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OUTPUT FEEDBACK CONTROL OF A CASCADE SYSTEM OF1

LINEAR KORTEWEG–DE VRIES EQUATIONS∗2

CONSTANTINOS KITSOS §† , EDUARDO CERPA ‡ , GILDAS BESANÇON § , AND3

CHRISTOPHE PRIEUR§4

Abstract. This paper is about the stabilization of a cascade system of n linear Korteweg–de5
Vries equations in a bounded interval. It considers an output feedback control placed at the left6
endpoint of the last equation, while the output involves only the solution to the first equation.7
The boundary control problems investigated include two cases: a classical control on the Dirichlet8
boundary condition and a less standard one on its second-order derivative. The feedback control law9
utilizes the estimated solutions of a high-gain observer system, and the output feedback control leads10
to stabilization for any n for the first boundary conditions case and for n = 2 for the second one.11

Key words. Korteweg–de Vries equation, cascade systems, output feedback control12

AMS subject classifications. 68Q25, 68R10, 68U0513

1. Introduction. In this paper, we study the following cascade system of n14

linear Korteweg–de Vries (KdV for short) equations posed in a bounded interval of15

length L:16

vt + vx + vxxx = (An −B)v, in (0,∞)× (0, L),(1.1)1718

where v =
(
v1 · · · vn

)>
is the state and19

An =


0 1 0 · · · 0

. . .
. . .

...
... 1
0 · · · 0

, B = diag (1, 1, . . . , 1,−1) .20

21

Let us consider two different types of boundary conditions, where the input control u22

in both of them is placed on the left side and only acts on the nth coordinate of the23

state.24

Boundary conditions A (BC-A):25

vi(t, 0) =0, i = 1, . . . , n− 1, ∀t > 0,

vn(t, 0) =u(t), ∀t > 0,

v(t, L) =0, vx(t, L) = 0, ∀t > 0.

(1.2a)26

27
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2 C. Kitsos, E. Cerpa, G. Besançon, and C. Prieur

Boundary conditions B (BC-B):28

vi,xx(t, 0) = 0, i = 1, . . . , n− 1, ∀t > 0,

vn,xx(t, 0) = u(t), ∀t > 0,

v(t, L) = 0, vx(t, L) = 0, ∀t > 0.

(1.2b)29

30

In order to complete our control system, we add an initial condition given by31

v(0, x) = v0(x), x ∈ (0, L)(1.3)3233

and a distributed measurement given by the following output:34

y(t, x) =Cv(t, x);(1.4)35

C =
(
1 0 · · · 0

)
.3637

The nonlinear version of a single KdV equation describes propagation of waters38

with small amplitude in closed channels. It was introduced in 1895, and since then its39

properties have gained much consideration; see, for instance, [6]. Surveys on recent40

progress and open problems on control and stabilization of such models can be found41

in [26] and [3].42

The aim of the present work is to stabilize the cascade system (1.1) considering any43

of the boundary control problems (BC-A) and (BC-B) and by utilizing the knowledge44

of the first state only, while the other states are estimated via an observer. Notice45

that this system is unstable due to the instability of the trajectory corresponding to46

its last equation, as can be seen by following classical energy arguments. In recent47

decades, stabilization of single KdV equations has gained significant interest. See, for48

instance, [4], where backstepping method is used for feedback controls placed on the49

left boundary, see also [29, 7, 27, 13]. Output feedback laws for single linearized and50

nonlinear KdV equations have been already established via boundary observers in [21,51

23] (see also [28, 11, 14, 2]), by means of backstepping and Lyapunov techniques. In52

these two works, the measurement injected in the observer involves the right endpoint53

of the domain, more precisely, the second derivative of the boundary or the Dirichlet54

condition, depending on the boundary conditions. Output feedback control laws for55

systems written in the cascade form considered here have not yet appeared in the56

literature, while controllability of coupled KdV equations but with couplings, different57

from the ones studied here (particularly, internal couplings in first-order derivatives),58

describing strong interactions of weakly nonlinear long waves, has been investigated59

for instance in [5]. However, coupling in zero-order internal terms, with coupling60

coefficient An, might result from the linearization of coupled nonlinear KdV equations61

of some forms appearing in [20], describing oceanic and atmospheric phenomena, such62

as the atmospheric blockings, the interactions between the atmosphere and ocean,63

the oceanic circulations, and hurricanes (see system (27)–(28) and model 5 in [20],64

according to the well-known Painlevé classification), see also the Hirota–Satsuma65

model [12] and [10] for multicomponent KdV equations (related to the weak nonlinear66

dispersion). For these systems, it is often difficult to control and observe directly all67

the equations. Also, general settings of coupled infinite-dimensional systems with68

couplings in zero-order terms, as the ones considered here, have been studied with69

respect to their controllability and observability properties, when considering reduced70

numbers of controls and observations, see [1, 19]. In those works, the authors have71

shown that the problem of control of underactuated systems with a reduced number72
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Output feedback control of a cascade system of linear KdV equations 3

of observations is quite challenging. Furthermore, placing the control on the second73

derivative of the left boundary, as in the considered second boundary control problem,74

is even more original, and its investigation exhibits some technical difficulties, for75

which solutions are proposed in the present work. To the best of our knowledge,76

boundary control problems of this second type have not appeared in the literature.77

Here, we aim at observing the full state of a system of KdV equations written in a78

cascade form and finally controlling it, by considering a single observation. Observer79

design for nonlinear systems of partial differential equations written in such a form,80

based on the well-known high-gain methodology, has been considered, for instance,81

in [17, 16, 18], in the framework of first-order hyperbolic systems, extending results82

for finite-dimensional systems [15]. A similar form considered here, in its linearized83

version, allows an observer design, which relies on a choice of a sufficiently large84

parameter in its equations, while appropriate choice of the latter leads simultaneously85

to the closed-loop output feedback stabilization. In summary, the contribution of the86

present work first lies in stabilizing the trajectory of the last equation by means of an87

observer relying on the measurement of the first state only. The control placed on the88

left boundary, combined with the observer gain, brings this trajectory asymptotically89

to zero in an arbitrarily fast manner (first part of Theorem 3.2). Subsequently, it90

is proven that (1) the whole cascade system becomes asymptotically stable for any91

L > 0 when boundary condition (BC-A) is considered and (2) this result holds for92

boundary condition (BC-B) only when n = 2 (number of equations), noting that for93

n > 2, stabilization is achieved for quite small L (last part of Theorem 3.2). The94

methodology relies on backstepping techniques and appropriate Lyapunov analysis.95

Exponential stabilization for (BC-B) is proven here to be linked to the solvability of an96

ordinary differential equations problem, similar to the differential equation satisfied97

by the eigenvectors of the associated differential operator to these KdV equations,98

and being subject to some constraints.99

In Section 2 we prove a preliminary result on the stability of a single damped100

KdV equation, and then we prove the full state stabilization of the cascade system for101

both boundary condition problems. In Section 3, we first present the observer design102

for the coupled system and finally the main output feedback stabilization result. In103

Section 4, we provide conclusions and some perspectives.104

2. Full State Feedback Stabilization. In this section, we study the full state105

feedback stabilization of system (1.1) for boundary control problems (BC-A) and106

