
HAL Id: hal-03189190
https://hal.science/hal-03189190

Submitted on 7 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An adaptive multi-agent system for task reallocation in
a MapReduce job

Quentin Baert, Anne-Cécile Caron, Maxime Morge, Jean-Christophe Routier,
Kostas Stathis

To cite this version:
Quentin Baert, Anne-Cécile Caron, Maxime Morge, Jean-Christophe Routier, Kostas Stathis. An
adaptive multi-agent system for task reallocation in a MapReduce job. Journal of Parallel and Dis-
tributed Computing, 2021, 153, pp.75-88. �10.1016/j.jpdc.2021.03.008�. �hal-03189190�

https://hal.science/hal-03189190
https://hal.archives-ouvertes.fr

An adaptive multi-agent system for task reallocation in
a MapReduce job

Quentin Baert, Anne-Cécile Caron, Maxime Morge and Jean-Christophe
Routier1

Univ. Lille, CNRS, Centrale Lille
UMR 9189 - CRIStAL
F-59000 Lille, France

Email:

{Quentin.Baert,Anne-Cecile.Caron,Maxime.Morge,Jean-Christophe.Routier}@univ-lille.fr

Kostas Stathis

Department of Computer Science, Royal Holloway, University of London, Egham TW20
0EX, UK

Email: Kostas.Stathis@rhul.ac.uk

Abstract

We study the problem of task reallocation for load-balancing of MapReduce

jobs in applications that process large datasets. In this context, we propose a

novel strategy based on cooperative agents used to optimise the task scheduling

in a single MapReduce job. The novelty of our strategy lies in the ability of

agents to identify opportunities within a current unbalanced allocation, which in

turn trigger concurrent and one-to-many negotiations amongst agents to locally

reallocate some of the tasks within a job. Our contribution is that tasks are

reallocated according to the proximity of the resources and they are performed

in accordance to the capabilities of the nodes in which agents are situated. To

evaluate the adaptivity and responsiveness of our approach, we implement a

prototype test-bed and conduct a vast panel of experiments in a heterogeneous

environment and by exploring varying hardware configurations. This exten-

sive experimentation reveals that our strategy significantly improves the overall

runtime over the classical Hadoop data processing.

1Corresponding author. Tel: +33 (0)3 20 33 77 12 / Fax: +33 (0)3 28 77 85 37

Preprint submitted to Journal of Parallel and Distributed Computing March 28, 2021

Keywords: Artificial Intelligence, Multi-agent systems, Negotiation,

MapReduce, BigData

2000 MSC: 00-01, 99-00

1. Introduction

Data science involves the processing of large volumes of data which requires

distributed file system and parallel programming. This emerging distributed

computing topic brings new challenges related to task allocation and load-

balancing. The adaptivity of these systems to various settings without con-5

figuration requiring user expertise, and their responsiveness to rapid changes

need to be improved.

This paper is concerned with a class of practical applications where (a) the

resources (e.g. data) required to successfully execute a task are distributed

among nodes, (b) some of these nodes may encounter potential execution haz-10

ards, e.g. slowing down nodes or communication lags and (c) the number of

tasks prevents from using a centralized approach to compute the allocation. As

several resources are necessary to perform a task, any allocation inevitably re-

quires fetching some of these resources from other nodes, thus incurring an extra

time cost for task execution [1]. In this class of applications the task allocation15

can be challenged during their executions and should capitalize upon the way

resources are distributed in the system.

In this class of practical applications, we consider here MapReduce [2] which

is the most prominent distributed data processing model for tackling vast amount

of data on commodity clusters. Tasks are divided into a set of map tasks and20

reduce tasks that are distributed on nodes. The task allocation among the re-

ducers is a priori fixed by the partition function. For instance, the partition

number is the hash value of the key modulus the number of partitions according

to the default partition of the most popular implementation Hadoop [3]. Such

a task allocation can be problematic. Firstly, several data skews in the MapRe-25

duce applications lead to an unbalanced workload during the reduce phase [4, 5].

2

Secondly, an unfair allocation can occur during the reduce phase due to the het-

erogeneous performance of nodes. Thirdly, the load-balancing can be challenged

by some rapid performance variations due to exogenous reasons.

In order to tackle the problem of load-balancing and task allocation in ap-30

plications such as those that motivate this work, multi-agent technologies have

received a lot of attention [6]. A multi-agent system is a decentralized system

where multiple agents take local decisions based on their perceptions of the

environment such that a solution to a complex problem can emerge from the in-

teractions between simple individual behaviours [7]. Most of the existing works35

adopting the market-based approach [8, 9, 10] model the load-balancing prob-

lem as a non-cooperative game in order to optimize user-centric metrics rather

than system-centric ones such as the global runtime considered in this paper.

We assume that agents are cooperative, viz.: they share the same objective,

minimizing the global runtime. We also assume there is no shared knowledge,40

including any knowledge about the whole task allocation. However, agents have

a model of their peers, i.e. they are able to compute the cost of tasks for their

peers. We further assume, as required by our practical application, that a task

can be performed by any single agent without preemption and precedence order.

A task is indivisible, with no deadline and not shareable i.e. a task belongs to45

only one agent at a time.

In this paper, we formalize the multi-agent situated task allocation prob-

lem. We propose a dynamic and on-going task reallocation process which takes

place concurrently with the task execution and so the distributed system is

adaptive to disruptive phenomena (e.g. slowing down nodes). When agents lo-50

cally identify opportunities within a current unbalanced allocation, they trigger

concurrent and one-to-many negotiations to reallocate some tasks. Apart from

decentralization, i.e. avoiding performance bottlenecks due to global control,

we show here that a multi-agent approach for situated task allocation supports

two additional crucial requirements (a) concurrency – where task reallocation55

and task executions are concurrent, and (b) adaptation – where task realloca-

tion is triggered when a disruptive event is performed. This paper significantly

3

extends our previous works. Contrary to [11], we do not assume that each task

has an intrinsic cost (e.g. the number of data to process) but the location of

resources is taken into account. Beyond [12], we introduce here a multi-auction60

process which allows an agent to bid in several concurrent negotiations in order

to improve the responsiveness of the system. Additionally, we present a vast

panel of experiments in order to empirically evaluate (a) the adaptivity of our

multi-agent system in an heterogeneous environment, (b) the responsiveness of

the multi-agent system due to the multi-auction process, and (c) the adequacy65

of the agent strategy with respect to the computing infrastructure.

Specifically, our contributions are as follows:

• We formalize the multi-agent situated task allocation problem where tasks

have different costs for different agents due to the resource locality.

• We design a multi-agent version of the MapReduce pattern in a distributed70

system setting which solves the partitionning data skew problem. The

task reallocation process based on concurrent negotiations between agents

occurs all along the MapReduce job processing to cope with a continuously

evolving environment.

• We conduct extensive experiments on real-world datasets. The experimen-75

tal results show that our method improves the runtime with a negligible

computational overhead and it mitigates the heterogeneity of the compu-

tational environment.

The paper is structured as follows. Section 2 overviews relevant related

works. Section 3 defines the socially rational task delegation considered by80

the agents in order to locally improve the task allocation. Section 4 sketches

the negotiation process which is concurrent with task consumptions. Section 5

specifies the strategies, i.e. how agents choose which task to perform/negotiate.

Our practical application and empirical evaluation are described in Section 6.

Finally, Section 7 summarizes our contribution and outlines our future work.85

4

2. Related work

The context of this paper is a single MapReduce job. In this context the

problem of task scheduling consists of assigning map and reduce tasks as sug-

gested by Selvitopi et al. in [13]. This problem should not be confused with

that of job scheduling, where one considers the allocation and the usage of the90

resources in case of multiple MapReduce jobs as discussed by Banerjee and

Hecker in [14]. Several common data skews in the MapReduce applications are

identified in [4, 5] which lead to an unbalanced workload during the data process-

ing. In this paper, we focus on the partitioning skew leading to an unbalanced

allocation among the nodes where the reduce phase is slowed down since it is95

penalized by the most loaded reducer. This data skew is tackled by [15, 16] using

parametrization based on prior knowledge about the data and the distributed

computing environment. Every reduce task is scheduled in [17] according to the

data skew and the data locality without modifing the partition. In this paper,

we address the partitionning data skew with the dynamic and adaptative task100

reallocation which is concurrent with the task consumption. Thus, reallocation

is adaptative to the data processing. This enables us to tackle the following

real-world issues: (a) the lack of prerequisite knowledge over the data and the

processing, (b) the inaccurate estimation of task execution time, and (c) the

execution hazards (slowing down nodes, communication lag). To the best of our105

knowledge, no other proposal is scalable and responsive, like ours.

