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Abstract

Full-field optical measurements like Digital Image Correlation or the Grid Method have

brought a paradigm shift in the experimental mechanics community. While inverse identifi-

cation techniques like Finite Element Model Updating (FEMU) or the Virtual Fields Method

(VFM) have been the object of significant developments, current test methods, inherited from

the age of strain gauges or LVDTs, are generally not well adapted to the rich information

provided by these new measurement tools. This paper provides a review of the research

dealing with the design and optimization of heterogeneous mechanical tests for identification

of material parameters from full-field measurements, christened here Material Testing 2.0

(MT2.0).
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1 Introduction

Full-field measurement techniques such as Digital Image Correlation (DIC, [1]) or the Grid

Method (GM, [2]) have become mature and are now widespread in the experimental mechan-

ics community. This is mainly due to the fact that these techniques are able to provide,

within certain limits, displacement and strain fields that occur at the surface of specimens

of various shapes subjected to thermomechanical loadings. In a context of material charac-

terization, such measurements make it possible to move from simple statically determinate

tests to more complex ones, with a view to get more data from a single test, thus reducing

the testing effort and increasing the quality of the material models. It should be noted that

for mesoscopically-heterogeneous materials such as welds, large weave composites or graded

foams, the traditional test methods only provide an averaged behaviour while full-field mea-

surement have the potential to identify spatially-varying properties.

The problem with this approach however is that in general, no closed-form expression

linking local kinematic measurements to constitutive parameters is available. Therefore, early

research focused on developing robust and efficient techniques to identify material parameters

from full-field measurements in that case. The need for optimizing test configurations adapted

to this new paradigm emerged later, as the breadth of applications increased.

Using more complex tests, full-field measurements and inverse identification to identify

mechanical constitutive parameters is a new paradigm in material testing that for the moment

has been confined to research laboratories. There is no doubt that in the coming years, such

approaches will develop further and will eventually lead to new test methods widely adopted

by both academia and industry. For the sake of providing visibility to this technical area, the

authors of this paper feel that a new denomination has to be introduced. It is proposed to refer

to this as ’Material Testing 2.0’ (MT2.0), capturing the fact that this will lead to a complete

revamp of mechanical tests, eventually leading to new standards as cameras gradually replace

strain gauges and extensometers in testing laboratories. This denomination, MT2.0, will be
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used in the rest of the paper for the sake of clarity and brevity.

The objective of this paper is to propose a review of the research dealing with the design

and optimization of mechanical tests dedicated to MT2.0.

It is worth noting that optimizing test configurations has been a research topic for a long

time. However, with the classical approach of mechanical testing, which solely uses a limited

number of isolated sensors, the focus has generally been on optimizing the placement and

orientation of the sensors to collect the most relevant information. Optimal placement of strain

gauges [3, 4], accelerometers [5, 6, 7], or even GPS sensors on wide structures like bridges [8]

has been addressed in the literature. The proposed methodologies generally rely on statistical

properties that have to be satisfied [9]. They are of general purpose, and can be employed in

other fields than experimental mechanics [10, 11, 12]. However, since full-field measurements

provide spatially dense data, such methods devised for a small number of data points are

generally irrelevant. The best placement of cameras for 3D measurements or the best location

of displacement sensors still represents an open problem when full-field measurements are

employed or when constitutive parameters are identified by inverse analysis, [13] and [14],

respectively. But the present review will focus exclusively on designing specific specimen

geometry and loading configuration for identification of constitutive parameters from either

displacement or strain fields.

In this review, the papers have been classified according to four different categories fol-

lowing a progression of sophistication:

• Design by intuition

• Design by strain state

• Design by identification quality

• Design by full identification simulation

The first level, ’design by intuition’, consists in devising test configurations arbitrarily
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based on previous experience or intuition. However, as the complexity of the models in-

creases, together with the number of parameters to be identified, this approach generally

leads to considerably sub-optimal configurations and more rational approaches to test design

have to be proposed. A natural idea, referred to here as ’design by strain state’, is to use the

strain state as a design variable, as this bears witness of the material parameters. By trying

to balance the different components, one can hope to improve identifiability. However, the

dependence of the sought parameters to the strain components can be complex and a more

relevant approach, called here ’design by identification quality’, consists in using the quality

of the identification as an optimization criterion, generally using kinematic data directly from

numerical simulations. Nevertheless, this does not take into account important features com-

ing from the measurements themselves, including hardware performance and image processing

parameters. Therefore, the most sophisticated approach to date, ’design by full identification

simulation’, consists in simulating the whole identification chain, from image formation all

the way to identification. This allows for full uncertainty propagation to be captured and for

more realistic identification performance to be derived, which can then be used for test design

and optimization.

The present paper is organized as follows. First, the two main identification techniques

currently in use are briefly reviewed, namely, Finite Element Model Updating (FEMU) and

the Virtual Fields Method (VFM). Then, representative articles in the four different categories

of tests mentioned above are presented and discussed in separated sections. Some perspectives

and recommendations are finally offered.

2 Main procedures used to extract constitutive parameters
from full-field measurements

Before designing MT2.0 tests, the first step has been to elaborate procedures that could be

used to extract constitutive parameters from heterogeneous strain fields, in cases for which no
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closed-form expression exists between these unknown parameters and the local deformation

measurements. FEMU and the VFM have progressively imposed themselves as the two main

techniques for this. The main features of both methods are briefly recalled hereafter.

2.1 FEMU

To the best of the authors’ knowledge, the idea of updating a finite element model in order

to identify material properties has been given for the first time in the early 70’s in [15], in the

case of linear and non-linear elasticity. Updating is performed by minimizing a cost function

with respect to the sought parameters, this cost function reflecting the ”distance” between

displacements measured at some points, and their counterparts estimated with FE compu-

tation at a given iteration. A cross-shaped specimen subjected to two perpendicular loads

was used to this end in this reference. At that time, optimizing the test configuration was

not the objective, but the underpinning idea was that the location of the applied load and

the geometry of the specimen would be such that its response was “sufficiently” influenced

by all the unknowns, so that they could be identified. A hole was added in order to increase

heterogeneity. It is worth noting that FEMU does not necessarily require full-field measure-

ments. Only numerical simulations were presented in [15], but this paper served as a starting

point to many subsequent studies where this idea was employed with actual measurements.

For instance, shortly after this first reference, its first author used input data provided by a

limited number of strain gauges [16]. It seems that [17] is the first example where FEMU input

data are full-field measurements. Composite materials were tested in this reference. This was

the starting point of many developments covering various materials and types of constitutive

equations. Examples dealing with biological materials [18, 19], metals [20, 21, 22, 23, 24, 25],

MEMS [26], composites [27, 28, 29, 30], heterogeneous [31] and homogeneous [32] hyperelastic

materials, wood [33], and even crimped mineral wool [34], can be found in the literature. Note

finally that when DIC is the measuring technique, it is possible to merge the two steps in-

volved in the procedure described above, namely measuring the displacement field on the one
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hand, and then applying FEMU on the other hand. This leads to the so-called Integrated DIC

(IDIC) introduced in [24]. In this reference, the authors find that merging or not these two

steps gives equivalent results, while [25] claims the integrated version leads to more reliable

results. It seems however that this approach has not yet been widely used, so we consider

here that IDIC is a particular case of FEMU coupled with DIC measurements.

