parameter. One observes that the concen-585

tration parameter of the Dirichlet seems not to have much influence on

the performance of the algorithm. We decided to allow for most freedom

● ●
● ● ●

● ●

●
● ●

● ●

●
● ●

● ●

●

● ●

● ●
● ● ●

●
●

● ● ●

● ●
●

● ●

● ●

●
● ●

●
● ●

● ●

● ● ●
● ●

● ●
●

● ●

● ●
●

● ●

● ●
● ● ●

● ●

● ● ●

● ●

●
● ●

● ●

●
● ●

● ●
● ● ●

● ●

● ● ●

● ●

● ● ●

● ●

● ● ●

● ●
● ●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

Normal t−Dist Cauchy Uniform SkewNormal Exponential

5
10

15
20

MD ZD HD PD APD MD ZD HD PD APD MD ZD HD PD APD MD ZD HD PD APD MD ZD HD PD APD MD ZD HD PD APD

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Depth

A
ve

ra
ge

 r
an

k

Parameters

● (Ec,Eq)

(Ec,GS)

(Sp,Eq)

(Sp,GS)

Coordinate descent (CD)

Figure 4: AveRank for the coordinate descent (CD) algorithm. The first parameter (Space)

determines the space to be used: Euclidean space (Ec) or sphere (Sp). The second parameter

(LS) defines the algorithm to be used for the line search: evaluation over an equidistant grid

(Eq) or the golden section algorithm (GS).

34

when drawing the direction.

• Simulated annealing (SA): Substantial number of the considered alterna-

tives complicates the choice of the best performing parameter combination.590

The parameter choice is thus made based on the summary statistics, i.e.,

by averaging over all considered simulation settings.

• Coordinate descent (CD): AveRank of the four considered settings is

depicted in Figure 4. One clearly distinguishes superiority of using great

circles’ coordinate system and the golden section technique for the line595

search.

• Nelder-Mead (NM): First, running usual NM in the Euclidean space per-

forms worse than when sticking to the geometry of the hyper-sphere. One

can further notice that starting with the spherical cap around the direc-

tion from the data mean to z, drawing the initial simplex from the entire600

hemisphere, as well as forcing the simplex to be always contained in a

hemisphere gives on average better results.

Several limitations of the above fine-tuning need to be mentioned, which

hold true for the simulation comparison in Section 4.3 as well:

• Strictly speaking, the tuning is subject to the chosen distributions, dimen-605

sions and ranges of parameters. Further parameters of the algorithms,

not mentioned here (e.g. constants of the Nelder-Mead algorithm, see

Section 3.8) were kept unchanged on their default values.

• The number of random directions is fixed to N ≈ 1000, which is a budget

constraint. Thus, it is possible that one algorithm would approximate610

better with a few more directions, while another one would not make

use of these additional directions. On contrary, with less directions the

results could look differently. On the other hand, the simulation study

of Section 4.3 illustrates only weak dependence of our conclusions on the

change of the number of random directions.615

35

4.3. Results of the simulation study

To compare the performance of the algorithms, we run a simulation study for

the distributional settings from Section 4.1 and three additional distributions

that were not used for fine-tuning:

• the hemispherical shell distribution (abbreviated as “Shell”) generated as

follows: let (S1, ..., Sd−1, Sd)
T d

= S ∼ U(Sd−1), U ∼ U([0.9, 1]), S and U

stochastically independent. The random vector stemming from the shell

distribution equals

X
d
= U · (S1, ..., Sd−1, |Sd|)T ;

• the bimodal normal mixture generated as follows: let B ∼ B(0.5), Z ∼

N (0d, Id), B and Z stochastically independent. To model the bimodal

normal mixture we use the following random vector:

X
d
=

Z + 2e1 if B = 1 ,

Z − 2e1 if B = 0 ,

where ej is the j-th canonical unit vector;620

• the multimodal normal mixture generated as follows: let I ∼ U({1, ..., d}),

Z ∼ N (0d, Id), I and Z stochastically independent, then the considered

random vector equals

X
d
= Z + 3eI .