(BC-B).107

2.1. Stability of a single KdV equation. Prior to the stabilization of the108

cascade system, we present a preliminary result about the stability of a single damped109

linear KdV equation, which will be invoked in what follows. Consider a single KdV110

equation in the domain (0, L),111

wt + wx + wxxx + λw = 0, in (0,∞)× (0, L),(2.1)112113

satisfying one of the following distinct cases of boundary conditions,114

w(t, 0) =w(t, L) = wx(t, L) = 0, t > 0,(2.2a)115

wxx(t, 0) =w(t, L) = wx(t, L) = 0, t > 0,(2.2b)116117

and initial condition of the form118

w(0, x) = w0(x), x ∈ (0, L).(2.3)119120
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The stability result for solutions w to the above problem is presented in the following121

propositions. Although asymptotic stability assuming boundary conditions (2.2a) is122

ensured for every λ > 0, for (2.2b) asymptotic stability is guaranteed only when λ ≥ λ0123

for some λ0 > 0. These results are stated precisely in the next two propositions and124

will be used throughout this work.125

Proposition 2.1. Consider system (2.1) with boundary conditions (2.2a) and126

initial condition w0 ∈ L2(0, L). Then for all λ > 0, we have127

‖w(t, ·)‖L2(0,L) ≤ e−λt‖w0(·)‖L2(0,L), t ≥ 0,(2.4)128129

for every L > 0.130

Proposition 2.1 concerning boundary conditions (2.2a) is a standard result and can131

be derived from energy estimates. Well-posedness of this equation is presented in132

Appendix B.1. Let us note here, that asymptotic stability for this case can be proven133

even when the damping is not constant in the domain but localized to a part of it134

(see, for instance, [24]) and even when the damping is saturated (see [22]).135

To proceed to the stability result for boundary conditions (2.2b), we utilize the136

following lemma.137

Lemma 2.2. There exists λ0 > 0 such that the following assertions hold true.138

Assertion 1: For every λ ≥ λ0, there exist π(·) in C3(0,∞) and b > 0 such that139

the following holds for all x ≥ 0:140 
π′′′(x) + π′(x)− 2λπ(x) = −2bπ(x),
π′′(0)π(0) + (π′(0))2 + π2(0) ≤ 0,
π(x) > 0,
π′(x) ≥ 0.

(2.5)141

142

Assertion 2: For every λ ∈ (0, λ0), there exist L̄, b > 0 and π(·) in C3(0,∞)143

satisfying (2.5) for all x ∈ [0, L̄].144

Proof. See Appendix A145

The following proposition concerns the second case of boundary conditions.146

Proposition 2.3. Consider system (2.1) with boundary conditions (2.2b) and147

initial condition w0 ∈ L2(0, L). Then there exists λ0 > 0 such that the following hold:148

(1) For all λ ≥ λ0, there exist a, b > 0 such that the solution to (2.1)–(2.3)–(2.2b)149

satisfies the following:150

‖w(t, ·)‖L2(0,L) ≤ ae−bt‖w0(·)‖L2(0,L), t ≥ 0(2.6)151152

for every L > 0.153

(2) For all λ ∈ (0, λ0), there exist L̄, a, b > 0 such that (2.6) is satisfied for all154

L ∈ (0, L̄].155

Proof. In this context, we are interested by unique solutions w belonging to156

C
(
0,∞;L2(0, L)

)
. Well-posedness of the initial boundary value problem (2.1)–(2.3)–157

(2.2b) can be easily proven by invoking classical arguments, although these boundary158

conditions are less common in the literature. More details about the well-posedness159

of such systems are presented in Appendix B.1.160

To prove the stability result, let us consider the following weighted L2-norm:161

E(t) :=

∫ L

0

π(x)w2(x)dx162
163
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along the L2 solutions to (2.1)–(2.3)–(2.2b), for some appropriate choice of positive164

π(·) ∈ C3[0, L]. Calculating its time-derivative and applying integrations by parts,165

we obtain166

Ė(t) =

∫ L

0

(π′′′(x) + π′(x)− 2λ)w2(x)dx− 3

∫ L

0

π′(x)w2
x(x)dx167

+
[
(−π′′(x)− π(x))w2(x)− 2π(x)wxx(x)w(x) + π(x)w2

x(x)168

+2π′(x)wx(x)w(x)]
L
0 .169170

Substituting boundary conditions (2.2b) we get171

Ė(t) =

∫ L

0

(π′′′(x) + π′(x)− 2λ)w2(x)dx− 3

∫ L

0

π′(x)w2
x(x)dx172

−
(
wx(0) w(0)

)( π(0) −π′(0)
−π′(0) −π(0)− π′′(0)

)(
wx(0)
w(0)

)
.173

To ensure the exponential decay of E(t), we invoke assertions of Lemma 2.2 for π(·),174

for which we assume that it satisfies (2.5). By Assertions 1 and 2, the second integral175

and the third boundary term of the above equation become nonpositive, and we obtain176

the existence of a constant b > 0 such that177

Ė(t) ≤ −2bE(t)178179

and, therefore, (2.6) holds with

a =

√
π(L)

π(0)
.

This completes the proof of Proposition 2.3.180

2.2. Full state stabilization. Following the previous results, we are in a po-181

sition to study the closed-loop stabilization. Here, the considered state feedback182

controls, which are placed in the last equation, will be proven to be of the following183

form for each of the problems (BC-A) and (BC-B):184

(BC-A): u(t) =

∫ L

0

p(0, y)vn(t, y)dy,(2.7a)185

(BC-B): u(t) = −ω + 1

3
Lvn(t, 0) +

∫ L

0

pxx(0, y)vn(t, y)dy(2.7b)186
187

with ω > 0 to be chosen appropriately and kernel function p : Π → R depending on188

ω, where Π := {(x, y);x ∈ [0, L], y ∈ [x, L]}.189

We now present the exponential decay result of the solution v to the cascade190

system (1.1) via the control (2.7), which utilizes the full state. The proof uses back-191

stepping tools appearing in [4, 3] for single KdV equations.192

Theorem 2.4. Consider system (1.1) with boundary conditions (BC-A) or (BC-193

B), feedback control laws of the form (2.7a) or (2.7b), respectively, and initial condi-194

tion v0 ∈ L2(0, L)n.195

(a) If (BC-A) holds and n ≥ 2, then for every L > 0 there exist constants c, d > 0196

such that the solution v to (1.1) satisfies the following:197

‖v‖L2(0,L)n ≤ ce−dt‖v0‖L2(0,L)n , ∀t ≥ 0.(2.8)198199
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(b) If (BC-B) holds and n = 2, then for every L > 0, there exist constants c, d > 0200

such that solution v to (1.1) satisfies (2.8).201

(c) If (BC-B) holds and n > 2, then there exists L̄ > 0 such that (2.8) is guaran-202

teed for all L ∈ (0, L̄].203

Proof. The well-posedness for controlled system (1.1) with boundary conditions204

(BC-A) or (BC-B) is shown in Appendix B.1.205

We first prove a preliminary result concerning the exponential stability of vn. Let206

us apply a Volterra transformation T : L2(0, L)→ L2(0, L) of the form207

z(x) = T [vn](x) := vn(x)−
∫ L

x

p(x, y)vn(y)dy(2.9)208
209

to the solution to the last equation of the cascade system, with p defined on Π. Under210

appropriate choice of p(·, ·), we prove that this transformation maps solution vn to211

the trajectory z satisfying the following target equation in [0,∞)× [0, L]:212

zt + zx + zxxx + ωz = 0,(2.10)213

(BC-A, z) : z(t, 0) = z(t, L) = zx(t, L) = 0,214

(BC-B, z) : zxx(t, 0) = z(t, L) = zx(t, L) = 0215216

with control given by (2.7). Indeed, performing standard differentiations and integra-217

tions by parts (for more intuition about such operations, the reader can refer to [4]),218

we derive the following equations:219

zt(t, x) + zx(t, x) + zxxx(t, x) + ωz(t, x) =220

−
∫ L

x

(pxxx(x, y) + pyyy(x, y) + py(x, y) + (ω + 1)p(x, y)) vn(t, y)dy221

+ p(x, L)vn,xx(t, L) + p(x, L)vn(t, L) + pyy(x, L)vn(t, L)− py(x, L)vn,x(t, L)222