We provide here a comparison of our work with the most significant existing

methods for task allocation and load-balancing which is summarized in Table 1.

This analysis grid classifies these works according to the crucial aspects which

are requested by our practical application: the deployment of the MapReduce110

design pattern for processing large datasets.

Classical scheduling problems have been the subject of extensive research

producing offline schedulers for some simple models [31]. The problem of min-

imizing the makespan (the completion time of the last task to perform) with

n tasks on m unrelated machines (i.e. with different capabilities), denoted115

5

Decentralization Adaptation Cooperation Distribution Objectives

Ibarra and Kim [18] - - - - Makespan minimization

Lenstra et al. [19] - - - - Makespan minimization

Hariri and Potts [20] - - - - Makespan minimization

Martello et al. [21] - - - - Makespan minimization

Jiang [22] 3 3 - 3 Response time

Selvitopi et al. [13] 3 - - 3 Makespan minimization

Di and Wang [23] 3 3 3 3 Throughput

Turner et al. [10] 3 3 3 - Throughput

Schaerf et al. [24] 3 3 3 3 Throughput

Jiang and Jiang [25] 3 3 3 3 Throughput

Jiang and Li [26] 3 3 3 3 Response time minimization

Jiang and Zhichuan [27] 3 3 3 3 Response time minimization

Walsh and Wellman [8] 3 3 - 3 An allocation

Kraus et al. [28] 3 3 - - An allocation

An et al. [29] 3 3 - 3 Response time minimization

Penmatsa and Chronopoulos [30] 3 - - - Response time minimization

Shehory and Kraus [9] 3 3 3 - Makespan minimization

MAS4Data 3 3 3 3 Makespan minimization

Table 1: Analysis grid of related works according to the main aspects.

R||Cmax, is NP-hard [32]. Pseudo-polynomial algorithms developed for this

problem include: the earliest completion time heuristic (ECT) proposed by

Ibarra and Kim in [18], two-phase heuristics based on linear programming sug-

gested by Lenstra et al. in [19], the local search heuristics proposed by Hariri

and Potts in [20], and the branch and bound algorithm applied by Martello et al.120

in [21]. These centralized algorithms and the most recent ones [33], even the

ECT heuristic which is an approximation algorithm giving acceptable results

with very small computational requirements, cannot be applied to our scenario

with a large number of tasks (e.g. 100, 000 keys in Sec. 6). The strategies

presented in Sec. 5 are decentralized local search heuristics.125

Multi-agent scheduling [6] has received significant attention for load-balancing

problems in distributed systems, but it is different from the classical scheduling

problems due to the following aspects:

• Decentralization: global control causes a performance bottleneck as it

must collect status information of the entire system in real time. Instead,130

task allocation can be negotiated by agents representing the nodes. For

instance, Jiang et al. propose in [22] a negotiation reputation-based allo-

6

cation mechanism for load-balancing in order to reduce the resource access

time and so the responding time.

• Adaptation: classical scheduling problems are static. The inaccurate135

estimation of tasks execution time and the disruptive phenomena (task

consumption, slowing down nodes, etc.), may require major modifications

in the existing allocation to stay optimal. Di and Wang introduce in [23]

a self-adaptive system to implement a high adaptable task allocation to

a dynamic environment. Turner et al. combine in [10] supervised clas-140

sification learning with an internal decision-making process for task as-

signments. Schaerf et al. investigate in [24] the adaptive behaviour of

agents for efficient load-balancing using multi-agent reinforcement learn-

ing. These methods cannot be used for the class of practical applications

we are concerned since neither generalizable predictive patterns nor prior145

model of the data/environment are available.

The enormous amount of varying related studies (see [1] for a recent survey)

mainly distinguish themselves through the following aspects:

• Objectives: the makespan minimization is the most widely applied opti-

mization objective for task allocation. Selvitopi et al. [13] propose a task150

scheduling to minimize the makespan however the allocation is made once

for all before the reduce phase while our method challenges the alloca-

tion all along the process. Minimizing the total or mean response time

of all tasks means minimizing the waiting time of tasks. The throughput

measures the number of tasks completed per time unit. The reliability155

measures the probability that the tasks can be successfully executed. At-

tiya and Hamam distinguish in [34] the node-related reliability, i.e. the

reliability of resources/computation and the path-related reliability, i.e.

the reliability of communications.

• Distribution: some resources are placed at the nodes and can be accessed160

and shared to execute the tasks. For this purpose, the location of agents

7

and the accessibility of required resources should be considered which is

not the case of most of the task allocation algorithms. In [25], Jiang and

Jiang consider that the number of allocated tasks on a node is proportional

to its own resources and the resources of its interacting nodes. Jiang and165

Li propose in [26] a locality-sensitive resource allocation model which takes

into account the distance between the nodes and the locality of resources.

Jiang and Zhichuan present in [27] a task allocation mechanism based on

the contextual resources: if a node has richer experiences of executing

tasks, the node may have higher access to the resources. In this paper,170

the nodes are equidistant from each other in a fully connected physical

and social network. The efficiency of a task allocation depends both on

the proportion of resources (data) which are local and their intrinsic talent

(CPU).

• Cooperation: Garg et al. distinguish in [35] the meta-schedulers which175

optimize system-centric metrics and the most recent ones focusing on user-

centric metrics. Most of the latter adopts the market-based approach: they

model the load-balancing problem as a non-cooperative game. Walsh and

Wellman present in [8] a task allocation protocol among agents which ac-

quire and provide goods on behalf of consumers or producers. Kraus et al.180

consider in [28] that, even if each agent tries to maximize its benefits, they

need to cooperate to perform tasks. An et al. propose in [29] a distributed

negotiation mechanism where selfish agents negotiate over resources both

a contract price and a decommitment penalty. Penmatsa and Chronopou-

los formulate in [30] the load balancing problem as a non-cooperative game185

among the users who try to minimize the expected response time of their

own tasks. Fewer works are based on cooperative agents which negotiate

to address system-centric metrics such as the global runtime we consider

in this paper. For instance, Shehory and Kraus consider in [9] that task

assignments to groups of agents as necessary since tasks cannot be per-190

formed by a single reliable agent. By contrast, we assume here that a

8

task, which can be performed by any single agent without preemption and

precedence order, is indivisible, not shareable (i.e. a task belongs to only

one agent at a time) and with no deadline.

3. Situated task allocation195

We formalize here the multi-agent situated task allocation (MASTA) prob-

lem where tasks have different costs (runtime) for different agents due to the

resource locality.

Definition 1 (MASTA). A multi-agent situated task allocation problem of

size (k,m, n) with k ≥ 1, m ≥ 2 and n ≥ 1 is a tuple200

MASTA = 〈Node,A, T , l, d, c〉 such that:

• Node = {node1, . . . , nodek} is a set of k nodes;

• A = {1, . . . ,m} is a set of m agents;

• T = {τ1, . . . , τn} is a set of n tasks to perform;

• l : A 7→ Node is a function which returns the location of an agent;205

• d : T ×Node 7→ N+ is a function which specifies how many resources for

a task are on a particular node;

• c : T ×Node 7→ R∗+ specifies the cost of a task τ at a given location such

that the tasks are cheaper when the required resources are more local ones:

∀i, j ∈ A, d(τ, l(i)) > d(τ, l(j))⇒ ci(τ, l(i)) ≤ c(τ, l(j)) (1)

In the rest of the paper, li, ci(τ) and di(τ) denote l(i), c(τ, li) and d(τ, li),

respectively. Similarly, we denote dτ =
∑

node∈Node
d(τ, node). We say that τ is

local, partially local, or distant for agent i if di(τ) = dτ , di(τ) < dτ , or di(τ) = 0,210

respectively.