Further, to gain more insight into the performance of the methods, the two

ordinal measures AveRank and PercBest are complemented with two cardi-

nal measures: The mean absolute error (MAE) is calculated as the difference

between the obtained depth approximation and the exact depth, averaged over

all Nsim = 1000 runs, and the mean relative error (MRE) is calculated as625

MAE divided by the exact depth and averaged again over all Nsim = 1000

runs. However, note that the computation of the exact depth values is (in rea-

sonable time) possible only for the Mahalanobis depth and the zonoid depth.

36

Therefore, when computing MAE and MRE for the other depths, the exact

depth value is replaced by the minimum depth achieved by any of the methods630

to be compared.

We fix the parameters of the methods to the values chosen in Section 4.2 and

take N ≈ 100, 1000, and 10000 projections. Refined grid search (RGS) could

not be used for N ≈ 100 projections since for Nref = 10 only ten projections

could be used for the grid in each refinement step which is too small even for635

d = 5. In this section, only results for N ≈ 1000 directions are analyzed, since

those for the other numbers of directions are similar. The complete results

in graphical and tabular form can be found in the Supplementary Materials,

Sections 2.1 and 2.2, respectively.

MD ZD HD PD APD

5
10

15
20

N
or

m
al

t−
D

is
t

C
au

ch
y

U
ni

fo
rm

S
ke

w
N

or
m

al
E

xp
on

en
tia

l
S

he
ll

B
im

od
al

M
ul

tim
od

al

N
or

m
al

t−
D

is
t

C
au

ch
y

U
ni

fo
rm

S
ke

w
N

or
m

al
E

xp
on

en
tia

l
S

he
ll

B
im

od
al

M
ul

tim
od

al

N
or

m
al

t−
D

is
t

C
au

ch
y

U
ni

fo
rm

S
ke

w
N

or
m

al
E

xp
on

en
tia

l
S

he
ll

B
im

od
al

M
ul

tim
od

al

N
or

m
al

t−
D

is
t

C
au

ch
y

U
ni

fo
rm

S
ke

w
N

or
m

al
E

xp
on

en
tia

l
S

he
ll

B
im

od
al

M
ul

tim
od

al

N
or

m
al

t−
D

is
t

C
au

ch
y

U
ni

fo
rm

S
ke

w
N

or
m

al
E

xp
on

en
tia

l
S

he
ll

B
im

od
al

M
ul

tim
od

al

2

4

6

8

2

4

6

8

2

4

6

8

2

4

6

8

Distribution

A
ve

ra
ge

 r
an

k

Method

RS

GS

RRS

RGS

RaSi

SA

CD

NM

Figure 5: AveRank statistics for the eight considered approximation methods when using the

parameter settings from Section 4.2 (see also Table 1) and N ≈ 1000 projections.

Figure 5 exhibits AveRank for each of the eight considered algorithms for640

different depth notions, distributions, and dimensions (see the Supplementary

Materials for further statistics and values of N). Several observations can be

made:

• There is a group of methods which have poor performance that further de-

37

grades with increasing dimension: random search (RS), grid search (GS),645

refined grid search (RGS), and random simplices (RaSi). Moreover, GS

and RGS are not considered in dimension d > 10 (as explained in Sec-

tions 3.2 and 3.4), because 1000 directions are not sufficient to generate

even a very sparse grid in such a high dimension.

• Refined random search (RRS), coordinate descent (CD), and Nelder-Mead650

(NM) show rather good performance.

• NM shows superior behavior in this latter group, since it possesses almost

always lower AveRank compared to the two other methods for the half-

space, projection, and asymmetric projection depths. Thus it can be seen

as a general winner. However, it is closely followed by CD.655

Comparison of AveRank with PercBest, MAE and MRE statistics re-

veals similarity of the results with very close overall ranking of the methods.

Table 2 illustrates concordance of the four statistics for the halfspace depth

(in most of the cases). Since only RRS, CD and NM appear as best-performing

methods w.r.t. the four considered performance statistics, only these three meth-660

ods are included in the table. Tables which show the best performing methods

for the other four dephts are contained in the Supplementary Materials, Sec-

tion 2.3.