+

(
ω + 1 +

d2

dx2
p(x, x) +

d

dx
px(x, x) + pxx(x, x)− pyy(x, x)

)
vn(t, x)223

+

(
px(x, x) + py(x, x) + 2

d

dx
p(x, x)

)
vn,x(t, x).224

225

By choosing p(·, ·) satisfying the equations226  pxxx + pyyy + px + py + (ω + 1)p = 0, (x, y) ∈ Π,
p(x, x) = p(x, L) = 0, x ∈ [0, L],
px(x, x) = ω+1

3 (L− x), x ∈ [0, L],
(2.11)227

228

we obtain target system (2.10) for both boundary problems (BC-A, z) and (BC-B,229

z). Solutions to (2.11) are proven in [4] to be unique in the space C3(Π) by following230

successive approximation methods. The feedback control u is easily checked to satisfy231

(2.7) if we use (2.9) and also calculate the value of the second derivative, viz.,232

zxx(x) =vn,xx(x) +
d

dx
p(x, x)vn(x) + p(x, x)vn,x(x) + px(x, x)vn(x)233

−
∫ L

0

pxx(x, y)vn(y)dy234
235

for x = 0.236
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Now, as we saw in Propositions 2.1 and 2.3 of the previous subsection, solution237

z to target system (2.10) is asymptotically stable for every length L > 0 if ω > 0238

under boundary conditions (BC-A, z) and if ω ≥ 1 under boundary conditions (BC-239

B, z). This implies the asymptotic stability of vn, solution to (1.1), with control given240

by (2.7) for each of the boundary problems (BC-A) and (BC-B). The latter follows241

from the fact that, as proven in [4], transformation (2.9), mapping solution vn to242

z, is bounded and invertible with bounded inverse. So, for every d̄ > 0, there exist243

ω0, c̄ > 0 such that for all ω ≥ ω0, we have244

‖vn‖L2(0,L) ≤ c̄e−d̄t‖v0
n‖L2(0,L), ∀t ≥ 0.(2.12)245246

To prove the asymptotic stability of the full state, consider vector v[n−1] :=247 (
v1 · · · vn−1

)>
. Then, v[n−1] satisfies the following equations:248  v[n−1],t + v[n−1],x + v[n−1],xxx = (An−1 − In−1)v[n−1] + `vn,

(BC-A, v[n−1]) : v[n−1](t, 0) = v[n−1](t, L) = v[n−1],x(t, L) = 0,
(BC-B, v[n−1]) : v[n−1],xx(t, 0) = v[n−1](t, L) = v[n−1],x(t, L) = 0,

(2.13)249

250

where
` :=

(
0 · · · 0 1

)>
.

To prove stability of this system, consider a Lyapunov functional of the form251

W (t) =

∫ L

0

π(x)|v[n−1](x)|2dx252
253

along the L2(0, L)n−1 solutions v[n−1] to the last equations, where π(·) is a positive254

increasing C3 function to be chosen. After substistuting the above equations satisfied255

by v[n−1] and applying integrations by parts, we obtain, for the time-derivative of W ,256

Ẇ (t) =

∫ L

0

(π′′′(x) + π′(x))|v[n−1](x)|2dx− 3

∫ L

0

π′(x)|v[n−1],x(x)|2dx257

−
∫ L

0

π(x)v>[n−1](x)
(
2In−1 −A>n−1 −An−1

)
v[n−1](x)dx258

+ 2

∫ L

0

π(x)vn−1(x)vn(x)dx+W0259
260

with261

W0 :=
[
−(π′′(x) + π(x))|v[n−1](x)|2 + π(x)

(
|v[n−1],x(x)|2 − 2v>[n−1],xx(x)v[n−1](x)

)
262

+2π′(x)v>[n−1],x(x)v[n−1](x)
]L

0
.(2.14)263

264

Matrix 2In−1 −A>n−1 −An−1 is positive definite and its eigenvalues are given by

ρ := 2− 2 cos
πj

n
, j = 1, . . . , n− 1.

Consequently, its minimal eigenvalue is given by265

ρn := λmin(2In−1 −A>n−1 −An−1) = 2− 2 cos
π

n
, N 3 n ≥ 2.(2.15)266

267
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Since π′(x) ≥ 0, by use of Young’s inequality we obtain268

Ẇ (t) ≤
∫ L

0

(π′′′(x) + π′(x)− ρnπ(x))|v[n−1](x)|2dx269

+ 2δ

∫ L

0

π(x)|v[n−1](x)|2dx+
1

2δ

∫ L

0

π(x)v2
ndx+W0,270

271

and δ > 0 is chosen sufficiently small as in (A.4) in the proof of Lemma 2.2 of the272

previous subsection.273

Now, we choose π(·) for each of the two boundary problems as follows.274

For (BC-A, v[n−1]) we choose

π(·) = 1.

From this, taking also into account the exponential stability of vn (2.12), we get275

for the case (BC-A, v[n−1]) the following estimate:276

Ẇ (t) ≤ −2dW (t) +
1

2δ
π(L)c̄2e−2d̄t‖v0

n‖2L2(0,L)(2.16)277
278

with d = ρn/2− δ.279

For (BC-B, v[n−1]) we choose a positive and increasing π(·) satisfying (2.5) (see280

Assertion 1 in Lemma 2.2) with λ = ρn
2 − δ and b > 0. It turns out by Assertion 1281

that there are π(·) and b > 0 satisfying this equation for any L > 0, when λ = 1− δ,282

corresponding to ρ2 = 2 (for n = 2). Then, the exponential decay of the Lyapunov283

functional is ensured similarly as in Proposition 2.3. More precisely, there exists d > 0284

such that for all L > 0, (2.16) is satisfied for (BC-B, v[n−1]) as well. Also, as shown285

in Proposition 2.3, for n > 2, which renders ρn < 2, (2.16) is satisfied for some π(·),286

b > 0, only when 0 < L ≤ L̄, with L̄ depending on n.287

Combining the above results, from (2.16), which holds for both (BC-A, v[n−1])288

and (BC-B, v[n−1]), we derive by Gronwall’s inequality289

W (t) ≤ e−2dtW (0) +
π(L)c̄2

4δ(d− d̄)

(
e−2d̄t − e−2dt

)
‖v0
n‖2L2(0,L),(2.17)290

291

recalling also that d̄, depending on the parameter ω of the control laws, can be chosen292

such that d̄ > d. Combining (2.17) and (2.12), we get293

‖v‖L2(0,L)n ≤‖v[n−1]‖L2(0,L)n−1 + ‖vn‖L2(0,L) ≤

√
π(L)

π(0)
e−dt‖v[n−1](0, ·)‖L2(0,L)n−1294

+
c̄
√
π(L)

2
√
π(0)δ(d̄− d)

