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OUTPUT FEEDBACK CONTROL OF A CASCADE SYSTEM OF
LINEAR KORTEWEG-DE VRIES EQUATIONS*

CONSTANTINOS KITSOS &, EDUARDO CERPA f, GILDAS BESANCON §, AND
CHRISTOPHE PRIEURS

Abstract. This paper is about the stabilization of a cascade system of n linear Korteweg—de
Vries equations in a bounded interval. It considers an output feedback control placed at the left
endpoint of the last equation, while the output involves only the solution to the first equation.
The boundary control problems investigated include two cases: a classical control on the Dirichlet
boundary condition and a less standard one on its second-order derivative. The feedback control law
utilizes the estimated solutions of a high-gain observer system, and the output feedback control leads
to stabilization for any n for the first boundary conditions case and for n = 2 for the second one.

Key words. Korteweg—de Vries equation, cascade systems, output feedback control

AMS subject classifications. 68Q25, 68R10, 68U05

1. Introduction. In this paper, we study the following cascade system of n
linear Korteweg—de Vries (KdV for short) equations posed in a bounded interval of
length L:

(1.1) Vs + Vg + Vggx = (An — B)v, in (0,00) x (0, L),
where v = (U1 . Un)T is the state and
0 1 o --- 0
A, = R |, B =diag(1,1,...,1,—1).
: 1
0 --- 0

Let us consider two different types of boundary conditions, where the input control u
in both of them is placed on the left side and only acts on the nth coordinate of the
state.

Boundary conditions A (BC-A):

vi(t,0)=0, i=1,...,n—1, Vt>0,
(1.2a) vn(t,0) =u(t), Vt>0,
v(t, L) =0,v,(t, L) =0, Vt>0.

*Submitted to the editors 27/05/2021.
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2 C. Kitsos, E. Cerpa, G. Besangon, and C. Prieur

Boundary conditions B (BC-B):

)=0, i=1,...,n—1, Vt>0,
(1.2b) Unzz(t,0) = u(t), Vi>0,
v(t,L) =0,v,(t, L) =0, Vt>D0.

In order to complete our control system, we add an initial condition given by
(1.3) v(0,2) =v°(z), x€(0,L)
and a distributed measurement given by the following output:

(1.4) y(t,x) =Co(t, x);
C=(1 0 - 0).

The nonlinear version of a single KdV equation describes propagation of waters
with small amplitude in closed channels. It was introduced in 1895, and since then its
properties have gained much consideration; see, for instance, [6]. Surveys on recent
progress and open problems on control and stabilization of such models can be found
in [26] and [3].

The aim of the present work is to stabilize the cascade system (1.1) considering any
of the boundary control problems (BC-A) and (BC-B) and by utilizing the knowledge
of the first state only, while the other states are estimated via an observer. Notice
that this system is unstable due to the instability of the trajectory corresponding to
its last equation, as can be seen by following classical energy arguments. In recent
decades, stabilization of single KdV equations has gained significant interest. See, for
instance, [4], where backstepping method is used for feedback controls placed on the
left boundary, see also [29, 7, 27, 13]. Output feedback laws for single linearized and
nonlinear KdV equations have been already established via boundary observers in [21,
23] (see also [28, 11, 14, 2]), by means of backstepping and Lyapunov techniques. In
these two works, the measurement injected in the observer involves the right endpoint
of the domain, more precisely, the second derivative of the boundary or the Dirichlet
condition, depending on the boundary conditions. Output feedback control laws for
systems written in the cascade form considered here have not yet appeared in the
literature, while controllability of coupled KdV equations but with couplings, different
from the ones studied here (particularly, internal couplings in first-order derivatives),
describing strong interactions of weakly nonlinear long waves, has been investigated
for instance in [5]. However, coupling in zero-order internal terms, with coupling
coefficient A,,, might result from the linearization of coupled nonlinear KdV equations
of some forms appearing in [20], describing oceanic and atmospheric phenomena, such
as the atmospheric blockings, the interactions between the atmosphere and ocean,
the oceanic circulations, and hurricanes (see system (27)—(28) and model 5 in [20],
according to the well-known Painlevé classification), see also the Hirota—Satsuma
model [12] and [10] for multicomponent KdV equations (related to the weak nonlinear
dispersion). For these systems, it is often difficult to control and observe directly all
the equations. Also, general settings of coupled infinite-dimensional systems with
couplings in zero-order terms, as the ones considered here, have been studied with
respect to their controllability and observability properties, when considering reduced
numbers of controls and observations, see [1, 19]. In those works, the authors have
shown that the problem of control of underactuated systems with a reduced number
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Output feedback control of a cascade system of linear KdV equations 3

of observations is quite challenging. Furthermore, placing the control on the second
derivative of the left boundary, as in the considered second boundary control problem,
is even more original, and its investigation exhibits some technical difficulties, for
which solutions are proposed in the present work. To the best of our knowledge,
boundary control problems of this second type have not appeared in the literature.

Here, we aim at observing the full state of a system of KdV equations written in a
cascade form and finally controlling it, by considering a single observation. Observer
design for nonlinear systems of partial differential equations written in such a form,
based on the well-known high-gain methodology, has been considered, for instance,
in [17, 16, 18], in the framework of first-order hyperbolic systems, extending results
for finite-dimensional systems [15]. A similar form considered here, in its linearized
version, allows an observer design, which relies on a choice of a sufficiently large
parameter in its equations, while appropriate choice of the latter leads simultaneously
to the closed-loop output feedback stabilization. In summary, the contribution of the
present work first lies in stabilizing the trajectory of the last equation by means of an
observer relying on the measurement of the first state only. The control placed on the
left boundary, combined with the observer gain, brings this trajectory asymptotically
to zero in an arbitrarily fast manner (first part of Theorem 3.2). Subsequently, it
is proven that (1) the whole cascade system becomes asymptotically stable for any
L > 0 when boundary condition (BC-A) is considered and (2) this result holds for
boundary condition (BC-B) only when n = 2 (number of equations), noting that for
n > 2, stabilization is achieved for quite small L (last part of Theorem 3.2). The
methodology relies on backstepping techniques and appropriate Lyapunov analysis.
Exponential stabilization for (BC-B) is proven here to be linked to the solvability of an
ordinary differential equations problem, similar to the differential equation satisfied
by the eigenvectors of the associated differential operator to these KdV equations,
and being subject to some constraints.

In Section 2 we prove a preliminary result on the stability of a single damped
KdV equation, and then we prove the full state stabilization of the cascade system for
both boundary condition problems. In Section 3, we first present the observer design
for the coupled system and finally the main output feedback stabilization result. In
Section 4, we provide conclusions and some perspectives.