To get more insights into the dynamic of the optimization process, we regard

the flow of the minimal reached depth with the number of random directions. A665

typical behavior of the optimization, on the example of the normal distribution

in dimension 20, is indicated in Figure 6. Similar figures for all nine considered

distributions are gathered in Section 2.4 of the Supplementary Materials.

Our most important observation is a high performance of the optimization

techniques (SA, RRS, CD, and NM) compared with the random methods (RS,670

RaSi). The two latter ones seem to (approximately) follow the bounds derived

in Nagy et al. (2020) and are outperformed already before reaching 100 random

directions. Further inspection shows that the improvement of simulated anneal-

ing (SA) is very weak, and minor improvement can be expected for even higher

38

Number of projections

HD 100 1000 10000

d Distribution R
R

S

C
D

N
M

R
R

S

C
D

N
M

R
R

S

C
D

N
M

5 Normal
t-Dist
Cauchy
Uniform
SkewNormal
Exponential
Shell
Bimodal
Multimodal

10 Normal
t-Dist
Cauchy
Uniform
SkewNormal
Exponential
Shell
Bimodal
Multimodal

15 Normal
t-Dist
Cauchy
Uniform
SkewNormal
Exponential
Shell
Bimodal
Multimodal

20 Normal
t-Dist
Cauchy
Uniform
SkewNormal
Exponential
Shell
Bimodal
Multimodal

Table 2: Best performing methods in sense of AveRank (top-left square), PercBest (top-
right square), MAE (bottom-left square), and MRE (bottom-right square) for the halfspace
depth (HD).

number of directions. A possible explanation would be that the parameters of675

SA should be tuned separately for each setting.

39

MD ZD HD PD APD

1 3 10 30 100 3001000 1 3 10 30 100 3001000 1 3 10 30 100 3001000 1 3 10 30 100 3001000 1 3 10 30 100 3001000

0.0

0.2

0.4

0.6

directions

R
ea

ch
ed

 d
ep

th
 −

 m
in

 d
ep

th

Method
RS

RRS

RaSi

SA

CD

NM

Depth approximation progress (Normal distribution, dimension = 20)

Figure 6: Average (over 1000 runs) difference between the reached depth and the minimally

achieved depth (by all methods for the current triplet distribution—depth—dimension) during

the optimization process (normal distribution, dimension d = 20). (The lines of RS and RaSi

almost coincide in the graphs.)

5. Results for the approximation error

Apart from knowing which of the discussed approximation methods gives the

best approximation, it is also of interest to have information on the approxima-

tion error. To calculate the approximation error, the exact values of the depths680

have to be known. From the considered depths only the Mahalanobis depth

and the zonoid depth can be exactly computed in high dimensions in reasonable

time. For the halfspace depth there exists an exact algorithm (Dyckerhoff and

Mozharovskyi, 2016) to compute the depth in arbitrary dimension which has a

complexity of O(nd−1 log n). For the considered sample size of n = 1000 the685

exact computation of the halfspace depth is (in reasonable time) only possible

when d ≤ 5. Although there is an exact algorithm for the projection depth (Liu

and Zuo, 2014), the considered sample size of n = 1000 in dimension d = 5 is

already too large to have the value of the depth computed in reasonable time.

For the asymmetric projection depth no exact algorithm exists. Therefore we690

decided to have a closer look at two situations. First, we choose to examine the

approximation of the halfspace depth since it probably is the most prominent

depth. Because of the high computational cost we computed approximation

errors for the halfspace depth only in dimension d = 5. Second, to get some

intuition on approximation errors in high dimensions we analyzed the mean695

40

absolute error (MAE) and the mean relative error (MRE) which we exactly

computed for the zonoid (and also the Mahalanobis) depth in all dimension

d = 5, 10, 15, 20. The zonoid depth was chosen since apart from the trivial case

of the Mahalanobis depth, it is the only depth considered in this study for which

exact computation is possible when d = 20. The time for computing the zonoid700

depth of a single point w.r.t. a sample of size n = 1000 in dimension d = 20

is still under one second. For both setups (halfspace depth, d = 5, and zonoid

depth, d ≤ 20) we used the same simulated datasets that were already used in

Section 4.3. For the halfspace depth we only used the first fifteen simulated

datasets to compute the approximation errors. The approximated depth values705

as well as the exact depth values for the fifteen datasets simulated from the nor-

mal distribution are shown for the halfspace depth in Table 3. The last two lines

of the table show the mean absolute error (MAE) and the mean relative error

(MRE) of the considered approximation methods. The respective tables for all

nine distributions and N ≈ 100, 1000, 10000 projections are given in Section 3710

of the Supplementary Materials.