The main strength of FEMU is that it relies on the finite element method, which is a

versatile tool widely used in the solid mechanics community. This is also its main weak-

ness. Indeed, FE was initially developed for a different problem, namely finding the displace-

ment/strain/stress fields by assuming that the constitutive equations and their governing

parameters are known. Using this tool to solve the material identification problem automat-

ically leads the identification procedure to be iterative, even in the simplest case of linear

elasticity. As a consequence, FEMU is generally quite computationally intensive, particularly

for geometrical or material non-linearities. Finally, boundary conditions are necessary to per-

form any FE calculation, and feeding FEMU with faithful experimental boundary conditions

is often challenging, especially in terms of force distributions. DIC-measured displacements

at the boundary of the field of view can be used but their noisy nature also creates specific

problems.

2.2 The VFM

The drawbacks of FEMU have led researchers to elaborate alternative procedures which could

straightforwardly (instead of iteratively) provide the unknown parameters. In this regard, a

pioneering approach was proposed in 1986 in [35]. It consisted in using the Maxwell-Betti

reciprocal work theorem in order to identify the six independent bending stiffnesses of wood

plates. Indeed, assuming linear elasticity for the constitutive materials, considering a simple

square plate subjected to three different loads and mixing the three corresponding deflection

fields leads to six independent equations since the work done by the forces applied in test #i

through the displacement of test #j is equal to the work done by the forces applied in
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test #j through the displacement of test #i. The system formed by these six equations

being linear, the six unknowns are found after a mere inversion. The drawback is that even

if only one specimen is sufficient to identify six independent parameters with this approach,

three different tests must be performed on the same specimen to obtain a set of independent

equations. Another point is that measurements are always noisy, and two measurement fields

are involved in each equation, which makes this approach rather noise-sensitive.

These two limitations (i- three different tests, and ii- results highly sensitive to noise) have

led a related approach to emerge in [36, 37]. In these references, instead of using the Maxwell-

Betti reciprocal work theorem, it was proposed to consider the principle of virtual work,

which represents the weak form of equilibrium. Indeed, an interesting feature of the principle

of virtual work is that it is rigorously satisfied for any continuous and piecewise differentiable

virtual field, thus for an infinite number of such fields. The idea is therefore to combine a

unique actual displacement field measured during a test with different but independent virtual

displacement fields arbitrarily selected by the user. In the case of linear elasticity and if the

actual displacement field is such that all the unknown parameters are involved in the response

of the specimen, it can be shown that choosing at least as many independent virtual fields as

unknowns leads to a system of linear equations, which directly provides the unknowns after

inversion. Compared to the approach based on the Maxwell-Betti reciprocal work theorem, a

single test is potentially sufficient with the VFM. In addition, only one actual measurement

field affected by noise instead of two is involved, which makes this identification technique

more robust. Last but not least, the principle of virtual work is valid whatever the type of

constitutive equations, so even in the case of non-linearities such as large deformations or

plasticity, which is not the case of the Maxwell-Betti reciprocal work theorem. These features

have led VFM-related research to expand, with mainly three types of contributions. The first

type deals with the improvement of the method itself, mainly concerning the choice of the

virtual fields [38, 39, 40, 41, 42, 43, 44] since this choice directly influences the robustness of
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the method. The second type concerns applications involving more sophisticated constitutive

equations. Anisotropic elasticity for composite materials [45, 46, 47] and wood [48], elasticity

or hyperlasticity of elastomers [49, 50] and biological materials [51, 52, 53, 54], elastoplasticity

of plain metals [55, 56, 57, 58, 59, 60, 61] or welds [62], are typical examples. The use of the

VFM to characterize some materials which are less widely used in mechanical engineering,

such as paperboard [63] or polymeric foams [64], has also been reported in recent papers. The

effect of time was also considered with vibrations [65, 66]. This made it possible to characterize

viscoelastic materials [67, 68]. Characterizing the response of various materials at high strain

rates constitutes the most recent example of use of this identification method [69, 70]. Full

details on the VFM can be found in [71]. The third type of papers on the VFM deals with

test design, which is the topic addressed herein.

2.3 VFM vs. FEMU

Some comparisons between FEMU and VFM have been published in different papers, [72, 73,

51, 74, 75, 76]. FEMU may potentially work with a limited number of input data, while full-

field measurements are necessary with VFM. Volume integrals involving data in the bulk must

be calculated with the VFM but only measurements at the surface are generally available,

except in the cases where Digital Volume Correlation or other bulk measurement techniques

like Magnetic Resonance Elastography are available [77, 78]. This means that assumptions

are required to deduce the through-thickness strain distribution from the measurements on

the surface. Such assumptions are reasonable only in the case of thin specimens, while more

complex 3D specimens can only be treated with FEMU. Another point is that representative

boundary conditions have to be used with finite element calculations but they are not always

available. On the other hand, no exact knowledge of boundary conditions is needed with the

VFM if suitable virtual fields are selected. The quality of the results (in terms of robustness)

obtained with both identification techniques is globally similar, but the main advantage of

the VFM is that no resolution of the direct problem is necessary, which considerably reduces
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computation times. As an example, it was reported that for comparable identification per-

formance, the VFM was 125 times faster than FEMU in the case of biomaterials exhibiting

a hyperelatic response [51] and 428 or 263 times faster for two cases of elasto-plasticity [79].

With a view to designing optimal testing conditions, it is clear that refining specimen shape

or loading configuration requires many resolutions of the parameter identification problem. In

that case, reduced computation times for the identification procedure becomes a significant

asset.

Let us now examine in which way FEMU and the VFM have been used for designing tests

in the literature.

3 Design by intuition

A simple route to obtain heterogeneous strain fields is to ”recycle” pre-existing tests, by keep-

ing them as such or by slightly adapting them. For instance, in one of the very first papers

on this topic [20], it was proposed to perform a tensile test on a parallelepipedic specimen.

Heterogeneity was induced by two asymmetric notches machined on each side of the specimen.

The in-plane displacement was measured with a video tracking system, at 120 retro-reflective

markers regularly deposited onto the front face of the specimen. From these measured dis-

placements, the authors identified the yield stress of both the isotropic Von Mises and the

orthotropic Hill yield criteria by using FEMU. A similar specimen geometry was discussed

in [22] with the same objective, but DIC was used in this case to perform the measurements.

In [80], heterogeneity was induced by a varying cross-section and the planar anisotropy of the

plastic response was identified. Another intuitive approach is to use an open-hole tensile test

[81, 82, 83, 84] as the specimens are easy to manufacture and provide strain heterogeneity. The

displacement field, measured with ESPI (Electronic Speckle Pattern Interferometry) in [81],

DIC in [82, 83] and moiré interferometry in [84], was used to feed FEMU with experimen-

tal data and identify the four in-plane stiffnesses of an orthotropic composite material. The
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authors of the latter reference note that various sources of uncertainty impair the quality of

the results, and thus pay attention to quantifying the uncertainty with which the parameters

are identified by using a Bayesian approach. A double notched specimen was also employed

in [83], and the authors observed that Poisson’s ratio was more easily identified with this

second geometry.

An extension of the classical tensile test is the biaxial tensile test, which gives rise to a

heterogeneous strain field at the centre of cruciform specimens. This test has been used in

various cases in the literature:

• composite materials have been characterized in [85] by using DIC and FEMU. Results

from specimens with and without a hole in the centre are compared. Interestingly,

the authors report that results are better without the hole, presumably because of the

bias due an insufficient spatial resolution arising from the concentrated strains around

the hole. This remark justifies that a complete optimization procedure for test design

should ideally account for the metrological performance of the measuring technique, as

discussed in Section 6 below;

• the parameters of a hyperelastic law of an elastomeric material are identified in [49] with

DIC and VFM. Compared to the preceding case, the strain level is much higher, which

makes the signal-to-noise ratio more favourable;

• the parameters governing an elastoplastic law were identified in [86, 87]. The geometry

of the fillets between the branches of a cruciform specimens was adjusted in the latter

reference to improve the quality of the identification procedure, and integrated DIC

(IDIC, [24]) was employed.