In the following of this section, we consider a particular MASTA problem

and we evaluate the task allocation from a collective viewpoint by considering

the maximum completion time, i.e. the makespan.

9

Definition 2 (Task allocation, workload and makespan). A task alloca-215

tion P is a partition of tasks among agents, i.e a set of m task bundles

{P (1), . . . , P (m)} such that:

∪i∈AP (i) = T (2)

∀i ∈ A,∀j ∈ A \ {i}, P (i) ∩ P (j) = ∅ (3)

The workload of the agent i ∈ A in the allocation P is defined as:

wi(P) =
∑

τ∈P (i)

ci(τ) (4)

The makespan of P is defined as:

Cmax(P) = max{wi(P) | i ∈ A} (5)

Let us consider the following walk-through example.

Example 1 (Task allocation, workload and makespan). Let

MASTAex =< Node,A, T , l, d, c > a problem of size (2, 2, 7), where Node =220

{node1, node2}, A = {1, 2} and T = {τ1, . . . , τ7} with l(1) = node1 and l(2) =

node2. The locations of the tasks and their costs are represented in Table 2. Let

τ1 τ2 τ3 τ4 τ5 τ6 τ7

d1(τk) 1 0 3 6 1 6 0

d2(τk) 0 4 6 12 4 1 7

c1(τk) 1 8 15 30 9 8 14

c2(τk) 2 4 12 24 6 13 7

Table 2: Locations and costs of tasks

Pmks and P be two task allocations such that Pmks = {{τ1, τ3, τ5, τ6}, {τ2, τ4, τ7}}

and P = {{τ2, τ4, τ6}, {τ1, τ3, τ5, τ7}}. Pmks is optimal since w1(Pmks) = 33

and w2(Pmks) = 35 and so Cmax(Pmks) = 35. As shown at top of Figure 1, it225

is not the case of P since w1(P) = 46, w2(P) = 27 and so Cmax(P) = 46.

The agents modify the task allocation by negotiating task delegations. The

delegation δ of the task τ from agent i to agent j aims at improving the

10

makespan, i.e the load-balancing between the two agents. The following def-

inition formalizes the required conditions for an effective task delegation.230

Definition 3 (Socially rational task delegation). Let P be a task alloca-

tion. The delegation δ of the task τ from agent i to agent j is defined s.t. the

resulting allocation δ(P) = {P ′(1), . . . , P ′(m)} is as follows:

∀k ∈ A \ {i, j}, P ′(k) = P (k) (6)

P ′(i) = P (i) \ {τ} ∧ P ′(j) = P (j) ∪ {τ} (7)

The delegation is socially rational iff:

wj(P) + cj(τ) < wi(P) (8)

Since a socially rational task delegation δ strictly decreases the local makespan

between the two agents, it does not increase the global makespan (Cmax
(
δ(P)

)
≤235

Cmax(P)).

We can now denote Γi(P) the set of socially rational task delegations that

an agent i can trigger:

Γi(P) = {τ ∈ P (i) | ∃j ∈ A \ {j}, wj(P) + cj(τ) < wi(P)} (9)

A task allocation P is said stable if no agent can trigger a socially rational task

delegation.

Example 2 (Socially rational task delegation). Let δ1 be the delegation of

the task τ6 from agent 1 to agent 2 in the example 1 which leads to the task240

allocation P ′ = δ1(P). Since w1(P ′) = 38 and w2(P ′) = 40, δ1 improves the

makespan: Cmax(P ′) = 40 < Cmax(P) = 46. However P ′ is not stable.

Let P ′′ = δ2(P ′) be the task allocation where δ2 is the delegation of τ1 from

agent 2 to agent 1. Even if P ′′ is not optimal (Cmax(P ′′) > Cmax(Pmks)), P ′′

is stable. Figure 1 depicts the workloads of the two agents after the delegations245

δ1 and δ2.

It is worth noticing that the load-balancing process which consists of a se-

quence of socially rational delegations is finite.

11

0

5

10

15

20

25

30

35

40

45

50

Agent 1 Agent 2
W

or
kl

oa
d

τ
2

τ
4

τ
6

τ
1

τ
3

τ
5

τ
6

0

5

10

15

20

25

30

35

40

45

50

Agent 1 Agent 2

τ
4

W
or

kl
oa

d

τ
2 τ

1

τ
3

τ
5

τ
7

τ
6

0

5

10

15

20

25

30

35

40

45

50

Agent 1 Agent 2

W
or

kl
oa

d

τ
2

τ
4

τ
1

τ
3

τ
5

τ
7

τ
6

Figure 1: The workloads of the agents 1 and 2 for the allocations P (at top), P ′ (at bottom

left) and P ′′ (at bottom right) in our walk-through example.

Property 1 (Load-balancing process). An unstable task allocation can al-

ways lead to a stable one using a finite number of socially rational task delega-250

tions.

Proof 1 (Load-balancing process). Let P a task allocation and WP =<

wi1 , . . . , wim > the vector of the workloads in decreasing order where wir de-

notes the rth largest workload. If P is not stable, there exists a socially rational

task delegation δ which leads to P ′ = δ(P). Formally,255

∃i, j ∈ A,max
(
wi(P

′), wj(P
′)
)
< max

(
wi(P), wj(P)

)
(10)

∧∀k ∈ A \ {i, j}, wk(P) = wk(P ′) (11)

It implies that WP ′ < WP in the lexicographic order. Formally,

∃r ∈ [1,m] ∀r′ < r,WP ′(r′) = WP (r′) ∧WP ′(r) < WP (r)

Since there is a finite number of allocations and the order is strict, there is a

finite number of socially rational task delegations.

12

4. Negotiation process

We sketch here the repeated negotiations process which is concurrent with

task execution. When a task is consumed, it will be removed from the set of260

tasks, and so the multi-agent system aims at minimizing the makespan of the

current allocation for this new MASTA problem.

The execution of a task is a disruptive event which modifies the MASTA

problem and the task allocation. Formally,

Definition 4 (Task consumption). Let P be the current task allocation for265

the problem MASTA = 〈Node,A, T , l, d, c〉. The consumption γ of the task τ

by the agent i leads to the task allocation P ′ = γ(P) for the problem

MASTA′ = 〈Node,A, T ′, l, d, c〉 such that:

T ′ = T \ {τ} (12)

P ′(i) = P (i) \ {τ} (13)

∀j ∈ A \ {i}, P ′(j) = P (j) (14)

A sequence of task consumptions removes all the tasks from the initial allocation

until a final empty one, denoted ⊥. Obviously, a task consumption may decrease270

the makespan.

Decentralized task delegation process. Agents operate in concurrent, one-

to-many and single-round negotiations for task delegations. Each negotiation,

which is based on the Contract Net Protocol [36], includes three decision steps:

(a) the choice of the task to negotiate by the strategy of the initiator described in

Section 5, (b) the refusals/bids from the peers which check the social rationality

of the task delegation, and (c) the selection of the winning bid by the initiator.

We consider here that the initiator selects the bidder with the smallest workload

in order to decrease the makespan. Since there is no shared knowledge, an

agent has partial and not necessarily true beliefs about the current allocation

P . Indeed, agent i knows its own workload wi(P) and it has a belief base:

Bi(P) = 〈wi1(P), . . . , wii−1(P), wii+1(P), . . . , wim(P)〉 (15)

13

where wij(P) is the belief of the agent i about the workload of agent j in the

allocation P .

The set of potential socially rational task delegations ΓBi (P) that an agent i

can initiate in the task allocation P is based on its belief base Bi(P). Formally,

ΓBi (P) = {τ ∈ P (i) | wij(P) + cj(τ) < wi(P)}. (16)

If ΓBi (P) = ∅, then agent does not initiate negotiations. The computation of

the local makespan by the initiator of a negotiation is also based on its belief275

base, possibly inaccurate. This is the price to pay for decentralization. However,

an agent informs its peers about its workload when it is triggered for the first

time, within the negotiation messages, and after each task execution. Therefore,

the belief base of the peers is updated. It follows that a successful negotiation

can only reach a socially rational task delegation, and so tends to improve the280

makespan. When an agent, according to its belief base, identifies opportunities

within a current unbalanced allocation, it initiates negotiations. These local

decisions promote the adaptivity of the multi-agent system.

