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Abstract

The Rational Polynomial Camera (RPC) model can
be used to describe a variety of image acquisition sys-
tems in remote sensing, notably optical and Synthetic
Aperture Radar (SAR) sensors. RPC functions relate
3D to 2D coordinates and vice versa, regardless of
physical sensor specificities, which has made them an
essential tool to harness satellite images in a generic
way. This article describes a terrain-independent al-
gorithm to accurately derive a RPC model from a set
of 3D-2D point correspondences based on a regular-
ized least squares fit. The performance of the method
is assessed by varying the point correspondences and
the size of the area that they cover. We test the algo-
rithm on SAR and optical data, to derive RPCs from
physical sensor models or from other RPC models
after composition with corrective functions.

1 Introduction

Developing a remote sensing application requires a
set of tools, one of which is geolocation. Geolocation
relates the 3D world coordinates to the 2D image.
This is represented by means of a projection function
P : R3 → R2, that maps 3D points to the image
plane, and its inverse, the localization function L :
R2 × R → R3. When all the physical phenomena
and components involved in the acquisition process
are known, the geolocation functions can be defined
by a chain of operations that model such factors, in

(r, c)

(X,Y, Z)

RPC P
projection

localization
RPC L

Figure 1: The RPC model is derived using a grid of
3D CNPs (Control Points) and its projection onto
the satellite image.

what is known as a physical or rigorous sensor model.
Pushbroom scanners are the most common opti-

cal satellite image acquisition system, typically con-
sisting of a single line of pixel sensors mounted on
a platform that captures each line of the image at
a different moment in time. As a result, the ex-
terior orientation parameters, i.e. the perspective
center and the attitude angles, change from line to
line. The intrinsic parameters (e.g. pixel size, focal
length, lens distortion), related to the physical de-
sign of the sensor, are constant across the image [1].
A detailed description of a simplified physical sensor
model for pushbroom scanners can be found in [2]. In
the case of Synthetic Aperture Radar (SAR) images,
the most used physical sensor model is the Range-
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Doppler model detailed in [3]. SAR satellites send an
electromagnetic wave that is reflected on the ground.
The image is acquired line by line (similar to a push-
broom system), and the position of a ground patch
in the image is related to its distance to the sensor,
known as the range. The Range-Doppler model is
constructed based on ephemeris data (time, position
and velocity samples along the orbit) and the acqui-
sition timing information. The ephemeris data needs
to be interpolated to obtain continuous geolocation
functions along the orbit.

Image vendors have adopted the generic Rational
Polynomial Camera1 (RPC) model to save customers
from having to deal with the complex specificities of
rigorous sensor models. The RPC model is indepen-
dent of physical properties and offers flexibility to
work with different coordinate systems. RPCs have
become essential metadata to process satellite images
in a generic way, from different sources and for multi-
ple tasks, e.g. photogrammetry and radargrammetry
based 3D reconstruction or image ortho-rectification
and coregistration.

In this article, we describe a terrain-independent
algorithm to fit a RPC model from a physical sensor
model or any other geolocation model. Our contri-
butions are:

- An open-source implementation of the method
as an easy-to-use Python package, which is avail-
able at https://github.com/cmla/rpcfit.

- An evaluation of the algorithm’s precision and
robustness based on real scenarios. We test our
method using Sentinel-1 and WorldView-3 im-
ages, to fit a SAR physical sensor model or cor-
rect an existing RPC model by composing it with
a complementary transformation.

1.1 Mathematical formulation of the
RPC model

The RPC model defines the projection function P as

rn =
a (Xn, Yn, Zn)

b (Xn, Yn, Zn)
cn =

e (Xn, Yn, Zn)

f (Xn, Yn, Zn)
, (1)

1Also referred to as Rational Polynomial Coefficients cam-
era model or Rational Function Model in the literature.

where a, b, e, f are cubic polynomials. X,Y, Z repre-
sent the longitude, latitude and height of a 3D point;
and r, c are the row and column of its projection on
the image plane.

Equation 1 uses normalized coordinates for bet-
ter numerical stability, hence the subscript n. Nor-
malized values are in the range [-1, 1] and they are
obtained using two scalars, an offset and a scale fac-
tor: Xn = (X − Xoffset)/Xscale, where X could be
r, c,X, Y or Z from Equation 1.

Each RPC polynomial p is defined by 20 coeffi-
cients as

p (X,Y, Z) = p0 + p1Z + p2Y + p3X + p4ZY + p5ZX

+p6Y X + p7X
2 + p8Y

2 + p9Z
2 + p10ZY X

+p11Z
2Y + p12Z

2X + p13Y
2Z + p14Y

2X

+p15ZX
2 + p16Y X

2 + p17Z
3 + p18Y

3 + p19X
3,

(2)
where pi is the i-th coefficient of p. Since we set
p0 = 1 for the RPC denominator polynomials, a total
of 78 coefficients need to be determined to define a,
b, e and f in Equation 1.