Characterizing plasticity parameters of a mild steel was proposed in [88] by using a com-

pact tension specimen (CT). This test is generally employed to study crack propagation in

metals. In this reference, the authors took advantage of the strongly heterogeneous strain field
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which occurs in such specimens, in order to identify the parameters of a viscoplastic power law

with isotropic hardening. The identification method is FEMU and displacement/strain fields

were measured by tracking the intersection points between the lines of a grating deposited

onto the specimen before the test. More recently, a ’bridge-like’ specimen was used in con-

junction with the VFM [89] to identify a Hill48 anisotropic plasticity criterion. Unfortunately,

the steps to reach this configuration are not detailed in the paper.

The three-point bending test has also been widely used to characterize materials in exper-

imental mechanics. Short beam bending activates the whole set of parameters governing the

in-plane response of orthotropic composites, leading to possible identification as illustrated

in [27, 28, 90, 30, 91] with DIC and FEMU.

Another similar approach is to rely on a standardized shear test developed for composites,

namely the Iosipescu, or double V-notch, shear test. The standard specimen geometry fea-

tures a double symmetric notch in the gauge section to ensure a dominant and near-uniform

strain field between the two notches [92]. In the same vein as for the tensile and bending tests

discussed above, this shear test has been recycled by using the standard fixture, but removing

the specimen notches in an attempt to create a combined state of bending and shear. This

specimen thus behaves like a short double-clamped beam. As such and despite the dominance

of the shear strain, the four stiffnesses of an orthotropic composite influence the strain field

between the clamps. This property has been taken advantage of to characterize various or-

thotropic materials such as composites [93, 94] or wood [95], the VFM being the identification

technique in these cases. It is worth noting that in the latter case, an off-axis configuration

was used to enhance identifiability, as also favoured in [96].

Compression of a circular disk (referred to as the Brazilian test) is a well-known test for

brittle materials such as rock or concrete. In [97], the authors showed that the heterogeneous

strain field observed with moiré interferometry during this test could be used to characterize

an orthotropic carbon fibre composite. In [98], it was proposed to use slotted disks to increase
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heterogeneity in the strain field, and to deduce the Young’s modulus and Poisson’s ratio of

an isotropic material.

In conclusion, while sidetracking standard tests to adapt them to the new paradigm of

MT2.0 is a first natural approach, it generally falls short when more complex behaviours have

to be identified as it is less intuitive to ensure that all parameters are involved in the response.

Also, even when identification is successful, the configurations are generally sub-optimal and

a more rational approach to test design has to be devised.

4 Design by strain state

The aim here is to present some examples of test design found in the literature, which are

governed by the fact that certain types of strain states should take place within a specimen

to activate all the unknown parameters for successful identification. The design variables are

mainly some parameters which govern the shape of the specimen after suitable parametriza-

tion, the fixture being then adjusted to enable attachment of and load transfer to the specimen.

Compared to the preceding examples, non-conventional specimens and/or loading systems are

used, and finite element computations are employed to optimize design variables and check

that the desired strain states are obtained. This category has been divided into two subcate-

gories: test configurations designed intuitively on strain distribution; and test configurations

obtained through actual shape optimization with strain-distribution-based cost function.

4.1 Intuition-led design based on strain state

A few examples of test designs based on strain states can be found in the literature, where

unusual specimen shapes have been intuitively defined based on considerations on strain

states. One of the examples deals with a punch test designed to identify an anisotropic Hill48

surface coupled to a Ludwig strain hardening model [99]. The specimen was designed in such

a way that various relevant strain states coexisted, each of them occurring in a different part

of the specimen. These strain states are biaxial tension, uniaxial tension and shear. Figure 1
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shows the geometry of the specimen as well as the strain field obtained with a finite element

model. The outer periphery of the specimen is clamped while the load is applied at the centre,

perpendicular to the plate, as in a punch test. The specimen is circular, so measurements

along both the rolling and transverse directions are possible with the same specimen. DIC

was used to measure the 3D displacement and strain at the surface of the specimen, and six

constitutive parameters were identified with displacement- and force-based FEMU, two for

the Ludwig hardening (the initial yield stress was obtained separately), and four for the Hill48

criterion. This test configuration was used recently by other authors to calibrate a Yld2000

anisotropic criterion [100].

Figure 1: Specimen designed for punch test, after [99]. Exx, Eyy and Exy are the in-plane
components of the Green-Lagrange strain tensor.

In the same spirit, hyperelastic materials were considered in [101]. Classically, three ho-

mogeneous tests are performed to characterize hyperelastic materials, namely uniaxial tensile

(UT), pure shear (PS) and equibiaxial tensile (ET) tests [102]. Note that the three corre-
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sponding strain states coexist in the biaxial test discussed in the preceding section but in [101],

it was proposed to combine these three types of strain states in a single test which derives

from the classic tensile test, merely by adding to the specimen a third branch perpendicular

to the two of the classic geometry of any tensile specimen, see Figure 2-a. Compared to the

biaxial test on cruciform specimens, the benefit is to obtain these three strain states with a

uniaxial tensile machine, which is more readily available in testing labs than a biaxial one.

This third branch was attached to a grip fixed to the frame of the test machine, see Fig-

ure 2-b. Simulations confirmed the coexistence of these three strain states at the centre of

the specimen, see Figure 2-c. According to [101], processing the test images with DIC and

identifying the parameters with the VFM provided constitutive parameters in agreement with

those obtained with classical homogeneous tests.

(a) Model of the specimen (b) Testing device (c) Three strain states in the speci-
men

Figure 2: Test design for elastomeric materials where uniaxial tensile (UT), pure shear (PS)
and equibiaxial tensile (ET) strain coexist, after [101].

An appealing aspect of MT2.0 is that specimens featuring non-standard geometries can

be tested, thus enabling the measurement of actual properties of components instead of those

measured on specimens elaborated specifically for testing purposes. This is especially rel-

evant in the case of materials which properties are sensitive to the manufacturing process.

In [103] for instance, it was proposed to measure the elastic through-thickness parameters of
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thick composites tubes. It is clear that in this case, even cutting parallelepipedic specimens

through the thickness of such tubes and testing them with classical homogeneous tests is

irrelevant because of the curvature of the fibres. In [103], it was proposed to cut a thin ring

in such tubes, to test it under compression, and to consider only a portion of this ring to

perform identification, see the grey zone in Figure 3 below. The location of this zone on the

ring has been chosen in such a way that the amplitude of the three in-plane strain components

are balanced on average. The aim was to ensure better use of the camera pixels as imaging a

larger part of the ring, or even its entirety, would result in the loss of many pixels thus chal-

lenging spatial resolution. The same procedure was employed later to obtain the equivalent

orthotropic elastic properties of superconducting winding rings (or ’pancakes’), constitutive

of a large MRI magnet [104].

Figure 3: Compression test on a ring cut in a composite tube, after [103].