2. Full State Feedback Stabilization. In this section, we study the full state
feedback stabilization of system (1.1) for boundary control problems (BC-A) and
(BC-B).

2.1. Stability of a single KdV equation. Prior to the stabilization of the
cascade system, we present a preliminary result about the stability of a single damped
linear KdV equation, which will be invoked in what follows. Consider a single KdV
equation in the domain (0, L),

(2.1) Wy + Wy + Wagy + Aw =0, in (0,00) x (0,L),
satisfying one of the following distinct cases of boundary conditions,

(2.2a) w(t,0) =w(t,L) = w,(¢t,L) =0, >0,
(2.2b) Wer (8,0) =w(t, L) = we(t, L) =0, t>0,

and initial condition of the form

(2.3) w(0,z) = w’(z), x€(0,L).

This manuscript is for review purposes only.
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The stability result for solutions w to the above problem is presented in the following
propositions. Although asymptotic stability assuming boundary conditions (2.2a) is
ensured for every A > 0, for (2.2b) asymptotic stability is guaranteed only when A > Ag
for some Ay > 0. These results are stated precisely in the next two propositions and
will be used throughout this work.

PROPOSITION 2.1. Consider system (2.1) with boundary conditions (2.2a) and
initial condition w® € L?(0,L). Then for all A > 0, we have

(2.4) lw(t, Mz < e Mw’()r2,), t>0,
for every L > 0.

Proposition 2.1 concerning boundary conditions (2.2a) is a standard result and can
be derived from energy estimates. Well-posedness of this equation is presented in
Appendix B.1. Let us note here, that asymptotic stability for this case can be proven
even when the damping is not constant in the domain but localized to a part of it
(see, for instance, [24]) and even when the damping is saturated (see [22]).

To proceed to the stability result for boundary conditions (2.2b), we utilize the
following lemma.

LEMMA 2.2. There exists Ag > 0 such that the following assertions hold true.
Assertion 1:  For every X\ > g, there exist w(+) in C3(0,00) and b > 0 such that
the following holds for all x > 0:

7 (x) + 7' (x) — 2 () = —2bw(x),
7(0)m(0) + (7'(0))* +7%(0) <0,
w(z) > 0,

7'(z) > 0.

(2.5)

Assertion 2:  For every A € (0, o), there exist L,b > 0 and =(-) in C3(0,00)
satisfying (2.5) for all x € [0, L].

Proof. See Appendix A 0
The following proposition concerns the second case of boundary conditions.

PROPOSITION 2.3. Consider system (2.1) with boundary conditions (2.2b) and
initial condition w® € L*(0, L). Then there exists Ao > 0 such that the following hold:

(1) For all X > Xo, there exist a,b > 0 such that the solution to (2.1)~(2.3)~(2.2b)
satisfies the following:

(2.6) lw(t, ) zz0,0) < ae | w ()l r20,0), t >0

for every L > 0.

(2) For all X € (0, o), there exist L, a,b > 0 such that (2.6) is satisfied for all
Le(0,L).

Proof. In this context, we are interested by unique solutions w belonging to
C (0,00; L*(0, L)). Well-posedness of the initial boundary value problem (2.1)—(2.3)-
(2.2b) can be easily proven by invoking classical arguments, although these boundary
conditions are less common in the literature. More details about the well-posedness
of such systems are presented in Appendix B.1.

To prove the stability result, let us consider the following weighted L?-norm:

L
E(t) ::/0 7(x)w?(z)dx

This manuscript is for review purposes only.
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Output feedback control of a cascade system of linear KdV equations 5

along the L? solutions to (2.1)-(2.3)—(2.2b), for some appropriate choice of positive
7(-) € C3[0,L]. Calculating its time-derivative and applying integrations by parts,
we obtain

L L
B(t) = / (" () + 7'(2) — 2) wP(z)dz — 3 / 7 () (z)da

)
+ [(=7" (@) = 7(@) w?(2) — 27(2)wae (2)w(@) + 7(2)wy ()
+2r (2w, (2)w()]g -

(

Substituting boundary conditions (2.2b) we get
_ L L
Bt) = / (7" (z) + 7' (z) — 20 w2(z)dz — 3 / 7 (2)w? (2)dz
0 0

o0 ) (70 a0 ) (o))

To ensure the exponential decay of E(t), we invoke assertions of Lemma 2.2 for 7 (-),
for which we assume that it satisfies (2.5). By Assertions 1 and 2, the second integral
and the third boundary term of the above equation become nonpositive, and we obtain
the existence of a constant b > 0 such that

E(t) < —2bE(t)
and, therefore, (2.6) holds with

a= L<L) .
7(0)
This completes the proof of Proposition 2.3. O

2.2. Full state stabilization. Following the previous results, we are in a po-
sition to study the closed-loop stabilization. Here, the considered state feedback
controls, which are placed in the last equation, will be proven to be of the following
form for each of the problems (BC-A) and (BC-B):

L
(2.7a) (BC-A): u(t) = / (0, 9)0n(t, y)dy,
w1 L
(27b) (BC_B) u(t) = - 3 L’Un(t,()) +/O pzz(oay)vn(tay)dy

with w > 0 to be chosen appropriately and kernel function p : Il —+ R depending on
w, where II := {(z,y);z € [0, L],y € [z, L]}.

We now present the exponential decay result of the solution v to the cascade
system (1.1) via the control (2.7), which utilizes the full state. The proof uses back-
stepping tools appearing in [4, 3] for single KdV equations.

THEOREM 2.4. Consider system (1.1) with boundary conditions (BC-A) or (BC-
B), feedback control laws of the form (2.7a) or (2.7b), respectively, and initial condi-
tion v° € L2(0, L)™.

(a) If (BC-A) holds and n > 2, then for every L > 0 there exist constants ¢,d > 0
such that the solution v to (1.1) satisfies the following:

(28) H’U”LQ(O,L)" S CGidt”’UO”Lz(O’L)n, Vi Z 0.

This manuscript is for review purposes only.
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(b) If (BC-B) holds and n = 2, then for every L > 0, there exist constants ¢,d > 0
such that solution v to (1.1) satisfies (2.8).

(¢) If (BC-B) holds and n > 2, then there exists L > 0 such that (2.8) is guaran-
teed for all L € (0, L].

Proof. The well-posedness for controlled system (1.1) with boundary conditions
(BC-A) or (BC-B) is shown in Appendix B.1.