Concurrent consumptions and delegations. Task delegations and task

consumptions are concurrent and complementary operations since a task re-285

moval may be an opportunity for new socially rational task delegations. Fig-

ure 2 represents the influence of these operations over the path from the initial

allocation P0 until the final one ⊥. Agents perform socially rational task del-

egations to improve the makespan (e.g. the path from P0 to Pk) until a task

consumption (e.g. the edge from Pk to P ′0), which eventually interrupts the path290

toward a stable allocation (e.g. the path from Pk to P ′0 represented in grey). A

task consumption may occur when the agents have reached a stable allocation

(e.g. P ′stable) or not (e.g. Pk).

Multi-auction. First of all, even if an agent which is involved in a negotiation

as a bidder cannot initiate another negotiation and conversely, several negotia-295

tions involving different groups of agents may concurrently occur. Additionally,

14

Socially rational task delegations

T
as

k
co

n
su

m
p

ti
o
n
s

P0
. . . Pk . . . Pstable T

P ′0 . . . P ′stable T ′(T

P ′′0 . . . P ′′stable T ′′(T ′

⊥ ∅

Figure 2: Concurrent task consumptions (vertical edges) and task delegations (horizontal

edges).

we introduce here a multi-auction process which allows agent to bid in several

concurrent negotiations as in [37] in order to improve the responsiveness of the

system. In this way, as stated by our empirical results in Section 6, the gap

between the most loaded reducer and the least loaded one is filled faster and so300

the load-balancing process is faster.

In order to tackle the eager bidder problem [38], we adopt a conservative

approach which warrants that the task delegations are socially rational. For

this purpose, a bidder computes an overhead.

Definition 5 (Overhead). Let P be an allocation, D ⊂ T the tasks which are

currently negotiated and Dj the set of pending tasks for which the agent j has

made proposal. The overhead of the agent j is:

vj(D) = Στ∈Dj
cj(τ) (17)

The potential workload of the agent j, which represents its workload if it wins305

all the auctions in which it is involved (wj(P)+vj(D)), allows a bidder not to be

too optimistic and to make proposals which only lead to socially rational task

delegations. In order to evaluate the delegation of the task τ from the agent i,

the bidder j adopts the following strategy:

• either wj(P) + cj(τ) ≥ wi(P) so the bidder declines the delegation which310

is not socially rational;

15

• or wj(P)+cj(τ) < wi(P) ≤ wj(P)+vj(D)+cj(τ) so the bidder postpones

the evaluation of the delegation which depends on the outcomes of the

pending negotiations;

• or wj(P)+vj(D)+cj(τ) < wi(P) so the bidder makes a proposal since the

task delegation is socially rational whatever the outcomes of the pending

negotiations are. Then,

vj(D ∪ {τ}) = vj(D) + cj(τ) (18)

Moreover, the bidder informs the initiator about its potential workload.315

In the latter case, when the negotiation closes:

• either the bidder is selected (P ′j = Pj ∪ {τ}) and its workload is updated

wj(P
′) = wj(P) + cj(τ);

• or it is not the case (P ′j = Pj), its workload remains the same wj(P
′) =

wj(P).320

In both cases, the overhead is updated:

vj(D) = vj(D ∪ {τ})− cj(τ) (19)

Finally, the pending delegations are re-evaluated.

Example 3 (Multi-auction). Let P be an allocation among the set of agents

A = {1, 2, 3, 4, 5, 6} such that the workloads are:

w1(P) = 30 w2(P) = 45 w3(P) = 39

w4(P) = 28 w5(P) = 34 w6(P) = 40

We focus here on the overhead of the agent 1 and it influence over the negotia-325

tions. We assume the agents 2, 3, 4, 5 and 6 ask for the delegation of the tasks

τ2, τ3, τ4, τ5 and τ6 respectively. The cost of these tasks for the agent 1 are:

c1(τ2) = 6 c1(τ3) = 2 c1(τ4) = 4 c1(τ5) = 3 c1(τ6) = 3

16

Figure 3 illustrates the evolution of the overhead for the agent 1 during its

interactions with its peers. The agent 1 can make a proposal to the agents 2 and 3330

(messages 2 and 4). However, the delegation requested by the agent 4 (message

5), which is not socially rational, is declined (message 6). The agent 1 must

postpone the evaluation of the delegations from the agents 5 and 6 (messages 7

and 8) which depends on the previous pending negotiations. When the delegation

of the task τ2 is confirmed (message 10), the agent 1 can decline the delegation335

of τ5 (message 11) but the social rationality of the delegation of the task τ6 is

neither excluded nor confirmed. Finally, when the delegation of the task τ3 is

rejected (message 12), the agent 1 can make a proposal about τ6 (message 12).

5. Strategies

Since task delegations and task consumptions are concurrent, the strategy340

of an agent must select the next task to perform/delegate.

Definition 6 (Strategy). Let P be an allocation, the strategy of the agent i is

the couple (performi, negotiatei) where:

• performi : P (i) 7→ T ∪ {⊥}, selects the next task to perform or none

(denoted ⊥) if P (i) = ∅;345

• negotiatei : ΓBi (P) 7→ T ∪ {⊥}, selects the next task to negotiate or none

if ΓBi (P) = ∅.

It is worth noticing that the delegation which is selected by the strategy must

be a potential socially rational one. In the following, we propose two strategies.

While the local agnostic strategy is only based on the cost function, the location-350

aware one takes into account the location of the required resources.

Local agnostic strategy. By adopting the principle “consume small, delegate

big”, an agent performs the smallest task in its bundle and negotiate the largest

one which may lead to a potential socially rational delegation. For this purpose,

17

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6

1 cfp(id2, τ2, 45)

w1(P) = 30

w1(P) + c1(τ2) < w2(P)

2 propose(id2, 30)

3 cfp(id3, τ3, 39)

w1(P) = 30

v1(D) = 6

w1(P) + v1(D) + c1(τ3) < w3(P)

4 propose(id3, 30)

5 cfp(id4, τ4, 28)

w1(P) = 30

v1(D) = 8

w1(P) + c1(τ4) ≥ w4(P)

6 decline(id4, 30)

7 cfp(id5, τ5, 35)

w1(P) = 30

v1(D) = 8

w1(P) + c1(τ5) < w5(P) ≤ w1(P) + v1(D) + c1(τ5)

8 cfp(id6, τ6, 40)

w1(P) = 30

v1(D) = 8

w1(P) + c1(τ6) < w6(P) ≤ w1(P) + v1(D) + c1(τ6)

9 accept(id2, τ2)

10 confirm(id2)

w1(P) = 36

v1(D) = 2

w1(P) + c1(τ5) > w5(P)

11 decline(id5, 38)

12 reject(id3)

w1(P) = 36

w1(P) + c1(τ6) < w6(P)

13 propose(id6, 36)

Figure 3: The agent 1 bids in several concurrent negotiations as described in Example 3.

18

this strategy only requires that the agent sorts the tasks according to their355

costs. We can notice that the consideration of the resource fetching time by

this strategy is implicit since an agent should perform first the local tasks which

may cost more for its peers and delegate first the distant tasks which may cost

less for its peers. The following strategy makes this principle explicit.

Location-aware strategy. According to this strategy, an agent performs first360

the large local tasks and it negotiates first the large distant ones based on its

local beliefs and knowledge. This strategy is built on a data structure, called

local-aware bundle.

Firstly, the local availability ratio measures the locality of tasks:

Definition 7 (Local availability ratio). The local availability ratio of the agent

i for the task τ is defined as:

oi(τ) =
di(τ)

dτ
(20)

The maximum local availability ratio for the task τ is:

ô(τ) = maxi∈A{oi(τ)} (21)

The local availability ratio of an agent i for a task is the ratio between the365

number of local resources and the total number of resources for this task.