Finally, a D-shaped specimen was designed in [105] to identify the parameters governing

a visco-plastic law. The specimen is plane and its D-shaped geometry is unconventional, as

can be seen in Figure 4. It was loaded vertically in tension using a standard uniaxial testing

machine. This geometry was defined manually but iteratively, starting with a shape chosen by
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intuition, then by performing FE calculations with a set of constitutive parameters equal to

the reference ones, and finally by analyzing the results in such a way that various criteria were

satisfied in the best possible way. These criteria are that stress and strain rate heterogeneities

are maximized, gradients in stress or strain near sample edges are minimized, and buckling

is prevented. The authors processed FE simulated data. They found a significant difference

between the identified and reference parameters, because of uniqueness issues. This problem

was fixed by either reducing the number of unknown parameters or, more satisfactorily, by

considering a second test in addition to the first one. This second test was performed by

applying a displacement to the moving grip with a higher velocity, which increased the richness

of the simulated data input into the identification process. No experimental validation has

been published so far.

Figure 4: Specimen geometry proposed in [105] to identify visco-plastic parameters.
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4.2 Optimization-led design based on strain state

To the best of the authors’ knowledge, the first published application of this approach con-

cerns the optimization of the dimensions of a T-shaped specimen for orthotropic composite

materials [106]. The idea here was to combine a bending test on short beam and a tensile

test. The former activates the Young’s modulus in the horizontal direction as well as the

in-plane shear modulus, the latter the Young’s modulus along the vertical direction as well as

one of the Poisson’s ratios, thus making it possible to identify the four parameters of an or-

thotropic material on a single test specimen. In [106], the dimensions of the specimen a, b, c, d

(see Figure 5) were adjusted in such a way that the strain levels over the different zones were

balanced. This was achieved by minimizing the following cost function with respect to the

design variables:

Figure 5: Schematic view of the T-shaped specimen (left), and areas for strain balancing
(right)
after [106].

f(
b

a
,
c

a
,
d

a
) =

(εyy − εxx)2

(εyy + εxx)
+

(εyy − 2εxy)2

(εyy + 2εxy)
+

(εyy − 2εxy)2

(εyy + 2εxy)
(1)

with a acting as a scaling parameter. εxx is the average of εxx over area 1, εyy the average of

εyy over area 2 and εyy the average of εyy over area 3, see Figure 5.
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The optimization was performed directly in ANSYS 5.1 using their native APDL language.

Unsurprisingly, it was shown that optimal dimensions differed depending on the material

orthotropy ratios. A further study proposed an experimental implementation of this test

[107] where elastic constants obtained from actual T-shaped tests were in good agreement

with reference parameters obtained with standard homogeneous tests. The grid method was

used for the strain maps, and the identification procedure was the VFM with manually-defined

virtual fields.

The most advanced implementation of a strain-based test design arises from a series of

publications by a Portuguese-French team [108, 109, 110, 111]. This concerns the identification

of the parameters governing the anisotropic Yld2004-18p [112] plasticity model. The test was

designed by maximizing five quantities defined in [108], which reflect some properties that

the specimen should ideally exhibit. The first one is that the strain state range within the

specimen should be the widest possible. Each strain state was described by the ratio ε2
ε1

between the minor (ε2) and major (ε1) strains of an in-plane stress state. Indeed this ratio

represents different strain states (see Figure 6-a), and the widest possible difference between

the maximum and minimum values of this ratio represents a wanted feature. This criterion

is reflected by C1 in Equation 2 below.



C1 =

(
ε2
ε1

)
R

=

(
ε2
ε1

)
max

−
(
ε2
ε1

)
min

C2 = Std(
ε2
ε1

) =

√√√√∑n
i

[(
ε2
ε1

)
i
− µ( ε2

ε1
)
]2

n− 1

C3 = Std(εp) =

√∑n
i (εpi − µ(εp))

2

n− 1

C4 = εpMax =
εptest + εptens + εpshear + εpbiaxial + εpcomp + εpplane

6

C5 = Av(εp) =

∑n
i ε

p
i vi

vt

. (2)

A second feature is that the ε2
ε1

ratio should be spread out over a large range of values

between the extrema for this ratio shown in Figure 6-a, and not be concentrated around the
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(a) Desired strain states to occur in the specimen, after [108] (b) Butterfly specimen, after [110]

Figure 6: Designing a specimen for elasto-plasticity, after [108, 110].
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mean value. This property is reflected by the standard deviation of the ratio ε2
ε1

throughout

the specimen, which gives C2 in Equation 2, where n is the number of pixels.

The heterogeneity of the plastic strain distribution should also be as wide as possible,

which means that the standard deviation of the equivalent plastic strain εp defined by C3 in

Equation 2 should be maximized.

Since the specimen was designed for sheet metal forming processing, a similar deformation

level as the one recorded in actual sheet metal forming should be reached during the test.

Hence the authors proposed to consider a global maximum plastic strain defined by the mean

value of the maximum plastic strain achieved during the test on the one hand, and the

maximum values of the most relevant strain states expected to occur during the test on the

other hand, namely, equibiaxial tension, pure shear, uniaxial tension, plane strain tension and

uniaxial compression. This gives quantity C4 in Equation 2.

Finally, the average plastic strain reached within the specimen was also considered because

it reflects the global plastic strain level. The points characterized by the highest value are

expected to contain the richest information. This quantity is defined by C5 in Equation 2.

The global criterion was a scaled and weighted sum of the five quantities Ci, i = 1 · · · 5,

thus

It =
5∑
1

wriCi

wai
(3)

where wri are scaling parameters and wai are weighting parameters.

This indicator was then used to rank several test configurations from the literature.

In [109], the process was taken one step further by designing a specimen through the mini-

mization of a cost function built up with this indicator. The specimen edges were defined by

control points of a spline function parameterizing the shape, and minimization was performed

with respect to the coordinates of these points, using a Nelder-Mead direct search algorithm.

In the same spirit, the authors proposed to complete this approach by also designing the
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shape of the grips through which the load was to be applied to the specimen [110]. This

procedure led to the so-called butterfly specimen (see Figure 6-b), which has been validated

experimentally in [110] with DIC and FEMU (force and strain cost function) on the Yld2004-

18p plasticity model with a Voce hardening function, leading to 18 parameters to identify. In

[111], the VFM was used with the same specimen to identify the Hill48 model with a Swift

hardening law.

The same group [113, 114] recently extended this approach with a topology optimization

tool known as Solid Isotropic Material Penalization (SIMP). As opposed to the approach in

[109] where the external geometry was controlled by splines, this starts with a symmetrical

rectangular shape, and uses a density parameter to give more or less weight to different parts

of the sample, with the aim of achieving a binary distribution of density, either 0 or 1, defining

the shape of the specimen. This requires a scheme to avoid unrealistic solutions in the form

of high frequency variations of the density. Some interesting solutions were found.

5 Design by identification quality

The procedures described above only focus on strain distributions. While they clearly influ-

ence the quality of identification, it is difficult to establish a quantitative link between strain

distributions and identified quantities without performing the identification. This is why the

researchers have been trying to use metrics on the quality of identification as a target for

test design. In this case, the cost functions driving the test optimization involve identification

errors or uncertainties for VFM-based identifications, or FE parameter sensitivities for FEMU

identification. The price to pay is that the identification procedure is called in each loop of

the iterative design procedure. This type of optimization is therefore much more computa-

tionally intensive compared to the use of just strains. Therefore, the computation time of the

identification technique becomes a key parameter in this case.
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5.1 Sensitivities to constitutive parameters in FEMU

A natural way to ensure that constitutive parameters are well activated in a particular test is

to compute maps of sensitivities of displacement or strain fields to each constitutive parameter.

This is done in practice by varying each parameter individually and deriving the sensitivity

field by finite difference. This requires at least a number of FE computations equal to twice

the number of parameters for a single sensitivity evaluation. It should be noted that in IDIC,

the sensitivities are an integral part of the identification process.