We first prove a preliminary result concerning the exponential stability of v,,. Let
us apply a Volterra transformation 7 : L?(0, L) — L?(0, L) of the form

L

(2.9) 2(2) = Tlon)(x) = vn(2) - / P&, 5)n (4)dy

xT

to the solution to the last equation of the cascade system, with p defined on II. Under
appropriate choice of p(-,-), we prove that this transformation maps solution v, to
the trajectory z satisfying the following target equation in [0, 00) x [0, L]:

(2.10) 2zt + 2z + Zgge +wz =0,
(BC-A,2): 2(t,0) = z(¢t,L) = z,(t, L) = 0,
(BC-B, 2) : 255(t,0) = 2(t, L) = 2,(t,L) =0

with control given by (2.7). Indeed, performing standard differentiations and integra-
tions by parts (for more intuition about such operations, the reader can refer to [4]),
we derive the following equations:

2e(t, ) + 22 (8, ) + 2pae (6, x) + w2(t,2) =

L
- / (P () + Dy (29) + Dy(@,9) + (@ + 1)p(2, 7)) vt 1)dy

+ p(x, L)y 50 (¢, L) + p(z, L)v, (t, L) + pyy (x, L)v, (8, L) — py(z, L)vy, (¢, L)
d? d
(o1 200+ el 0) + a2 0) — (a1 ) w02

+ (pm(m, z) + py(z,z) + 2%}7(% x)) Vo (t, ).

By choosing p(-, -) satisfying the equations

Pzzz + Pyyy T+ Pz + Dy + (w + l)p =0, (zay) e 1II,

(2.11) p(z,x) = p(z,L) =0, z € [0, L],
pa(w,2) = <L — ), z € [0, L],

we obtain target system (2.10) for both boundary problems (BC-A, z) and (BC-B,
2). Solutions to (2.11) are proven in [4] to be unique in the space C3(II) by following
successive approximation methods. The feedback control u is easily checked to satisfy
(2.7) if we use (2.9) and also calculate the value of the second derivative, viz.,

Zaz () =Vp g () + %p(x, ) (2) + p(x, ) vy 2 () + po(z, ) (x)

L
- /0 Paa (T, y)vn(y)dy

for x = 0.

This manuscript is for review purposes only.
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Output feedback control of a cascade system of linear KdV equations 7

Now, as we saw in Propositions 2.1 and 2.3 of the previous subsection, solution
z to target system (2.10) is asymptotically stable for every length L > 0 if w > 0
under boundary conditions (BC-A, z) and if w > 1 under boundary conditions (BC-
B, z). This implies the asymptotic stability of v,,, solution to (1.1), with control given
by (2.7) for each of the boundary problems (BC-A) and (BC-B). The latter follows
from the fact that, as proven in [4], transformation (2.9), mapping solution v, to
z, is bounded and invertible with bounded inverse. So, for every d > 0, there exist
wp, ¢ > 0 such that for all w > wy, we have

(2.12) [vnllz20,0) < 2™ |}l 20.0),  VE>0.
To prove the asymptotic stability of the full state, consider vector vp,_y) :=

(v1 e vn_l)—r. Then, vy,_1 satisfies the following equations:

Uln—-1],t + Un—1],x + Un—1],zze = (Anfl - Infl)v[n—l] + gvnu
(213) (BC'A7 U[n71]> tUn-1] (t? 0) = VUln-1] (ta L) = U[nfl],x(ta L) =0,
(BC-B, vjp—1]) 1 Vjn—1),22(t, 0) = vjp—1)(t, L) = vjp—1),2(t, L) = 0,

where .
(=0 - 0 1) .

To prove stability of this system, consider a Lyapunov functional of the form

L
W(t) = /0 (@) o1 (2) Pde

along the L?(0,L)"~! solutions U[n—1) to the last equations, where 7(:) is a positive
increasing C* function to be chosen. After substistuting the above equations satisfied
by vj,,—1) and applying integrations by parts, we obtain, for the time-derivative of W,

L

L
W (t) = / (" () + 7 (2)) [opay) (@) 2z — 3 / 7 ()01 () P
L
_/0 n(m)v[zil] (z) (2Ih-1 — Al - Ap_1) vy (z)dz

L
+ 2/0 ()1 (x) v, (2)dz + Wy

with
Wo i= [~(7"(2) + 7(@) o1 (@)? + 7(@) ([ 1,2(2) = 200,y 1 (20 (2))
(2.14) 2 (2o (2ot ()]

Matrix 21,1 — A} | — A, is positive definite and its eigenvalues are given by

mj
T
n

p:=2—2cos j=1...,n—1.

Consequently, its minimal eigenvalue is given by

(2.15) = Amin (2Lt — A} — Ap_1) = 2 — 2cos % N>5n>2.

This manuscript is for review purposes only.
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8 C. Kitsos, E. Cerpa, G. Besangon, and C. Prieur

Since 7'(z) > 0, by use of Young’s inequality we obtain
. L
WO < [ (" @)+ 7 (@) = purla)lupy o) o

1 L
+25/ )| vy (2)Pdz + = 25 ﬂ(m)vidx—FWo,

and § > 0 is chosen sufficiently small as in (A.4) in the proof of Lemma 2.2 of the
previous subsection.

Now, we choose 7(-) for each of the two boundary problems as follows.

For (BC-A, vp,—1)) we choose

() =1.

From this, taking also into account the exponential stability of v, (2.12), we get
for the case (BC-A, vy,,—1)) the following estimate:

(2.16) W(t) < —2dW (t) + —n (L) e_th||vn||2L2(0’L)

20
with d = p, /2 — 6.

For (BC-B, vj,—_1j) we choose a positive and increasing 7(-) satisfying (2.5) (see
Assertion 1 in Lemma 2.2) with A = £ —§ and b > 0. It turns out by Assertion 1
that there are 7(-) and b > 0 satisfymg this equation for any L > 0, when A =1 — §,
corresponding to py = 2 (for n = 2). Then, the exponential decay of the Lyapunov
functional is ensured similarly as in Proposition 2.3. More precisely, there exists d > 0
such that for all L > 0, (2.16) is satisfied for (BC-B, vj,—1)) as well. Also, as shown
in Proposition 2.3, for n > 2, which renders p,, < 2, (2.16) is satisfied for some 7(-),
b >0, only when 0 < L < L, with L depending on n.

Combining the above results, from (2.16), which holds for both (BC-A, vj,—1))
and (BC-B, v,—1)), we derive by Gronwall’s inequality

—2dt (D) [ _oq  _aar) .02
(217) W(t) <e W(O) + m (6 — € ) an||L2(O,L)7

recalling also that d, depending on the parameter w of the control laws, can be chosen
such that d > d. Combining (2.17) and (2.12), we get

(L)

[l L2 (0,Lyn <lvpn-11llL2(0,yn-1 + lvnllz2(0,) < Wefdtllv[n—l]((l')Hm(o,m-l

) o e o 1y + e o

2/7(0)3(d — d)

The last inequality leads to (2.8) for a suitable choice of c.