√
e−2dt − e−2d̄t‖v0

n‖L2(0,L) + c̄e−d̄t‖v0
n‖L2(0,L).295

296

The last inequality leads to (2.8) for a suitable choice of c.297

This concludes the proof and shows also that although the exponential conver-298

gence to zero of vn can become arbitrarily fast by the choice of parameter ω inside299

the controls, solution v to the whole cascade system has a fixed convergence rate.300

Remark 2.5. Note that in the above proof, parameter ρn in (2.15), depending301

on n, does not permit the stabilization of the closed-loop system for any number302

of equations n when the length of the domain L is arbitrary. As was shown in303
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Proposition 2.3, the damped KdV equation in the case of boundary conditions of304

the type (BC-B) requires a damping with coefficient λ larger than a critical damping305

coefficient λ0. The parameter ρn, which appears in the stabilization of the closed-306

loop system corresponding to the damping coefficient, is decreasing with n. For n > 2307

the stabilization cannot be ensured for any L > 0, since, because of ρn, the damping308

coefficient becomes lower than the critical one, while for n = 2, the damping coefficient309

of the coupled equation is exactly equal to the critical one.310

3. Observer Design and Output Feedback Stabilization. In this section,311

we first present the proposed observer, along with its convergence proof for each of the312

boundary control problems (BC-A) and (BC-B). Then, we study the output feeedback313

stabilization of system (1.1) with controls placed on the left boundaries as described in314

each of problems (BC-A) and (BC-B). We note here that, even though the considered315

system is linear, the use of the high-gain observer design is instrumental in the output316

feedback control in the two following manners and is based on the methodology [17],317

introduced for quasilinear hyperbolic systems: (1) For (BC-B), the choice of the318

high-gain parameter is needed to establish convergence of the observer, contrary to319

a simpler Luenberger observer design, which would be sufficient for (BC-A). (2) The320

high-gain parameter is used in the stabilization of the closed-loop system for both321

boundary control problems (BC-A) and (BC-B).322

In the following subsection we present the observer for the cascade system, whose323

exponential stability relies on the result presented in Proposition 2.3 of Section 2.324

3.1. Observer. Define, first, diagonal matrix Θn by325

Θn := diag
(
θ, θ2, . . . , θn

)
,326

where θ > 0 represents a gain, which will be selected later. Consider a vector gain327

Kn =
(
k1 · · · kn

)>
, and let P ∈ Rn×n be a symmetric and positive definite matrix328

satisfying a quadratic Lyapunov equation of the form329

(3.1) P (An +KnC) + (An +KnC)
>
P = −In.330

The previous equation is always feasible due to the observability of the pair (An, C).331

Then, our observer is defined to satisfy the following equations in (0,∞)× (0, L):332

v̂t(t, x) + v̂x(t, x) + v̂xxx(t, x) = (An −B)v̂(t, x)−ΘnKn (y(t, x)− Cv̂(t, x))(3.2)333334

with boundary conditions for each of (BC-A) and (BC-B) as follows:335

(BC-A):
v̂i(t, 0) = 0, i = 1, . . . , n− 1, ∀t > 0,
v̂n(t, 0) = u(t), ∀t > 0,
v̂(t, L) = v̂x(t, L) = 0, ∀t > 0,

(3.3a)336

(BC-B):
v̂i,xx(t, 0) = 0, i = 1, . . . , n− 1, ∀t > 0,
v̂n,xx(t, 0) = u(t), ∀t > 0,
v̂(t, L) = v̂x(t, L) = 0, ∀t > 0.

(3.3b)337

338

and initial condition

v̂(0, x) = v̂0(x), x ∈ (0, L).

The main observer result is stated in the following theorem.339
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10 C. Kitsos, E. Cerpa, G. Besançon, and C. Prieur

Theorem 3.1. Consider system (1.1) with output (1.4) and boundary conditions340

satisfying (1.2) ((BC-A) or (BC-B)) and v0 ∈ L2(0, L)n, u ∈ L2
loc(0,∞). Consider,341

also, P and Kn satisfying a Lyapunov equation as in (3.1). Then (3.2), with boundary342

conditions (3.3) and initial condition v̂0 ∈ L2(0, L)n, is an observer for solution of343

(1.1), in the sense that for θ large it estimates the state v arbitrarily fast. More344

precisely, for every κ > 0, there exists θ0 such that for every θ > θ0, the following345

holds for all v0, v̂0 ∈ L2(0, L)n, t ≥ 0:346

‖v̂(t, ·)− v(t, ·)‖L2(0,L)n ≤ νθn−1e−κt‖v̂0(·)− v0(·)‖L2(0,L)n(3.4)347348

with ν > 0, depending on n and L.349

Proof. First, we prove in Appendix B.2 that observer system (3.2)–(3.3) is well-350

posed. Then, to prove its asymptotic convergence to the state v, let us define a scaled351

observer error ε by352

ε = Θ−1
n (v̂ − v).(3.5)353354

Then, ε satisfies the following equations:355

εt + εx + εxxx = θ(An +KnC)ε−Bε(3.6)356357

and boundary conditions for each of the cases (BC-A) and (BC-B) as follows:358

ε(t, 0) =ε(t, L) = εx(t, L) = 0,(3.7a)359

εxx(t, 0) =ε(t, L) = εx(t, L) = 0.(3.7b)360361

We expect that solutions to the previous coupled equations can approach zero362

exponentially fast, since An + KnC being Hurwitz will exhibit a damping effect (as363

in the single KdV equation), with its magnitude being controlled by θ. Indeed, to364

prove exponential stability, we choose the following Lyapunov functional defined on365

the L2(0, L)n solutions to the observer error equations:366

V (t) :=

∫ L

0

µ(x)ε>(x)Pε(x)dx(3.8)367
368

with positive µ(·) ∈ C3[0, L] to be chosen suitably for each of the boundary conditions369

cases. Taking its time-derivative and substituting (3.6) and Lyapunov equation (3.1)370

yields371

V̇ (t) =

∫ L

0

µ(x)
[
−∂3

x

(
ε>(x)Pε(x)

)
− ∂x(ε>(x)Pε(x)) + 3∂x(ε>x (x)Pεx(x))372

−θε>(x)ε(x)− 2ε>(x)PBε(x)
]

dx.373374

Performing successive integrations by parts, we obtain375

V̇ (t) ≤
∫ L

0

(
µ′′′(x) + µ′(x) +

(
−θ 1

|P |
+ 2

|P |
λmin(P )

)
µ(x)

)
ε>(x)Pε(x)dx376

− 3

∫ L

0

µ′(x)ε>x (x)Pεx(x)dx+ V0,377
378
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where379

V0 :=
[
(−µ′′(x)− µ(x)) ε>(x)Pε(x)− µ(x)

(
ε>xx(x)Pε(x) + ε>(x)Pεxx(x)

)
380

+µ(x)ε>x (x)Pεx(x) + µ′(x)(ε>x (x)Pε(x) + ε>(x)Pεx(x))
]L
0

(3.9)381382

and λmin(P ) is the minimal eigenvalue of P .383

Let us now choose µ for boundary conditions case (3.7a) as follows:384

µ(·) := 1,(3.10)385386

for which we obtain387

V0 = −ε>x (0)Pεx(0) ≤ 0.388389

Note that given (3.10) for the boundary conditions case (3.7a), for every θ > θ0,A390

with391

θ0,A := 2
|P |2

λmin(P )
,392

393

we get394

V̇ (t) ≤ −2κAV (t), t ≥ 0(3.11)395396

for some κA > 0.397

Considering boundary conditions of case (3.7b), (3.9) is written as398

V0 := −
(
ε>x (0) ε>(0)