To the best knowledge of the authors, the first attempt at test optimization using such

sensitivities can be found in [115]. The authors considered bending tests on square wood

panels. The location of the supports and applied loads was optimized by maximizing the

sensitivity of the deflection of the specimen at the nodes of a regular mesh with respect each

unknown bending rigidity, deflection being estimated with finite element computations. The

sensitivity S(Dij) of each bending stiffness component Dij is defined by:

S(Dij) = || dU
dDij

||/ || U
Dij
||, ij = xx, yy, xy, ss. (4)

where ||X|| denotes the L2 norm of vector X. Dxx, Dyy, Dxy and Dss are the four orthotropic

bending stiffness components. Maximization was performed by using a genetic algorithm. The

location of these points being found, an experiment was performed on an Okoume plywood

panel. The authors reported that the stiffnesses identified with this procedure were in good

agreement with theoretical expectations. The measuring technique for the deflection field was

fringe projection, and the identified method FEMU with a cost function based on deflections.

More recently, Bertin et al. [116] used sensitivity maps to optimize the fillet radii of a bi-

axial cruciform specimen for elastic and elasto-plastic identification. It should be noted that

for elasticity, a scaling procedure was introduced, which here was the maximum admissible von

Mises stress to ensure that the specimen remained fully elastic. Indeed, different geometries

exhibit different global stiffnesses and the sensitivities may be influenced by that. This need
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for scaling is a recurring issue to optimize tests for elasticity, and will be encountered in several

studies reported later in this article.

The work presented in [117] considers a more advanced shape optimization methodology,

Solid Isotropic Material Penalization (SIMP) but still based on FE sensitivities. It was pro-

posed to use IDIC [24] to identify the shear modulus of linear elastic orthotropic materials.

The initial specimen shape was rectangular and the load was a uniaxial compression. The

specimen was divided into small elements, each of them being affected by a density ρ ranging

between 1 and a scalar α, which is positive and close to 0 (and not rigorously 0 to keep the

problem well-posed). 0 reflects the total absence of material and 1 its presence. The authors

defined the geometry of the specimen by considering the sensitivity of the displacement field

to the spatial distribution of ρ. The cost function to be minimized involved both the sensitiv-

ity to the shear modulus and the sensitivity to the spatial distribution of ρ. At convergence,

a value of ρ close to zero means that the corresponding element should be removed, a value

close to one that it should be kept. Numerical simulations carried with three completely

different initial spatial distributions of ρ showed that similar final patterns were obtained at

convergence in the three cases. A relatively marked contrast in the distribution of ρ then

facilitated the definition of a threshold value beyond which the small ρ-value elements were

removed. Only the shear modulus was considered as unknown, the three other constitutive

parameters being given a priori. Experiments carried out on an optimized orthotropic wood

specimen showed that the shear modulus could be identified with this approach, the sharpness

of the cost function around the identified value illustrating the robustness of the procedure.

5.2 Noise sensitivities in the VFM

In the VFM, FE sensitivities are less relevant as the procedure does not involve any FE

computation. In elasticity, the relevant quality indicators are the noise sensitivity parameters

ηij , which relate the standard deviation of the strain noise to the standard deviation of each

Qij stiffness parameter as in [118].
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Std(Qij) = ηijγ, ij = xx, yy, xy, ss. (5)

where γ is the standard deviation of the strain noise, assumed here to be Gaussian, white

and uncorrelated between the three strain components. The latter assumption is clearly not

rigorous but it is necessary to solve the problem of virtual field optimization; even if the virtual

fields are not optimal stricto sensu, they are still much better than any manually-defined ones.

The first study using these noise sensitivity parameters is reported in [119], where it was

proposed to optimize the unnotched Iosipescu specimen discussed in Section 3 with respect to

two design variables, the length of the gauge section L and the orientation of the fibres in the

specimen, θ, see Figure 7-a. The cost function to be minimized is such that the sensitivities

ηij are balanced. This cost function is defined by:

f(L, θ) =
(ηxx − ηyy)2 + (ηxx − ηss)2 − (ηyy − ηss)2

(ηxx + ηyy + ηss)
2 (6)

ηxy was not considered here because its value is always much larger than the others and

would therefore have overwhelmed the cost function. The idea of using a normalized cost

function is to avoid the problem of scaling. Indeed, since the problem is fundamentally a signal-

to-noise ratio one, the procedure would naturally converge towards the stiffest configuration

when displacements are imposed, thus leading to the largest possible strain values, regardless

of whether they are feasible or not (onset of non-linearity, fracture, poor aspect ratio). In

[120], this problem was solved by using a maximum stress failure criterion, playing the same

role as the von Mises stress in [116]. But here, a scaled cost function was used to mitigate

this issue for the sake of simplicity.

Results show that the sensitivity is much higher for θ than for L, as illustrated in Figure 5-

b where the cost function is nearly flat along the horizontal direction. L was therefore fixed

at a reasonable value and θ selected according to the cost function. Experimental results are

presented in [119]. The grid method was used as strain measurement technique.
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(a) Schematic view of specimen and fixture, after [119] (b) Cost function and two design
points, after [119]

Figure 7: Design of an unnotched Iosipescu specimen, after [119].

One of the main limitations of this approach is that it does not take into account the

resolution of the camera. In fact, preliminary optimizations tended to converge towards very

elongated specimens, a trend that can be seen in Figure 7-b. This forced the authors to put an

upper limit on the specimen length in the optimization process. This is one of the motivations

to move to image deformation as presented in the last section.

Other cases of optimal test design based on this approach have been proposed in the

literature. For instance, [121] addressed the design of a test for orthotropic foam specimens.

The specimen was placed in an Arcan fixture, and both the angle of the fixture with respect

to the vertical load and the orientation of the specimen in this fixture were optimized. Data

are often missing near the free edges of a test specimen, so the sensitivity of the identified

parameters to these missing data was also considered in the optimization procedure. The cost

function was similar to that in Eq. 6 [119], which meant that no force scaling was necessary

as it was embedded in the cost function. It was found that the four stiffnesses (and not only

the shear modulus) could be successfully identified with this test when optimized parameters

were considered.

In the same spirit, the VFM sensitivity to noise was employed in [122] to design a bending

test where the six bending stiffnesses of a composite plate were the unknowns. The shape of
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the plate was parameterized with a spline function. The design variables were the coordinates

of the control points of this function, the coordinates of the three supports of the plate and

those of the point where the force was to be applied. This led to some non intuitive shape

for the specimen, as well as non-intuitive locations of the supports and applied force, as

illustrated in Figure 8. No experimental validation was carried out. This example also shows

the limitations of this approach which does not take into account the measurement process.

The shape in Figure 8 will lead to the loss of many pixels of the camera, thus challenging the

spatial resolution of the measurements.

Figure 8: Optimization of a bending test for composite plates, after [123].

Finally, in [124], it was proposed to optimize an open-hole off-axis specimen subjected to

a tensile test in order to identify the four elastic parameters of a unidirectional orthotropic

carbon-epoxy composite. The statistical correlation existing between these parameters was

also studied. The cost function to be minimized was the sum of the relative difference between

reference and identified parameters, and the design variables were the fibre angle and the

diameter of the hole. DIC was used to measure the strain field, and the VFM with special

optimized virtual fields [118]. The optimal configuration they identified was with the fibres

aligned with the specimen length and a hole of 7 mm for a width of 36 mm and a length of

26



200 mm.