RS GS RRS RGS RaSi SA CD NM Exact

1 0.279 0.286 0.267 0.273 0.279 0.269 0.268 0.269 0.265
2 0.143 0.160 0.132 0.139 0.148 0.136 0.132 0.130 0.128
3 0.244 0.259 0.238 0.245 0.247 0.241 0.238 0.238 0.236
4 0.329 0.340 0.310 0.336 0.324 0.316 0.311 0.311 0.309
5 0.220 0.235 0.200 0.208 0.225 0.204 0.199 0.200 0.197
6 0.236 0.259 0.214 0.229 0.227 0.219 0.216 0.217 0.213
7 0.238 0.242 0.230 0.235 0.244 0.233 0.227 0.229 0.226
8 0.228 0.229 0.218 0.225 0.229 0.223 0.219 0.218 0.215
9 0.171 0.169 0.152 0.153 0.164 0.154 0.151 0.152 0.149

10 0.241 0.248 0.224 0.230 0.228 0.225 0.223 0.223 0.221
11 0.187 0.205 0.170 0.182 0.185 0.169 0.169 0.169 0.166
12 0.284 0.280 0.269 0.273 0.288 0.274 0.272 0.271 0.268
13 0.221 0.228 0.201 0.218 0.212 0.206 0.206 0.202 0.200
14 0.171 0.182 0.161 0.161 0.176 0.160 0.158 0.157 0.154
15 0.168 0.188 0.157 0.158 0.168 0.161 0.161 0.157 0.157

MAE 0.017 0.027 0.003 0.011 0.016 0.006 0.003 0.003 0.000
MRE 0.105 0.169 0.017 0.063 0.099 0.035 0.019 0.016 0.000

Table 3: Exact and approximate values of the halfspace depth for 15 points together with the
corresponding MAE and MRE: normal distribution, n = 1000, d = 5, N ≈ 1000 projections.

Because of its good computability, for the zonoid depth we used all 1000

41

simulated datasets for each combination of dimension and distribution. In

Table 4 the mean relative errors (MRE) are shown for the case where 1000

projections were used. The respective tables for both the mean relative er-715

rors (MRE) and the mean absolute errors (MAE) for all nine distributions and

N ≈ 100, 1000, 10000 projections are shown in the Supplementary Materials in

Section 2.2.2.

Approximation algorithm

d Distribution RS GS RRS RGS RaSi SA CD NM

5 Normal 0.018782 0.040681 0.000002 0.002805 0.019107 0.000535 0.000004 0.000001
t-Dist 0.021093 0.047018 0.000002 0.003281 0.021418 0.000597 0.000008 0.000001
Cauchy 0.043137 0.080894 0.000465 0.016957 0.045022 0.010639 0.017534 0.000056
Uniform 0.018799 0.041453 0.000002 0.003367 0.018021 0.000537 0.000004 0.000001
SkewNormal 0.021533 0.046762 0.000002 0.005977 0.029959 0.000643 0.000005 0.000001
Exponential 0.021569 0.047682 0.000002 0.003068 0.020915 0.000653 0.000007 0.000001
Shell 0.022559 0.052451 0.000002 0.003401 0.032908 0.000665 0.000005 0.000001
Bimodal 0.023904 0.052215 0.000002 0.003452 0.037974 0.000727 0.000005 0.000001
Multimodal 0.022954 0.048468 0.000002 0.006329 0.033007 0.000691 0.000006 0.000001