This concludes the proof and shows also that although the exponential conver-
gence to zero of v, can become arbitrarily fast by the choice of parameter w inside
the controls, solution v to the whole cascade system has a fixed convergence rate. 0O

Remark 2.5. Note that in the above proof, parameter p, in (2.15), depending
on n, does not permit the stabilization of the closed-loop system for any number
of equations n when the length of the domain L is arbitrary. As was shown in
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Output feedback control of a cascade system of linear KdV equations 9

Proposition 2.3, the damped KdV equation in the case of boundary conditions of
the type (BC-B) requires a damping with coefficient A larger than a critical damping
coefficient A\g. The parameter p,, which appears in the stabilization of the closed-
loop system corresponding to the damping coefficient, is decreasing with n. For n > 2
the stabilization cannot be ensured for any L > 0, since, because of p,,, the damping
coeflicient becomes lower than the critical one, while for n = 2, the damping coefficient
of the coupled equation is exactly equal to the critical one.

3. Observer Design and Output Feedback Stabilization. In this section,
we first present the proposed observer, along with its convergence proof for each of the
boundary control problems (BC-A) and (BC-B). Then, we study the output feeedback
stabilization of system (1.1) with controls placed on the left boundaries as described in
each of problems (BC-A) and (BC-B). We note here that, even though the considered
system is linear, the use of the high-gain observer design is instrumental in the output
feedback control in the two following manners and is based on the methodology [17],
introduced for quasilinear hyperbolic systems: (1) For (BC-B), the choice of the
high-gain parameter is needed to establish convergence of the observer, contrary to
a simpler Luenberger observer design, which would be sufficient for (BC-A). (2) The
high-gain parameter is used in the stabilization of the closed-loop system for both
boundary control problems (BC-A) and (BC-B).

In the following subsection we present the observer for the cascade system, whose
exponential stability relies on the result presented in Proposition 2.3 of Section 2.

3.1. Observer. Define, first, diagonal matrix ©,, by
0, = diag (9, 62, ... ,0”) ,

where 6 > 0 represents a gain, which will be selected later. Consider a vector gain

K, = (k‘l ~--k‘n)T, and let P € R™*™ be a symmetric and positive definite matrix
satisfying a quadratic Lyapunov equation of the form

(3.1) P(A, + K,C)+ (A, + K,C)" P=—1I,.

The previous equation is always feasible due to the observability of the pair (A,,C).
Then, our observer is defined to satisfy the following equations in (0, c0) x (0, L):

(32) ﬁt(t’x) + ﬁw(t’x) + {)Mm(t’x) = (An - B)ﬁ(t7x) - enKn (y(t,x) - C{)(t’x))

with boundary conditions for each of (BC-A) and (BC-B) as follows:

0;(¢,0)=0, i=1,...,n—1, Vt>0,
(3.3a) (BC-A): 0,(t,0) = u(t), Vt>0,

0(t, L) = op(t, L) = 0, Vit >0,

0ize(t,0) =0, i=1,...,n—1, Vt>0,

(3.3b) (BC-B): O ga
and initial condition

0(0,z) = 9°(z), x€(0,L).

The main observer result is stated in the following theorem.

This manuscript is for review purposes only.
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10 C. Kitsos, E. Cerpa, G. Besangon, and C. Prieur

THEOREM 3.1. Consider system (1.1) with output (1.4) and boundary conditions
satisfying (1.2) ((BC-A) or (BC-B)) and v° € L?(0,L)",u € L?, (0,00). Consider,

loc

also, P and K,, satisfying a Lyapunov equation as in (3.1). Then (3.2), with boundary
conditions (3.3) and initial condition ©° € L*(0,L)", is an observer for solution of
(1.1), in the sense that for 6 large it estimates the state v arbitrarily fast. More
precisely, for every k > 0, there exists Oy such that for every 6 > 6y, the following
holds for all v°,° € L?(0,L)", t > 0:

(3-4) [o(t, ) = v(t, ez o,p)n < v~ 1e ™ [[0°() = v° ()l L20, )

with v > 0, depending on n and L.

Proof. First, we prove in Appendix B.2 that observer system (3.2)—(3.3) is well-
posed. Then, to prove its asymptotic convergence to the state v, let us define a scaled
observer error € by

(3.5) £=0,(v—v).

Then, € satisfies the following equations:

(3.6) et + &z + Epae = (A, + K,,C)e — Be

and boundary conditions for each of the cases (BC-A) and (BC-B) as follows:

(3.7a) e(t,0) =e(t, L) = e,(¢t,L) = 0,
(3.7b) €22(t,0) =e(t,L) = e,(t, L) = 0.

We expect that solutions to the previous coupled equations can approach zero
exponentially fast, since A,, + K,C being Hurwitz will exhibit a damping effect (as
in the single KdV equation), with its magnitude being controlled by 6. Indeed, to

prove exponential stability, we choose the following Lyapunov functional defined on
the L2(0, L)™ solutions to the observer error equations:

(3.9) V) = /0 j(2)eT () Pe(w)de

with positive u(-) € C3[0, L] to be chosen suitably for each of the boundary conditions
cases. Taking its time-derivative and substituting (3.6) and Lyapunov equation (3.1)
yields

L
V(t) :/0 u(z) 02 (e (x)Pe(x)) — 0u(e " (x)Pe(x)) + 30,(, (x) Pey(z))
—0e T (x)e(x) — 2€T($)PBE(£C)] dz.

Performing successive integrations by parts, we obtain

v < | ’ (w7 + @)+ (0 42 B i) ) T @ Pt

L
3 /0 1 ()] (2) Pen()dz + Vo,

This manuscript is for review purposes only.
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where
Vo i= [(—p" (z) — p(x)) e T (@) Pe(x) — p(x) (e, () Pe(x) + &' () Pega(x))
(3.9) +u(x)e] (x)Pey(x) + 4/ (z) (e, () Pe(x) + €T(x)P6z(l’))]§

and Amin (P) is the minimal eigenvalue of P.
Let us now choose u for boundary conditions case (3.7a) as follows:

(3.10) u) =1,
for which we obtain
Vo = —¢, (0)Pe,(0) <0.