6 Design by full identification simulation

In the examples of the preceding section, the data used in the optimization procedure were

directly provided by finite element models. However, these data are not exactly equal to the

displacement or strain measurements that would be returned by a white-light full-field mea-

surement system such as DIC. Indeed the metrological performance of full-field measurement

techniques is now better known, and various types of random and systematic errors impairing

the measurements have been characterized in many recent papers. In particular, a single pixel

cannot provide displacement information; it is necessary to rely on the information at the pix-

els located in a zone surrounding this point. In classical DIC, this zone is a subset, which

shape is generally quadrilateral [1]. When processing regular patterns, various strategies can

be employed [125] but the most popular one is based on the windowed Fourier transform

restricted to a single frequency equal to the nominal frequency of the regular pattern, and the

window may have various shapes [126]. With both techniques, the consequence is that the

displacement returned at a given point also depends on the displacement returned at points

located in its vicinity, and the wider the subset or the window, the more marked this depen-

dence. This introduces a bias in the displacement and strain maps, which manifests itself by

a blur, thus by the fact that the amplitude of the details and strain gradients are attenuated,

as explained for instance in [127, 128] for DIC, and [129] for the GM. It also means that

considering directly the results of finite element simulations as synthetic experimental data

may potentially lead to misleading conclusions when designing optimal testing configurations.

For instance, considering these simulations alone may lead to an optimal solution featuring

high strain gradients containing rich information, but such gradients may not be correctly

rendered by an actual full-field measurement system. Reducing as much as possible the size

of the subset for DIC or the window for the GM limits this bias, but the random error due to
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the fact that images are unavoidably noisy increases in proportion. A trade-off has therefore

to be found, and various parameters can be adjusted for that in addition to the size discussed

above, such as the degree of the matching function used to model the actual displacement

field within the subsets and the step (defined by the distance between two remote subsets)

for DIC. The best trade-off should ideally be obtained by adding these settings to the design

variables.

Before optimizing all these variables at the same time, intermediate steps have been pro-

posed in the literature. The first one was to simulate the whole chain going from the images

to the identified parameters in order to study the influence of various design variables. The

first attempt was published in 2012 [130] where synthetic grid images were considered. Dis-

placement and strain fields were extracted from these images, and then considered as input

data for the VFM. This study was the direct follow-up of that presented in the previous

section, [119], where image deformation was not taken into account. The results here showed

that a natural minimum appeared in the cost function without having to restrict the range of

specimen length. As the procedure naturally takes into account the resolution of the camera,

high aspect ratio specimens were penalized and a length of 30 mm was identified as optimal

for the unnotched Iosipescu specimen. Since measured displacements are noisy, it is generally

necessary to apply some spatial or temporal smoothing before proceeding to differentiation

to obtain strains. Such smoothing acts as an additional low pass filter in space and it is

necessary to consider how this operation can be performed in an optimal manner to minimize

the bias arising from it. Such optimal displacement smoothing parameters can be selected

thanks to the simulator introduced in [130], and uncertainty bounds for the identified stiffness

components can be derived from the process. This simulator was then extended to DIC [120],

unsurprisingly showing the superiority of the performances of the grid method, consistent with

recent results obtained with a rigorous approach [131]. This simulator with the Grid Method

has also been used in transient dynamics to optimize post-processing parameters for the so-
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called Image-Based Inertial Impact (IBII) test [132]. It was used in [133] to compare three

IBII test configurations (a plain one, and two others with a hole or notches) for viscoplastic

identification of a titanium alloy. The effect of impact speed was also explored, together with

spatial and smoothing parameters.

All the links of the chain spanning between synthetic images and final constitutive pa-

rameters being available through suitable models, the next stage is to optimize the settings

and design variables governing each of these links. This is however quite a complex problem

because of i- the number of parameters to be considered, which is greater than in Section 5

above, and ii- the fact that some variables such as the subset size for DIC and the degree of the

matching function are discrete, which makes it necessary to use more involved optimization

procedures like genetic algorithms. This obviously induces significant computation times, the

identification procedure being run within each iteration of the optimization procedure.

A first attempt was proposed in [134] for elasto-plastic identification, where the geometry

of a double notch machined in a tensile specimen was optimized. Two subset sizes and

25 different combinations of variables defining the notches were considered. The cost function

used here was the squared difference between the reference and identified stress-strain curves.

The reason for this choice is that the stress-strain curve can be more or less sensitive to some

parameters, so only the most influencing ones were considered if choosing this cost function.

The best design was the one minimizing the distance between these two stress-strain curves.

Interestingly, the best option was shown to be the one leading the a diffuse plastic strain

distribution while non-optimal ones exhibited high strain concentration close to the notches,

which was probably due to the fact that high strain gradients were poorly rendered by the

DIC system. As in [133], this approach was however only a comparison between potential

candidates defined a priori, so the procedure probably missed some better configurations.

A more sophisticated approach was presented in [135] to tackle this problem by using a

two-step approach. Indeed the geometry and the load were first optimized by using fixed
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(but reasonable) values for the DIC settings. The first set of design variables defining the

geometry and load were then fixed after this first step, and DIC parameters were optimized

in a second step. Different tests were considered to identify the parameters governing the

elastic behaviour of orthotropic materials like composites, namely an off-axis tensile test on

short specimen (SOAT), a Brazilian test performed on off-axis disks (OABD) and a Iosipescu

test on an unnotched off-axis specimen (OAUIT). A hole was also added at the centre of the

first type of specimen to examine the benefit of an increased heterogeneity due to this strain

concentrator (SOAHT). These different configurations are shown in Figure 9-a. Compared to

the open-hole tensile specimen proposed in [81, 82, 83, 84] and discussed in Section 3 above,

the aspect ratio of the specimen considered here is lower in order to increase heterogeneity,

even in the absence of hole. The orientation of the specimen and off-axis angle were first

optimized in addition to the diameter of the hole. The C3 cost function below was used for

this optimization, combining systematic (C1) and random (C2) errors in C3 (maximal error

within a 95% confidence interval):



C1 =
1

4

∑
ij

|Qid
ij −Q

ref
ij |

Qref
ij

C2 =
1

4

∑
ij

σidij

Qref
ij

, ij = 11, 22, 12, 66

C3 = C1 + 2C2

(7)

where id denotes an identified stiffness and ref the reference one. σidij is the standard deviation

of Qid
ij estimated from images with 30 different copies of a white Gaussian grey level noise. The

same maximum stress criterion scaling strategy as in [120] was used. Figures 9(b)-(e) show

C3 as a function of the design variables chosen for each configuration. The main conclusion is

that a unique minimum exists in each case, and the variables corresponding to this minimum

are those retained to define the optimal test design.

OAUIT was found to be the best candidate after the first optimization step, closely followed

by SOAHT. A second step was then designed to optimize DIC processing parameters (subset
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-2-1

-3 -4
(a) -1 short off-axis tensile test (SOAT), -2 short off-axis
open-hole tensile test (SOAHT), -3 off-axis Brazilian disc
(OABD) and -4 off-axis unnotched Iosipescu test (OAUIT)

(b) SOAT, influence of H and θ (c) SOAHT, influence of D and θ

(d) OABD, influence of θ (e) OAUIT, influence of L and θ

Figure 9: Four tests for composite characterization and cost function C3 as a function of
various of design variables, after [135].
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size and strain window, with step size fixed at 50% of the subset size) to try and reduce

the values of the C3 cost function. Interestingly, the results from the second step change

this ranking with SOAHT stepping ahead of OAUIT. This result shows that constraints

coming from the measuring system should be taken into account during the design process of

optimal tests. Another interesting conclusion of this second step is that quadratic matching

functions (instead of bilinear ones) and steps of one pixel between successive subsets should

systematically be used, leading to lower values of C3. The superiority the quadratic shape

functions has been documented in previous work [136, 137], while step size has, regrettably,

not been the focus of much attention in the past. It is worth noting that the orientation of

the fibres in OAUIT has also been optimized with this type of approach in the particular case

of wood, see [96].