10 Normal 0.217197 1.118694 0.000025 0.942766 0.219397 0.007122 0.000057 0.000094
t-Dist 0.222892 1.289776 0.000036 1.094230 0.228138 0.008009 0.000094 0.000168
Cauchy 0.303627 2.212219 0.006813 1.661869 0.307660 0.064152 0.052861 0.034096
Uniform 0.215653 1.090465 0.000023 0.937243 0.219798 0.006999 0.000054 0.000098
SkewNormal 0.218591 1.081675 0.000028 0.923719 0.237190 0.008551 0.000062 0.000228
Exponential 0.229525 1.201967 0.000037 1.001438 0.232001 0.009666 0.000090 0.000489
Shell 0.222987 1.076789 0.000028 0.916450 0.244420 0.007856 0.000122 0.000214
Bimodal 0.234134 1.111908 0.000030 0.940334 0.301895 0.008984 0.000063 0.002062
Multimodal 0.219745 1.078995 0.000027 0.906989 0.225948 0.009091 0.000072 0.000280

15 Normal 0.585529 — 0.000182 — 0.609475 0.022943 0.000392 0.001717
t-Dist 0.575809 — 0.000277 — 0.596498 0.027329 0.000737 0.002582
Cauchy 0.676690 — 0.020609 — 0.692426 0.166416 0.084469 0.097217
Uniform 0.579684 — 0.000160 — 0.588454 0.022043 0.000365 0.001557
SkewNormal 0.581892 — 0.000200 — 0.619134 0.027594 0.000437 0.003568
Exponential 0.607952 — 0.000343 — 0.622455 0.033453 0.000909 0.006960
Shell 0.581782 — 0.000186 — 0.600450 0.025505 0.000951 0.008322
Bimodal 0.600136 — 0.000206 — 0.719552 0.030843 0.000546 0.014352
Multimodal 0.576272 — 0.000180 — 0.594009 0.026946 0.000436 0.002727

20 Normal 1.143799 — 0.001079 — 1.177983 0.052060 0.002086 0.006032
t-Dist 1.024786 — 0.001421 — 1.052585 0.060773 0.003030 0.007248
Cauchy 1.110807 — 0.049412 — 1.125693 0.369281 0.158725 0.099501
Uniform 1.131364 — 0.001026 — 1.148654 0.050696 0.002042 0.005657
SkewNormal 1.141836 — 0.001293 — 1.178756 0.070894 0.002138 0.008604
Exponential 1.151532 — 0.002333 — 1.180201 0.126961 0.004631 0.014133
Shell 1.195071 — 0.001521 — 1.233843 0.076760 0.004516 0.006101
Bimodal 1.189500 — 0.001256 — 1.376561 0.119274 0.003015 0.014454
Multimodal 1.117096 — 0.001127 — 1.157293 0.066462 0.002162 0.006479

Table 4: Mean relative error (MRE) for the approximation of the zonoid depth, n = 1000
data points, N ≈ 1000 projections.

For the halfspace depth and normally distributed data in dimension d = 5,

when N ≈ 1000 projections are used, the best methods are NM and RRS,720

followed be CD, whereas the worst methods are RS, GS and RaSi. Even though

there is one case (dataset 15) where RRS and NM found the exact halfspace

depth, MAE suggests that on average the best halfspace found by RRS or NM

42

contains three points more than the optimal halfspace. Furthermore, relative

depth approximation error remains (again on an average) below 2% of the exact725

depth value.

For the zonoid depth, when the approximation was done using N ≈ 1000

projections, RRS gets the first place (when d > 5) followed by CD, NM and

SA. An important point to note is that the very basic methods like RS and

RaSi are unusable when dimension is high with relative error rates beyond 50%730

(d = 15) or even beyond 100% (d = 20). It is noteworthy that the same holds for

RRS when the number of projections is low (see the Supplementary Materials),

which suggests that RRS needs a substantial number of projections to work

well. However, the more elaborate methods like CD, NM and SA perform well

regardless of the number of projections. With these methods, relative errors735

can be kept reasonably low, even below 1.5% (except the Cauchy distribution)

of the exact value.