Secondly, the local-aware bundle of agent i, which is depicted in Figure 4,

is divided in three subbundles in accordance with the local availability ratios of

the agent for the tasks:

1. The maximum local bundle contains the tasks such that agent i owns at370

least one resource and there is no other agent which owns more resources

for this task. The tasks are sorted by decreasing order of cost (cf. left of

Figure 4);

2. The intermediate local bundle contains the tasks which are partially local.

The tasks are sorted by decreasing order of local availability ratio and the375

tasks with the same local availability ratio are sorted in decreasing order

of cost (cf. center of Figure 4);

19

3. The distant bundle contains the tasks which are distant. The tasks are

sorted by increasing order of cost (cf. right of Figure 4).

When an agent looks for a task to perform, it starts from the top of the maximum380

local bundle, i.e. the largest local task. When an agent looks for a task to

negotiate, it starts from the bottom of the distant bundle (i.e. the largest

distant task) and it selects the first potential socially rational delegation.

Figure 4: The local-aware bundle contains the maximum local bundle (at left), the interme-

diate local bundle (at center) and the distant bundle (at right). The rectangle size represents

the cost of the task. The arrows depict the order in which an agent looks for a task to

perform/negotiate.

6. Results and discussion

After introducing our practical application, we describe our prototype and385

we discuss our empirical results.

6.1. Practical application

We consider as a practical application the distributed deployment of the

MapReduce design pattern in order to process large datasets on a cluster [2], as

with Hadoop [3]. A MapReduce job consists of two successive phases: map and390

reduce. During the map phase, nodes filter in parallel input data and generate

20

key-value pairs written into data chunks. Each data chunk is located on the

same node as the mapper which has generated it. During the reduce phase,

nodes process in parallel the keys and their individual lists of values.

The reduce phase of a MapReduce job can be formalized by a MASTA

problem 〈Node,A, T , l, d, c〉 (cf. Definition 1) where: Node is the set of nodes

in the cluster, A is the set of reducer agents, T is a set of reduce tasks, l captures

the fact that we put one reducer per node in our experiments and d considers

the data location. In conformance with Equation 1, we specify the cost of a task

τ for an agent i as follows:

ci(τ) =
∑

ρ is a chunk for the task τ

ci(ρ), with ci(ρ) =

|ρ| if ρ is local for i

κ× |ρ| otherwise

(22)

where |ρ| denotes the number of values for the chunk ρ and κ captures the395

resource fetching time. We empirically set up κ = 2 for a cluster and κ = 10

when we use a network of computers. Our experiments show that the cost

function does not need to be carefully tuned since the adaptivity of our dynamic

task reallocation process allows to mitigate an inaccurate cost function.

6.2. Implementation400

We have developed a multi-agent version of the MapReduce pattern in a

distributed system setting using the MAS4Data testbed [39]. MAS4Data is im-

plemented in Akka [40] for highly concurrent, distributed, and resilient message-

driven applications. Even if fault-tolerance of nodes is out of the scope of this

paper, we assume that the message transmission delay is arbitrary but not neg-405

ligible and that messages may be lost. These are the reasons why we have

included acknowledgments and deadline mechanisms in the interaction proto-

col. In order to decrease the complexity related to the design of a reducer agent,

we have adopted a modular agent architecture that allows the concurrency of

the negotiations and the tasks performance, as well as the separation between410

communicative and decision-making behaviours.

21

6.3. Empirical results

This section starts by explaining the experimental setting in details, which

includes the choice of the metrics, the datasets and the jobs. Then, we report

on the experimental results.415

Metrics. In order to evaluate the runtime and the fairness of our experiments

we have introduced in our previous works [11, 12] the following metrics:

• The contribution of a reducer is the sum of the costs of the tasks it has

performed;

• The contribution fairness is the ratio between the minimum and the420

maximum contributions of the agents;

• The runtime of the reduce phase is the runtime of the reducer which

finished last;

• The time fairness is the ratio between the runtime of the slowest reducer

and the runtime of the fastest one.425

While the contribution of a reducer corresponds to its ex-post workload (see

Definition 2), the runtime effectively measures the makespan. The closer to 1

the contribution fairness and time fairness are, the fairer is the allocation. In

other words, we want to keep every agent as busy as all the other ones, thus

sharing as much as possible the workload of the application.430

Setup. We consider here two different hardware configurations: (a) a cluster

with 10 blades, each having 10 CPUs with 512Go RAM; (b) a network of 16 PCs

with 4 cores Intel(R) i7 and 16GB RAM each. Since we obtain similar results

with the second configuration, we present here the experiments on the cluster

with an exception for the last experiment which compares the two configurations.435

We use two distinct real-world datasets. The first dataset (2.4 Gb) contains

100, 480, 507 ratings that 480, 189 users gave to 17, 770 movies [41] [dataset].

The job, called RecByMov, counts the number of rankings per movie. The second

22

dataset (977 Mb) contains 3, 963, 480 weather records (station id, timestamp,

temperature, rainfall, etc.) from 62 stations taken during the last 20 years [42]440

[dataset]. The job, called RecByTempSta, counts the number of records per half

degree of temperature and per station. In order to increase the volume of data

without slowing down the mapping phase (which is out of the scope of this

paper) and without changing the data distribution, we replicate k times the

number of values for each key: k = 200 for the job RecByTempSta and k = 20445

for the job RecByMov. Whatever the job and the datasets are, we use as many

mappers as reducers and each experiment is run 30 times. Due to the observable

nondeterminism of distributed execution, we comment distinctive runtimes.

Figure 5 shows the initial workloads for these two jobs with the default

Hadoop partition function, i.e. the hashcode of the key modulo the number of450

reducers. While the first partition is well balanced, the second one is intention-

ally caricatural2 since half of the reducers have no task to perform. The latter

highlights the partitioning skew [4, 5] since half of the reducers execute no task.

 0

 5x107
 1x108

 1.5x108
 2x108

 2.5x108
 3x108

 3.5x108
 4x108

no
de
1

no
de
2

no
de
3

no
de
4

no
de
5

no
de
6

no
de
7

no
de
8

In
iti
a
l w
o
rk
lo
a
d

(a) The job RecByTempSta on 8 nodes

 0

 1x108
 2x108
 3x108
 4x108
 5x108
 6x108
 7x108
 8x108
 9x108

no
de
1

no
de
2

no
de
3

no
de
4

no
de
5

no
de
6

no
de
7

no
de
8

no
de
9

no
de
10

In
iti
a
l w
o
rk
lo
a
d

(b) The job RecByMov on 10 nodes

Figure 5: The allocation for our two jobs with the classical Hadoop

Empirical results . Firstly, our experiments aims at validating our approach.

We show that: (a) the negotiation improves the makespan and so the runtime455

with a small overhead cost for the negotiation, and (b) our multi-agent system is

adaptive to performance variations and heterogeneous environments. We adopt

2For this purpose, we consider Double for the type of the keys, i.e. the movie ids.

23

by default the local agnostic strategy and the multi-auction process. Secondly,

we evaluate these choices.

Negotiation improves the runtime. Negotiation is beneficial whether or not460

the initial allocation is fair. In order to validate this hypothesis, we compare the

contribution fairness, the time fairness and the runtime of jobs with/without ne-

gotiations. Note that, throughout the paper, whenever we use the term“without

negotiation” we refer to results obtained “with the classical Hadoop”.

Empirical result 1. The negotiation improves the runtime due to the load-465

balancing of the reducers contributions.

Figure 6 shows that a job can strongly benefit from the negotiations. Start-

ing from an initial unfair allocation (cf. Figure 5b), we execute 30 times the job

RecByMov with 10 reducers on 10 homogeneous nodes. During the data process-

ing, task delegations occur since the workloads are unbalanced. The most loaded470

reducers propose tasks which are accepted by the less loaded ones. Finally, the

contributions are fairly distributed among the nodes and all the reducers termi-

nate at the same time since the fairnesses are close to 1 (cf. Figures 6a and 6b).

Therefore, the makespan (cf. Figure 6d) and so the runtime (cf. Figure 6c) are

more than halved.475

Empirical result 2. When the initial allocation is fair, the overhead of the

negotiation is negligible and it does not affect the runtime.