In the same spirit as in the preceding study, a refinement of the work presented in [121]

on orthotropic polymeric foams (and discussed in the preceding section) tested with an Arcan

fixture was proposed in [64]. The experimental device is shown in Figure 10. The specimen

was bonded onto the surfaces of the Arcan rig which was in turn mounted onto a uniaxial

test machine. Optimization was conducted again in two steps. DIC was the measurement

method, so reasonable settings were fixed for a first optimization of both the angle of the

fixture with respect to the vertical load (α) and the orientation of the specimen in the fixture

(θ). Synthetic reference and deformed speckle images were used to obtain displacement and

strain maps. These maps were then fed into the optimisation procedure. Force scaling was

performed using a maximum strain criterion. The second step consisted in considering the

optimized configuration defined during the first step, and then in optimizing the DIC settings.

This led to an optimal configuration which was different from the one given in [121]. The

stiffnesses obtained with this approach were similar but the uncertainty with which they

were provided could be predicted only with this more refined approach. Experimental results

showed that the standard deviation reflecting this uncertainty were predicted within less than
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a factor two, which can be considered as satisfactory since other sources of errors than the

camera sensor exist when actual experiments are performed, such as microvibrations, light

fluctuation, geometrical defects, defects in load introduction and alignment etc.

Figure 10: Arcan fixture used to test an orthotropic foam specimen, after [121]. Both the
orientation of the fixture (angle α) and the off-axis angle of the specimen, θ, were optimized,
as well as the DIC and smoothing parameters used to extract strain fields from the speckle
images by DIC.

In the examples discussed above, the two-step approach was used only in order to simplify

the problem, but it is clear that all the variables should be considered at the same time while

optimizing them so that any possible coupling is not missed. A preliminary study has been

carried out in [138] to reach this goal. The design of the T-shaped specimen addressed in

Section 4 was revisited. The total height and width of the specimen were fixed to correspond

to the camera sensor aspect ratio, so that the lowest number of pixels are lost. Five design

variables were considered to define the geometry of the specimen and the orientation of the

material: three geometrical parameters b and c as defined in Figure 5, the radius of the fillet

joining the horizontal and vertical bars of the ’T’, the orthotropy angle, the DIC settings,

namely the subset size, the step size, and the degree of the matching functions (linear or

quadratic), and the size of the Gaussian filter used to smooth the displacement field prior to

differentiation to obtain the strain components. A genetic algorithm was used to minimize

cost function C3 defined above because variables 5 to 7 are discrete while the others are
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continuous. The maximum stress was again used for scaling purposes.

The optimal shape is shown in Figure 11. It is very interesting to note how the initial

idea of the T-shaped specimen (horizontal and shear moduli active in the horizontal bar,

and transverse modulus and Poisson’s ratio in the vertical bar) has been totally lost in the

converged design. Indeed, the identifiability of all orthotropic stiffness components is now

ensured by the ’flow’ of a tensile stress applied by the short vertical bar into what can be seen as

a semi-infinite plane, with the off-axis angle ensuring the richness of the test. Compared to the

bad configuration on the right hand-side of the figure, one can first see how the optimization

tends to ensure maximal use of the camera pixels to maximize spatial resolution, and avoid

high strain concentrations at the corners of the T. It is also worth mentioning that the

algorithm systematically converged towards a step size of 1 and quadratic shape functions.

This was a first approach that would need to be refined by including a buckling criterion to

check that the design is not limited by the wide horizontal bar. Experimental validation of

this design is still needed.

Figure 11: T-shaped specimens, after [138], with orthotropy direction at 27◦ from the hori-
zontal axis for the optimal T, and 70◦ for the sub-optimal one.

7 Discussion and conclusion

The following remarks can be drawn from the examples shown in the four preceding sections.
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• With the maturation of camera-based full-field deformation measurements (Digital Im-

age Correlation, the Grid Method), a paradigm shift in the mechanical testing of ma-

terials is emerging. Traditional test methods developed for point sensors like strain

gauges or extensometers have largely relied on statically determinate configurations, for

which a closed-form expression linking the unknown constitutive parameters and local

measurements exists. Unfortunately, these tests exhibit strong limitations like the re-

liance on well-controlled boundary conditions, restricted stress-strain information and

difficulties to deal with heterogeneous materials and complex constitutive models that

require many tests to be calibrated. In contrast, the wealth of information contained

in full-field (or more rigorously, spatially-dense) measurements opens up opportunities

to design new statically indeterminate tests for more efficient and cost-effective model

calibration. It was chosen here to give visibility to this new paradigm by christening it

’Materials Testing 2.0’ (MT2.0).

• While early efforts towards MT2.0 focused on the development of full-field measurements

and efficient inverse analysis tools (like FEMU and the VFM) to identify constitutive

parameters from measured heterogeneous kinematic fields, gradually, researchers are

turning towards the design of optimal tests fully adapted to the philosophy of MT2.0.

The distribution of the contributions over the years shows that this activity is indeed

quite recent, see Figure 12. There is only a limited number of attempts before 2000,

but this research field is ramping up. It can be seen that designing by intuition is by

far the subject of the largest number of studies. This is logical since this is the first

step towards the more sophisticated approaches which have progressively appeared over

the years. Interestingly, even recent contributions belong to this first category, certainly

because of the arrival of newcomers to this field fuelled by the increased interest from

the scientific community in MT2.0.
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Figure 12: Distribution over time of the studies dealing with optimization of tests for Material
Testing 2.0, which are cited in the present paper.

• Most of the examples deal with anisotropic elasticity, and a few with hyperelasticity

and elasto-plasticity, which makes room for future improvement in the last two cases.

This is especially true for elasto-plasticity, where advanced constitutive laws (like the

Yld2004-18p anisotropic plasticity model in [112]) involve an increasingly larger number

of parameters.

• Most of the cases discussed above concern the VFM, and this is particularly true when

considering the most sophisticated procedures presented in the last cases, where FEMU

was used in one case only. This is certainly due to the difference in computational

efficiency between FEMU and the VFM. It could be argued that IDIC optimization

based on sensitivity maps may be equivalent to the VFM identification simulator as

IDIC may automatically incorporate the effects of the systematic errors caused by the

lack of camera spatial resolution; though the errors arising from the interplay between

the FE and DIC meshes is not entirely clear when these meshes are different.
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• The nature of the cost function used to optimize the design parameters (and DIC or GM

parameters in Section 6) varies from one example to another. A study solely devoted to

the influence of the nature of the cost function on the quality of the results and on the

convergence speed should be undertaken, along similar lines to those discussed for the

minimization of the optical residual in DIC [139].

• The last three types of design procedures rely on finite element simulations. Such

simulations are performed for a given constitutive law and for a given set of constitutive

parameters. It means that the optimal solutions they provide are theoretically optimal

for these parameters only, and that changing either the type of constitutive law and/or

its constitutive parameters should lead to other solutions, thus limiting the scope of

any optimal test obtained for certain parameters and not others. For instance, one

particular test can be optimal for glass/epoxy composites used during the simulations,

but keeping the same geometry and load with carbon/epoxy composites is probably

no longer optimal. This advocates for a systematic exploration of the design space for

mechanical tests before new materials are tested if their properties are too different from

previously considered ones. This could be performed through a commercialized software

platform dedicated to test design and uncertainty quantification. Some efforts towards

this goal are currently underway in a few teams worldwide but there is no doubt that

such tools will be readily available in the near future. This is the adaptation of the

notion of digital virtual twin to the MT2.0 paradigm, where each test has its virtual

numerical twin used to assess performances and provide uncertainty.