6. Guidelines for practitioners

The current article shows that even depths that require substantial burden

for exact computation can be (potentially) well approximated even in higher740

dimensions in reasonable time. For this, exploiting the geometry of the unit

hyper-sphere is definitely advantageous (see, e.g., parameter tuning of CD or

NM in Section 4.2). Further, methods based on random projections are clearly

outperformed by those launching optimization over the surface of the hyper-

sphere. Among the latter ones, NM performs the best, closely followed by CD745

and RRS. For the optimization techniques, the direction from the sample average

to the point of interest seems to be a good initial argument. For the considered

depth notions, the time complexity of all algorithms is O(Nn) only, i.e., linear

in both number of sample points and random directions, while the running time

of the algorithms is very small (on average always below 0.05 second for 1000750

directions), see Table 5 for the run time of the algorithms. At the same time,

approximation precision seems to be high as well.

43

Approximation algorithm

d Depth RS GS RRS RGS RaSi SA CD NM

MD 0.007 0.004 0.007 0.003 0.008 0.007 0.006 0.007
ZD 0.014 0.007 0.015 0.006 0.016 0.015 0.015 0.014

5 HD 0.009 0.004 0.007 0.003 0.010 0.007 0.006 0.007
PD 0.027 0.015 0.026 0.012 0.028 0.027 0.027 0.026

APD 0.020 0.011 0.020 0.008 0.022 0.020 0.019 0.019

MD 0.011 0.001 0.011 0.001 0.013 0.011 0.010 0.011
ZD 0.018 0.001 0.019 0.002 0.021 0.020 0.018 0.018

10 HD 0.013 0.001 0.010 0.001 0.016 0.011 0.010 0.010
PD 0.031 0.001 0.030 0.003 0.035 0.031 0.030 0.030

APD 0.024 0.001 0.024 0.002 0.029 0.024 0.023 0.024

MD 0.012 — 0.012 — 0.016 0.012 0.012 0.012
ZD 0.020 — 0.020 — 0.024 0.021 0.020 0.021

15 HD 0.015 — 0.012 — 0.019 0.013 0.011 0.012
PD 0.033 — 0.032 — 0.037 0.033 0.031 0.032

APD 0.026 — 0.025 — 0.030 0.026 0.025 0.024

MD 0.014 — 0.014 — 0.019 0.014 0.013 0.014
ZD 0.022 — 0.022 — 0.027 0.023 0.021 0.022

20 HD 0.017 — 0.014 — 0.022 0.015 0.013 0.014
PD 0.035 — 0.034 — 0.040 0.036 0.033 0.033

APD 0.028 — 0.028 — 0.033 0.028 0.026 0.026

Table 5: Average time (in seconds) of the algorithms for the budget of 1000 directions, over
1000 repetitions. Averaging is also performed over all considered distributions, since running
times are independent of distributions. GS and RGS cannot be run in dimensions d = 15 and
d = 20, while in dimension d = 10 only a very sparse grid (11 and 110 directions for GS and
RGS, respectively) satisfies the condition N ≤ 1000.

In applications, if possible, it is recommended to first fine-tune the method

using either available real data or similar simulated ones. If computational

budget allows, it is further advised to benchmark several methods, since they755

are comparable while having the upward bias, as in Section 4.2. This data-

driven fine-tuning can of course be directly incorporated in the depth calculation

procedure, which however can scale up computational time depending on the

considered choices of parameters and methods.

It is necessary to emphasize the limitations of the entire simulation study.760

First of all, the presented results and the accompanying analysis is — strictly

speaking — valid only for statistical processes which are similar enough to the

nine considered distributions. Further, the behavior of the explored performance

indicators is unpredictable outside the considered parameter ranges since it can

have a non-linear character; this holds for the tuning procedure in Section 4.2765

44

as well. Also, the study is restricted to a sample size of n = 1000 observations,

while considered dimensions d = 5, 10, 15, 20 and numbers of random directions

N = 100, 1000, 10000 are somewhat liming as well. Likewise, one should be

careful when interpreting results of the aggregated (averaging) statistics since

they might hide information that could be of use in particular cases. Finally,770

the approximation algorithms are compared with each other with respect to

minimum achieved depth, while exact depth values — being unknown (in most

of the cases) — are not addressed, and are only studied for the halfspace depth

(in d = 5) and the zonoid depth in Section 5.