)(Pµ(0) Pµ′(0)
Pµ′(0) −P (µ′′(0) + µ(0))

)(
εx(0)
ε(0)

)
.399

400

For these boundary conditions (3.7b), we see that for all401

θ ≥ θ0,B := 2
|P |2

λmin(P )
+ 2|P |,402

403

Assertion 1 ((2.5) in Lemma 2.2) is satisfied with µ(·) in the place of π(·), λ =404

θ 1
2|P | −

|P |
λmin(P ) , λ0 = 1, and b = κB for some κB > 0 depending on θ. For all405

θ ≥ θ0,B , we choose, therefore, π(·) = µ(·) satisfying (2.5), and we derive again (3.11)406

with κA substituted by κB .407

Combining the previous estimates, we directly obtain (3.4) with

ν :=

√
µ(L)

µ(0)

√
|P |

λmin(P )
,

and this concludes the proof of Theorem 3.1.408

3.2. Output feedback stabilization. Next, it is proven that by plugging the409

observer’s state considered in Theorem 3.1 into the feedback laws (2.7) of the previous410

section, the closed-loop system is stabilized. This is done in two steps. First, it is411

proven that the considered output feedback law stabilizes arbitrarily fast the solution412

of the last KdV equation and second, the stabilization of the whole cascade system413

of KdV equations follows. However, for system with boundary conditions (BC-B),414

stabilization for any L is only achieved when n = 2, corresponding to a cascade system415

of two equations, while for n > 2, stabilization is achieved for small L, following the416

result of Proposition 2.3 of the previous section. Even if this requirement is restrictive,417

we find several physical applications, where only two coupled equations appear in the418

model; see [20]. These statements are presented in the following theorem.419
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12 C. Kitsos, E. Cerpa, G. Besançon, and C. Prieur

Theorem 3.2. Consider the closed-loop system (1.1)–(3.2), output (1.4), and420

boundary conditions being of the form (BC-A) or (BC-B). Then, for any d̄ > 0,421

there exist an output feedback law u(t) of the form (2.7), where v is substituted by422

the observer state v̂, and constants θ0, ω0, c̄ > 0 such that for any design parameters423

θ > θ0, ω > ω0 (with θ involved in the observer and ω involved in the control laws),424

the closed-loop system solution with v0, v̂0 ∈ L2(0, L)n satisfies the following stability425

inequality (on the estimation error and last observer state):426

427

(3.12) ‖v̂ − v‖L2(0,L)n + ‖v̂n‖L2(0,L)428

≤ c̄e−d̄t
(
‖v̂0 − v0‖L2(0,L)n + ‖v̂0

n‖L2(0,L)

)
, ∀t ≥ 0.429430

Moreover, whenever the previous assertion holds, we get the following (full state431

convergence):432

(a) When boundary conditions (BC-A) hold with n ≥ 2, then for every L > 0,433

there exist constants c, d > 0, such that solutions v, v̂ satisfy the following:434

435

(3.13) ‖v̂ − v‖L2(0,L)n + ‖v̂‖L2(0,L)n436

≤ ce−dt
(
‖v̂0 − v0‖L2(0,L)n + ‖v̂0‖L2(0,L)n

)
, ∀t ≥ 0437438

with d depending on n.439

(b) When boundary conditions (BC-B) hold with n = 2, then for every L > 0,440

there exist constants c, d > 0 such that solutions v, v̂ satisfy (3.13).441

(c) When (BC-B) holds, with n > 2 there exists L̄ > 0 small such that asymptotic442

stability (3.13) is guaranteed for all L ∈ (0, L̄].443

Proof. To address the closed-loop control problem, let us rewrite observer error444

and observer coupled equations, viz. (see (3.6), (3.2))445 {
εt + εx + εxxx = θ(An +KnC)ε−Bε,
v̂t + v̂x + v̂xxx = (An −B)v̂ + θΘnKnε1,

(3.14)446
447

with boundary conditions (3.7), (3.3).448

Let us perform a Volterra transformation to the solution of the nth equation of449

the observer, which by (3.2) is written as450

v̂n,t + v̂n,x + v̂n,xxx = v̂n + knθ
n+1ε1.(3.15)451452

The Volterra transformation453

q(x) = T [v̂n](x) := (knθ
n+1)−1v̂n(x)− (knθ

n+1)−1

∫ L

x

p(x, y)v̂n(y)dy,(3.16)454
455

under appropriate choice of p(·, ·) maps (3.15) into target system456

qt + qx + qxxx = −ωq + ε1 −
∫ L

x

p(x, y)ε1(t, y)dy(3.17)457
458

with ω a constant involved in the controller, and boundary conditions for each of the459

two considered cases as follows:460

q(t, 0) =q(t, L) = qx(t, L) = 0,(3.18a)461

qxx(t, 0) =q(t, L) = qx(t, L) = 0.(3.18b)462463
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Then, the kernel functions p(·, ·) satisfy (2.11) for both problems (3.18a), (3.18b). It464

is easy to check this if we apply successive differentiations of (3.16) as in Theorem 2.4,465

we obtain the above target system by choosing p(·, ·) satisfying (2.11). Subsequently,466

the output feedback control u(·) for (BC-A) is given by467

u(t) =

∫ L

0

p(0, y)v̂n(t, y)dy,(3.19a)468
469

and for (BC-B),470

u(t) = −ω + 1

3
Lv̂n(t, 0) +

∫ L

0

pxx(0, y)v̂n(t, y)dy.(3.19b)471
472

As noticed in proof of Theorem 2.4, it has been proven that the kernel equations473

(2.11) are solvable in Π and the corresponding Volterra transformation is bounded474

and injective with bounded inverse.475

Consider now the Lyapunov function476

U1(t) = U1,1(t) + U1,2(t);477

U1,1(t) :=

∫ L

0

µ(x)ε>(x)Pε(x)dx, U1,2(t) :=

∫ L

0

σ(x)q2(x)dx478
479

along the solutions to (3.6)–(3.7) and (3.17)–(3.18), where U1,1 is the same as (3.8) of480

Theorem 3.1 and σ(·) is a positive C3 increasing function in [0, L] to be chosen later.481

Taking the time-derivative of U1,2 and substituting (3.17), we infer482

U̇1,2(t) =

∫ L

0

(σ′′′(x) + σ′(x)− 2ω) q2(x)dx− 3

∫ L

0

σ′(x)q2
x(x)dx483

+ 2

∫ L

0

σ(x)q(x)ε1(x)dx− 2

∫ L

0

σ(x)q(x)

∫ L

x

p(x, y)ε1(y)dydx484

+
[
(−σ′′(x)− σ(x)) q2(x)− 2σ(x)qxx(x)q(x) + σ(x)q2

x(x)485

+2σ′(x)qx(x)q(x)]
L
0 .486487

By using488

2

∫ L

0

σ(x)q(x)

∫ L

x

p(x, y)ε1(y)dydx ≤ U1,2(t) + σ(L)

∫ L

0

(∫ L

x

p(x, y)ε1(y)dy

)2

dx489

≤ U1,2(t) + L2σ(L) max
x,y∈[0,L]

p2(x, y)

∫ L

0

ε2
1(y)dy490

≤ U1,2(t) + L2 σ(L)