Note that given (3.10) for the boundary conditions case (3.7a), for every 6 > 6 4
with

P
Opp:=2———
0,A )\min(P),
we get
(3.11) V(t) < =264V (t), t>0

for some k4 > 0.
Considering boundary conditions of case (3.7b), (3.9) is written as

_ Pu(0)  Pu(0) )
Vo i= = (e (0) £7(0)) (P;lj'(o) —P(u”g))w(O))) (Eﬁ(o))

For these boundary conditions (3.7b), we see that for all

0>00p:= 2ﬂ +2|P|
- O,B L )\mm(P) b
Assertion 1 ((2.5) in Lemma 2.2) is satisfied with pu(-) in the place of 7(-), A =

0 1 |P|
2|P‘ )\vn'in(P)7

0 > 0y B, we choose, therefore, () = p(-) satisfying (2.5), and we derive again (3.11)
with k4 substituted by xp.
Combining the previous estimates, we directly obtain (3.4) with

X = 1, and b = kp for some kg > 0 depending on #. For all

_fwm [P
N(O) Amin (P )’
and this concludes the proof of Theorem 3.1. 0

3.2. Output feedback stabilization. Next, it is proven that by plugging the
observer’s state considered in Theorem 3.1 into the feedback laws (2.7) of the previous
section, the closed-loop system is stabilized. This is done in two steps. First, it is
proven that the considered output feedback law stabilizes arbitrarily fast the solution
of the last KdV equation and second, the stabilization of the whole cascade system
of KdV equations follows. However, for system with boundary conditions (BC-B),
stabilization for any L is only achieved when n = 2, corresponding to a cascade system
of two equations, while for n > 2, stabilization is achieved for small L, following the
result of Proposition 2.3 of the previous section. Even if this requirement is restrictive,
we find several physical applications, where only two coupled equations appear in the
model; see [20]. These statements are presented in the following theorem.

This manuscript is for review purposes only.
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THEOREM 3.2. Consider the closed-loop system (1.1)—(3.2), output (1.4), and

boundary conditions being of the form (BC-A) or (BC-B). Then, for any d > 0,
there exist an output feedback law u(t) of the form (2.7), where v is substituted by
the observer state 0, and constants 6y, wgy, € > 0 such that for any design parameters
0 > 6p,w > wgy (with O involved in the observer and w involved in the control laws),
the closed-loop system solution with v°,9° € L2(0,L)"™ satisfies the following stability
inequality (on the estimation error and last observer state):

(3.12)  [|0 = vllr2(0,0)n + [10nllr2(0,1)

<eem® (|6° = °llz2 0,0y + I0mllz2co,ny), VE=0.
Moreover, whenever the previous assertion holds, we get the following (full state
convergence):

(a) When boundary conditions (BC-A) hold with n > 2, then for every L > 0,
there exist constants c¢,d > 0, such that solutions v, satisfy the following:

(3.13) |0 = vllr2(0,)» + 10l £2(0, 1)
<ce™ ™ (0% = 00|20,y + 118%0 20,y ) VE=0
with d depending on n.
(b) When boundary conditions (BC-B) hold with n = 2, then for every L > 0,
there exist constants ¢,d > 0 such that solutions v, 0 satisfy (3.13).

(c) When (BC-B) holds, with n > 2 there exists L > 0 small such that asymptotic
stability (3.13) is guaranteed for all L € (0, L].

Proof. To address the closed-loop control problem, let us rewrite observer error
and observer coupled equations, viz. (see (3.6), (3.2))

(3.14) { et + ez + €pae = 0(A, + K,C)e — Be,

O + Vg + Vg = (An — B)0+ 00, K,¢1,

with boundary conditions (3.7), (3.3).
Let us perform a Volterra transformation to the solution of the nth equation of
the observer, which by (3.2) is written as

(3.15) Dt + Onz + Onzzz = On + k0"l

The Volterra transformation

L
(3.16)  q(x) = Tlin)(x) == (ka0" ") " 0n () — (kn9”“)’1/ P, y)0n(y)dy,

T
under appropriate choice of p(-,-) maps (3.15) into target system

L
(317) qt + (085 + qu:c = 7wq + &1 — / p((l?, y)el(t? y)dy

xT

with w a constant involved in the controller, and boundary conditions for each of the
two considered cases as follows:

(3183‘) (](t, 0) :q(ta L) = QI(ta L) =0,
(318b) qgcr(ta 0) ZQ(tﬂ L) = Qz(ta L) =0.

This manuscript is for review purposes only.



Output feedback control of a cascade system of linear KdV equations 13

164 Then, the kernel functions p(-,-) satisfy (2.11) for both problems (3.18a), (3.18b). It
465 is easy to check this if we apply successive differentiations of (3.16) as in Theorem 2.4,
466 we obtain the above target system by choosing p(-, ) satisfying (2.11). Subsequently,
467  the output feedback control u(-) for (BC-A) is given by

L
168 (3.19a) u(t) = / p(0,y)0n (¢, y)dy,
469 0

170 and for (BC-B),

1 L
17 (3.190) u(t) = =22 L0,(00) 4 [ 2 (0.9)00 ().
0

473 As noticed in proof of Theorem 2.4, it has been proven that the kernel equations
174 (2.11) are solvable in II and the corresponding Volterra transformation is bounded
475 and injective with bounded inverse.

476 Consider now the Lyapunov function
477 Ul(t) = U171(t) + U1,2<t)§
L L
178 Upa(t) ::/ w(x)e" (v)Pe(x)dw, Uy o(t) ::/ o(z)¢*(x)dx
479 0 0

180 along the solutions to (3.6)—(3.7) and (3.17)—(3.18), where U ; is the same as (3.8) of
481 Theorem 3.1 and o(+) is a positive C? increasing function in [0, L] to be chosen later.

482 Taking the time-derivative of U; o and substituting (3.17), we infer
L L
483 Uy a(t) :/ (0" (x) + o' (x) — 2w) ¢*(z)dx — 3/ o' ()3 (z)dx
’ L L ’ L
154 2 [ oz —2 [ o) [ e amdds
0 0 x
185 +[(=0"(z) = 0(2)) ¢*(2) — 20(2)qes (2)g(x) + o (2)qz ()
13 +20' (2)g. ()q()]g -

488 By using
L L L[ (L 2
489 2/0 J(.’E)(](.’E)/I p(z,y)e1(y)dyde < Uy o(t) + U(L)/O (/w p(x,y)el(y)dy> dz

L
100 < Upa(t) + L*0(L) max pQ(m,y)/ £2(y)dy
0

z,y€[0,L]

o(L) )
ol <Upp(t)+ L ——+—— max z,y) Uy 1(t),
492 12(?) 10 A min (P) w,peloz)” (z,y)Ur1(t)

193 we get

L L
w1 Thalt) < /0 (0" () + o' (z) — 2(w — 1)) ¢(x)dz — 3 /0 o (2)¢2 (x)da + hU7 1 (1)

495 + [(=0"(z) — o(@)) ¢*(2) — 20(2)qus (2)q(x) + 0 (x)g3 (z)
W (3200 420" (2)qu(x)g(@)]E |

This manuscript is for review purposes only.
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o(L
108 where h:= (L* max, yepo,1) p*(z,y) + 1) m.
199 We can prove that for each of the two cases of boundary conditions we get
500 (3:21) Ui(t) < —2dUy (t).
502 Case (BC-A):
503 We choose p(-) = o(-) = 1, and we obtain
304 Ur2(t) < =2(w = U1 2(t) + U141 (8).