The presented simulation study can be beneficial beyond the data depth775

context, i.e., when a function other than univariate depth is optimized over

the surface of the unit sphere. As an example, projection pursuit makes use

of an optimization algorithm that maximizes a certain projection index. This

problem, within the framework of skewness measures, is tackled in Loperfido

(2018); see also Franceschini and Loperfido (2017) for an implementation.780

The source codes of implementations of the methods described in Section 3

and the reproducing scripts of the experiments, as well as results of the fine-

tuning simulation study from Section 4.2 are gathered in the Supplementary

Materials. The disk space occupied by the complete results of the main simula-

tion study of Section 4.3 is 103.4 GB (with 5.6 GB for the generated data, and 0.9785

GB, 8.8 GB and 88.1 GB for the simulation results with 100, 1000 and 10000 di-

rections, respectively) and thus cannot be uploaded online. Nevertheless, these

results in a compact form, sufficient to reproduce all the illustrations and tables

of the article (including the Supplementary Materials, apart from the figures in

Section 2.4) are contained in the Supplementary Materials.790

Supplementary materials

Supplementary materials to this article include:

• Additional figures and tables: Additional figures and tables illus-

trating more comprehensive results of the experimental study, i.e., illus-

45

trations to the fine-tuning, simulation results and approximation error.795

(“ACPD Supplement.pdf”)

• Reproducing codes: C++ codes of all the methods from Section 3 as

well as the scripts for reproduction of experiments. (“codes.zip”)

• Experimental results: Results of the fine-tuning simulation study of

Section 4.2 as well as results of the main simulation study in Section 4.3800

in condensed form. (“results.zip”)

Acknowledgements

The research of Stanislav Nagy was supported by the Czech Science Foun-

dation [grant number 19-16097Y] and by the PRIMUS/17/SCI/3 project of

Charles University. The authors greatly acknowledge the comments of the two805

anonymous referees.

References

Afsari, B., 2011. Riemannian lp center of mass: existence, uniqueness, and

convexity. Proceedings of the American Mathematical Society 139, 655–673.

Azzalini, A., 2013. The Skew-Normal and Related Families. Institute of Math-810

ematical Statistics Monographs, Cambridge University Press.

Buss, S.R., Fillmore, J.P., 2001. Spherical averages and applications to spherical

splines and interpolation. ACM Transactions on Graphics 20, 95–126.

Cascos, I., 2010. Data depth: Multivariate statistics and geometry, in: New

perspectives in Stochastic Geometry. Oxford University Press, pp. 398–423.815

Chen, D., Morin, P., Wagner, U., 2013. Absolute approximation of Tukey depth:

Theory and experiments. Computational Geometry: Theory and Applications

46, 566–573.

46

Christmann, A., Fischer, P., Joachims, T., 2002. Comparison between various

regression depth methods and the support vector machine to approximate the820

minimum number of misclassifications. Computational Statistics 17, 273–287.

Cuesta-Albertos, J., Nieto-Reyes, A., 2008. The random Tukey depth. Compu-

tational Statistics & Data Analysis 52, 4979–4988.

Donoho, D.L., Gasko, M., 1992. Breakdown properties of location estimates

based on halfspace depth and projected outlyingness. The Annals of Statistics825

20, 1803–1827.

Dutta, S., Ghosh, A.K., 2012. On robust classification using projection depth.

Annals of the Institute of Statistical Mathematics 64, 657–676.

Dyckerhoff, R., 2004. Data depths satisfying the projection property. Allge-

meines Statistisches Archiv 88, 163–190.830

Dyckerhoff, R., Koshevoy, G., Mosler, K., 1996. Zonoid data depth: Theory and

computation, in: Prat, A. (Ed.), COMPSTAT ’96 – Proceedings in Compu-

tational Statistics, Physica-Verlag, Heidelberg. pp. 235–240.

Dyckerhoff, R., Mozharovskyi, P., 2016. Exact computation of the halfspace

depth. Computational Statistics and Data Analysis 98, 19–30.835

Franceschini, C., Loperfido, N., 2017. MaxSkew: Orthogonal data projections

with maximal skewness. R Foundation for Statistical Computing. URL:

https://CRAN.R-project.org/package=MaxSkew. R package version 1.1.