Figure 7 shows that a job cannot be penalized by the negotiations. Start-

ing from an initial fair allocation (cf. Figure 5a), we execute 30 times the job

RecByTempSta with 8 reducers on 8 homogeneous nodes. Since the initial allo-480

cation is fair, it is not surprising that the contribution fairness (cf. Figure 7a)

and the time fairness (cf. Figure 7b) are quite good even without negotiation,

i.e. close to 0.85. However, they are still improved by negotiation since the

makespan can be slightly decreased (cf. Figure 7d). Therefore, the runtime is

about 7% faster with negotiation (cf. Figure 7c). It is worth noticing that no485

negotiation is triggered when the agents believe that the allocation is stable.

24

 0

 0.2

 0.4

 0.6

 0.8

 1

Without negotiation With negotiation

C
o
n
tr
ib
u
tio
n

 f
a
ir
n
e
ss

(a) The contribution fairness

 0

 0.2

 0.4

 0.6

 0.8

 1

Without negotiation With negotiation

T
im
e
 f
a
ir
n
e
s
s

(b) The time fairness

 0

 100

 200

 300

 400

 500

 600

Without negotiation With negotiation

R
u
n
tim

e
 (
s
)

(c) The runtime

 0

 1x108
 2x108
 3x108
 4x108
 5x108
 6x108
 7x108
 8x108
 9x108

no
de
1

no
de
2

no
de
3

no
de
4

no
de
5

no
de
6

no
de
7

no
de
8

no
de
9

no
de
10

C
o
n
tr
ib
u
tio
n

(d) The contributions

Figure 6: The median metrics and their standard deviations depicted in boxplots (a,b,c), and

the contributions after negotiation for a distinctive execution of the job RecByMov (d).

25

 0

 0.2

 0.4

 0.6

 0.8

 1

Without negotiation With negotiation

C
o
n
tr
ib
u
tio
n

 f
a
ir
n
e
ss

(a) The contribution fairness

 0

 0.2

 0.4

 0.6

 0.8

 1

Without negotiation With negotiation

T
im
e
 f
a
ir
n
e
s
s

(b) The time fairness

 0

 50

 100

 150

 200

Without negotiation With negotiation

R
u
n
tim

e
 (
s
)

(c) The runtime

 0

 5x107
 1x108

 1.5x108
 2x108

 2.5x108
 3x108

 3.5x108
 4x108

no
de
1

no
de
2

no
de
3

no
de
4

no
de
5

no
de
6

no
de
7

no
de
8

C
o
n
tr
ib
u
tio
n

(d) The contributions

Figure 7: The median metrics and their standard deviations depicted in boxplots (a,b,c) and

the contributions after negotiation for a distinctive execution of the job RecByTempSta (d).

26

These two experiments validate that our adaptive dynamic process based on

concurrent negotiations for tasks reallocation improves the runtime even if the

initial allocation is fair. The first experiments demonstrates how MAS4Data

tackles the partitioning skew. The second one highlights that the overhead of490

negotiation is negligible with respect to the benefit of the load-balancing.

Negotiation mitigates heterogeneity. The heterogeneity of a computational

environment comes from a permanent non-uniformity of the processing capabili-

ties of the nodes or a temporary one due to exogenous reasons (e.g. the slowdown

of a node).495

Empirical result 3. The negotiation allows in an heterogeneous environment

to reallocate the tasks to the fastest nodes in order to improve the runtime.

Figure 8 shows that the multi-agent system adapts the allocation to runtime

hazards. Starting from an initial fair allocation (cf. Figure 5a), we execute 30

times the job RecByTempSta with 8 reducers. Indeed, only one CPU is acti-500

vated on each node and the first reducer cannot use more than 50% of the CPU

time. Therefore, the seven other reducers run faster. The initial fair allocation

is challenged by the slower reducer. Without negotiation (cf. Figure 8c), seven

reducers terminate after 130 seconds while the slower reducer ends after 300

seconds and so the time fairness is low (around 0.43). By contrast, the negotia-505

tion allows the slower reducer to terminate after 150 seconds like the other ones

(cf. Figure 8d). The time fairness is very close to 1 since some negotiations are

triggered during the job processing for load-balancing. Thanks to this dynamic

and continuous task reallocation process, the job is not penalized by the slower

node and the job runs two times faster due to the negotiations. Finally, the510

contribution of the slower reducer is lower than the contributions of the other

ones (cf. Figure 8b), and so the contribution fairness is low, approximately 0.35

(cf. Figure 8a).

This experiment shows that the negotiation process mitigates the impact of

a runtime hazard which slows down one reducer. A reducer which is slowed515

down can delegate some tasks in order to execute the job as soon as possible.

27

 0

 0.2

 0.4

 0.6

 0.8

 1

Without negotiation With negotiation

C
o
n
tr
ib
u
tio
n

 f
a
ir
n
e
ss

(a) The contribution fairness

 0

 5x107
 1x108

 1.5x108
 2x108

 2.5x108
 3x108

 3.5x108
 4x108

no
de
1

no
de
2

no
de
3

no
de
4

no
de
5

no
de
6

no
de
7

no
de
8

C
o
n
tr
ib
u
tio
n

(b) The contributions

 0

 5x107

 1x108

 1.5x108

 2x108

 2.5x108

 0 50 100 150 200 250 300 350

W
o
rk
lo
a
d

Time (s)

Faster node
Slower node

(c) Without negotiation

 0

 5x107

 1x108

 1.5x108

 2x108

 2.5x108

 0 50 100 150 200 250 300 350

W
o
rk
lo
a
d

Time (s)

Faster node
Slower node

(d) With negotiation

Figure 8: The median contribution fairness and its standard deviations depicted in boxplots

(a), the contributions (b) for a distinctive execution of the job RecByTempSta when a node is

slowed down, the evolution of the workloads without negotiation (c) and with negotiation (d).

28

Figure 9 shows that the multi-agent system adapts the allocation to hetero-

geneous environment. Starting from an initial fair allocation (cf. Figure 5a), we

execute 30 times the job RecByTempSta with 8 reducers. Indeed, only one CPU

is activated on each node, four reducers run on the same node and four reducers520

run on separate nodes. As previously, the contribution fairness with negotiation

is worst since the four slower reducers perform less task than the others. Once

again, the dynamic and continuous task reallocation process allows the time

fairness to reach approximately 1 and the job runs five times faster due to the

negotiations. Finally, the contribution of the slower reducers is lower than the525

contributions of the others (cf. Figure 9d), and so the contribution fairness is

low.

 0

 0.2

 0.4

 0.6

 0.8

 1

Without negotiation With negotiation

C
o
n
tr
ib
u
tio
n

 f
a
ir
n
e
ss

(a) The contribution fairness

 0

 0.2

 0.4

 0.6

 0.8

 1

Without negotiation With negotiation

T
im
e
 f
a
ir
n
e
s
s

(b) The time fairness

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Without negotiationWith negotiation

R
u
n
tim

e
 (
s
)

(c) The runtime

 0

 5x107
 1x108

 1.5x108
 2x108

 2.5x108
 3x108

 3.5x108
 4x108

ag
en
t1

ag
en
t2

ag
en
t3

ag
en
t4

ag
en
t5

ag
en
t6

ag
en
t7

ag
en
t8

C
o
n
tr
ib
u
tio
n

(d) The contributions

Figure 9: The median metrics and their standard deviations depicted in boxplots (a, b, c)

and the contributions after negotiation for a distinctive execution of the job RecByTempSta in

an heterogeneous environment (d).

These two experiments validate that a job running in an heterogeneous en-

29

vironment benefits from the adaptivity of our multi-agent system. When a

performance variation brings to an unbalanced allocation, our continuous and530

dynamic process detects it and triggers the reallocation of tasks toward the

fastest nodes leading to the speedup of the runtime.

Single-auction versus multi-auction. We assume that our multi-auction

process, which allows agents to bid in several concurrent negotiations, improves

the responsiveness of the multi-agent system.535

Empirical result 4. The multi-auction process reaches faster stable allocation.