506 As seen in Theorem 3.1, for p(-) = 1, we have

. 1 |P|
507 Uia(t) < <‘9 + 2) Ura(t).
; |P‘ Amin(P)

509 Combining the last two equations, if we choose 6, w as

|P?
510 (3.22 0> h|P|+2————, > 1,
511 (3.22) P+ Amin (P) v
512 we get a d > 0 such that (3.21) holds.
513 Case (BC-B):
514 We see for this case of boundary conditions that for all
515 (3.23) 0 >0y := 2L + h|P| +2|P|,
516 B Amin(P)
517 Assertion 1 ((2.5) in Lemma 2.2) is satisfied with p(-) in the place of 7(:), A =
518 Oﬁ - % - %, Ao = 1. For all § > 6y, we choose, therefore, p(-) satisfying (2.5),

519 and we get that the first term of the right-hand side of

520 Uy (t) < /OL <u”'(:1:) + i (z) — 2 <62|1P| _ P h) ,u(x)) e (z)Pe(x)dx

Amin(P) 2
534 +U1,2(t)7 t>0
523 becomes negative.
Similarly, for every
w > 2,
524 we can find o(-) = 7(-) satisfying (2.5) with A = w — 1 and \g = 1, and by virtue of
525 Proposition 2.3, the right-hand side of (3.20) becomes negative. Hence, returning to
526 Uy and choosing 6 > 0y and w > 2, we can always find pu(-),o(-) as in Assertion 1 of
527 Lemma 2.2 in a such way that we always get a c; > 0, satisfying again (3.21).
528 Consequently, for each of the two problems (BC-A) and (BC-B), for each d > 0
529 we can find 6,w, chosen as before in such a way that there exists constant v > 0
5

w

depending polynomially on 6 such that

538 19 = vllzz.zym + lallzzo.0) < ve™™ (19° = 0l L20,2ym + 1900, )llz20,)) s VE> 0.

533  Transformation 7 is bounded with bounded inverse (see the comments in Theo-
534 rem 2.4), and, therefore, we obtain an inequality as (3.12).

This manuscript is for review purposes only.
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Remark 3.3. The previous calculations indicate that gain 6 appearing in observer
system (3.2)—(3.3) is crucial in the stabilization of the closed-loop system. Indeed,
in (3.23), we see that choice of 6 compensates for some terms appearing therein.
The dependence of the terms on the eigenvalues of matrix P indicates that a simpler
Luenberger observer with pole placement would not suffice for the stabilization of
the closed-loop system. These terms play the role of the nonlinearities, appearing in
the Lyapunov derivative used for the observer error in high-gain observer designs for
finite-dimensional systems. Although in finite dimensions, a pole-placement observer
is enough for linear systems, in the present framework of infinite dimensions, a design
similar to high-gain observers in finite dimensions is required.

We are now in a position to prove the closed-loop stability for the whole system

following the methodology of Theorem 2.4. Let o, _q) := (171 e ﬁn_l)T. Then, ¥p,_1
satisfies the following equations

ﬁ[n—l],t + 6[71—1]@ + f}[n—l],:m:ac = (An—l - In—l){)[n—l] + E{)n + @n—lKn—l(@l - U1)7

(BC-A, 0 1)) : 1) (1, 0) = V1) (t, L) = Opp—1] 2 (t, L) = 0,
(BC-B, 9p—1)) : Ojn—1],02(t,0) = Op—11(t, L) = Dp—1),2(t, L) = 0,

where ¢ := (O ] 1)—r and ©,,_1, K,,_1 are involved in observer (3.2).
By choosing

Us(t) = /O (@) oy (2) P

as a Lyapunov functional along the L?(0, L)"~! solutions to the last equations, with
7(+) a positive increasing C® function, we obtain

L L
Us(t) :/ (7" (z) + 7' (x)) [01—1) (z)]2dx — 3/ 77’(x)|17[n_1],$(x)|2dx
0 0

L

P /O w(@)is_y (@)Sym (I 1 — Ay_1) 0oy (2)da
L L

+ 2/ ()01 ()0 () da + 2/ m(@)d), 1) On—1Kn_1 (61 — v1)da + U,

0 0

where Us o is as W in (2.14) (see the proof of Theorem 2.4), while vy, _q) is substituted
by ¥,—1)- Applying Young’s inequality, we get

L
Ua(1) </ ("' (2) + 7' (2) = (pn — 20)7(2)) D1 (2) [P

1

~Jo
1,
(3.24) —1—3/0 m(x)0s (z)dx + 3

L
s [ (@)]in (@) — va(o)Pde + Uao
0
with § > 0 chosen sufficiently small, as in (A.4), determined in the proof of Lemma 2.2
of previous section, and p,, defined in (2.15).
Now, to ensure negativity of the Lyapunov derivative, we choose 7 (-) for each of

the two boundary problems as follows.
Case (BC-A, 0},_1)):

() =1

This manuscript is for review purposes only.
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16 C. Kitsos, E. Cerpa, G. Besangon, and C. Prieur

Then, in conjunction with the previously proven equation (3.12), we get, from (3.24),
. —odt /11 N 2
(3.25) Us(t) < =2dUs(t) +me > (|[0° = 0°|| L20,)m + [80ll220.)) " 5

where d := p, — 20 > 0 and

(3.26) m = %W(L)E2 max (1792"_2|Kn,1|2) .

Case (BC-B, 0p,—1)):

For boundary conditions (BC-B,0,_1), to obtain an asymptotic stability result,
we first check that for n = 2, we have p, = 2. For this ps, the proof of Lemma 2.2
suggests that there exists m(-) satisfying (2.5) for some b > 0, with the same =(-),

= 2 — 4. Then, a similar inequality as (3.25) is satisfied for all L > 0, d = b, and

m as in (3.26). Additionally, following Assertion 2 in the proof of Lemma 2.2, we see
that for any n > 2, implying p, < 2, there exist again 7(-), d = b > 0 such that (2.5)
holds for L € (0, L].