Golub, G.H., Van Loan, C.F., 1989. Matrix Computations. 2. ed., Johns Hop-

kins University Press.840

Grove, K., Karcher, H., 1973. How to conjugate C1-close group actions. Math-

ematische Zeitschrift 132, 11–20.

Grove, K., Karcher, H., Ruh, E.A., 1974a. Group actions and curvature. Inven-

tiones mathematicae 23, 31–48.

47

Grove, K., Karcher, H., Ruh, E.A., 1974b. Jacobi fields and Finsler metrics on845

compact Lie groups with an application to differentiable pinching problems.

Mathematische Annalen 211, 7–21.

Johnson, D., Preparata, F., 1978. The densest hemisphere problem. Theoretical

Computer Science 6, 93–107.

Kageyama, A., Sato, T., 2004. “Yin-Yang grid”: An overset grid in spherical850

geometry. Geochemistry, Geophysics, Geosystems 5, 1–15.

Koshevoy, G., Mosler, K., 1997. Zonoid trimming for multivariate distributions.

The Annals of Statistics 25, 1998–2017.

Kurihara, Y., 1965. Numerical integration of the primitive equations on a spher-

ical grid. Monthly Weather Review 93, 399–415.855

Ley, C., Verdebout, T., 2017. Modern Directional Statistics. Chapman and

Hall/CRC, Boca Raton, FL.

Liu, R.Y., 1990. On a notion of data depth based on random simplices. The

Annals of Statistics 18, 405–414.

Liu, R.Y., Parelius, J.M., Singh, K., 1999. Multivariate analysis by data depth:860

Descriptive statistics, graphics and inference. The Annals of Statistics 27,

783–858.

Liu, X., Zuo, Y., 2014. Computing projection depth and its associated estima-

tors. Statistics and Computing 24, 51–63.

Loperfido, N., 2018. Skewness-based projection pursuit: A computational ap-865

proach. Computational Statistics & Data Analysis 120, 42–57.

Mahalanobis, P.C., 1936. On the generalized distance in statistics. Proceedings

of the National Institute of Sciences of India 12, 49–55.

Mosler, K., 2013. Depth statistics, in: Becker, C., Fried, R., Kuhnt, S. (Eds.),

Robustness and Complex Data Structures: Festschrift in Honour of Ursula870

Gather. Springer, Berlin, pp. 17–34.

48

Mozharovskyi, P., Mosler, K., Lange, T., 2015. Classifying real-world data

with the DDα-procedure. Advances in Data Analysis and Classification 9,

287–314.

Nagy, S., Dyckerhoff, R., Mozharovskyi, P., 2020. Uniform convergence rates875

for the approximated halfspace and projection depth. Electronic Journal of

Statistics 14, 3939–3975.

Nelder, J.A., Mead, R., 1965. A simplex method for function minimization. The

Computer Journal 7, 308–313.

Ronchi, C., Iacono, R., Paolucci, P., 1996. The “cubed sphere”: A new method880

for the solution of partial differential equations in spherical geometry. Journal

of Computational Physics 124, 93–114.

Rousseeuw, P.J., Struyf, A., 1998. Computing location depth and regression

depth in higher dimensions. Statistics and Computing 8, 193–203.

Shao, W., Zuo, Y., 2012. Simulated annealing for higher dimensional projection885

depth. Computational Statistics & Data Analysis 56, 4026–4036.

Snyder, J.P., 1987. Map Projections: A Working Manual. Professional Paper

1395. U. S. Geological Survey. Washington D.C.

Tukey, J.W., 1975. Mathematics and the picturing of data, in: James, R.

(Ed.), Proceedings of the International Congress of Mathematicians, Cana-890

dian Mathematical Congress. pp. 523–531.

Williamson, D.L., 1968. Integration of the barotropic vorticity equation on a

spherical geodesic grid. Tellus 20, 642–653.

Zuo, Y., Serfling, R., 2000. General notions of statistical depth function. The

Annals of Statistics 28, 461–482.895

49