2 Related work

RPCs have been used for high-resolution optical
satellite imaging since the launch of Ikonos in 1999
[1,4–6]. In the last decade, they have been proven to
be extremely accurate for SAR acquisition systems
as well [7, 8].

The RPC model of a satellite image can be con-
structed using a set of correspondences between im-
age and object space coordinates. Depending on the
nature of these correspondences, the literature can
be classified into terrain-dependent or independent
methods (or a combination of both). Terrain-
dependent strategies use Ground Control Points
(GCPs), whose object and image coordinates are
known in advance relying on manual labeling or on-
site measurements. Oppositely, terrain-independent
methods derive virtual sets of 2D-3D point corre-
spondences from other geolocation functions, usually
a physical sensor model. Once the point correspon-
dences are available, least squares algorithms are typ-
ically used to estimate the RPC coefficients that min-
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imize the error between the projected 3D points and
their image locations.

Several works have underlined the importance
of using uniformly distributed points in sufficient
amount, covering the different parts of the image and
the whole altitude range of the scene [4, 6]. As a re-
sult, regularized least squares methods have become
widely used to gain robustness to different configura-
tions and enforce well-conditioned normal equations
[4, 6, 8, 9]. Additionally, terrain-dependent strategies
have explored the selection of optimal and balanced
subsets of GCPs, e.g. [4] propose a bucketing strategy
or [9] study the benefits of encouraging correspon-
dences located at building edges in urban scenarios.
In contrast, terrain-independent methods can arbi-
trarily generate regular sets of points, but require
special care to the boundaries and density of the
structure, e.g. [8] investigate the impact of different
number of elevation layers for flat and mountainous
areas.

3 Method
We follow a terrain-independent approach similar to
[4] to fit an RPC model to another input geoloca-
tion model. The data used to fit the model consists
of a 3D grid of uniformly distributed Control Points
(CNPs) within some longitude, latitude and altitude
boundaries (Fig. 1). The 2D image point of each
CNP can be obtained by projecting it with the input
geolocation model, so that each sample results in 5
normalized values, i.e. (Xi, Yi, Zi, ri, ci). For simplic-
ity, we drop the subscript n of normalized coordinates
and replace it by i to refer to the sample index.

Using N CNPs, Equation 1 can be rewritten as
a system of equations, in matrix form, following the
derivation of [4]:

WTI −WG = 0, (3)

where

W = diag
[

1

b(X1)
, ...,

1

b(XN )
,

1

f(X1)
, ...,

1

f(XN )

]
b(Xi) = b(Xi, Yi, Zi),

T = block diag [Mr,Mc] Mr,Mc ∈ RN×39

Mri =
[
1, Zi, Yi, ..., X

3
i ,−riZi,−riYi, ...,−riX3

i

]
Mci =

[
1, Zi, Yi, ..., X

3
i ,−ciZi,−ciYi, ...,−ciX3

i

]
,

I = [a0, ..., a19, b1, ..., b19, e0, ..., e19, f1, ..., f19]
T
,

G = [r0, ..., rN , c0, ..., cN ]
T
.

In Equation 3, W is a weight matrix with shape
2N × 2N , b(Xi) denotes the RPC polynomial b eval-
uated with the 3D coordinates of the i-th CNP; T
is the design matrix with shape 2N × 78; I is the
solution vector with the 78 RPC coefficients neces-
sary to determine a, b, e and f in Equation 1; and G
is a vector of length 2N containing the CNPs image
coordinates.

Equation 3 can be solved by least squares mini-
mization to estimate I, using the normal equation

TTW 2TI − TTW 2G = 0. (4)

To increase numerical stability, ridge estimation reg-
ularization [8, 9] is often added so that the normal
equation becomes

(TTW 2T + h2E)I − TTW 2G = 0, (5)

where E is the identity matrix and h is a scalar con-
trolling the regularization that is applied. To choose
the best regularization factor h, the L-curve crite-
rion was introduced in [8]. This heuristic computes
the log norm of the solution (log ‖I‖h) versus the log
norm of the residual (log ‖WTI −WG‖h) across dif-
ferent values of h that extend from the minimal to
the maximal singular value of T. This curve usually
has a L-shape, in which the optimum corresponds to
the maximum regularization parameter that achieves
a small residual. The value corresponding to the cor-
ner of the curve, at the position of maximal curvature,
is taken to set h automatically. For non-weighted
regularized least squares (i.e. weights are set to the
identity, W = E), the L-curve criterion is fast since
the curvature can be computed with closed form ex-
pressions [10].