Figure 10 shows that the multi-agent system adapts the allocation faster

with a multi-auction process. We have generated a dataset (775 Mb) with

100, 000, 000 lines such that the initial task allocation is unfair. The job, called

RecByKey, counts the number of values per key. We use 8 reducers in an homoge-540

neous environment where none task is assigned to the first reducer while 100, 000

tasks with 1, 000 values per task are assigned to the others reducers which have

similar workloads (cf. Figure 10a). As in the previous experiments, the ne-

gotiation improves the load-balancing (cf. Figure 10b and 10c). However, the

multi-auction process is more efficient. While the multi-auction process needs545

50 seconds to reach a fair allocation (cf. Figure 10e), the workload of the first

agent remains close to 0 during the whole reduce phase with the single-auction

process (cf. Figure 10d). Actually, the tasks are delegated in the single-auction

process to the first reducer one after the other and they are instantly performed.

By contrast, this agent continuously bids in seven simultaneous auctions during550

the multi-auction process. Therefore, the data processing with a single-auction

process (∼ 275s) is around 10% slower than with a multi-auction one (∼ 245s).

Finally, the contribution fairness is around 0.3 with a single-auction while it is

close to 0.85 with a multi-auctions process.

This experiment shows that the multi-auction process speeds up the load-555

balancing process and so improves the responsiveness of the multi-agent system.

30

 0

 2x107
 4x107
 6x107
 8x107
 1x108

 1.2x108
 1.4x108
 1.6x108

no
de
1

no
de
2

no
de
3

no
de
4

no
de
5

no
de
6

no
de
7

no
de
8

W
o
rk
lo
a
d

(a) The initial workloads

 0

 2x107
 4x107
 6x107
 8x107
 1x108

 1.2x108
 1.4x108
 1.6x108

no
de
1

no
de
2

no
de
3

no
de
4

no
de
5

no
de
6

no
de
7

no
de
8

C
o
n
tr
ib
u
tio
n

(b) The contributions with a single-auction

 0

 2x107
 4x107
 6x107
 8x107
 1x108

 1.2x108
 1.4x108
 1.6x108

no
de
1

no
de
2

no
de
3

no
de
4

no
de
5

no
de
6

no
de
7

no
de
8

C
o
n
tr
ib
u
tio
n

(c) The contributions with multi-auction

 0

 2x107
 4x107
 6x107
 8x107
 1x108

 1.2x108
 1.4x108
 1.6x108

 0 50 100 150 200 250 300 350

W
o
rk
lo
a
d

Time (s)

Minimal workload
Maximal workload

(d) The workloads with a single-auction

 0

 2x107
 4x107
 6x107
 8x107
 1x108

 1.2x108
 1.4x108
 1.6x108

 0 50 100 150 200 250 300 350

W
o
rk
lo
a
d

Time (s)

Minimal workload
Maximal workload

(e) The workloads with multi-auction

Figure 10: The initial workloads, the contributions and the workloads for a distinctive execu-

tion of the job RecByKey with single-auction (b and d) or multi-auction (c and e).

31

Adequacy of the strategy with respect to the infrastructure. We assume

that the efficiency of the location-aware strategy depends on the resource fetch-

ing time.

Empirical result 5. The location-aware strategy improves the runtime when560

the extra cost for fetching resources is significant.

Figure 11 shows that the efficiency of the negotiation strategy depends on

the hardware configurations. We have generated a dataset (8 Gb) with 82, 283

keys such that the initial task allocation for the job RecByKey can be chal-

lenged. In order to evaluate the impact of the proximity between data resources565

and processing nodes on the runtime, most of the data required for a task are

not located on the same node as the assigned reducer (See [12] of more de-

tails). With a network of computer, the location-aware strategy significantly

improves the runtime with respect to the local agnostic strategy, around −7.6%

(cf. Figure 11a). By contrast, the local agnostic strategy is more efficient within570

a cluster (cf. Figure 11b). Indeed, the cost of fetching distant resources from

other nodes in a network of computers has a real impact and so the local ex-

ecution of tasks speeds up the runtime. By contrast, this extra cost for task

execution is low within a cluster. We experimentally measure it to be around

10%. Moreover, it is worth noticing that the locality is implicitly taken into ac-575

count in the local agnostic strategy since the underlying cost function is defined

such that the tasks are cheaper when the required resources are more local ones

(cf. Equation 1).

Whatever the dataset and the job are, we observe that the location-aware

strategy is the best strategy over a network of computers while the local agnostic580

strategy is more suitable on a cluster.

7. Conclusion

In this paper, we have proposed a multi-agent system for task reallocation

among distributed nodes based on the location of the required resources to

32

 400

 500

 600

 700

 800

 900

No negotiation Local agnostic Location-aware

R
u
n
tim

e
 (
s
)

(a) Network of computers

 125

 130

 135

 140

 145

No negotiation Local agnostic Location-aware

R
u
n
tim

e
 (
s
)

(b) Computer cluster

Figure 11: The runtimes for a distinctive job on a network of computers (a) and on a clus-

ter (b).

perform these tasks in order to minimize the makespan. In particular, we have585

applied our negotiation framework for load-balancing the reduce phase in the

distributed MapReduce model in order to process large datasets.

Our prototype has been empirically evaluated. Our experiments show that

MAS4Data is adaptive to the partitioning skew, an heterogeneous computing

environment, and any potential execution hazards. This is due to the fact590

that the negotiation process improves the runtime due to the load-balancing of

the reducers contributions. Some of our experiments suggest that future work

should consider: (a) task swaps to improve the makespan of stable allocations

and (b) task bundles in order to speedup the negotiation process. MAS4Data

is scalable since it tackles a large number of tasks due to the local decisions of595

agents about the next task to delegate/perform. Moreover, the overhead of the

negotiation is negligible with respect to the benefit of the load-balancing since

the task reallocation is concurrent with the task consumption and no negotiation

is triggered when the agents believe that the allocation is stable. Indeed, our

method is not a scheduling algorithm which allocate the tasks once and for all600

but an ongoing distributed strategy attempting to repair a potential unbalanced

partition.

From the user perspective, even if our adaptive and dynamic approach tack-

les the problem of performance drop, the fault tolerance can still be achieved

33

through data replication. It is worth noticing that MAS4Data does not require605

expertise for the parametrization due to its adaptivity. Even if the choice of

the strategy depends on the hardware configuration, no other parameter needs

to be carefully tuned such as the replication factor (by default the value 3 in

HDFS [3]). A sensitivity analysis to study the influence of this parameter has

been beyond the scope of this work, but it is certainly worth of further investi-610

gation.

Generally, future work must consider here the continuous arrival of complex

jobs concurrently submitted by several users. Our study focuses on the reassign-

ment of independent fine-grained tasks in a single job during their execution.

In order to fill this granularity gap, the formal framework must be extended615

and the optimization objective to be considered should be the mean flowtime

of several concurrent jobs i.e. the mean of the maximum completion times of

dependent tasks in these jobs.

Grant

This work is supported by the CNRS Challenge Mastodons and the call620

ULille “Internationalisation Actions bilatérales”. We thank the anonymous re-

viewers for their stimulating comments which help us to improve the paper.

References

[1] Y. Jiang, A survey of task allocation and load balancing in distributed

systems, IEEE Transactions on Parallel and Distributed Systems 27 (2)625

(2016) 585–599.

[2] J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large

Clusters, in: Proc. of the 9th Symposium on Operating Systems Design

and Implementation, 2004, pp. 137–150.

[3] The Apache Software Foundation, Apache Hadoop, https://hadoop.630

apache.org, visited 2019-07-01.

34

https://hadoop.apache.org
https://hadoop.apache.org
https://hadoop.apache.org

[4] Y. Kwon, M. Balazinska, B. Howe, J. Rolia, Skewtune: mitigating skew in

mapreduce applications, in: Proc. of the SIGMOD International Conference

on Management of Data, ACM, 2012, pp. 25–36.

[5] Y. Kwon, K. Ren, M. Balazinska, B. Howe, Managing skew in Hadoop.,635

IEEE Data Eng. Bull. 36 (1) (2013) 24–33.