Now, we see that for both boundary problems (BC-A) and (BC-B), (3.25) gives

_ m 971 _ “ ~ 2
UQ(t) S € thW(O) + m(@ 2dt _ (& 2dt) (”’UO — ’l}O”Lz(O’L)n =+ ||IU?7,||L2(O,L))

The latter implies
(3.27)

Us(t) < (6_2dt +

2d — 2d

94 _ ~ ~ 2
(2 ¢ M)) (18° = 2oz + 18 220.20)

Recalling that d depends on the adjustable observer parameter 6, we suppose, without
loss of generality, that it can be chosen such that d > d, so that the previous inequality
has meaning.

Now, using trivial inequalities and by virtue of (3.27) and (3.12), we easily get

||@ — U”LZ(O,L)’" + ||1A)||L2(0)L)n < ||ﬁ — ’UHL?((LL)"L + H@n”LZ(O,L) =+ H@[n—l]HLQ(O,L)"—l

<

7 1 m <
g —2dt _(p—2dt _ p—2dt
ce —+ 7T(O)\/e +72d72d(6 € )

% ([18° = v p20,0ym + 119l 220,27 ) -

The latter completes the proof of Theorem 3.2, suggesting also that the asymptotic
rate of the whole closed-loop cascade system is no larger than d, which is decreasing
with n, contrary to the asymptotic rate for the last state v,, which is adjusted by the
observer and control parameters. 0

Remark 3.4. The considered stabilization problem of underactuated and under-
observed cascade systems of KdV equations was here limited to the linear case, and
special forms of couplings. Even though stabilization results of the original nonlinear
KdV equation can be found (see survey [3]), or observer results for some infinite-
dimensional systems with nonlinearities (satisfying some “triangular structure”), as
in [16, 18], extensions of our output feedback stabilization to more general couplings
and/or nonlinearities are quite challenging and are thus left for future studies: a strong
difficulty comes from the coefficients of the system’s differential operator, where the
presence of distinct elements raises problems related to the notion of algebraic solv-
ability, which has been given attention in [1, 19] and other works of the same authors.
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In the Lyapunov-based approach we have considered, this problem translates into the
lack of a commutative property between a Lyapunov matrix and coefficients of sys-
tem’s differential operator. Handling nonlinearities in a first-order term (for instance,
terms v;v; , or even couplings of this type between the equations) and zero-order
term at the same time is also part of the challenge, as this commutative property
would not be fulfilled. We also refer to [9], where some open problems concerning
such coupling are presented, while the reader can understand the difficulties in the
controllability analysis of underactuated systems with nontrivial coefficients of the
differential operators and the presence of nonlinearities.

Notice yet that it could be possible to adopt an indirect approach, based on our
previous approaches [18], to deal with the case where the first-order and dispersion
terms would be of the form Aqv, + Asv,., for some A, Ay € R™*"™. Consideration of
linear lower triangular couplings of first-order and third-order terms would be feasible
as well, but more general cases remain open.

Notice also that while this underobserved problem is already challenging, the case
when only a boundary measurement is available (instead of an internal one, at least
localized to a part of the domain) is even more difficult: even though a solution does
exist for a single equation and boundary measurement [23], it does not easily extend
to the case of coupled KdV equations, via a backstepping and a single measurement
instead of a distributed one. For the case of n coupled equations, a backstepping
approach that would lead to an exponentially stable observer error system would fail,
even for n = 2, if the observations were fewer than the states. In addition, the control
problem of underactuated systems by itself is a hard problem, and if 2 x 2 systems have
local solutions via backstepping (see [8]), they concern hyperbolic systems where a
dissipative target system is feasible. For the coupled KdV equations, the exponentially
stable target system for the observer error would be needed to be a damped system,
which cannot be achieved by a single observation.

Some possible generalizations of the present framework, as the ones described
before, will be a subject of our future work.

4. Conclusion. In this work, output feedback stabilization for a class of cascade
system of linear KdV equations was achieved. Two boundary control problems, with
controls placed on the left side of the last equation, were investigated. Distributed
measurement of the first state was considered, which provided an estimation (using a
high-gain observer) of the states fed in the control laws. The cascade system is stabi-
lized for both boundary problems but with a limitation on the number of equations
and length of the domain for the second one.

Future developments might include the same stabilization framework, but with
more general couplings (in zero-order and first-order derivative terms), including lo-
calized terms and nonlinearities.

Appendix A. Proof of Lemma 2.2. To prove Assertions 1 and 2 of
Lemma 2.2, it is more convenient to write the characteristic equation of the differential
equation in (2.5) as

(A1) P r—s3—s5=0

(as in [25], a technique used to solve the characteristic equation of the KAV operator),
where

(A.2) §5 45 =2\ —2b

This manuscript is for review purposes only.
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18 C. Kitsos, E. Cerpa, G. Besangon, and C. Prieur

and considering s being the real root of the latter equation. Then, solutions to (A.1)
are given by

s /38244 s /35244

TL= 5, T2=—§+1T, 3=y Tl

and, therefore, unique solutions to the differential equation in (2.5) are given by

s V3s24+4 V3s2+4
(A.3) m(z) = ae®™ + fe” 2% cos ?)ST—’_ 38%:0

&+ ye 2% sin
with «a, 8,7 € R chosen such that restriction on initial conditions in (2.5) is satisfied.
We can check numerically that there exists a number € > 0 near zero such that for
s >1—¢, m(-) given by (A.3) with initial conditions 7 (0) = 4,7’(0) = 2,7”(0) = -5
(corresponding to o = 56/25, 8 = 44/25,v = 8/25) is positive and increasing and,
therefore, satisfies (2.5). Defining a small constant 6 > 0 by

e 32 Te
(A.4) 0= 5 5 + 5
we see from (A.2) that for s > 1—e we have A > )y := 1—0 for choice b = %)\. Thus,
for all A > Mg, there exists b > 0, such that conditions (2.5) are satisfied. Hence,
Assertion 1 is proven to hold for \j = 1 — §, where § is defined above. Now, notice
that for s < 1 — ¢, corresponding to A < Ay, and for any initial condition of =(-)
satisfying the second equation of (2.5), there is a L > 0 such that for x > L, 7(-)
becomes decreasing and, thus, fails to satisfy all conditions (2.5). This implies that
for 0 < A\ < Ao, Assertion 2 is satisfied for some small L > 0. Letting s — 0% and
choosing initial conditions 7 (0) = 4, 7'(0) = 2, 7”(0) = —5 as before, m approaches the
trajectory of m(x) = —1+5cos(x) +2sin(z), for which 7’(z) < 0 for L > arctan(2/5).
By this, for A — 07, b — 0T, Assertion 2 is satisfied with L = arctan(2/5).