µ(0)λmin(P )
max

x,y∈[0,L]
p2(x, y)U1,1(t),491

492

we get493

U̇1,2(t) ≤
∫ L

0

(σ′′′(x) + σ′(x)− 2(ω − 1)) q2(x)dx− 3

∫ L

0

σ′(x)q2
x(x)dx+ hU1,1(t)494

+
[
(−σ′′(x)− σ(x)) q2(x)− 2σ(x)qxx(x)q(x) + σ(x)q2

x(x)495

+2σ′(x)qx(x)q(x)]
L
0 ,(3.20)496497
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14 C. Kitsos, E. Cerpa, G. Besançon, and C. Prieur

where h :=
(
L2 maxx,y∈[0,L] p

2(x, y) + 1
) σ(L)
µ(0)λmin(P ) .498

We can prove that for each of the two cases of boundary conditions we get499

U̇1(t) ≤ −2d̄U1(t).(3.21)500501

Case (BC-A):502

We choose µ(·) = σ(·) = 1, and we obtain503

U̇1,2(t) ≤ −2(ω − 1)U1,2(t) + hU1,1(t).504505

As seen in Theorem 3.1, for µ(·) = 1, we have506

U̇1,1(t) ≤
(
−θ 1

|P |
+ 2

|P |
λmin(P )

)
U1,1(t).507

508

Combining the last two equations, if we choose θ, ω as509

θ > h|P |+ 2
|P |2

λmin(P )
, ω > 1,(3.22)510

511

we get a d̄ > 0 such that (3.21) holds.512

Case (BC-B):513

We see for this case of boundary conditions that for all514

θ ≥ θ0 := 2
|P |2

λmin(P )
+ h|P |+ 2|P |,(3.23)515

516

Assertion 1 ((2.5) in Lemma 2.2) is satisfied with µ(·) in the place of π(·), λ =517

θ 1
2|P | −

|P |
λmin(P ) −

h
2 , λ0 = 1. For all θ ≥ θ0, we choose, therefore, µ(·) satisfying (2.5),518

and we get that the first term of the right-hand side of519

U̇1(t) ≤
∫ L

0

(
µ′′′(x) + µ′(x)− 2

(
θ

1

2|P |
− |P |
λmin(P )

− h

2

)
µ(x)

)
ε>(x)Pε(x)dx520

+ U̇1,2(t), t ≥ 0521522

becomes negative.523

Similarly, for every

ω ≥ 2,

we can find σ(·) = π(·) satisfying (2.5) with λ = ω − 1 and λ0 = 1, and by virtue of524

Proposition 2.3, the right-hand side of (3.20) becomes negative. Hence, returning to525

U̇1 and choosing θ ≥ θ0 and ω ≥ 2, we can always find µ(·), σ(·) as in Assertion 1 of526

Lemma 2.2 in a such way that we always get a c2 > 0, satisfying again (3.21).527

Consequently, for each of the two problems (BC-A) and (BC-B), for each d̄ > 0528

we can find θ, ω, chosen as before in such a way that there exists constant γ > 0529

depending polynomially on θ such that530

‖v̂ − v‖L2(0,L)n + ‖q‖L2(0,L) ≤ γe−d̄t
(
‖v̂0 − v0‖L2(0,L)n + ‖q(0, ·)‖L2(0,L)

)
, ∀t ≥ 0.531532

Transformation T is bounded with bounded inverse (see the comments in Theo-533

rem 2.4), and, therefore, we obtain an inequality as (3.12).534
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Remark 3.3. The previous calculations indicate that gain θ appearing in observer535

system (3.2)–(3.3) is crucial in the stabilization of the closed-loop system. Indeed,536

in (3.23), we see that choice of θ compensates for some terms appearing therein.537

The dependence of the terms on the eigenvalues of matrix P indicates that a simpler538

Luenberger observer with pole placement would not suffice for the stabilization of539

the closed-loop system. These terms play the role of the nonlinearities, appearing in540

the Lyapunov derivative used for the observer error in high-gain observer designs for541

finite-dimensional systems. Although in finite dimensions, a pole-placement observer542

is enough for linear systems, in the present framework of infinite dimensions, a design543

similar to high-gain observers in finite dimensions is required.544

We are now in a position to prove the closed-loop stability for the whole system545

following the methodology of Theorem 2.4. Let v̂[n−1] :=
(
v̂1 · · · v̂n−1

)>
. Then, v̂[n−1]546

satisfies the following equations547

v̂[n−1],t + v̂[n−1],x + v̂[n−1],xxx = (An−1 − In−1)v̂[n−1] + `v̂n + Θn−1Kn−1(v̂1 − v1),
(BC-A, v̂[n−1]) : v̂[n−1](t, 0) = v̂[n−1](t, L) = v̂[n−1],x(t, L) = 0,
(BC-B, v̂[n−1]) : v̂[n−1],xx(t, 0) = v̂[n−1](t, L) = v̂[n−1],x(t, L) = 0,

548

549

where ` :=
(
0 · · · 0 1

)>
and Θn−1,Kn−1 are involved in observer (3.2).550

By choosing551

U2(t) =

∫ L

0

π(x)|v̂[n−1](x)|2dx552
553

as a Lyapunov functional along the L2(0, L)n−1 solutions to the last equations, with554

π(·) a positive increasing C3 function, we obtain555

U̇2(t) =

∫ L

0

(π′′′(x) + π′(x)) |v̂[n−1](x)|2dx− 3

∫ L

0

π′(x)|v̂[n−1],x(x)|2dx556

− 2

∫ L

0

π(x)v̂>[n−1](x)Sym (In−1 −An−1) v̂[n−1](x)dx557

+ 2

∫ L

0

π(x)v̂n−1(x)v̂n(x)dx+ 2

∫ L

0

π(x)v̂>[n−1]Θn−1Kn−1(v̂1 − v1)dx+ U2,0,558
559

where U2,0 is as W0 in (2.14) (see the proof of Theorem 2.4), while v[n−1] is substituted560

by v̂[n−1]. Applying Young’s inequality, we get561

U̇2(t) ≤
∫ L

0

(π′′′(x) + π′(x)− (ρn − 2δ)π(x)) |v̂[n−1](x)|2dx562

+
1

δ

∫ L

0

π(x)v̂2
n(x)dx+

1

δ
θ2n−2|Kn−1|2

∫ L

0

π(x)|v̂1(x)− v1(x)|2dx+ U2,0(3.24)563
564

with δ > 0 chosen sufficiently small, as in (A.4), determined in the proof of Lemma 2.2565

of previous section, and ρn defined in (2.15).566

Now, to ensure negativity of the Lyapunov derivative, we choose π(·) for each of567

the two boundary problems as follows.568

Case (BC-A, v̂[n−1]):569

π(·) = 1.570571

This manuscript is for review purposes only.



16 C. Kitsos, E. Cerpa, G. Besançon, and C. Prieur

Then, in conjunction with the previously proven equation (3.12), we get, from (3.24),572

U̇2(t) ≤ −2dU2(t) +me−2d̄t
(
‖v̂0 − v0‖L2(0,L)n + ‖v̂0

n‖L2(0,L)

)2
,(3.25)573574

where d := ρn − 2δ > 0 and575

m :=
1

δ
π(L)c̄2 max

(
1, θ2n−2|Kn−1|2

)
.(3.26)576

577

Case (BC-B, v̂[n−1]):578

For boundary conditions (BC-B,v̂[n−1]), to obtain an asymptotic stability result,579

we first check that for n = 2, we have ρn = 2. For this ρ2, the proof of Lemma 2.2580

suggests that there exists π(·) satisfying (2.5) for some b > 0, with the same π(·),581

λ = ρ2
2 − δ. Then, a similar inequality as (3.25) is satisfied for all L > 0, d = b, and582

m as in (3.26). Additionally, following Assertion 2 in the proof of Lemma 2.2, we see583

that for any n > 2, implying ρn < 2, there exist again π(·), d = b > 0 such that (2.5)584

holds for L ∈ (0, L̄].585

Now, we see that for both boundary problems (BC-A) and (BC-B), (3.25) gives586

U2(t) ≤ e−2dtW (0) +
m

2d− 2d̄
(e−2d̄t − e−2dt)

(
‖v̂0 − v0‖L2(0,L)n + ‖v̂0

n‖L2(0,L)

)2
.587

588

The latter implies589

U2(t) ≤
(
e−2dt +

m

2d− 2d̄
(e−2d̄t − e−2dt)

)(
‖v̂0 − v0‖L2(0,L)n + ‖v̂0‖L2(0,L)n

)2
.