[6] A. Agnetis, J. Billaut, S. Gawiejnowicz, D. Pacciarelli, A. Soukhal, Multi-

agent Scheduling - Models and Algorithms, Springer, 2014.

[7] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial

Intelligence, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,640

USA, 1999.

[8] W. E. Walsh, M. P. Wellman, A market protocol for decentralized task al-

location, in: Proc. of the International Conference on Multi-Agent Systems

(ICMAS), 1998, pp. 325–332.

[9] O. Shehory, S. Kraus, Methods for task allocation via agent coalition for-645

mation, Artificial Intelligence 101 (1-2) (1998) 165–200.

[10] J. Turner, Q. Meng, G. Schaefer, A. Soltoggio, Distributed Strategy Adap-

tation with a Prediction Function in Multi-Agent Task Allocation, in: Proc.

of 17th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS), 2018, pp. 739–747.650

[11] Q. Baert, A.-C. Caron, M. Morge, J.-C. Routier, Fair multi-agent task

allocation for large datasets analysis, Knowledge and Information Systems

54 (3) (2018) 591–615.

[12] Q. Baert, A.-C. Caron, M. Morge, J.-C. Routier, K. Stathis, A Location-

Aware Strategy for Agents Negotiating Load-balancing, in: Proc. of the655

31st International Conference on Tools with Artificial Intelligence (ICTAI),

2019.

35

[13] O. Selvitopi, G. V. Demirci, A. Turk, C. Aykanat, Locality-aware and load-

balanced static task scheduling for mapreduce, Future Generation Com-

puter Systems 90 (2019) 49–61.660

[14] S. Banerjee, J. P. Hecker, A multi-agent system approach to load-balancing

and resource allocation for distributed computing, in: First Complex Sys-

tems Digital Campus World E-Conference 2015, Springer International

Publishing, 2017, pp. 41–54.

[15] Q. Chen, D. Zhang, M. Guo, Q. Deng, S. Guo, SAMR: A self-adaptive665

MapReduce scheduling algorithm in heterogeneous environment, in: Proc.

of the 14th International Conference on Computer and Information Tech-

nology, 2010, pp. 2736–2743.

[16] M. Liroz-Gistau, R. Akbarinia, P. Valduriez, FP-Hadoop: efficient execu-

tion of parallel jobs over skewed data, VLDB Endowment 8 (12) (2015)670

1856–1859.

[17] M. Hammoud, M. Rehman, M. Sakr, Center-of-Gravity Reduce Task

Scheduling to Lower MapReduce Network Traffic, in: Proc. of the 5th

International Conference on Cloud Computing (CLOUD), 2012, pp. 49–58.

[18] O. H. Ibarra, C. E. Kim, Heuristic Algorithms for Scheduling Independent675

Tasks on Nonidentical Processors, Journal of ACM 24 (2) (1977) 280–289.

[19] J. K. Lenstra, D. B. Shmoys, E. Tardos, Approximation algorithms for

scheduling unrelated parallel machines, Mathematical programming 46 (1-

3) (1990) 259–271.

[20] A. M. A. Hariri, N. Potts, Chris, Heuristics for scheduling unrelated parallel680

machines, Computers & operations research 18 (3) (1991) 323–331.

[21] S. Martello, F. Soumis, P. Toth, Exact and approximation algorithms for

makespan minimization on unrelated parallel machines, Discrete applied

mathematics 75 (2) (1997) 169–188.

36

[22] Y. Jiang, Y. Zhou, W. Wang, Task allocation for undependable multiagent685

systems in social networks, IEEE Transactions on Parallel and Distributed

Systems 24 (8) (2012) 1671–1681.

[23] S. Di, C.-L. Wang, Decentralized proactive resource allocation for maximiz-

ing throughput of P2P Grid, Journal of Parallel and Distributed Computing

72 (2) (2012) 308–321.690

[24] A. Schaerf, Y. Shoham, M. Tennenholtz, Adaptive load balancing: A study

in multi-agent learning, Journal of Artificial Intelligence Research 2 (1995)

475–500.

[25] Y. Jiang, J. Jiang, Contextual resource negotiation-based task allocation

and load balancing in complex software systems, IEEE Transactions on695

Parallel and Distributed Systems 20 (5) (2008) 641–653.

[26] Y. Jiang, Z. Li, Locality-sensitive task allocation and load balancing in

networked multiagent systems: Talent versus centrality, Journal of Parallel

and Distributed Computing 71 (6) (2011) 822–836.

[27] Y. Jiang, Z. Huang, The rich get richer: Preferential attachment in the700

task allocation of cooperative networked multiagent systems with resource

caching, IEEE Transactions on Systems, Man, and Cybernetics-Part A:

Systems and Humans 42 (5) (2012) 1040–1052.

[28] S. Kraus, O. Shehory, G. Taase, Coalition formation with uncertain het-

erogeneous information, in: Proc. of 2nd International Conference on Au-705

tonomous Agents and Multiagent Systems (AAMAS), 2003, pp. 1–8.

[29] B. An, V. Lesser, D. Irwin, M. Zink, Automated negotiation with decom-

mitment for dynamic resource allocation in cloud computing, in: Proc. of

9th International Conference on Autonomous Agents and Multiagent Sys-

tems (AAMAS), 2010, pp. 981–988.710

37

[30] S. Penmatsa, A. T. Chronopoulos, Game-theoretic static load balancing for

distributed systems, Journal of Parallel and Distributed Computing 71 (4)

(2011) 537–555.

[31] B. Chen, C. N. Potts, G. J. Woeginger, Handbook of combinatorial opti-

mization, Springer, 1998, Ch. A review of machine scheduling: Complexity,715

algorithms and approximability, pp. 1493–1641.

[32] E. Horowitz, S. Sahni, Exact and approximate algorithms for scheduling

nonidentical processors, Journal of the ACM 23 (2) (1976) 317–327.

[33] E. Mokotoff, Parallel machine scheduling problems: A survey, Asia-Pacific

Journal of Operational Research 18 (2) (2001) 193.720

[34] G. Attiya, Y. Hamam, Task allocation for maximizing reliability of dis-

tributed systems: A simulated annealing approach, Journal of Parallel and

Distributed Computing 66 (10) (2006) 1259–1266.

[35] S. K. Garg, S. Venugopal, J. Broberg, R. Buyya, Double auction-inspired

meta-scheduling of parallel applications on global grids, Journal of Parallel725

and Distributed Computing 73 (4) (2013) 450–464.

[36] R. G. Smith, The contract net protocol: High-level communication and

control in a distributed problem solver, IEEE Transactions on computers

29 (12) (1980) 1104–1113.

[37] B. Alrayes, Ö. Kafalı, K. Stathis, Concurrent bilateral negotiation for open730

e-markets: the CONAN strategy, Knowledge and Information Systems

56 (2) (2017) 463–501.

[38] M. Schillo, C. Kray, K. Fischer, The eager bidder problem: a fundamental

problem of dai and selected solutions, in: Proc. of 1st International Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS), 2002,735

pp. 599–606.

38

[39] Q. Baert, A.-C. Caron, M. Morge, J.-C. Routier, MAS4Data: Multia-

gent systems for processing very large datasets, https://github.com/

cristal-smac/mas4data, visited 2019-12-17.

[40] Lightbend, Inc, Akka toolkit, https://akka.io, visited 2019-12-17.740

[41] J. Bennett, S. Lanning, et al., The netflix prize, in: Proceedings of KDD

cup and workshop, Vol. 2007, 2007, p. 35.

[42] Météo France, Données synop essentielles omm, https://

donneespubliques.meteofrance.fr/?fond=produit&id_produit=

90&id_rubrique=32 (2019).745

39

https://github.com/cristal-smac/mas4data
https://github.com/cristal-smac/mas4data
https://github.com/cristal-smac/mas4data
https://akka.io
https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=90&id_rubrique=32
https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=90&id_rubrique=32
https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=90&id_rubrique=32
https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=90&id_rubrique=32
https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=90&id_rubrique=32

	Introduction
	Related work
	Situated task allocation
	Negotiation process
	Strategies
	Results and discussion
	Practical application
	Implementation
	Empirical results

	Conclusion