• It is worth noting that only kinematic (displacement, acceleration, slope or strain) mea-

surements are involved in the examples discussed in the four sections above. Thermal

fields are also widely used in experimental mechanics, either alone (for instance when

performing Thermoelastic Stress Analysis or estimating heat sources at the surface of
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loaded specimens) or in combination with displacement and strain measurements. De-

signing tests to exhibit simultaneous kinematic and thermal heterogeneities in order to

enrich the experimental database is certainly a promising route.

• Finally, the problem of the assessment of quality of the constitutive model is the large

gaping hole in the current state of the art, as also nicely pointed out in [76]. Novel non-

parametric approaches are emerging [140, 141, 142, 143], piecewise-defined models have

been explored [60] but in spite of these promising efforts, there is a need for ways of either

discriminating between models or formulating models based on MT2.0 methodologies.

This is still an open problem.

In conclusion, it can be said that designing mechanical tests for MT2.0 is an emerging

research topic, which lies at the frontier between image processing, experimental and compu-

tational mechanics. This is confirmed by the increasing number of recent studies on this topic

published in the literature, which are briefly reviewed in the present paper. The examples

discussed here show that a certain graduation can be identified, with studies ranging between

a mere adaptation of pre-existing classical tests to much more sophisticated ones, where even

constraints imposed by the measurement technique are accounted for. The price to pay is the

increasing computational resources needed when going from the former to the latter. Recent

advances on inverse techniques devoted to identification from full-field measurements on the

one hand, and on the metrological performance of full-field measurement techniques on the

other hand, now forge a solid footing for MT2.0, which means that optimizing mechanical

tests dedicated to this type of approach should attract more researchers in the near future

and will hopefully penetrate industry, and lead to new standards in the future.
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[2] M. Grédiac, F. Sur, and B. Blaysat. The grid method for in-plane displacement and strain measurement: a review and analysis.
Strain, 52(3):205–243, 2016.

[3] S. A. Masroor and L. W. Zachary. Designing an all-purpose force transducer. Experimental Mechanics, 31(1):33–35, 1991.

[4] D. K. Gupta and A. K. Dhingra. Input load identification from optimally placed strain gages using D-optimal design and model
reduction. Mechanical Systems and Signal Processing, 40(2):556–570, 2005.

[5] P. C. Shah and F. E. Udwadia. A methodology for optimal sensor locations for identification of dynamic systems. Journal of Applied
Mechanics, 45(1):188–196, 1977.

[6] P. H. Kirkegaard. Optimal Design of Experiments for Parametric Identification of Civil Engineering Structures. PhD thesis, 1991.

[7] D. C. Kammer and M. L. Tinker. Optimal placement of triaxial accelerometers for modal vibration tests. Mechanical Systems and
Signal Processing, 18(1):29–41, 2004.

[8] M. Meo and G. Zumpano. On the optimal sensor placement techniques for a bridge structure. Engineering Structures, 27(10):1488–
1497, 2005.

[9] V. V. Ferodov. Theory of optimal experiments. Academic Press, New York and London, 1972. 306 pages, ISBN 9780323162463.

[10] D. Y. Oh and H. C. No. Determination of the minimal number and optimal sensor location in a nuclear system with fixed incore
detectors. Nuclear Engineering and Design, 152(1):197 – 212, 1994.

[11] R Naimimohasses, D M Barnett, D A Green, and P R Smith. Sensor optimization using neural network sensitivity measures.
Measurement Science and Technology, 6(9):1291–1300, 1995.

[12] L. Padula, D. Palumbo, and Kincaid R. Optimal sensor/actuator locations for active structural acoustic control. Technical report,
1998.

[13] M. Vitse, M. Poncelet, A. Eddin Iskef, J. E. Dufour, R. Gras, A. Bouterf, B. Raka, C. Giry, F. Gatuingt, and F. Hild. Toward
virtual design and optimization of a structural test monitored by a multi-view system. Journal of Strain Analysis for Engineering
Design, 2020. Accepted, in press.

[14] L. X. Huang, Z. H. Xiang, X. S. Sun, Y. H. Liu, and Z. Z. Cen. A study of the optimal measurement placement for parameter
identification of orthotropic composites by the boundary element method. Computational Mechanics, 38(3):201–209, 2006.

[15] K. T. Kavanagh and R. W. Clough. Finite element applications in the characterization of elastic solids. International Journal of
Solids and Structures, 7(1):11 – 23, 1971.

[16] K. T. Kavanagh. Extension of classical experimental techniques for characterizing composite-material behavior. Experimental
Mechanics, 12(1):50–56, 1972.

[17] R.M. Courtade, P. Hamelin, and J.C. Cubaud. Caracterisation élastique d’un stratifié résine-verre par la méthode des déplacements.
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[65] M. Grédiac and P.-A. Paris. Direct identification of elastic constants of anisotropic plates by modal analysis : theoretical and
numerical aspects. Journal of Sound and Vibration, 195(3):401–415, 1996.
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multi-directional laminate from moiré interferometry displacement fields. Experimental Mechanics, 53(4):635–648, 2013.

[85] D. Lecompte, A. Smits, H. Sol, J. Vantomme, and D. Van Hemelrijck. Mixed numerical-experimental technique for orthotropic
parameter identification using biaxial tensile tests on cruciform specimens. International Journal of Solids and Structures, 44(5):1643
– 1656, 2007.

[86] S. Cooreman, D. Lecompte, H. Sol, J. Vantomme, and D. Debruyne. Identification of mechanical material behavior through inverse
modeling and DIC. Experimental Mechanics, 48(4):421–433, 2008.

[87] M. Bertin, F. Hild, S. Roux, F. Mathieu, H. Leclerc, and P. Aimedieu. Integrated digital image correlation applied to elastoplastic
identification in a biaxial experiment. The Journal of Strain Analysis for Engineering Design, 51(2):118–131, 2016.

[88] R. Mahnken and E. Stein. A unified approach for parameter identification of inelastic material models in the frame of the finite
element method. Computer Methods in Applied Mechanics and Engineering, 136(3):225 – 258, 1996.

[89] J. Fu, W. Xie, and L. Qi. An identification method for anisotropic plastic constitutive parameters of sheet metals. Procedia
Manufacturing, 47:812–815, 2020.

[90] R. Gras, H. Leclerc, S. Roux, S. Otin, and J. Schneider. Identification of the out-of-plane shear modulus of a 3D woven composites.
Experimental Mechanics, 53(5):719–730, 2013.

[91] Z. Liu, L. Liu, and T. He. Feasibility and uncertainty analysis of constitutive parameters identification for composite materials using
displacement field data. IOP Conference Series: Materials Science and Engineering, 751:012055, 2020.

[92] D.E. Walrath and D.F. Adams. The losipescu shear test as applied to composite materials. Experimental Mechanics, 23(1):105–110,
1983.
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[122] K.Syed Muhammad, E. Toussaint, M. Grédiac, S. Avril, and J.H. Kim. Characterization of composite plates using the virtual fields
method using optimized loading conditions. Composite Structures, 85(1):70–82, 2008.
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[128] F. Sur, B. Blaysat, and M. Grédiac. On biases in displacement estimation for image registration, with a focus on photomechanics.
SIAM Journal on Imaging Sciences, 2019. Submitted.
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