(3.27)

590
591

Recalling that d̄ depends on the adjustable observer parameter θ, we suppose, without592

loss of generality, that it can be chosen such that d̄ > d, so that the previous inequality593

has meaning.594

Now, using trivial inequalities and by virtue of (3.27) and (3.12), we easily get595

‖v̂ − v‖L2(0,L)n + ‖v̂‖L2(0,L)n ≤ ‖v̂ − v‖L2(0,L)n + ‖v̂n‖L2(0,L) + ‖v̂[n−1]‖L2(0,L)n−1596

≤

[
c̄e−d̄t +

1√
π(0)

√
e−2dt +

m

2d− 2d̄
(e−2d̄t − e−2dt)

]
597

×
(
‖v̂0 − v0‖L2(0,L)n + ‖v̂0‖L2(0,L)n

)
.598599

The latter completes the proof of Theorem 3.2, suggesting also that the asymptotic600

rate of the whole closed-loop cascade system is no larger than d, which is decreasing601

with n, contrary to the asymptotic rate for the last state vn, which is adjusted by the602

observer and control parameters.603

Remark 3.4. The considered stabilization problem of underactuated and under-604

observed cascade systems of KdV equations was here limited to the linear case, and605

special forms of couplings. Even though stabilization results of the original nonlinear606

KdV equation can be found (see survey [3]), or observer results for some infinite-607

dimensional systems with nonlinearities (satisfying some “triangular structure”), as608

in [16, 18], extensions of our output feedback stabilization to more general couplings609

and/or nonlinearities are quite challenging and are thus left for future studies: a strong610

difficulty comes from the coefficients of the system’s differential operator, where the611

presence of distinct elements raises problems related to the notion of algebraic solv-612

ability, which has been given attention in [1, 19] and other works of the same authors.613
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In the Lyapunov-based approach we have considered, this problem translates into the614

lack of a commutative property between a Lyapunov matrix and coefficients of sys-615

tem’s differential operator. Handling nonlinearities in a first-order term (for instance,616

terms vivi,x or even couplings of this type between the equations) and zero-order617

term at the same time is also part of the challenge, as this commutative property618

would not be fulfilled. We also refer to [9], where some open problems concerning619

such coupling are presented, while the reader can understand the difficulties in the620

controllability analysis of underactuated systems with nontrivial coefficients of the621

differential operators and the presence of nonlinearities.622

Notice yet that it could be possible to adopt an indirect approach, based on our623

previous approaches [18], to deal with the case where the first-order and dispersion624

terms would be of the form A1vx +A2vxxx for some A1, A2 ∈ Rn×n. Consideration of625

linear lower triangular couplings of first-order and third-order terms would be feasible626

as well, but more general cases remain open.627

Notice also that while this underobserved problem is already challenging, the case628

when only a boundary measurement is available (instead of an internal one, at least629

localized to a part of the domain) is even more difficult: even though a solution does630

exist for a single equation and boundary measurement [23], it does not easily extend631

to the case of coupled KdV equations, via a backstepping and a single measurement632

instead of a distributed one. For the case of n coupled equations, a backstepping633

approach that would lead to an exponentially stable observer error system would fail,634

even for n = 2, if the observations were fewer than the states. In addition, the control635

problem of underactuated systems by itself is a hard problem, and if 2×2 systems have636

local solutions via backstepping (see [8]), they concern hyperbolic systems where a637

dissipative target system is feasible. For the coupled KdV equations, the exponentially638

stable target system for the observer error would be needed to be a damped system,639

which cannot be achieved by a single observation.640

Some possible generalizations of the present framework, as the ones described641

before, will be a subject of our future work.642

4. Conclusion. In this work, output feedback stabilization for a class of cascade643

system of linear KdV equations was achieved. Two boundary control problems, with644

controls placed on the left side of the last equation, were investigated. Distributed645

measurement of the first state was considered, which provided an estimation (using a646

high-gain observer) of the states fed in the control laws. The cascade system is stabi-647

lized for both boundary problems but with a limitation on the number of equations648

and length of the domain for the second one.649

Future developments might include the same stabilization framework, but with650

more general couplings (in zero-order and first-order derivative terms), including lo-651

calized terms and nonlinearities.652

Appendix A. Proof of Lemma 2.2. To prove Assertions 1 and 2 of653

Lemma 2.2, it is more convenient to write the characteristic equation of the differential654

equation in (2.5) as655

r3 + r − s3 − s = 0(A.1)656657

(as in [25], a technique used to solve the characteristic equation of the KdV operator),658

where659

s3 + s = 2λ− 2b(A.2)660661
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18 C. Kitsos, E. Cerpa, G. Besançon, and C. Prieur

and considering s being the real root of the latter equation. Then, solutions to (A.1)
are given by

r1 = s, r2 = −s
2

+ i

√
3s2 + 4

2
, r3 = −s

2
− i
√

3s2 + 4

2
,

and, therefore, unique solutions to the differential equation in (2.5) are given by662

π(x) = αesx + βe−
s
2x cos

√
3s2 + 4

2
x+ γe−

s
2x sin

√
3s2 + 4

2
x(A.3)663

664

with α, β, γ ∈ R chosen such that restriction on initial conditions in (2.5) is satisfied.665

We can check numerically that there exists a number ε > 0 near zero such that for666

s ≥ 1− ε, π(·) given by (A.3) with initial conditions π(0) = 4, π′(0) = 2, π′′(0) = −5667

(corresponding to α = 56/25, β = 44/25, γ = 8/25) is positive and increasing and,668

therefore, satisfies (2.5). Defining a small constant δ > 0 by669

δ :=
ε3

5
− 3ε2

5
+

7ε

5
,(A.4)670

671

we see from (A.2) that for s ≥ 1− ε we have λ ≥ λ0 := 1−δ for choice b = 11
16λ. Thus,672

for all λ ≥ λ0, there exists b > 0, such that conditions (2.5) are satisfied. Hence,673

Assertion 1 is proven to hold for λ0 = 1 − δ, where δ is defined above. Now, notice674

that for s < 1 − ε, corresponding to λ < λ0, and for any initial condition of π(·)675

satisfying the second equation of (2.5), there is a L̄ > 0 such that for x > L̄, π(·)676

becomes decreasing and, thus, fails to satisfy all conditions (2.5). This implies that677

for 0 < λ < λ0, Assertion 2 is satisfied for some small L̄ > 0. Letting s → 0+ and678

choosing initial conditions π(0) = 4, π′(0) = 2, π′′(0) = −5 as before, π approaches the679

trajectory of π(x) = −1+5 cos(x)+2 sin(x), for which π′(x) < 0 for L > arctan(2/5).680