Therefore, we first set W (0) = E (where the super-
script denotes the iteration number) and use the L-
curve criterion to determine the optimal h and an ini-
tial solution I(0). Then, for i ≥ 1 ,W (i) is determined
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from I(i−1) and is plugged in Equation 5 to solve for
I(i) iteratively (the SVD least squares solver is used
for stability). The iterations stop when the change
in terms of RMSE between the RPC projected CNPs
and their image coordinates becomes lower than a
tolerance value. After convergence some final ICCV
(Iteration by Correcting Characteristic Value [8]) it-
erations are computed to remove possible biases in-
troduced by the regularization. The same stopping
criterion based on the RMSE improvement is used.
Each ICCV iteration k can be expressed as

(TT (W (k))2T +E)I(k) = TT (W (k))2G+ I(k−1). (6)

4 Experiments

4.1 Data and use cases description
• SAR. 32 Sentinel-1 SAR images (Table 1). The
data is in Interferometric Wide Swath (IW) mode,
each product contains 3 subswaths, and each sub-
swath contains multiple bursts that need to be
stitched together to get a continuous image. We
construct the Range-Doppler physical sensor model
and use the method from Section 3 to fit an equiv-
alent RPC model for each image of the dataset.

• Optical. 47 WorldView-3 panchromatic images
(Table 1), from the 2016 IARPA Multi-View Stereo
3D Mapping Challenge [11]. The original RPCs of
the images exhibit small inaccuracies, mainly due
to inexact knowledge of the satellite attitude an-
gles, which cause a 3D point to be projected to non
corresponding pixels across different images. Bun-
dle adjustment (BA) algorithms are a well-known
approach to correct RPC errors [5, 12, 13]. We ap-
ply a BA similar to [12] to correc the projection
function P of each RPC into a new PBA, expressed
as

PBA(X) = P(R(X − T − C) + C), (7)

where X is a 3D point. That is, each RPC is cor-
rected by applying a translation T followed by a
rotation R around an approximate camera center
C, before applying the original projection P. C is

SAR dataset Optical dataset
platform S1 A/B WorldView-3

number of images 32 47
geographic area Albania Argentina
(lon, lat) center (18.82,41.02) (-58.61,-34.47)

first acquisition date 2019-08-03 2014-11-15
last acquisition date 2020-02-05 2016-01-13
altitude range (m) [−533, 2969] [−513, 548]

Table 1: SAR and optical data used in the exper-
iments. The altitude range of the area covered by
each collection of images is defined using the [min,
max] values from the corresponding SRTM digital el-
evation model ±500 m to consider tall buildings or
fine irregularities beyond bare ground level.

derived by regressing a projective model from each
RPC model. Our method from Section 3 is used to
fit PBA from the composition of P with T,R, C.

4.2 Performance assessment

To apply the method described in Section 3, the al-
titude limits of the grid of CNPs are set using the
altitude ranges in Table 1. To assess the RPC fit-
ting, we use a grid of Check Points (CKPs), which
are located in the middle of each pair of consecutive
CNPs. The RMSE between the image coordinates
obtained by projecting the CKPs with the output
RPC and the image coordinates obtained using the
input geolocation model, measured in pixels, is used
as evaluation metric. We set a tolerance of 10−10

for the stopping criterion based on the RMSE im-
provement, and a maximum of 20 iterations for the
weighted least squares and the ICCV iterations.

Two type of experiments were conducted to assess
the performance and robustness of the method:

- Varying surface area. For each image, we fit dif-
ferent RPCs by gradually increasing the longi-
tude and latitude limits of the grid of CNPs from
a small square centered at the image center to a
larger square including the entire image. The
number of CNPs is fixed, with 50 × 50 samples
in the longitude and latitude dimensions and 10
elevation layers (25000 points in total).
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Figure 2: RPC fitting error varying grid length and surface area on the SAR (a-b) and optical data (c-d)
described in Section 4.1. Each vertical bar corresponds to the [−σ/2, µ, σ/2] values of the root-mean-square
error (RMSE) evaluated across the different images of the datasets, in each dimension of the image plane,
where µ corresponds to the mean and σ to the standard deviation.

- Varying grid length. For each image, we fit dif-
ferent RPCs, by increasing the number of CNPs
in each elevation layer, i.e. n× n where n is the
grid length. The longitude and latitude bound-
aries of the grid are fixed using the equivalent
limits of the image plane.