In Figure 1, we represent the evolution of w(x) for choice of initial condition
m(0) = 4,7'(0) = 2,7”(0) = —5 and various values of s corresponding to various
values of \. For small values of s corresponding to small values of A, 7(+) is increasing
until some point = L quite small, but for z > L, it is decreasing and, thus, fails
to satisfy the fourth equation of (2.5) after this point, in accordance with Assertion
2. We also see that for all s > 1 — ¢, for € > 0 small, given as before, m(-) is always
increasing, verifying Assertion 1. The proof is complete.

Appendix B. Well-posedness of system and observer.
We show here the well-posedness of both controlled system (1.1)—(1.3) and ob-
server system (3.2)—(3.3).

B.1. Well-posedness of (1.1)—(1.3). First, for system (1.1), with boundary
conditions (BC-A) or (BC-B), feedback control laws of the form (2.7a) or (2.7b),
respectively, and initial condition v* € L?(0,L)", it is sufficient to prove the well-
posedness of target system, which results after applying the isomorphic transformation
T (see (2.9)) in conjunction with (2.10):

Uln—1],t + Un—1],x + Un—1],zze = (Anfl - Infl)v[nfl] + éT_l[ZL
2t + 2z + Zgze +wz =0,

(BC-A) : n(t,0) =n(t,L) =n,(¢t,L) =0,

(BC-B) : 10 (£,0) = n(t, L) = m.(t, L) =0,
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w(x) for different values of s
T T T T T

F1G. 1. Solutions to (2.5) for different s

where 1 = (v[p_1) z)T is the target state and we adopt the same notation as in
(2.13). We rewrite the above system as an abstract evolution system in L?(0, L)" as
¢ =Ac,

where A := diag (A1,...,A,) : D(A) — L?(0,L)" is an linear unbounded operator
defined as
AiC’i:_Ci,z_Ci,zxz_Ci+Ci+la 1=1,...,n—2,
An—lCn—l = - Cn—l,ac - Cn—l,xmm - Cn—l + Tﬁl[(n]v
-Angn = - Cn,m - Cn@ma: - an
with domain
D(A) = {¢ € H*(0,L)";¢(0) = ¢(L) = ¢'(L) = 0 for (BC-A)
or ¢"(0) = ¢(L) = ¢'(L) =0 for (BC-B)}.
Its adjoint operator satisfies
Af@ :Ci,x+Ci,zxx*<i+Ci+la 7;:17“-3”*2’
A:L—lgnfl :Cnfl,w + Cnfl,a;a:w - Cnfl + T_1[<n]7
A:LCTL :Cn,m + Cn,zma: - an
with domain
D(A") = {¢ € H*0, L)";¢(0) = ¢'(0) = C(L) = 0 for (BC-A)
or ¢"(0) = —¢(0), (L) = ¢'(0) = (L) = 0 for (BC-B)}.

Operator A and its adjoint A* are closed with domains dense in L?(0, L)". Further-
more, they are both dissipative. Indeed, from the stability proof of Theorem 2.4, we
first see that A, is dissipative. Then, the exponential stability of 7[¢,] in (2.12), in
conjunction with (2.17), implies that

(Bl) <~A[n—1]€[n—1],'/TC[n—l]>L2(0’L)n—1 <0,
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where 7 (+) satisfies (2.5). Inequality (B.1) is satisfied for every L > 0 if n > 2 under
boundary conditions (BC-A) and if n = 2 under boundary conditions (BC-B). For
the latter case, the same inequality holds for n > 2, when L € (0, L], for some L > 0.
This was shown in the stability proof of Theorem 2.4, and it implies that operator A
is dissipative, namely,

<AC, <>L2(0,L)n <0.

To show dissipativity of the adjoint operator A*, i.e., that (A*(, <>L2(O L <0,
we can easily show first that A% is dissipative, by applying integrations by parts.

Then, we show that <Arn71]<[n—1]=c[n—1]> < 0. This implies that A* is

L2(0,L)n—1
dissipative.
Consequently, we can apply the Lumer—Phillips theorem, and we conclude that
A generates a C%-semigroup of contractions, and, thus, returning to the original
coordinates via 71, we have that for any initial condition v° € L2(0,L)", there
exists a unique mild solution

v e C°(0,00; L0, L)")

for system (1.1)—(1.3), noting also that for (BC-A), the above holds for all L > 0
and n > 2, while for (BC-B), the above holds for all L > 0, when n = 2 and for all
L € (0, L], when n > 2, where L is given in Lemma 2.2.

The above well-posedness result for the n coupled equations holds also for the
single damped KdV equation (see (2.1)—(2.3)), as this system’s operator is equal to
A, as defined above.

B.2. Well-posedness of (3.2)—(3.3). The observer system given by (3.2) with
boundary conditions (3.3) is well-posed. To see this, it suffices to show the well-
posedness of the error system (3.6)—(3.7), invoking also the well-posedness of initial
system (1.1)—(1.3) that we showed before. The differential operator for error system
(3.6)—(3.7) is given by

-AC = _Cz - waw + Q(An + KnC)C - BC
with domain

D(A) = {¢ € B¥0,L)";¢(0) = ¢(L) = ¢'(L) = 0 for (BC-A)
or ¢"(0) = ¢ ( )= ¢'(L) = 0 for (BC-B)},

and its adjoint operator is given by
-A*C = C:c + Cmm: + O(An + KnC)C - BC
with domain

D(A*) = {¢ € H?(0,L)";¢(0) = ¢'(0) = ¢(L) = 0 for (BC-A)
or ¢"(0) = —=¢(0),¢(L) = ¢'(0) = ¢(L) = 0 for (BC-B)}.

By the stability proof in Theorem 3.1, we see that

(B.2) <AC>,UPC>L2(0,L)7L <0
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whenever 6 > g, where 0y is defined in the proof of Theorem 3.1 and where function
u(-) and matrix P are defined in the proof of Theorem 3.1. Inequality (B.2) implies
that A is dissipative. The adjoint A* is also dissipative, and it can be shown by
proving that {A*(, P¢) L2(0,L)n < 0 by applying successive integrations by parts. This,
similarly as in Appendix B.1, proves the well-posedness of the error equations, which
along with the well-posedness of the initial system results in the well-posedness of the
observer system (3.2)—(3.3), namely, for any initial condition ¢ € L2(0, L)", there
exists a unique mild solution

b€ C° (0,00, L*(0, L))

for all 6 > 6.
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