By this, for λ→ 0+, b→ 0+, Assertion 2 is satisfied with L̄ = arctan(2/5).681

In Figure 1, we represent the evolution of π(x) for choice of initial condition682

π(0) = 4, π′(0) = 2, π′′(0) = −5 and various values of s corresponding to various683

values of λ. For small values of s corresponding to small values of λ, π(·) is increasing684

until some point x = L̄ quite small, but for x > L̄, it is decreasing and, thus, fails685

to satisfy the fourth equation of (2.5) after this point, in accordance with Assertion686

2. We also see that for all s ≥ 1 − ε, for ε > 0 small, given as before, π(·) is always687

increasing, verifying Assertion 1. The proof is complete.688

Appendix B. Well-posedness of system and observer.689

We show here the well-posedness of both controlled system (1.1)–(1.3) and ob-690

server system (3.2)–(3.3).691

B.1. Well-posedness of (1.1)–(1.3). First, for system (1.1), with boundary692

conditions (BC-A) or (BC-B), feedback control laws of the form (2.7a) or (2.7b),693

respectively, and initial condition v0 ∈ L2(0, L)n, it is sufficient to prove the well-694

posedness of target system, which results after applying the isomorphic transformation695

T (see (2.9)) in conjunction with (2.10):696 
v[n−1],t + v[n−1],x + v[n−1],xxx = (An−1 − In−1)v[n−1] + `T −1[z],
zt + zx + zxxx + ωz = 0,
(BC-A) : η(t, 0) = η(t, L) = ηx(t, L) = 0,
(BC-B) : ηxx(t, 0) = η(t, L) = ηx(t, L) = 0,

697

698
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Fig. 1. Solutions to (2.5) for different s

where η :=
(
v[n−1] z

)>
is the target state and we adopt the same notation as in699

(2.13). We rewrite the above system as an abstract evolution system in L2(0, L)n as700

ζ̇ = Aζ,701702

where A := diag (A1, . . . ,An) : D(A) → L2(0, L)n is an linear unbounded operator703

defined as704

Aiζi =− ζi,x − ζi,xxx − ζi + ζi+1, i = 1, . . . , n− 2,705

An−1ζn−1 =− ζn−1,x − ζn−1,xxx − ζn−1 + T −1[ζn],706

Anζn =− ζn,x − ζn,xxx − ωζn707708

with domain709

D(A) =
{
ζ ∈ H3(0, L)n; ζ(0) = ζ(L) = ζ ′(L) = 0 for (BC-A)710

or ζ ′′(0) = ζ(L) = ζ ′(L) = 0 for (BC-B)} .711712

Its adjoint operator satisfies713

A∗i ζi =ζi,x + ζi,xxx − ζi + ζi+1, i = 1, . . . , n− 2,714

A∗n−1ζn−1 =ζn−1,x + ζn−1,xxx − ζn−1 + T −1[ζn],715

A∗nζn =ζn,x + ζn,xxx − ωζn716717

with domain718

D(A∗) =
{
ζ ∈ H3(0, L)n; ζ(0) = ζ ′(0) = ζ(L) = 0 for (BC-A)719

or ζ ′′(0) = −ζ(0), ζ(L) = ζ ′(0) = ζ(L) = 0 for (BC-B)} .720721

Operator A and its adjoint A∗ are closed with domains dense in L2(0, L)n. Further-722

more, they are both dissipative. Indeed, from the stability proof of Theorem 2.4, we723

first see that An is dissipative. Then, the exponential stability of T [ζn] in (2.12), in724

conjunction with (2.17), implies that725 〈
A[n−1]ζ[n−1], πζ[n−1]

〉
L2(0,L)n−1 ≤ 0,(B.1)726

727
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20 C. Kitsos, E. Cerpa, G. Besançon, and C. Prieur

where π(·) satisfies (2.5). Inequality (B.1) is satisfied for every L > 0 if n ≥ 2 under728

boundary conditions (BC-A) and if n = 2 under boundary conditions (BC-B). For729

the latter case, the same inequality holds for n > 2, when L ∈ (0, L̄], for some L̄ > 0.730

This was shown in the stability proof of Theorem 2.4, and it implies that operator A731

is dissipative, namely,732

〈Aζ, ζ〉L2(0,L)n ≤ 0.733
734

To show dissipativity of the adjoint operator A∗, i.e., that 〈A∗ζ, ζ〉L2(0,L)n ≤ 0,735

we can easily show first that A∗n is dissipative, by applying integrations by parts.736

Then, we show that
〈
A∗[n−1]ζ[n−1], ζ[n−1]

〉
L2(0,L)n−1

≤ 0. This implies that A∗ is737

dissipative.738

Consequently, we can apply the Lumer–Phillips theorem, and we conclude that
A generates a C0-semigroup of contractions, and, thus, returning to the original
coordinates via T −1, we have that for any initial condition v0 ∈ L2(0, L)n, there
exists a unique mild solution

v ∈ C0
(
0,∞;L2(0, L)n

)
for system (1.1)–(1.3), noting also that for (BC-A), the above holds for all L > 0739

and n ≥ 2, while for (BC-B), the above holds for all L > 0, when n = 2 and for all740

L ∈ (0, L̄], when n > 2, where L̄ is given in Lemma 2.2.741

The above well-posedness result for the n coupled equations holds also for the742

single damped KdV equation (see (2.1)–(2.3)), as this system’s operator is equal to743

An, as defined above.744

B.2. Well-posedness of (3.2)–(3.3). The observer system given by (3.2) with745

boundary conditions (3.3) is well-posed. To see this, it suffices to show the well-746

posedness of the error system (3.6)–(3.7), invoking also the well-posedness of initial747

system (1.1)–(1.3) that we showed before. The differential operator for error system748

(3.6)–(3.7) is given by749

Aζ = −ζx − ζxxx + θ(An +KnC)ζ −Bζ750751

with domain752

D(A) =
{
ζ ∈ H3(0, L)n; ζ(0) = ζ(L) = ζ ′(L) = 0 for (BC-A)753

or ζ ′′(0) = ζ(L) = ζ ′(L) = 0 for (BC-B)} ,754755

and its adjoint operator is given by756

A∗ζ = ζx + ζxxx + θ(An +KnC)ζ −Bζ757758

with domain759

D(A∗) =
{
ζ ∈ H3(0, L)n; ζ(0) = ζ ′(0) = ζ(L) = 0 for (BC-A)760

or ζ ′′(0) = −ζ(0), ζ(L) = ζ ′(0) = ζ(L) = 0 for (BC-B)} .761762

By the stability proof in Theorem 3.1, we see that763

〈Aζ, µPζ〉L2(0,L)n ≤ 0(B.2)764
765
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whenever θ > θ0, where θ0 is defined in the proof of Theorem 3.1 and where function
µ(·) and matrix P are defined in the proof of Theorem 3.1. Inequality (B.2) implies
that A is dissipative. The adjoint A∗ is also dissipative, and it can be shown by
proving that 〈A∗ζ, Pζ〉L2(0,L)n ≤ 0 by applying successive integrations by parts. This,
similarly as in Appendix B.1, proves the well-posedness of the error equations, which
along with the well-posedness of the initial system results in the well-posedness of the
observer system (3.2)–(3.3), namely, for any initial condition v̂0 ∈ L2(0, L)n, there
exists a unique mild solution

v̂ ∈ C0
(
0,∞;L2(0, L)n

)
for all θ > θ0.766
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