Overall, the results presented in Fig. 2 show that the
RPCs constructed with our method approximate the
geolocation models with very high accuracy for the
two datasets and the two scenarios outlined in Sec-
tion 4.1. The RMSE is in the order of 10−4 pixels or
less in both dimensions of the image plane for the ma-
jority of configurations that were tested, which em-
phasizes the robustness of the method.

The experiments with different grid lengths
(Fig. 2b and 2d) show that 10 samples in the longi-
tude and latitude directions is already a good choice
and increasing this number beyond 20 does not re-
sult in significant improvements. The experiments
with varying surface area (Fig. 2a and 2c) show that
both the overall RMSE values and its variation across
the different images increase with the size of the area
being fitted. This is probably due to the fact that
the SAR physical sensor model is less smooth for
large neighborhoods. A similar behavior is obtained
with the optical dataset, where the original RPCs are
known to behave locally as an affine camera [5, 13].

5 Conclusion

This article described an automatic algorithm to fit
the RPC model of a satellite image in a terrain-
independent manner. The inputs of the method are
a regular grid of 3D points (CNPs), with multiple el-
evation layers, and the 2D locations of the points on
the image plane. We evaluated the method on real
scenarios using collections of SAR and optical satel-
lite images, and assessed its performance by varying
the CNPs configuration. Finally, we release an open-
source implementation of the algorithm as an easy-
to-use Python package.

Acknowledgements

Work partly financed by IDEX Paris-Saclay IDI
2016, ANR-11-IDEX-0003-02, Office of Naval re-
search grant N00014-17-1-2552 and N00014-20-
S-B001, DGA Astrid project « filmer la Terre »
no ANR-17-ASTR-0013-01, MENRT, and by a grant
from Région Île-de-France.

References

[1] J. Grodecki, “IKONOS stereo feature extraction
- RPC approach,” in ASPRS Annual Confer-

5



ence, 2001.

[2] C. de Franchis, E. Meinhardt-Llopis, D. Gres-
lou, and G. Facciolo, “Attitude refinement for
orbiting pushbroom cameras: a simple polyno-
mial fitting method,” Image Processing On Line,
vol. 2015, pp. 328–361, 2015.

[3] J.C. Curlander, “Location of spaceborne SAR
imagery,” TGRS, vol. GE-20, no. 3, pp. 359–
364, 1982.

[4] C.V. Tao and Y. Hu, “A comprehensive study of
the rational function model for photogrammet-
ric processing,” Photogrammetric Engineering &
Remote Sensing, vol. 67-12, 2001.

[5] C.S. Fraser, G. Dial, and J. Grodecki, “Sensor
orientation via RPCs,” ISPRS, vol. 60, no. 3,
pp. 182–194, 2006.

[6] T. Long, W. Jiao, and G. He, “RPC estimation
via `1-norm regularized least squares (L1LS),”
TGRS, vol. 53, no. 8, 2015.

[7] G. Zhang, W. Fei, Z. Li, X. Zhu, and D. Li,
“Evaluation of the RPC model for spaceborne
SAR imagery,” Photogrammetric Engineering &
Remote Sensing, vol. 76-6, pp. 727–733, 2010.

[8] L. Zhang, X. He, T. Balz, X. Wei, and M. Liao,
“Rational function modeling for spaceborne SAR
datasets,” ISPRS, vol. 66, no. 1, pp. 133–145,
2011.

[9] Y. Wang, Y. Zhang, and N. Su, “RPC estimation
via feature points for urban areas,” in IGARSS,
2016, pp. 6684–6687.

[10] P.C. Hansen and D.P. O’Leary, “The use of the
L-curve in the regularization of discrete ill-posed
problems,” SIAM Journal on Scientific Comput-
ing, vol. 14, no. 6, pp. 1487–1503, 1993.

[11] M. Bosch, Z. Kurtz, S. Hagstrom, and
M. Brown, “A multiple view stereo benchmark
for satellite imagery,” in AIPR Workshop, 2016,
pp. 1–9.

[12] R.A. Beyer, O. Alexandrov, and S. McMichael,
“The Ames Stereo Pipeline: NASA’s open source
software for deriving and processing terrain
data,” Earth and Space Science, vol. 5, no. 9,
pp. 537–548, 2018.

[13] R. Marí, C. de Franchis, E. Meinhardt-Llopis,
and G. Facciolo, “To bundle adjust or not:
A comparison of relative geolocation correction
strategies for satellite multi-view stereo,” in
ICCV Workshops, 2019.

6


	1 Introduction
	1.1 Mathematical formulation of the RPC model

	2 Related work
	3 Method
	4 Experiments
	4.1 Data and use cases description
	4.2 Performance assessment

	5 Conclusion

